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4.2 Multilayer Perceptrons
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Figure 4.7: Activation functions for neurons
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4.2.2 Feedforward Network of Neurons
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Figure 4.8: Multilayer perceptron maoc
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The neurons in the first layer of the mult
tations, and the outputs of these ons are gj

er peroeptron perform compu-
by

withj =1, n1. The neurons in the second layer of ti
tron perform computations, and the outputs of these neurons
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perform computations, and the outputs of thes
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e neurons are given by

)2

¥ = Foup(z,0)
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4.3  Example: Multilayer Perceptron for Tanker
Ship Steering
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Simulation of Nonlinear Systems

Suppose that the system to be simulated can be represented by the ordinary

differential equation

#Y) = flaz(),r(t),) (4.6)
¥y = g(=().r(t),0)

where z = [x),2s,.. ., vi Vf=1h T is a vector of

near functions, g is a nonlinear function that w
input to the output of the s
and g are, in general, time
the time variable ¢, ¢ a nonlinear system, we will
nonlinear ordinary differential equations are put into the form

state. Note that

ation (4.6)
Euler’s Method: Now, to simulate Equation (4.6), we could simply use Eu-
ler's method to approximate the derivative # in

alkh+h) - x(kh) Slx(kh),r(kh), kh) 7

h
v = glz(kh),r(kh), kh)

“quation (

nce

xplicit dependence on
ume that the
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The Runge-Kutta Method: While Euler’s method is easy to understand
and implement in code, sometimes to get good accuracy the value of h must
be chosen to be very small. Most often, to get good simulation accuracy, more
sophisticated methods are used, such as the Runge-Kutta method with adap-

tive step size or predictor-corrector method:
method, we begin with Equation (4.6) and a given z(0) and let

(e + ) = 2(kh) + 11 (kx + 2ka + 2k + ky)
where the four vectors

Kio= hf(e(kh), r(kh), ki)
ke = hf (:-(A-n)-‘-’“’.r(x-mg).wwf{)

(s 2) e 2)

ka = hf(x(kh)+ ks,r(kh+ h), kh + h)

ks = hf(:-(kh)Jr

In the fourth-order Runge-Kutta

(4.8)
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Simulating the Ship

nd a Digital Controller

T order nonlinear
resenting the ship to n first-order ord

and

We would like the mode

() t),8(t))
w(t) 1), 8(t))
4 (t), xa(t), )T a = use in a non
lation program. We need to choose i so that f; ds only on z, «
3. We have
¥ (t) = =a(t) - BH{(1)) + cb(t) + db(2) 1.0}
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Choose . .
#3(t) =y (t) — co(t)

so that f3 will not depend on ¢5(t) and
x3(t) = P(t) - cs(t)

Choose i(t) = $(t) so that @3(t) = y(t). Finally, choose xy(t) = 1. This gives
us

1) = xalt) = filz(t),5(t))
#at) = xa(t) + o8(t) = fa(x(t),5(2))
@3(t) = —ay(t) — bH((t)) + dd(t)

But, §/(t) = xa(t) + e(t), () = xa(t), and H(wa) = 23(t) -+ za(t) s0
ea(t)) + di(t) = fa(z(t), (1))

Also, we have ¥ = g(x,¥,) = x;. This provides the proper eq
the simulation. ext, suppose that the initial conditions are ¥(0)
$(0) = 0. This implies that 1(0) = z9(0) = 0 and z3(0) = ¥(0) — ¢5(0) or
23(0) = —cd(0)

for the ship steering problem we let the integration step size be h = 1 sec.
and @ = 10 so that T = ah = 10 sec. (i.e., the controller is implemented on
digital computer with a sampling period of T = 10 sec. so that a new plant
put is calculated every 10 sec. and applied to the rudder). We will use this
e approach for all the simulations for the tanker ship in this book

@3(t) = —a (xa(t) + cd(t)) — b (x3(t)

ons for
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4.3.2 Construction of a Multilayer Perceptron for Ship
Steering

Fies lidden Second hidden Third hidden Output tayer
tayer

car activation function

= logistic sigmoidal activation function

Figure 4.11: A multilayer pereeptron for tanker ship steering.
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we use a four la

er perceptron with

both linear and lc ctions. First, consider the first

hidden layer.
see that the output of th

0. Hence, we

To a contrel e
simple summi on to provid
that a neuron ean provide a m,
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» implement
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signals, something that is
ce in making control decisions.

Choosing Weights and Biases: Building Nonlinearities with Smooth
Step Functions

Next, we explain how to pick the weights
do this, view the perceptron in Fj
from

d biases for the re

ining layers. To

ure 4.11 as having two “pa of processing
al e that is the output of the first hidden layer to the output 8.
Imagine that you remove the path on the bottom and first focus on constructing
the path on the top. We will think of the top path as being used to regulate
the ship heading when

the sig:

e=yp—§=0

In this case we want to have a negative rudder input.
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To specify values for the weights and biases we think of each neuron as
providing a type of “smooth switching” (a smooth step function as shown in
Figure 4.7, e.g., for the logistie function) and tune the weights and biases to
adjust these. Note that when only the top path is cof sidered, we have

(3)
w ,
§=w, 11 +5@) 4
"\ Trepn ™1 b
where
2 2
"[1—] + :;{‘!)r

The parameters in these equations affect the shape of the nonlinearity from e
to é in the following manner:

o by, Y Shift the mapping up and down,
3)
1

). @ . .
o wyy, w(}: Scale the vertical axis.

. b,‘”"‘ Shifts the smooth step (logistic function) horizontally, with ¥ >0
shifting it to the left.

. w

3 Scale the ho
the function, at leas

ontal axis (you may think of this a
t locally).

a type of gain for
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Using these ideas, choose

b = ¥ =0

wy o= 1
807

3
wff = - 180

. 200
p@» _ _200m

' 180
wl = 10

With these choices we get the nonlinear mapping shown in the top plot of Fig-
ure 4.12. The general shape of the function is appropriate to us controller
for e > 0 since it provides negative rudder input values for positive values of
error, and it provides a type of proportionality between the size of e and the size
of 4. Notice that the choice of w{}' results in the perceptron providing a ma:

mum negative rudder deflection of —80 degrees. The choice of b{?) simply shifts
the function to the right, so that the value of the function near e = 0 provides
& 7 0. The value of w(7 affects the slope of the function as e > 0 increases in
size; if “r'ﬁ) were chosen to be larger, then it would reach the maximum nega-
tive value of ~80 degrees quicker as the size of © increases. This completes the
construction of the perceptron for the top path, which is dedicated to control
for the case where e > 0.
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gure 4.12: Multilayer perceptron mappings, top plot is for the top path of the
perceptron from e to &, middle plot is for the bottom ath of the perceptron
from e to 8, bottom plot is for the entire perceptron from e to 4.
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Using the same ideas for case e < 0.

l.fj

wyy
wl®

(2)
b

(2
wyy
The resulting nonlinearity implemented by the bottom path is shown in the

middle plot of Figure 4.12. First, note that its gencral shape is appropriate to
th

(2)

e the value of 1 to the alues of wiy, b,

and w{? were chosen in a similar way

jos 3
path were chosen. The value of by wi

the corresponding values for the top

chosen to shift the nonlinearity up by
80 degrees. The choice for wy; completes the specification of the output layer,
which simply sums the functions generated by the top and bottom paths, and
results in the overall mapping from e to § shown in the bottom plot of Figure 4.
(i.e., when both the top and the bottom paths in Figure 4.11 are used). Th

ilayer perceptron for regulating the

completes the construction of the multil
heading.

Z
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4.3.3  Multilayer Perceptron Stimulus-Respons
teristics
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4.3.4 Behavior of the Ship Controlled by the Mul
Perceptron

awyer
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Effects of Wind on Heading Regulation

Next, consider the effects of a wind disturbance on the ship. Suppose that the
wind is gusting. It hvwllu--ml- of the ship and m

ishes the rudder
model this we

st the water w]

s
add a ‘Imml.. onto the rudder an,

0.5 ( L:G) sin (2m(0.001)2)

=

P

Fig
for tank

Closed-loop response resulting from using the multilayer pe:
ship steering, with wind.
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Effects of Speed Changes on Heading Regulation

Figure 4.16: Closed-loop response resulting from using the multilay

er perceptron
for tanker ship steering with speed of 3 meters /sec.
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Effects of Sensor Noise and Weight Changes on Heading Regulation

B
W ow e me  me W6 wa e
S beaing ane Batnsan 5 hading wad i P, dog

Figure 4.17: Closed-loop response resulting from using the multilayer perceptron
her than ballast conditions.

for tanker ship steering, full ra
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4.4 Radial Basis Function Neural Networks

A locally tuned overlapping receptive field is found in parts of the cerebral
in the visual cortex, and in other parts of ] adial basis
funetion neural network model is ems (but once
again, the model is not necessari

terpart).

field units

Figure 4.18: Radial basis function neural network model.

http://en.wikipedia.org/wiki/Cerebral cortex
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v = Fug(x,0) =3 bRi() (4.10)
=

is the output of the radial basi ction neural network, and @ holds the b,
parameters and possi s of the receptive field units,
There are several possible choices for the “receptive field units” R, (x):

L. We could choose

Ry(z) = »m,(

2. We could choose .
Riw) = ———+
1+ 1-2(;:(— L )

3. In each of the above cases you can choose to make the o also

(which makes sense if the input dimensions
). In this case for 1 above, for example, we would |

L of]T and

Ri(x) = exp (

where o} is the spread for the 7** input for the i*»
This is the approach that we will use in the example in the ne

coeptive field unit.
ction.
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Figure 4.19: Example receptive field units.
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4.5  Example: Radial Basis Function Neural Net-
work for Ship Steering

Roward difference and

s function neural network us

ire 4.20: Radial b
g

e=vh— 9

a backward difference approximation to the derivative
kT),

) ey

=X for the time step (this is a
ivi and the sampling period of the digite
will implement the controller).
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Design of a Radial Basis Function Neural Network for Ste

Next, we construct basis function neural network with n
and ng = 121 so we wi e to pick 121 strengths by, i
Ri(e(k), c(k)) we create a uniform grid for the ¢ centors, i =

i L T T p—

[ R
“:uu © e e 8 6 o o e
I | o ¢ 0o 5 06 6 6 o o o o
fotio o o o096 0 0 0. 0.
o“uannnur—‘oou
[
e w w e e w w ® e

Figure 4.21: Receptive field unit cente
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(which will hold if we do good regulation and do not get fast changes in ,).
ions of the ship th

(k) € [-0.01,0.01]

so we will make that assumption. For convenience, w
form grid with its four outer corners at (—%,-0.01), (~%,0.01}, (3,0.01), and

0.01) with ng = 121 centers uniformly placed at the grid points (i.e., with
1 points along each input dimension). We show the centers of the receptive
field units in Figure 4.21

For the rece)

e field units we use spreads o}
spread depends on which input dimension is used) wi

, o that the size of the

af

and

e 0.02
oh =07

fori=1

For af the {7 factor makes the spread size depend on the
s along the e input dimension (simil ), and the 0.7
factor was chosen to get a smooth interpolation between adjacent receptive field

number of grid p
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Figure 4.22: Mapping implemented by receptive field unit, Rya(e, ¢
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Figure 4.23: Scaling and addition of several receptive field units (i.
Rea(e, €) + 2Razle, €) + Rea(e, c)).
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The stimulus-re

veg(e,c) th
surface, similar to how we illy
(note that here the inputs ar

ural network
m of a control
°r perceptron
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Figure 4.24: Stimulus-response characteristics of the radial basis funection

network for tanker ship heading regulati
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Behavior of the Ship Controlled by the Radial Ba:
Function Neural Network

udy how a radial basis function neu
ship heading imulation stue

am operat
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Closed-loop response resulting from using the function

k for tanker ship steering.
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4.26: Closed-loop response resulting from using the radial basis function
1l network for tanker ship steering.
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Effects of Wind, Speed Changes, Sensor Noise, and Weight €
on Heading Regulation

Next, consider th
th

fects of a wind disturbance on the ship. In this

e s t the wind affects our ability to achie
ilation of the ship heading,

rod steady state rey

850 b [

;Z.r._ -

Figure 4
neural netw

osed-loop response e
for tanker ship steer

1 from using the radie
with wind.

basis function
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Toma ract

Figure 4

Closed-loop response resulting from using the
neural network for tanker ship steering, speed of 3 meters/s

ial basis function
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Figure 4.29: Closed-loop response resulting from
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g the radial basis function

neural network for tanker ship steering, full rather than ballast conditions.
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