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Abstract— In this paper, a novel optimal energy storage control
scheme is investigated in smart grid environments with solar
renewable energy. Based on the idea of adaptive dynamic
programming (ADP), a self-learning algorithm is constructed to
obtain the iterative control law sequence of the battery. Based on
the data of the real-time electricity price (electricity rate in brief),
the load demand (load in brief), and the solar renewable energy
(solar energy in brief), the optimal performance index function,
which minimizes the total electricity cost and simultaneously
extends the battery’s lifetime, is established. A new analysis
method of the iterative ADP algorithm is developed to guarantee
the convergence of the iterative value function to the optimum
under iterative control law sequence for any time index in a
period. Numerical results and comparisons are presented to
illustrate the effectiveness of the developed algorithm.

Index Terms— Adaptive critic designs, adaptive dynamic pro-
gramming, approximate dynamic programming, solar renewable
energy, energy storage system, optimal control, energy storage.

I. INTRODUCTION

ALONG with the development of smart grid, more and
more intelligence has been required in the design of

smart energy storage systems [1]–[3]. Energy storage systems
of the future will provide end users a better energy manage-
ment, reducing waste and advanced optimization technology.
Renewable energies, electricity load, and energy storage e-
quipments (battery) can be defined as smart energy storage
systems which are able to operate with physically islanded
[4], [5]. The intelligent optimal utilization of energy storage,
along with the development of computational intelligences, has
received much attention in recent years [6]–[8].

Adaptive dynamic programming (ADP) is an important and
powerful brain-like intelligent optimal control method [9]–
[20], due to its strong abilities of self-learning and adaptivity,
and has widely been applied to obtain the optimal control for
energy storage systems [21]–[24]. In [25], an action-dependent
heuristic dynamic programming (ADHDP) algorithm, which is
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also called Q-learning algorithm [26], was proposed to obtain
the optimal energy storage (battery) control law in achieving
minimization of the cost through neural network learning.
In [27], a time-based Q-learning algorithm was proposed to
obtain the optimal battery control law to minimize the total
electricity cost for energy storage systems, where the wind and
solar energies were taken into consideration. In [28], a particle
swarm optimization (PSO) algorithm was introduced to pre-
train the weights of the neural networks, which speeds up the
training of neural networks in ADP. In [29], a new event-
triggered ADP algorithm was proposed to obtain the optimal
frequency control law of the load.

In previous ADP algorithms for energy storage systems,
however, it is mainly focused on the structure improvements,
while the properties of the proposed ADP structures are
seldom analyzed. In this case, the optimality of the achieved
control scheme cannot be guaranteed. Second, the previous
ADP algorithms required that the time index t reach infinity to
obtain the optimal performance index function, which means
that the optimal performance index function and optimal
control law are time-invariant functions as t → ∞. As the
electricity rate, the load demand, and the solar renewable
energy are generally time-variant functions, the converged
time-invariant functions cannot effectively approximate the
optimal performance index function and optimal control law
of the energy storage systems. In [30], without considering
the renewable energy, a dual iterative Q-learning algorithm
of ADP was proposed to obtain the optimal battery control
policy for energy storage systems, where it was proven that
the iterative Q function is convergent to the optimum, as the
iteration index increases to infinity. Considering the renewable
energy, it presents a more complex scheme comparing with
[30], where the optimal decisions for the power flows should
cover all the possibilities for the renewable energy resource,
the load, and the battery. Hence, the ADP algorithm and
the property analysis in [30] cannot directly be applied to
energy storage systems with renewable energy. A new ADP
algorithm with new property analysis methods is necessary for
the optimal battery control of the energy storage systems with
renewable energy. This motivates our research.

In this paper, inspired by [25], [27], [30], a new iterative
ADP algorithm is developed to obtain the optimal battery con-
trol for energy storage systems with solar renewable energy.
According to the data of the electricity rate, the load, and the
solar energy, the energy storage system is described and the
optimization objective is established. Based on the established
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system, the iterative ADP algorithm is implemented, where in
each iteration, an iterative control law sequence of a period is
obtained instead of a single control law. Next, the properties
of the iterative ADP algorithm are analyzed. As the iteration
index increases to infinity, we emphasize that the iterative
value function for any time index in the period is proven to
converge to the optimal performance index function. Finally,
numerical experiments and comparisons are presented to show
the effectiveness of the iterative ADP algorithm.

II. PRELIMINARIES AND ASSUMPTIONS

In this section, the energy storage system with renewable
energy, i.e., solar energy, is described and the optimization
objective of our research will be defined.

A. Notation
The list of used notations is reported as follows.
k, t Time indices.
i, j Iteration indices.
zb,k Battery energy (kWh).
zmin

b /zmax
b Minimum/maximum storage energy of

the battery (kWh).
ϑ(·) Charging/discharging efficiency of battery.
Trate Rated charing/discharging power of the

battery (kW).
TG,k Power supply of the grid (kW).
TL,k Power of the load (kW).
TR,k Power of the renewable resource (kW).
TRL,k Power from the renewable resource to the

load (kW).
TRB,k Power from the renewable resource to the

battery (kW).
TGL,k Power from the power grid to the load

(kW).
TGB,k Power from the power grid to the

battery (kW).
TBL,k Power from the battery to the load (kW).
λ Periods of the load, electricity rate, and

the renewable resource.
GHIk Global horizontal irradiance received on a

horizontal surface (kWh/m2).
ϑpv the efficiency of the PV.
Apv the total area of the PV panel (m2).
Ck Electricity rate (cents/kWh).
zo

b Middle of storage limit (kWh).
α, β, δ Given positive constants in performance

index function.
γ Discount factor.
xk System state.
uk Control input.
uk Control law sequence from k to ∞.
Uk Control sequence in a period.
U(·) Control law sequence in a period.
F (·), F (·) System functions.
L (·), U (·) Utility functions.
J(·) Performance index function.
V j
i (·) Iterative value function.

Ψ(·) Initial iterative value function.

B. Energy Storage System With Solar Renewable Energy

The energy storage system with solar renewable energy
is described in [27], [28], which is shown in Fig. 1. It is
composed of the power grid, the solar renewable energy (solar
energy in brief) resource, the load demand (load in brief), and
the battery system. In the energy storage system, the solar
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Fig. 1. Energy storage system with solar energy

energy can (i) meet the load; (ii) charge the battery. The battery
can (i) charge from the grid; (ii) charge from solar energy
resource; (iii) discharge to meet the load; (iv) idle. There are
three power flows to meet the load, including the power grid,
the renewable resource, and the battery, where the load balance
can be defined as

TL,k = TRL,k + TGL,k + TBL,k. (1)

The balance of the power grid can be defined as

TG,k = TGL,k + TGB,k. (2)

In this paper, the renewable energy, i.e., solar energy, is
considered. The power of the solar energy depends on position
of the sun in the sky and hence the estimated total solar energy
varies in each hour of a day. A typical solar panel characteristic
is chosen as in [27], [28], [31]. The solar energy in first week
of August 2014 in San Francisco is shown in Fig. 2(a). The
average solar energy in a day is shown in Fig. 2(b). The power
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Fig. 2. Solar energy in San Francisco. (a) Solar energy in 168 hours. (b)
Average solar energy in a day.

output for a photovoltaic (PV) panel [27], [32] at k = 0, 1, . . .
can be expressed as TR,k = GHIk · ϑpv · Apv, where ϑpv is
included in the range [ 0, 1]. In this paper, as the solar energy
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can meet the load and charge the battery, the energy balance
of the solar energy can be expressed as

TR,k = TRL,k + TRB,k. (3)

C. Battery Model

The battery model used in this work is based on [25],
[33], [34], where battery efficiency is considered to extend
the battery’s lifetime as far as possible. Under the situation
that the battery cannot charge and discharge simultaneously,
the battery model can be expressed as

zb,k+1 =zb,k − TBL,k(0.898− 0.173TBL,k/Trate)
+ (TRB,k + TGB,k)(0.898− 0.173(TRB,k

+ TGB,k)/Trate). (4)

In this paper, for the convenience of analysis, the battery self-
discharge is not considered. The storage limits are defined as
following

zmin
b ≤ zb,k ≤ zmax

b . (5)

D. Assumptions and Optimization Objectives

For convenience of analysis, results of this paper are based
on the following assumptions.

Assumption 1: The power flow from the energy storage
system to the grid is not permitted.

Assumption 2: The electricity rate, the load, and the solar
energy are periodic functions with the period λ = 24 hours.

From Assumption 1, we can get TBL,k ≥ 0. According to
Assumption 2, the parameters Ck, TL,k, and TR,k satisfy

Ck = Ck+λ, TL,k = TL,k+λ, TR,k = TR,k+λ. (6)

Inspired by [30], the performance index function, which is
expected to be minimized, is expressed as

∞∑
k=0

γk
(
α(CkTGL,k)

2 + β(zb,k −zo
b)

2

+ δ(TRB,k + TGB,k − TBL,k)
2
)
, (7)

where zo
b = 1

2 (z
min
b +zmax

b ) is the middle of storage limit.
The first term of the performance index function aims to
minimize the total cost from the grid. The second term avoids
fully charging/discharging of the battery and the third term is
to prevent large charging/discharging power of the battery.

III. ITERATIVE ADP ALGORITHM FOR ENERGY STORAGE
SYSTEMS WITH SOLAR ENERGY

In this section, a novel iterative ADP algorithm is developed,
which aims to maintain the energy storage systems at the
optimum operating point under the solar energy.

A. System Establishment and Algorithm Derivations

As the solar energy is cost free, the energy of the renewable
resource, first and foremost, is desired to meet the load and
the rest of the energy is desired to charge the battery. Thus,
we can derive that

TRL,k =

{
TR,k, TL,k − TR,k ≥ 0,
TL,k, TL,k − TR,k < 0,

(8)

and

TRB,k =

{
0, TL,k − TR,k ≥ 0,

TR,k − TL,k, TL,k − TR,k < 0.
(9)

According to (2) and (9), the load balance (1) can be
rewritten as PL,k = TG,k + (TBL,k −TGB,k). The renewable
energy to charge the battery is PR,k = TR,k − TL,k for
TR,k − TL,k ≥ 0, and PR,k = 0 for TR,k − TL,k < 0.
For convenience of analysis, we introduce delays in PL,k,
TBL,k and TGB,k. Then, we can define the load balance as
PL,k−1 = TG,k + TBL,k−1 − TGB,k−1. Let x1,k = TG,k

and x2,k = zb,k − zo
b be the two system states. From the

model of the battery, we know that the power flows TGB,k,
and TBL,k are nonnegative values, i.e., TGB,k ≥ 0 and
TBL,k ≥ 0. As the battery is not permitted to charge and
discharge simultaneously, we know TBL,k = 0, if TGB,k ≥ 0
and TGB,k = 0, if TBL,k ≥ 0. Then, we can define the control
input as uk = TBL,k − TGB,k. Letting xk = [x1,k, x2,k]

T, the
equation of the energy storage system can be written as

xk+1 = F (xk, uk, k)

=

(
PL,k − uk

x2,k − (uk − PR,k)ϑ(uk − PR,k)

)
, (10)

where ϑ(uk −PR,k) = 0.898− 0.173|uk −PR,k|/Trate. Let
uk = (uk, uk+1, . . .) denote the control sequence from k to

∞. Let Mk =

[
αC2

k 0
0 β

]
and let x0 be the initial state.

According to the definitions of the states and controls, the
performance index function can be written as J(x0, u0, 0) =∞∑
k=0

γkL (xk, uk, k), and the optimal performance index func-

tion satisfies the following Bellman equation

J∗(xk, k) = inf
uk

{
L (xk, uk, k) + γJ∗(xk+1, k + 1)

}
, (11)

where L (xk, uk, k) = xT
kMkxk + δu2

k.
In the following, the detailed derivations of the iterative

ADP algorithm is presented. First, according to (10), for j =
0, 1, . . . λ− 1, we define a new system as

xk+1 = F (xk, uk, j)

=

(
PL,λ−1−j − uk

x2,k − (uk − PR,λ−1−j)ϑ(uk − PR,λ−1−j)

)
.

(12)

For j = 0, 1, . . . , λ− 1, we let

U (xk, uk, j) = xT
kMλ−1−jxk + δu2

k, (13)

where Mλ−1−j =

[
α(Cλ−1−j)

2 0
0 β

]
. Let the initial itera-

tive value function Ψ(xk) be an arbitrary positive semi-definite
function. For i = 0, 1, . . . and j = 0, 1, . . . , λ− 1 be iteration
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indices. For i = 0 and j = 0, the initial iterative value function
is defined as V 0

0 (xk) = Ψ(xk). Then, for j = 0, 1, . . . , λ− 1,
the iterative control law is obtained by

vj0(xk) = argmin
uk

{U (xk, uk, j) + γV j
0 (xk+1)}, (14)

where xk+1 = F (xk, uk, j) is defined in (12) and the utility
function U (xk, uk, j) is defined in (13). According to the
iterative control law vj0(xk), we can update the iterative value
function by

V j+1
0 (xk) = U (xk, v

j
0(xk), j) + γV j

0 (F (xk, v
j
0(xk), j)).

(15)

For i = 1, 2, . . ., we let V 0
i (xk) = V λ

i−1(xk). Then, for
i = 1, 2, . . ., j = 0, 1, . . . , λ − 1, the iterative control law
is obtained by

vji (xk) = argmin
uk

{U (xk, uk, j) + γV j
i (xk+1)}, (16)

and the iterative value function is updated by

V j+1
i (xk) = U (xk, v

j
i (xk), j) + γV j

i (F (xk, v
j
i (xk), j)).

(17)

Then, for any i = 0, 1, . . . and j = 0, 1, . . . , λ − 1, we can
construct the periodic iterative control law sequence by

Uj
i (xk) =

{
vji (xk), v

j−1
i (xk), . . . , v

0
i (xk), v

λ−1
i (xk),

vλ−2
i (xk), . . . , v

j+1
i (xk)

}
. (18)

Remark 1: The developed iterative ADP algorithm (14)–
(17) possesses inherent differences comparing with the it-
erative Q-learning algorithm in [30]. First, in [30], without
considering the solar energy, the iterative Q-learning algorithm
was developed to obtain the optimal battery control for the
energy storage system. In this paper, the solar energy is clearly
considered in the iterative ADP algorithm (14)–(17), which
displays a more complex system. Second, in [30], the iterative
Q function, which contains both state and control information,
was constructed. In this paper, the iterative value function
V j
i (xk) is only the function of state. Hence, the computation

quantity for updating the iterative value function is smaller
than the iterative Q function in [30]. Third, in [30], it was
required that the time index satisfied k ∈ {0, λ, 2λ, . . .}
to construct the Q-learning algorithm, while in this paper,
the time index is k = 0, 1, . . .. Furthermore, in [30], the
properties of the iterative Q function for k ∈ {0, λ, 2λ, . . .}
were analyzed, which lacked analyzing the properties for
other time index. Thus, we say that the analysis in [30] is
not complete and may not be applicable. For the developed
iterative ADP algorithm in this paper, a new analysis method
will be presented.

B. Property Analysis

In this subsection, the properties of the iterative ADP
algorithm (14)–(17) will be analyzed. It will be shown that
the iterative value function will converge to the optimum as
the iteration index increases to infinity. First, we will analyze
the property of the optimal performance index function. It will

be shown that the optimal performance index function is a
periodic function under the assumptions in this paper.

Theorem 1: If Assumptions 1–2 hold, then for any state
xk, k = 0, 1, . . ., the optimal performance index function
J∗(xk, k) satisfies

J∗(xk, k) = J∗(xk, k + λ). (19)
The proof of Theorem 1 is shown in Appendix I. From

Theorem 1, we know that the optimal performance index
function is a periodic function with the period λ = 24.
Next, the convergence of the iterative value function will be
analyzed. It will be proven that the iterative value function
converges to the optimum as the iteration index increases to
infinity.

Theorem 2: For i = 0, 1, . . . and j = 0, 1, . . . , λ − 1, let
V j+1
i (xk) and vji (xk) be obtained by (14)–(17). If Assump-

tions 1–2 holds, then for any j = 0, 1, . . . , λ− 1, the iterative
value function V j+1

i (xk) converges to its optimal performance
index function as i → ∞, which satisfies

lim
i→∞

V j+1
i (xk) = J∗(xk, λ− j − 1). (20)

The proof of Theorem 2 is shown in Appendix II.

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments and comparisons will
be displayed to show the performance of the iterative ADP
algorithm. The profiles of the real-time electricity rate and the
load are chosen from ComEd Company in [35] and NAHB
Research report in [36], respectively. The trajectories of the
electricity rate and the load in 168 hours (one week) are shown
in Figs. 3(a) and (c), respectively. The average trajectories
of the electricity rate and the load are shown in Figs. 3(b)
and (d), respectively. In this paper, the average electricity rate,
average load, and average solar energy are used as the periodic
functions with the period λ = 24 to implement the iterative
ADP algorithm.
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Fig. 3. Electricity rate and load power. (a) Electricity rate for 168 hours.
(b) Average electricity rate. (c) Load for 168 hours. (b) Average load.

Choose the capacity of the battery as 16 kWh. The rated
power of the battery is 3 kW. Let the lower and upper storage
limits of the battery be zmin

b = 2 kWh and zmax
b = 14

kWh, respectively. Let γ = 0.95. The initial level of the
battery is 9 kWh. Let the performance index function be
expressed as in (7), where we set α = 1, β = 0.3 and
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δ = 0.2. Choose the initial function as Ψ(xk) = xT
kPxk,

where P = [2.05, 0.11; 0.11, 8.07]. Let the initial state be
x0 = [1, 9]T. After normalizing the data of the electricity
rate, the load, and the solar energy [26], we implement the
developed iterative ADP algorithm for i = 15 iterations to
make the iterative value function convergent. The simulation
plots of the iterative value function V j

i (xk) for i = 0, 1, . . . , 15
and j = λ − 1 are shown in Fig. 4. The trajectory of the
iterative value function V j

i (xk) at x0 is shown in Fig. 5. From
the simulation results, for any j = 0, 1, . . . , λ−1, the iterative
value function is convergent after 15 iterations, which justifies
the correctness of the developed algorithm.

Fig. 4. The plots of the iterative value function V j
i (xk) for i = 0, 1, . . .

and j = λ− 1
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Fig. 5. The trajectory of the iterative value function V j
i (xk) at x0

After i = 15 iterations, the optimal battery control law for
the energy storage system is achieved. The optimal battery
control in 168 hours is shown in Fig. 6. The plot of the
optimal battery energy is shown in Fig. 7. From Figs. 6 and
7, for different time indices, the optimal battery control law
is different and the optimal charging/discharging power of the
battery at each hour is obtained.

To show the superiority of the developed iterative ADP
algorithm, three traditional optimal control methods, including
time-based Q-learning (TBQL) algorithm [25], [26], particle
swarm optimization (PSO) algorithm [28] and model predic-
tive control (MPC) algorithm [37], [38], are employed for
numerical comparisons. In the TBQL algorithm [25], [26], for
k = 1, 2, . . ., the iterative control law is designed to satisfy
the following optimality equation

Q(xk−1, uk−1, k − 1) = U(xk, uk, k) +Q(xk, uk, k). (21)
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Fig. 6. Optimal battery control with solar energy

20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

Time (Hours)

B
at

te
ry

 E
ne

rg
y 

(k
W

h)

Fig. 7. Optimal battery energy in 168 hours

We implement the TBQL for 150 time steps, which makes the
Q function converge.

In PSO algorithm [28], the movement of each particle
naturally evolves to an optimal or near-optimal solution. Let G
be the swarm size. The position of each particle is represented
by xℓ

k, ℓ = 1, 2, . . . ,G and its movement by the velocity vector
vℓk. Then, the update rule of PSO can be expressed as

xℓ
k = xℓ

k−1 + νℓk

νℓk = ωνℓk−1 + rand1ρ
T
1 (p

ℓ − xℓ
k−1) + rand2ρ

T
2 (pg − xℓ

k−1).
(22)

Choose the swarm size G = 30. Let the inertia factor be ω =
0.7. Let the correction factors ρ1 = ρ2 = [1, 1]T . Let rand1
and rand2 be random numbers in [0, 1]. Let pℓ be the best
position of particles and let pg be the global best position. We
implement the PSO algorithm for 120 iterations, which makes
the performance index function minimized.

Within the MPC framework [37], [38], it is to solve the
optimization problem at the current time step k = 0, 1, . . ..
In the MPC, the receding horizon control algorithm [38] is
employed to obtain the optimal battery control law. For k =
0, 1, . . ., the finite horizon value function is expressed as

V (xk, k) =
k+T∑
τ=k

γτL (xτ , uτ , τ), (23)

where we let γ = 0.95 and T = 20. In each receding horizon,
the shooting method and sequential quadratic programming
[39] are used to obtain the current optimal control law, where
the terminal value function is set as V (xk+T , k + T ) = 0.
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Based on the TBQL, PSO, MPC and the iterative ADP
algorithm, the comparisons of the power supply from the grid
is shown in Fig. 8(a). The comparisons of the battery power
supply is shown in Fig. 8(b). The battery charging power and
the real-time cost comparisons for TBQL, PSO, MPC and
the iterative ADP algorithm are shown in Figs. 8(c) and (d),
respectively.

0 50 100 150

Time (Hours)
(a)

0

0.5

1

1.5

2

2.5

P
ow

er
 s

up
pl

y 
 fr

om
 g

rid
 (

kW
)

Iterative ADP TBQL MPC PSO

0 50 100 150

Time (Hours)
(b)

0

0.5

1

1.5

P
ow

er
 s

up
pl

y 
 fr

om
 b

at
er

y 
(k

W
)

Iterative ADP TBQL MPC PSO

0 50 100 150

Time (Hours)
(c)

-1.5

-1

-0.5

0

B
at

te
ry

 c
ha

rg
in

g 
po

w
er

 (
kW

)

Iterative ADP TBQL MPC PSO

0 50 100 150

Time (Hours)
(d)

0

2

4

6

8

R
ea

l-t
im

e 
co

st
 (

ce
nt

s)

Original Iterative ADP TBQL MPC PSO

Fig. 8. Simulation comparisons. (a) Power supply from the grid. (b) Power
supply from the battery. (c) Charging power of the battery. (b) Real-time cost.

From Figs. 8(a)–(d), when the electricity rate and the load
demand are low, comparing with TBQL, PSO and MPC
algorithms, the iterative ADP algorithm reaches the maximum
power supply from the grid to charge the battery. When the
electricity rate and the load demand are high, the iterative
ADP algorithm supplies the maximum battery power to meet
the load demand and thus, iterative ADP algorithm reaches
the minimum real-time cost comparing with TBQL, PSO and
MPC algorithms. On the other hand, when the solar energy
is high, it directly meet the load demands, which prevents
the power from the grid and the battery. Using the iterative
ADP algorithm, the grid and battery supply powers are the
minimium when the solar energy is high, comparing with
TBQL, PSO and MPC algorithms. Thus, using the iterative
ADP algorithm, the minimum cost can be achieved. The
total cost comparisons of the TBQL, PSO, MPC, and the
iterative ADP algorithm are shown in Table I, which verifies
the superiority of the developed ADP algorithm.

TABLE I
COST COMPARISON

Original TBQL PSO MPC Iterative ADP
Total cost (cents)
in San Francisco 682.46 454.32 477.99 467.93 441.27

Saving (%) 33.48 30.01 31.49 35.43
Total cost (cents)

in Boston 459.19 474.14 465.34 438.95
Saving (%) 32.72 30.52 31.81 35.68

Now, we choose solar energy in first week of August 2014
in Boston [27], [28] to verify the effectiveness of the iterative
ADP algorithm. The solar energy in a week is shown in Fig.
9(a) and the average one is displayed in Fig. 9(b). Let the rate

and load data be the same as in Figs. 3(a) and (c), respectively.
Implementing the iterative ADP algorithm for 15 iterations,
such that the iterative value function converges to the optimum.
The plots of the optimal battery control and optimal battery
energy are shown in Fig. 9(c) and (d), respectively, where the
optimal battery control law can be achieved. TBQL, PSO, and
MPC methods are also employed for comparisons. Based on
the new solar energy, the comparisons of the power supply
from the grid is shown in Fig. 10(a). The comparisons of
the battery power supply is shown in Fig. 10(b). The battery
charging power and the real-time cost comparisons for TBQL,
PSO, MPC and the iterative ADP algorithm are shown in
Figs. 10(c) and (d), respectively. It can be seen that when
the electricity rate and the load demand are low, the iterative
ADP algorithm reaches the maximum power supply to charge
the battery comparing with TBQL, PSO and MPC algorithms.
The grid and battery supply powers are the minimium using
the iterative ADP algorithm, when the solar energy is high.
The total cost comparisons of the TBQL, PSO, MPC, and the
iterative ADP algorithm under the new solar energy are shown
in Table I, which can verify the superiority of the developed
ADP algorithm.
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Fig. 9. Solar energy in Boston and control results. (a) Solar energy in
Boston. (b) Average solar energy. (c) Optimal battery control. (d) Optimal
battery energy.
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Fig. 10. Simulation results. (a) Optimal battery control by MPC. (b) Battery
energy by MPC. (c) Real-time cost comparison. (d) Trajectory of V j

i (xk) at
x0 without solar energy.

Next, we choose new simulation data to justify the correct-
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ness of the developed iterative ADP algorithm. The new solar
energy in 168 hours is shown in Fig. 11(a), which is double
power of the one in Fig. 9(a) with modifications. The average
solar energy is shown in Fig. 11(d). The new electricity rate
[40] and the load [25] are shown in Figs. 12(a) and (c),
respectively. The average electricity rate and load are shown in
Figs. 12(b) and (d), respectively. Define the parameters of the
battery as in [25], where the capacity of the battery is defined
as 100 kWh and the rated power of the battery is 16 kW. Let
the upper and lower storage limits of the battery be zmin

b = 20
kWh and zmax

b = 80 kWh, respectively. Implementing the
iterative ADP algorithm for 20 iterations based on the new
data, the trajectory of the iterative value function is shown
in Fig. 13, where the iterative value function is convergent
to the optimum. The optimal battery control is shown in Fig.
14, where the battery charges in the hours that electricity rate,
the load are low and the solar energy is high. The battery
discharges in the hours that electricity rate and the load are
high and the solar energy is low. Thus, the correctness of the
developed iterative ADP algorithm can be verified.
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Fig. 11. Simulation results. (a) Optimal battery control without solar energy.
(b) Optimal battery energy without solar energy. (c) Solar energy in 168 hours.
(d) Average solar energy.
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Fig. 12. Electricity rate and load. (a) Electricity rate for 168 hours. (b)
Average electricity rate. (c) Load for 168 hours. (d) Average load.

V. CONCLUSIONS

In this paper, a new optimal battery control scheme is
obtained for the energy storage systems with solar energy
via an effective iterative ADP algorithm. The present iterative

0

5

10

15

20

25

0

5

10

15

20

0

10

20

30

40

50

60

ji

Ite
ra

tiv
e 

va
lu

e 
fu

nc
tio

n

Fig. 13. The trajectory of the iterative value function V j
i (xk) at x0
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Fig. 14. Optimal control of the battery in 168 hours

ADP algorithm is initialized by an arbitrary positive semi-
definite function. In each iteration i = 0, 1, . . ., the iterative
control law sequence is obtained, instead of obtaining a single
iterative control law. According to the data of the electricity
rate, the load and the solar energy, it is proven that the
iterative value function converges to the corresponding optimal
performance index function as the iterative index increases to
infinity. Finally, numerical experiments and comparisons are
shown to justify the effectiveness of the developed iterative
ADP algorithm.

APPENDIX I
PROOF OF THEOREM 1

For any k = 0, 1, . . ., let u∗
k = (u∗

k, u
∗
k+1, . . .) be

the optimal control sequence, which is expressed as u∗
k =

arg infuk

{ ∞∑
t=k

γt−kL (xt, ut, t)

}
. The optimal performance

index function J∗(xk, k) in (11) can be expressed as

J∗(xk, k) = inf
uk

{ ∞∑
t=k

γt−kL (xt, ut, t)

}
=

∞∑
t=k

γt−k

(
x∗T
t

[
α(Ct)2 0

0 β

]
x∗
t + δu∗T

t u∗
t

)
,

(24)

where the system state x∗
k+p, p = 0, 1, . . ., satisfies

x∗
k+p+1

= F (x∗
k+p, u

∗
k+p, k + p)

=

(
PL,k+p − u∗

k+p

x∗
2,k+p − (u∗

k+p − PR,k+p)ϑ(u
∗
k+p − PR,k+p)

)
,

(25)
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and x∗
k = xk. According to (8)–(10) and Assumption 2, we

can derive PL,k+p = PL,k+p+λ, and PR,k+p = PR,k+p+λ.
On the other hand, the performance index function

J(xk, k + λ) can be expressed as

J(xk,k + λ)

=

∞∑
t=k

γt−k

(
xT
t

[
α(Ct+λ)

2
0

0 β

]
xt + δuT

t ut

)
, (26)

where for p = 0, 1, . . ., the state xk+p+1 satisfies

xk+p+1

= F (xk+p, uk+p, k + λ+ p)

=

(
PL,k+p+λ − uk+p

x2,k+p − (uk+p − PR,k+p+λ)ϑ(uk+p − PR,k+p+λ)

)
.

(27)

Substituting u∗
k into (27), for p = 0, 1, . . ., we can get

xk+p+1

=

(
PL,k+p+λ − u∗

k+p

x∗
2,k+p − (u∗

k+p − PR,k+p+λ)ϑ(u
∗
k+p − PR,k+p+λ)

)
=

(
PL,k+p − u∗

k+p

x∗
2,k+p − (u∗

k+p − PR,k+p)ϑ(u
∗
k+p − PR,k+p)

)
= F (x∗

k+p, u
∗
k+p, k + p)

= x∗
k+p+1. (28)

As the optimal performance index function J∗(xk, k + λ)
can be expressed as

J∗(xk, k + λ) = inf
uk

{ ∞∑
t=k

γt−kL (xt, ut, t+ λ)

}
, (29)

according to the definition of u∗
k, we can

get u∗
k = arg infuk

{ ∞∑
t=k

γt−kL (xt, ut, t)

}
=

arg infuk

{ ∞∑
t=k

γt−kL (xt, ut, t+ λ)

}
, where for

p = 0, 1, . . ., xk+p+1 = F (xk+p, uk+p, k + λ + p) =
F (xk+p, uk+p, k + p). Thus, we know that the control
sequence u∗

k is the optimal control sequence for the
performance index function (26). Hence we can obtain

J∗(xk, k + λ)

= inf
uk

{ ∞∑
t=k

γt−k

(
xT
t

[
α(Ct+λ)

2
0

0 β

]
xt + δuT

t ut

)}

= inf
uk

{ ∞∑
t=k

γt−k

(
xT
t

[
α(Ct)2 0

0 β

]
xt + δuT

t ut

)}
=J∗(xk, k). (30)

The proof is complete.

APPENDIX II
PROOF OF THEOREM 2

According to Assumption 2, Ck, TL,k, and TR,k satisfy
(6). According to (16) and (17), for i = 1, 2, . . . and j =
0, 1, . . . , λ − 1, we can derive the equation (31) in the next
page, where uk+λ−1

k = (uk, uk+1, . . . , uk+λ−1).

From (31), the utility function
λ−1∑
t=0

γtL (xk+t, uk+t, λ− j − 1 + t) is independent

with i. For j = 0, 1, . . . , λ − 1, we let

Π(xk,Uk, j) =
j∑

t=0
γtL (xk+t, uk+t, j − t) +

λ−j−1∑
t=0

γt+jL (xk+j+t, uk+j+t, λ− t) and Γ(xk,Uk, j) =

λ−1∑
t=0

γtL (xk+t, uk+t, λ− j − 1 + t), where we let

Uk = uk+λ−1
k . Then, equation (31) can be written as

V j+1
i+1 (xk) = min

Uk

{Π(xk,Uk, j) + γ̃V j+1
i (xk+λ)}

= min
Uk

{Γ(xk,Uk, j) + γ̃V j+1
i (xk+λ)}, (32)

where γ̃ = γλ. From (32), we can derive that

V j+1
i+1 (xk) =min

Uk

{Γ(xk,Uk, j) + γ̃V j+1
i (xk+λ)}

=min
Uk

{Γ(xk,Uk, j) + min
Uk+λ

{Γ(xk+λ,Uk+λ, j + λ)

+ · · ·+ min
Uk+iλ

{Γ(xk+iλ,Uk+iλ, j + iλ)

+ γ̃i+1V j+1
0 (xk+(i+1)λ)} · · · }}

= min
Uk+iλ

k

{ i∑
τ=1

Γ(xk+τλ,Uk+τλ, j)

+ γ̃i+1V j+1
0 (xk+(i+1)λ)

}
, (33)

where Uk+iλ
k =

(
Uk,Uk+1, . . . ,Uk+iλ

)
. On the other hand,

according to Theorem 1, we can obtain

J∗(xk, λ− j − 1)

=min
uk

{
L (xk, uk, λ− j − 1)

+ γ min
uk+1

{
L (xk+1, uk+1, λ− j) + · · ·

+ γ min
uk+λ−1

{
L (xk+λ−1, uk+λ−1, 2λ− j − 2)

+ γJ∗(xk+λ, 2λ− j − 1)
}
· · ·

}}
=min

Uk

{Γ(xk,Uk, j) + γ̃J∗(xk+λ, 2λ− j − 1)}

=min
Uk

{Γ(xk,Uk, j) + γ̃J∗(xk+λ, λ− j − 1)}

= min
Uk+iλ

k

{ i∑
τ=1

Γ(xk+τλ,Uk+τλ, j)

+ γ̃i+1J∗(xk+(i+1)λ, λ− j − 1)
}
. (34)

From (33) and (34), it is desired that for any j = 0, 1, . . . , λ−
1, the iterative value function V j+1

i+1 (xk) converges to the
optimal performance index function J∗(xk, λ − j − 1) as
the iteration index i → ∞. As initial value function Ψ(xk)
is finite for any state xk, we can derive V j+1

0 (xk) is finite
for any j = 0, 1, . . . , λ − 1. Then, for functions J∗(xk, λ −
j − 1), Γ(xk,Uk, j), and V j+1

0 (xk), inspired by [41], [42],
it is assumed that ζ, ζ, σ and σ are constants that satisfy
ζ Γ(xk,Uk, j) ≤ γ̃J∗(xk+λ, λ − j − 1) ≤ ζ Γ(xk,Uk, j),
σJ∗(xk, λ− 1− j) ≤ V j+1

0 (xk) ≤ σJ∗(xk, λ− 1− j), where
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Vi
j+1(xk)

=min
uk

{
U (xk, uk, j) + γV j

i (xk+1)
}

=min
uk

{
U (xk, uk, j) + γ min

uk+1

{
U (xk+1, uk+1, j − 1) + · · ·+ γ min

uk+j

{
U (xk+j , uk+j , 0) + γV 0

i (xk+j)
}
· · ·

}}
=min

uk

{
U (xk, uk, j) + γ min

uk+1

{
U (xk+1, uk+1, j − 1) + · · ·+ γ min

uk+j

{
U (xk+j , uk+j , 0) + γV λ

i−1(xk+j)
}
· · ·

}}
=min

uk

{
U (xk, uk, j) + γ min

uk+1

{
U (xk+1, uk+1, j − 1) + · · ·+ γ min

uk+j

{
U (xk+j , uk+j , 0)

+ γ min
uk+j+1

{
U (xk+j , uk+j , λ− 1) + · · ·+ min

uk+λ−1

{
U (xk+λ−1, uk+λ−1, j + 1) + γV j+1

i−1 (xk+λ)
}
· · ·

}}
· · ·

}}
=min

uk

{
L (xk, uk, λ− j − 1) + γ min

uk+1

{
L (xk+1, uk+1, λ− j) + · · ·+ γ min

uk+j

{
L (xk+j , uk+j , λ− 1)

+ γ min
uk+j+1

{
L (xk+j , uk+j , λ) + · · ·+ min

uk+λ−1

{
L (xk+λ−1, uk+λ−1, 2λ− j − 2) + γV j+1

i−1 (xk+λ)
}
· · ·

}}
· · ·

}}
= min

uk+λ−1
k

{ λ−1∑
t=0

γtL (xk+t, uk+t, λ− j − 1 + t) + γλV j+1
i−1 (xk+λ)

}
. (31)

0 < ζ ≤ ζ < ∞ and 0 ≤ σ ≤ 1 ≤ σ < ∞. Let i = 1. For
any j = 0, 1, . . . , λ − 1, according to the idea in [41], [42],
we can obtain

V j+1
1 (xk) =min

Uk

{
Γ(xk,Uk, j) + γ̃V j+1

0 (xk+λ)
}

≤min
Uk

{
Γ(xk,Uk, j) + γ̃σJ∗(xk+λ, λ− j − 1)

}
≤min

Uk

{(
1 +

σ − 1

(1 + ζ̄)
ζ̄
)
Γ(xk,Uk, j)

+
(
σ − σ − 1

(1 + ζ)

)
γ̃J∗(xk+λ, λ− j − 1

)}
=
(
1 +

σ − 1

(1 + ζ
−1

)

)
J∗(xk, λ− j − 1). (35)

According to mathematical induction, we can obtain(
1+

σ − 1

(1 + ζ −1)
i

)
J∗(xk, λ− j − 1) ≤ V j+1

i (xk)

≤
(
1 +

σ − 1

(1 + ζ
−1

)
i

)
J∗(xk, λ− j − 1). (36)

Letting i → ∞, we can obtain (20), which completes the
proof.

REFERENCES

[1] C. S. Lai and M. D. McCulloch, “Sizing of stand-alone solar PV and
storage system with anaerobic digestion biogas power plants,” IEEE
Transactions on Industrial Electronics, article in press, 2016. DOI:
10.1109/TIE.2016.2625781

[2] H. Liu, P. C. Loh, X. Wang, Y. Yang, W. Wang, and D. Xu, “Droop
control with improved disturbance adaption for a PV system with two
power conversion stages,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 10, pp. 6073–6085, Oct. 2016.

[3] E. Chatzinikolaou and D. J. Rogers, “Cell SoC balancing using a cascad-
ed full-bridge multilevel converter in battery energy storage systems,”
IEEE Transactions on Industrial Electronics, vol. 63, no. 9, pp. 5394–
5402, Sep. 2016.

[4] Q. Shafiee, C. Stefanovic, T. Dragicevic, P. Popovski, J. C. Vasquez, and
J. M. Guerrero, “Robust networked control scheme for distributed sec-
ondary control of islanded microgrids,” IEEE Transactions on Industrial
Electronics, vol. 61, no. 10, pp. 5363–5374, Oct. 2014.

[5] J. Appen, T. Stetz, M. Braun, and A. Schmiegel, “Local voltage
control strategies for PV storage systems in distribution grids,” IEEE
Transactions on Smart Grid, vol. 5, no. 2, pp. 1002–1009, Mar. 2014.

[6] S. Park, J. Lee, S. Bae, G. Hwang, and J. Choi, “Contribution based
energy trading mechanism in micro-grids for future smart grid: A game
theoretic approach,” IEEE Transactions on Industrial Electronics, article
in press, 2016. DOI: 10.1109/TIE.2016.2532842

[7] Y. Lee, W. Hsiao, C. Huang, and S. T. Chou, “An integrated cloud-
based smart home management system with community hierarchy,”
IEEE Transactions on Consumer Electronics, vol. 62, no. 1, pp. 1–9,
Jan. 2016.

[8] Q. Wei, D. Liu, Y. Liu, and R. Song, “Optimal constrained self-learning
battery sequential management in microgrids via adaptive dynamic
programming,” IEEE/CAA Journal of Automatica Sinica, accept for
publication, 2016. DOI: 10.1109/JAS.2016.7510262

[9] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Systems, vol. 32, no. 6, pp.
76–105, Dec. 2012.

[10] Q. Yang, S. Jagannathan, and Y. Sun, “Robust integral of neural network
and error sign control of MIMO nonlinear systems,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 26, no. 12, pp. 3278–
3286, Dec. 2015.

[11] Y. Jiang and Z. P. Jiang, “Robust adaptive dynamic programming and
feedback stabilization of nonlinear systems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 5, pp. 882–893,
May 2014.

[12] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A general
utility function representation for dual heuristic dynamic programming,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 26,
no. 3, pp. 614–627, Mar. 2015.

[13] Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic pro-
gramming for optimal control of discrete-time nonlinear systems,” IEEE
Transactions on Cybernetics, vol. 46, no. 3, pp. 840–853, Mar. 2016.

[14] Q. Wei, R. Song, and P. Yan, “Data-driven zero-sum neuro-optimal
control for a class of continuous-time unknown nonlinear systems with
disturbance using ADP,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 27, no. 2, pp. 444–458, Feb. 2016.

[15] Q. Wei, D. Liu, and X. Yang, “Infinite horizon self-learning optimal
control of nonaffine discrete-time nonlinear systems,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 26, no. 4, pp. 866–879,
Apr. 2015.

[16] Q. Wei, F. Wang, D. Liu, and X. Yang, “Finite-approximation-error
based discrete-time iterative adaptive dynamic programming,” IEEE
Transactions on Cybernetics, vol. 44, no. 12, pp. 2820–2833, Dec. 2014.

[17] Q. Wei and D. Liu, “Data-driven neuro-optimal temperature control
of water gas shift reaction using stable iterative adaptive dynamic
programming,” IEEE Transactions on Industrial Electronics, vol. 61,
no. 11, pp. 6399–6408, Nov. 2014.



0278-0046 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2017.2674581, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 10

[18] Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local
value Iteration adaptive dynamic programming: Convergence analysis,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, article
in press, 2016. DOI: 10.1109/TSMC.2016.2623766

[19] R. Song, F. L. Lewis, Q. Wei, H. Zhang, Z. Jiang, and D. Levine,
“Multiple actor-critic structures for continuous-time optimal control
using input-output data,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 4, pp. 851–865, Apr. 2015.

[20] R. Song, F. L. Lewis, Q. Wei, and H. Zhang, “Off-policy actor-critic
structure for optimal control of unknown systems with disturbances,”
IEEE Transactions on Cybernetics, vol. 46, no. 5, pp. 1041–1050, Apr.
2016.

[21] Q. Wei, D. Liu, G. Shi, and Y. Liu, “Optimal multi-battery coordination
control for home energy management systems via distributed iterative
adaptive dynamic programming,” IEEE Transactions on Industrial Elec-
tronics, vol. 42, no. 7, pp. 4203–4214, Jul. 2015.

[22] Q. Wei, D. Liu, F. L. Lewis, and Y. Liu, “Mixed iterative adaptive
dynamic programming for optimal battery energy control in smart
residential microgrids,” IEEE Transactions on Industrial Electronics,
accept, 2016. DOI: 10.1109/TIE.2017.2650872

[23] R. Song, W. Xiao, H. Zhang, and C. Sun, “Adaptive dynamic pro-
gramming for a class of complex-valued nonlinear systems,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no.
9, pp. 1733–1739, Sep. 2014.

[24] G. K. Venayagamoorthy, R. K. Sharma, P. K. Gautam, and A. Ahmadi,
“Dynamic energy management system for a smart microgrid,” IEEE
Transactions on Neural Networks and Learning Systems, article in press,
2016. DOI: 10.1109/TNNLS.2016.2514358

[25] T. Huang and D. Liu, “A self-learning scheme for residential energy
system control and management,” Neural Computing and Applications,
vol. 22, no. 2, pp. 259–269, Feb. 2013.

[26] J. Si and Y.-T. Wang, “On-line learning control by association and
reinforcement,” IEEE Transactions on Neural Networks, vol. 12, no.
2, pp. 264–276, Mar. 2001.

[27] M. Boaro, D. Fuselli, F. D. Angelis, D. Liu, Q. Wei, and F. Piaz-
za, “Adaptive dynamic programming algorithm for renewable energy
scheduling and battery management,” Cognitive Computation, vol. 5,
no. 2, pp. 264–277, Jun. 2013.

[28] D. Fuselli, F. D. Angelis, M. Boaro, D. Liu, Q. Wei, S. Squartini, and
F. Piazza, “Action dependent heuristic dynamic programming for home
energy resource scheduling,” International Journal of Electrical Power
and Energy Systems, vol. 48, pp. 148–160, Jun. 2013.

[29] L. Dong, Y. Tang, H. He, and C. Sun, “An event-triggered approach
for load frequency control with supplementary ADP,” IEEE Trans-
actions on Power Systems, article in press, 2016. DOI: 10.1109/TP-
WRS.2016.2537984

[30] Q. Wei, D. Liu, and G. Shi, “A novel dual iterative Q-learning method
for optimal battery management in smart residential environments,”
IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2509–
2518, Apr. 2015.

[31] National renewable energy laboratory (NREL) of U.S. Department of
Energy, Office of Energy Efficiency and Renewable Energy, operated
by the Alliance for Sustainable Energy, LLC. [Online]. Available:
http://www.nrel.gov/rredc/

[32] T. Markvart, Solar electricity (2nd Edition). New York: Wiley, 2000.
[33] T. Y. Lee, “Operating schedule of battery energy storage system in a

time-of-use rate industrial user with wind turbine generators: A multi-
pass iteration particle swarm optimization approach,” IEEE Transactions
on Energy Conversion, vol. 22, no. 3, pp. 774–782, Mar. 2007.

[34] T. Yau, L. N. Walker, H. L. Graham, and R. Raithel, “Effects of battery
storage devices on power system dispatch,” IEEE Transactions on Power
Apparatus and Systems, vol. PAS-100, no. 1, pp. 375–383, Jan. 1981.

[35] Data of electricity rate from ComEd Company, USA. [Online].
https://rrtp.comed.com/live-prices/?.

[36] NAHB Research Center, Inc., “Review of residential electrical energy
use data,” 400 Prince George’s Boulevard Upper Marlboro, MD, USA,
July 16, 2001. [Online]. http://www.toolbase.org/PDF/CaseStudies /Res
-Electrical-EnergyUseData.pdf

[37] T. Wang, H. Kamath, and S. Willard, “Control and otimization of grid-
tied photovoltaic storage systems using model predictive control,” IEEE
Transactions on Smart Grid, vol. 5, no. 2, pp. 1010–1017, Mar. 2014.

[38] E. F. Camacho and C. Bordons, Model Predictive Control. Berlin,
Germany: Springer, 1999.

[39] J. T. Betts, Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming. Philadelphia: Society for Industrial and
Applied Mathematics, 2010.

[40] ComEd, USA, http://www.thewattspot.com. Accessed 16 May 2010.

[41] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE
Transactions on Automatic Control, vol. 51, no. 8, pp. 1249–1260, Aug.
2006.

[42] A. Rantzer, “Relaxed dynamic programming in switching systems,” IET
Control Theory and Applications vol. 153, no. 5, pp. 567–574, Sep.
2006.

Qinglai Wei (M’11) received Ph.D. degree in con-
trol theory and control engineering, from the North-
eastern University, Shenyang, China, in 2009. From
2009–2011, he was a postdoctoral fellow with The
State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chi-
nese Academy of Sciences, Beijing, China. He is
currently a Professor of the institute. He is also a
Professor of the University of Chinese Academy of
Sciences. He has authored two books, and published
over 60 international journal papers. His research

interests include adaptive dynamic programming, neural-networks-based con-
trol, optimal control, nonlinear systems and their industrial applications.

Dr. Wei is an Associate Editor of IEEE Transaction on Systems Man,
and Cybernetics: Systems since 2016, Information Sciences since 2016,
Neurocomputing since 2016, Optimal Control Applications and Methods since
2016, Acta Automatica Sinica since 2015, and has been holding the same
position for IEEE Transactions on Neural Networks and Learning Systems
during 2014–2015. He is the Secretary of IEEE Computational Intelligence
Society (CIS) Beijing Chapter since 2015.

Guang Shi received the B.S. degree in automation
from Zhejiang University, Hangzhou, China, in July,
2012. Currently, he is working towards the Ph.D.
degree at The State Key Laboratory of Management
and Control for Complex Systems, Institute of Au-
tomation, Chinese Academy of Sciences, Beijing,
China. His research interests include neural network-
s, adaptive dynamic programming, optimal control
and energy management in smart grids.

Ruizhuo Song (M’11) received the Ph.D. degree in
control theory and control engineering from North-
eastern University, Shenyang, China, in 2012. She is
currently an associate professor with the School of
Automation and Electrical Engineering, University
of Science and Technology Beijing. Her research
interests include optimal control, neural-networks-
based control, nonlinear control, wireless sensor
networks, adaptive dynamic programming and their
industrial application.

Yu Liu received the B.S. degree in automation,
the M.S. degree in Pattern Recognition and Intelli-
gent Systems, from Beijing Institute of Technology,
Beijing, China, in 2001 and 2004 respectively, and
the Ph.D. degree in Pattern Recognition and Intel-
ligent Systems, from Institute of Automation, Chi-
nese Academy of Sciences, Beijing, China, in 2010.
His research interests include artificial intelligence,
streaming data analysis, and energy management in
smart grids.


