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This article provides an overview of fossil-fuel power plant (FFPP) configura-
tion, design and especially, the control technology, both the conventional and the
advanced technologies. First, a brief introduction of FFPP fundamentals and con-
figurations are presented, followed by the description of conventional PID-based
control system in the FFPPs and its short-comings. As the major part of this writing,
different advanced control strategies and applications are reported, with their sig-
nificant features outlined and discussed. These new technologies are collected from
both the academic studies and industrial practices, which can improve the perfor-
mance of the FFPP control system for more economic and safe plant operation.
The final section presents a view of the next generation FFPP control technologies,
emphasizing potential business and research opportunities. © 2015 John Wiley & Sons,
Ltd.
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INTRODUCTION

Fossil fuelled power plant (FFPP) refers to a group
of power generation devices that convert the chem-

ical energy stored in the fossil fuel such as coal, gas,
oil into thermal energy, mechanical energy and finally
electrical energy. In the past hundred years, FFPPs are
the most widely used facilities in the power industry
and play a fundamental role in social production and
life. According to the 2013 Key World Energy Statis-
tics published by the International Energy Agency
(IEA), in 2011, the annual generation of electric-
ity from all types of sources was 22,126 TWh and
FFPPs provided 15,054 TWh, accounted for 68% of
the total electricity generation. Although the rapid
increase of global energy crisis, combined with the
concerns about environment issues has led to an exten-
sive promotion of nuclear and renewable energy, for
the most parts of the world, the trend of conven-
tional fossil-fuel-dominated electric power generation
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will not change in a foreseeable future. For this reason,
developing and operating the FFPPs according to the
most suitable available technologies are very impor-
tant and should be the most effective and direct way
to save energy and reduce the pollution.

The history of FFPP can be traced back to the late
19th century, the simple D.C. generators were coupled
to coal-fired, reciprocating piston steam engines, pro-
ducing electricity primarily for district lighting. These
initial plants typically operated at low temperature
and pressure conditions (150∘C, 0.9 Mpa) and could
only generate 30 kw electricity. Through a century’s
technological developments, power plants have now
been evolved into a highly complex system that can
operate at supercritical conditions of 28.5 Mpa and
600∘C, generating 1300 MW of electricity with much
higher efficiency. Although there are many variations
in power plant configuration and design, the basic
working principle of the FFPPs keeps the same: fossil
fuel is combusted, generating high pressure and tem-
perature steam, which is then expanded to rotate a tur-
bine, and drives the generator to produce electricity.1

For the FFPP, the main task of the control
system is to regulate the electrical power output
to meet the demand of the grid while maintain-
ing the main thermal dynamical variables such as
superheater/reheater steam temperature, throttle pres-
sure, furnace pressure, drum water level, within
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given tolerances to keep the power plant operating
safely. Generally, such an objective is achieved via
the multi-loop proportional-integral-derivative (PID)
based controllers. The approach has been proven to
be highly reliable and can attain a satisfactory per-
formance under normal operation maintained at base
load, where plant characteristics become almost con-
stant.

However, during the past few decades, power
industry has undergone some significant changes,
and as the primary devices of power production,
FFPPs have been endowed with higher operational
requirements:

1. The growth of electric power demand increases
the magnitude of the cyclic variation of the grid
load, and the renewable sources, such as wind,
solar and hydro power, are severely influenced
by the season and the weather condition; thus,
the FFPPs have to participate in the grid power
regulation frequently and respond to the load
demand variation quickly within a wide oper-
ation range.

2. The privatization and deregulation of the
electricity industry has changed the power gen-
eration business from a cost-plus, monopoly
environment with an obligation to serve, to
a competitive environment for the sale of its
product. For this reason, power plants are
increasing in size and becoming more complex
in order to achieve high efficiency and the scale
of economy. Furthermore, the aforementioned
thermal parameters should be more stringently
controlled so that the plant can operate in an
optimal mode at all times.

Therefore, control problems to deal with issues,
such as nonlinearity over a wide operation range, large
inertial and time varying behavior, and strong cou-
pling among the multitude of variables, become severe
in the FFPPs. Consequently, the conventional PI/PID
based controllers are no longer sufficient in meeting
performance specifications, even if they are well tuned
at a given load level. On the other hand, with the help
of modern computer and instrumentation techniques,
utilizing Distributed Control System (DCS) is now the
routine rather than the exception, which makes the
implementation of advanced controllers possible in
the FFPPs. The primary purpose of this writing is to
present an updated, representative snapshot of vari-
ous control strategies that are being applied to the
FFPPs and describe how they can help in improving
the quality and performance of plant operation. The

information reported here are collected from both aca-
demic researches and engineering practices.

A brief introduction of FFPP fundamentals and
configurations are presented first, followed by the
description of conventional PID-based control system
in the FFPPs and the associated problems. As a
major part of this writing, different advanced control
strategies and applications are reported, with their
significant features outlined and discussed. The final
section presents a view of the next generation FFPP
control technologies, emphasizing potential business
and research opportunities.

PLANT CONFIGURATION AND DESIGN

The essence of power production process in all types of
the FFPPs is energy conversion. In the vast majority of
the FFPPs worldwide, water/steam is commonly used
as the working fluid, which is alternately vaporized
and condensed in a closed circuit following a thermal
dynamic cycle. Within this cycle, the chemical energy
of the fossil fuel is transformed into steam thermal
energy by the boiler, then it is transformed into
rotational mechanical energy by the turbine, and
finally it is transformed into electric energy by the
generator. This kind of FFPPs is also called steam
power plant, and depending on the operating steam
pressure, it can be classified into subcritical plants and
supercritical plants.

Subcritical Steam Plant
In subcritical power plants, the steam parame-
ters never exceed the critical point: 22.115 Mpa,
374.12∘C. Because under this critical point, liquid
water must go through a vaporization stage to become
steam; in most of the large-scale subcritical plants,
drums are typically utilized to separate the steam out
of the boilers.

Figure 1 provides a simplified illustration of a
coal-fired subcritical power plant, which is comprised
of two basic systems: the fuel/air-flue gas system and
the water-steam system.2–4

The fuel/air-flue gas system is also called the fire-
side of the plant. In this system, the raw coal is trans-
ported to the coal hopper by the conveyor and enters
the pulverizing mill; where grinding and crushing take
place. The qualified (smaller and lighter) coal parti-
cles are then separated and entrained in the air flow,
and carried into the burner. Finally, the combustion
occurs in the furnace, generating high temperature
(above 1000∘C) flue gases. The air needed for com-
bustion is delivered to the furnace and mill by the
forced draught fans and an air preheater is installed in
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FIGURE 1 | Simplified coal-fired subcritical power plant (Picture from http://en.wikipedia.org/wiki/Thermal_power_station#Boiler_furnace_
and_steam_drum).

the path to warm the air being fed utilizing the heat
remaining in the exhaust gases leaving the furnace,
through which the efficiency of the combustion can be
improved. The objective of this process is converting
the chemical energy in the fuel into the thermal energy
in the flue gases. The flue gases in the furnace trans-
fer the heat to the water wall by radiation and then
flow through multiple stages of superheaters, which
are suspended on the horizontal passage at the top
of the furnace. Depending on the installed positions,
some superheaters are radiant type, which absorb heat
by radiation; others are convection type, absorbing
heat from fluid; some are a combination of the two
types. Through either type, the extreme heat in the
flue gases is transfered to the superheater piping and
the steam within. After leaving the superheater, the flue
gases pass over reheater, economizer and air preheater,
where almost all of their remaining heat is extracted
to reheat the steam or prewarm the feed-water and
feed-air. The induced draught fans work in conjunc-
tion with the forced draught fans, then pull the flue
gases into the precipitator, and finally out of the boiler

through the chimney. The falling slags and ashes are
collected in the ash hopper and delivered to the ash
system of the plant.2–4

Water-steam system is also referred to as the
waterside of the plant, which operates following the
Rankine cycle. The procedure within this system
begins with the feedwater being drawn from the con-
denser and delivered to the boiler by the feed pumps.
To improve the plant efficiency, a series of low and
high pressure feed heaters and an economizer are uti-
lized to heat the feedwater with the steam bled from
the turbine and the remaining heat of the flue gases.
The deaerator is also installed in this path to remove
the dissolved gases in the feedwater by vigorously boil-
ing and agitating it. The drum supplies the feedwater
to the waterwall of the furnace to absorb the radiation
heat and separate the resulting saturated steam from
the incoming saturated feedwater. The steam is then
further heated through multiple stages of superheaters
to reach higher temperature and pressure. Finally, the
steam expands along the turbines and rotates them
to a given high speed (3000/3600 rpm), which then
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FIGURE 2 | Simplified supercritical power plant (Picture from
http://www.flowserve.com/Industries/Power-Generation/Conventional-Steam/Flowserve-Products-Used-in-Supercritical-Units,en_US).

drive a generator to produce electricity. Usually, there
are multiple stages of turbines, and for a higher plant
efficiency, after the expansion in the high pressure
turbine, the steam is extracted and reheated in the
boiler, and then delivered to the medium and low pres-
sure turbines. The saturated steam leaving the low
pressure turbine is condensed back into liquid in the
condenser.2–4

Supercritical Steam Plant
In contrast to the subcritical plant, supercritical plant
is another type of steam plant, where the steam
generator operates at pressure greater than the critical
point, 22.115 Mpa. Because above such a pressure, the
physical turbulence that characterizes boiling ceases
to occur, and instead, the liquid water immediately
becomes steam once is heated above the critical
temperature (374.12∘C). Therefore, the drum used in
the subcritical plant, where the evaporation separation
process occurs can be completely eliminated, and the
feedwater circulates only once in the furnace in each
cycle (Figure 2).2 For this reason, the ‘once through
steam generator’ is designed and employed in all
supercritical plant.4

Current Status of the Steam Power Plant
The subcritical plant is still expected to remain
the main choice in some countries due to its sim-
plicity in operation and control, belief in higher

reliability and low technical risk. However, the
supercritical/ultra-supercritical plant is now greatly
promoted, because operating the plant at higher
temperature and pressure can increase its efficiency,
potentially lowering the amount of fossil fuel con-
sumed and the emissions generated.

Currently, there are more than 600 supercritical
and ultra-supercritical power plants with total capac-
ity above 400 GW in the world (status 2010, Figure 3).
These supercritical plants can achieve efficiencies of
more than 42%, compared with subcritical plants’
33%–39%. According to the USA DOE power gener-
ation initiative: Vision 21, by the year 2020, the steam
in the ultra-supercritical power plants is expected to
reach 760∘C and 38.5 Mpa, which will enhance the
plant efficiency to more than 50%.

In spite of the great advantages of the super-
critical plants, there are still barriers for building this
type of the plant: the high thermal stresses and fatigue
cracking in the critical sections of the plants as well as
the resulting lower reliability and higher maintenance
costs. Thus an identifying, evaluating, and qualifying
potential alloy material is the major challenge for the
successful implementation of supercritical technology.

CLASSICAL CONTROL OF THE FFPP
As stated previously, the FFPPs, especially the steam
power plants, are complex, multivariable, and interac-
tive processes, thus a well-designed control system is
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FIGURE 3 | Capacity of supercritical and ultra-supercritical plant in major countries (refers to capacity in 2010 unless specified otherwise, Picture
from http://www.iea.org).

required in the plants to ensure the correct operation
of the entire process, i.e., rapidly following the grid
load demand and controlling relevant process vari-
ables such as: throttle pressure, superheater/reheater
steam temperature, furnace pressure, drum water level
(subcritical plant), etc., so that high efficiency, durabil-
ity and safety can be attained in the plant.

The boiler-turbine unit control schemes have
gone through several decades of evolution and, typ-
ically, a cascade of PI/PID controllers based on
single-input single-output control loops is designed
in the plant to fulfill such tasks.6,7 The remain-
der of this section will focus mainly on the con-
ventional boiler-turbine coordinated control system
(CCS), steam temperature control system, combus-
tion control system, and feedwater control system, in
which the respective thermal dynamic variables are
controlled separately.

Boiler-Turbine Coordinated Control System
Current plant or unit control strategies allow gener-
ation of the grid load demand while maintaining the
balance among the process variables within the unit.
Mainly, they match the boiler steam flow energy out-
put to the energy required by the turbine-generator to
match the unit load demand at all times.6 The coor-
dinated control system (CCS) constitutes the upper-
most layer of the control system, and it is responsible
for driving the boiler-turbine-generator set as a sin-
gle entity, harmonizing the slow response of the boiler
with the faster response of the turbine, to achieve
fast and stable unit response during load tracking
maneuvers and load disturbances.

For the FFPP, power output and throttle pres-
sure are the two most important variables. Exter-
nally, the power output reflects a balance between the
plant’s power generation and grid’s power demand;
internally, the throttle pressure naturally represents a
balance between the boiler’s energy supply and tur-
bine’s energy need. The dominant behavior of the unit
is governed through the power and pressure control
loops. Therefore, the central task of the CCS is to reg-
ulate the power output to meet the demand of the
grid while maintaining the throttle pressure within a
given tolerance. Evolved from multiple single-input
single-output control loop (decentralized) configura-
tions based on PID control algorithms, currently, there
are two possible modes for coordinated control: coor-
dinated boiler-following (BF) mode and coordinated
turbine-following (TF) mode.1,5,7,8

Historically, boiler following schemes were
the first to be used.9 In boiler following mode, the
boiler awaits the actions of the turbine to match
the requested generation. The turbine control valves
regulate the steam flow into the turbine in terms of
the power demand. Then, the boiler controls respond
to the changes in steam flow and pressure. The basic
principle of the coordinated BF mode is illustrated
in Figure 4. The advantage of this approach is a fast
response to load changes, nevertheless, it should be
noted that such rapid response is basically achieved
by using the stored thermal energy in the plant, thus
it is effective only for a small demand change. The
disadvantage of the coordinated BF mode is that, in its
pure form, this approach shows a less stable throttle
pressure control since the boiler has a tendency to
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FIGURE 4 | Working Principle of the Coordinated BF mode (E0: load set-point; P0: main steam pressure set-point; E: power output; PT: main
steam pressure output; BD: boiler demand; TD: turbine demand).

overshoot because it requires some time to match the
turbine.10

Turbine following began around the late 1960s
and early 1970s.9 In the coordinated TF mode of
control, the turbine follows the actions of the boiler to
match the requested generation. The power demand
is used by the combustion control at the boiler to
adjust the fuel and air into the furnace to modify the
steam production. Then the turbine controls respond
by adjusting the throttle valve openings to keep the
pressure at the setpoint value. The advantage of this
approach is its very stable response to load changes
with minimal steam pressure fluctuations. The main
disadvantage is that this approach does not make use
of the energy storage capability of the boiler, thus
producing a rather slow response.10 For this reason, it
is mainly used for a large base-load plant or a gas-fired
plant, which has a relatively quick response compared
to the coal plant.

It is worth mentioning that, to improve the
performance of the CCS in both BF and TF modes,
the power demand is fed both to the boiler system (BF)
and turbine system (TF)9 (this is shown as dotted-line
in Figures 4 and 5), so that the large inertial behavior
of boiler can be partly compensated (in BF) and the
turbine’s ability to respond quickly can be utilized (in
TF). This coordinated control scheme is now widely
used in practice.

However, the PI/ PID control systems, which
are based on a cascade of separate SISO loops,
cannot fully account for the interactions among the

different process variables in the nonlinear multi-input
multi-output (MIMO) power plant. Therefore, it is
still very difficult for the classical CCS to achieve
a satisfactory control performance in both power
output and throttle pressure.

For this reason, various advanced modeling and
multivariable control technologies are studied, aiming
to realize a real coordinated control of boiler-turbine.
This will be introduced in the next section.

Combustion Control System
Under the CCS, the mission of the combustion system
is to provide enough thermal energy while guarantee-
ing the efficient and safe operation of the boiler. Such
requirements are fulfilled by controlling relevant vari-
ables in the plant, namely:

(a) Fuel flow rate to maintain throttle pressure (in
BF mode) or electrical power output (in TF
mode);

(b) Excess air coefficient or optimal oxygen content
in the flue gases to ensure appropriate air flow
rate;

(c) Furnace pressure to guarantee the safety of the
boiler.

The regulation of the above three variable can
be achieved through the manipulation of fuel feed-
ers, forced draught (FD) dampers and induced draught

© 2015 John Wiley & Sons, Ltd.
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(ID) dampers, respectively, resulting in three indivisi-
ble sub-regulators, i.e., the fuel regulator, air regulator
and pressure regulator as shown in Figure 6, which
form the combustion control system.3,5

The task of the fuel regulator is to provide
enough fuel to the boiler so that the generated thermal
energy can exactly match the load demand. A cascade
control strategy is usually employed in this system,
which is shown in the left part of Figure 7 for a BF
mode plant. Because the fuel flow rate, especially for
the coal flow, is difficult to measure, and the feeder
speed signal cannot reflect the variation of the heating
value of the fuel, in most of the FFPPs, the heat

quantity signal M is used in the inner loop to rapidly
deal with any disturbances due to the variation of the
fuel in heating values. The heat quantity signal can be
estimated through the equation

M = D + Cbdpb∕dt, (1)

where, D is the steam flow rate representing the heat
absorbed by the working substance, and Pb is the drum
pressure representing the heat stored in the boiler, Cb
is the heat storing coefficient of the boiler.

The air regulator is used to guarantee the effi-
ciency of the combustion; to be specific, guarantee a
suitable ratio between the amounts of fuel and air
being supplied to the furnace. An undersupply of the
air will prevent the fuel from complete burning; in con-
trast an oversupply of the air will absorb heat and thus
increase the heat waste in the exhaust gas. In practice,
a certain amount of excess air is needed rather than
keeping the fuel/air ratio at the stoichiometric value.

Since the fuel flow rate has already been deter-
mined by the fuel regulator, it is direct to design a ratio
controller to keep the air flow rate matching the fuel
flow rate. However, considering that the heating value
of the fuel can vary from time to time, it is a challenge
to set the ratio co-efficient in operation; therefore, the
oxygen content in the flue gas is measured which can
reflect the combustion condition directly, regardless of
the fuel variation.

© 2015 John Wiley & Sons, Ltd.
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FIGURE 7 | Three sub regulators of boiler
combustion control system (P0: main steam pressure
set-point; PT: main steam pressure output; D: main
steam flow rate; O2: oxygen content in the flue gas; V:
air flow rate; Pss: furnace pressure set-point; Ps:
furnace pressure output; BD: boiler demand).
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A classic air regulator using the oxygen content
signal is illustrated in the middle part of Figure 7. It is
a cascade control system. The inner loop receives the
fuel signal and air signal to attain a basic fuel/air ratio
and the outer loop receives the oxygen content signal
and compare it with the optimal oxygen content value
(which is calculated offline for a given load) to achieve
a tight control of the air input.

The task of the pressure regulator is to main-
tain the furnace pressure close to the atmospheric
pressure; so that the hazardous gases escaping and
cool air entering the boiler can be prevented. Usually,
furnace pressure is required to be maintained at
20–50 Pa below the atmospheric pressure. Such a task
is achieved by the use of feedforward-feedback
control system as shown in the right part of
Figure 7.

Feedwater Control System
The objective of the feedwater control is to supply
enough water to the boiler to match the evaporation
rate. For the subcritical plant, because the separation
of steam from water always happens at the drum,
maintaining the drum level naturally represents the
balance between the feedwater supply and steam
generation.

Controlling the drum water level within a given
tolerance is important for the safe operation of the
plant: a high level will increase the risk of water being
carried over into the steam circle, which may not
only lead to a fluctuation of steam temperature, but
also cause fouling and damage of the superheaters;
conversely, a low level will cause the waterwall piping
to be damaged from insufficient cooling. Both can
result in catastrophic failures.

The drum water level is determined by both the
volume of the water in the drum and the volume of
the steam bubbles under the water level. Thus, the
drum water level can be influenced by feedwater flow
rate, steam flow rate, heat quantity generated from
combustion and many other variables, and its control
presents a complex problem due to the large inertia
behavior of these disturbances and a ‘swell and shrink’
effect.3

For these reasons, a three-element cascade con-
troller is typically used in the plant, which is illustrated
in Figure 8. The steam flow rate signal D is used as
the feedforward signal; such a design can make the
feedwater flow rate respond quickly to the variation of
the steam flow rate, thus avoid the effect of ‘swell and
shrink’. The feedwater flow rate signal is used to form
the inner-loop of the control system and a secondary
controller is designed for a quick rejection of the dis-
turbance inside the feedwater system. The drum water
level H is finally fed back to the primary controller for
an accurate regulation.3,5

The main difference between a supercritical
plant and subcritical plant is at the water-steam sys-
tem. For the supercritical plant, feedwater circulates
only once in the furnace in each cycle and there is no
clear disengagement surface between steam and water.
However, both the fuel flow rate and feedwater flow
rate can greatly influence the position of the surface, if
such a surface deviates far away from a designed level,
the steam temperature in the superheater would also
have a deviation far away from the set-point. There-
fore, generally, a ratio controller is designed for the
supercritical plant to regulate the feedwater flow rate,
keeping it matching the fuel flow rate, so that the
steam temperature/enthalpy out of the separator can
be controlled within the given range.

© 2015 John Wiley & Sons, Ltd.
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Steam Temperature Control System
Superheater steam temperature (SST) and Reheater
steam temperature (RST) are two of the most critical
variables to be controlled in a steam power plant.
They must be tightly controlled within a small range,
as shown in Figure 9, for the following safety and
economy reasons:

1. Excessively high temperature will lead to mate-
rial damage on the superheater/reheater steam
pipes at the inlet of the turbine;

2. Lower temperature will reduce the efficiency of
the plant, moreover, it will build up the steam
humidity in the rear of the low pressure turbine
that would erode the turbine blades; and

3. Large temperature variation will increase the
thermal stress of the piping material and mag-
nify the variations of the air gap between rotor
and stator of the turbine, thus threatening the
safety of the plant.

For the subcritical plant, there are many factors
that will influence the SST: mostly the rate of the
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FIGURE 9 | Operation regions of superheater steam temperature
(T_sp is the temperature set-point and the numbers represent
temperature deviations in Celsius degree).

steam flow, heat transfer from flue gas and the rate
of spray water flow. The first two have a relatively
quick influence on the SST while the spray water’s
influence is quite slow. However, during the operation,
the steam flow rate has to match the load demand;
the regulation of heat transfers (for example, the
burner tilt or the gas recirculation) will influence the
efficiency and security of combustion. Therefore, the
spray water flow becomes the only variable to control
the SST and the cascade control system is generally
employed, which uses an inner loop to handle the large
inertia property.

A classical SST control system is illustrated in
Figure 10. The inner loop receives the steam temper-
ature signal T2 immediately after the attemperation,
which is required to reject the temperature distur-
bances originating upstream as well as the self distur-
bance in the spray water. The inner loop is, of course,
much faster than the outer loop, which receives the
final steam temperature signal T1 to achieve an accu-
rate control performance.2,5

For the supercritical plant, as analyzed in section
3.3, the regulation capability for the spray water is
very limited, and the superheater steam temperature
is mainly controlled by regulating the fuel/feedwater
ratio. The steam temperature/enthalpy out of the
separator is first controlled by keeping the feedwater
flow rate matching the fuel flow rate; spray water is
then used for a tighter control of the superheater steam
temperature.

The control of the reheater steam temperature is
mainly attained by regulating the dampers that control
the flow of the flue gases across the reheater tube
banks. The spray water is only used in emergency
case, because it will reduce the amount of steam which
expands in the high pressure turbine and will reduce
the efficiency of the whole plant.
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FIGURE 10 | Classical cascade SST control in the FFPP (T1 is final
steam temperature; T2 is the steam temperature signal immediately
after the attemperation; 𝛾T1 and 𝛾T2 are the temperature transmitters;
Kz is the actuator of the attemperator valve).

The Drawbacks of the Conventional Control
The conventional PI/PID based control system has
been successful in FFPPs and are very reliable. Such a
design has also been proved for its value for regulation
and disturbance rejection during normal operation
maintained at/around a base load. However, as the
FFPPs increase in size and participate in grid load
regulation more frequently, control of FFPP unit has
been shown to be a challenge, due to severe non-
linearity in the multitude of variables over a wide
operation range, tight operating constraints and large
inertia behavior. Moreover, the equipment wear, envi-
ronmental changes, fuel variation, etc., will result in
significant disturbances and plant behavior variations.
Consequently, the conventional PI/PID strategies
are no longer sufficient in meeting performance
specifications because of the following drawbacks:

(a) The main drawback of the PI/PID control
systems, based on separate single-input,
single-output (SISO) loops, is that they do
not account for the interactions of the different
thermal properties in the plant.

(b) In general, the PI/PID controller parameters are
optimized at a given operating point and then
fixed. Therefore, when wide-range load follow-
ing is required for the FFPPs, the performance
of the plant operation is decreased because the
nonlinearity becomes significant.

(c) The PI/PID controllers are not possible to han-
dle the constraints of manipulated variables
in the controller calculation stage, thus even

when the controller parameters are well tuned,
the performance is still decreased when phys-
ical limitations (both magnitude and rate) of
the valves are involved. This may also cause
the integral windup when a sharp change of the
power demand occurs.

Therefore, various advanced control strategies
have been proposed in both academic studies and
industrial practices, aiming at improving the per-
formance of the FFPP control system for economic
and safe plant operation. A migration from classical
PI/PID based control system to new concepts based on
advanced control techniques in FFPPs will take place
in a foreseeable future. The next section introduces
four types of different control strategies with diverse
applications in the FFPPs.

ADVANCED CONTROL OF THE FFPP

Advanced PI/PID Control
The advanced PI/PID control refers a class of methods
which implement the state-of-the-art design or tun-
ing technologies on the basis of conventional PI/PID
control loops. Because the PI/PID based control sys-
tem has already been widely accepted and employed
throughout the FFPPs, such a method can directly and
effectively improve the operation performance with-
out altering the original simple structure, operation
procedures and concepts which are well understood by
plant engineers and operators. Recently, auto-tuning
and gain scheduling PI/PID controls are two exten-
sively studied methods in power plants.

Auto-Tuning PI/PID Control
As stated before, the power plant control system con-
sists of many SISO PI/PID loops which are strongly
interacting to each other. The most common method
of tuning these controllers in the FFPPs is the so
called ‘trial and error’ method.11 It generally tunes
the control loops sequentially, beginning from the
one with least interaction. For complex MIMO sys-
tem like FFPP, such a method requires considerable
expertise and experience and may still be difficult to
attain a satisfactory overall performance. An alter-
native method is to design an analytical compensa-
tion of control-loop interactions for wide-range plant
operation.12

Auto-tuning PI/PID control can potentially han-
dle the interactions among process variables and
loops, where an objective function reflecting an overall
dynamic control performance is utilized and through
minimization of this objective function, all controller
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FIGURE 11 | Block diagram of a typical
tuning method for PI/PID parameters.

parameters can be determined simultaneously and
optimally.

Figure 11 shows the block diagram of a typical
tuning method in Refs 13–15, in which a dynamic
model of the plant is used to test different groups
of controller parameters. Model plays a fundamental
role in this method, where the tuning result and
computational requirement depend greatly on the
structure, accuracy and complexity of the model. If
an operation around a given loading condition is
considered, linear model may be enough to achieve
a good performance; otherwise, nonlinear analytical
or identified model must be employed due to the
nonlinear behavior of the plant.

Besides the model, another feature that is con-
sidered essential to this method is the objective func-
tion. Any output or input variables of interest in the
controller tuning can be included in the objective func-
tion, and various types of functions can be designed.
The following quadratic output performance objective
function over a finite horizon N is commonly used:

Jk =
t=N∑
t=1

(
ŷk+t − r

)T
Q

(
ŷk+t − r

)
(2)

where k is the current instant, ŷk+ t is the expected
model output vector at instant k+ t based on the
candidate controller parameters, which could include
the interested variables, such as power output, throttle
pressure, and so on, r represents the corresponding
references to these output variables, and Q is the
weighting matrix.

If linear model is employed in the method, the
minimization of the objective function can be for-
mulated into a quadratic programming (QP) prob-
lem, which is computationally efficient. However, in
most of the cases, nonlinear models are utilized to

better model the plant behavior; thus the optimiza-
tion procedure becomes a non-convex problem with
heavy computational load, and may get stuck in a local
minimum far from the optimal value. Consequently,
various heuristic search algorithms, such as Genetic
Algorithm (GA),14 Evolutionary Programming (EP),13

Particle Swarm Optimization (PSO),15 are proposed to
find the optimal controller parameters. A basic work-
ing principle for these heuristic search techniques is:

1. Initialization: generate initial controller param-
eter candidates randomly in the given solution
space.

2. Evaluation: simulate the power plant model
with these parameters and evaluate the corre-
sponding objective function;

3. Modification: modify the parameters and con-
tinue to evaluate the performance until finding
the satisfactory parameters.

The results in works13–15 show that, quality solu-
tions and fast convergences can be provided in many
applications. However, the nonlinear optimization is
still time consuming, which brings difficulties in mak-
ing frequent online updates. Fortunately, the PI/PID
controller gains do not have to be updated for each
time increment, thus a large window size can be cho-
sen to tune the gains.15

Another drawback for this auto-tuning method
is the model-dependence character. An accurate
model which can capture the dynamics of the power
plants over wide operation range is difficult to
develop. Therefore, it is worth mentioning here that
recently, model-free direct tuning methods using the
closed-loop experimental data are employed in the
power plant to achieve an optimal tuning of the
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PI/PID controller parameters. In Ref 11, iterative
feedback tuning (IFT) technique is employed for a
simultaneously tuning of six main control loops in
the power plant. In Ref 16, extremum seeking (ES)
technique is utilized to find the optimal PID gains of
the superheater steam temperature control system in
the FFPP.

Similar to the ordinary model based methods,
different overall control objective functions can also
be designed in these approaches, but the gradient
search based minimization of these objective functions
is time consuming and lacks robustness. One attractive
feature for these model-free based approaches is that
they potentially eliminate or reduce the modeling
effort, but instead, a number of experiments are
required for gradient computation, which have to be
designed carefully to make sure the operation of the
plant is not under too much stress.

The last technique introduced in this part is
the expert knowledge-based PI/PID auto-tuning
approach, where the expert knowledge is utilized to
determine and coordinate the controller gains. For
example, to obtain a desired step response, a large
control signal is needed in the beginning to achieve a
fast rise time, which requires a big proportional gain
and a small derivative gain. Also, because processes
have large time-delay, a small integral gain is desired
to reduce the overshoot. When the output response is
near the set-point, the proportional gain and integral
gain should be changed from large to small and from
small to large, respectively, to make the controlled
output converge to the set-point quickly.

On the above classical tuning knowledge, fuzzy
rules are generated in Ref 17 to adjust the PID
parameters according to the current output error
e(k) and its first difference value Δe(k), and a fuzzy
auto-tuning PID controller is designed for the main
steam pressure loop in the FFPP, which can enhance
the robustness and control performance of the PID
controller with fixed parameters.

The expert knowledge rule-table could be pro-
duced off-line, and once finished; the PID parame-
ters can be determined directly and efficiently by the
look-up table. However, no optimality can be achieved
since no optimization is performed in this approach.

Gain Scheduling PI/PID Control
The computational complexity of the online-tuning
of the PI/PID parameters leads to the development
of gain-scheduling PI/PID control methodology, which
is more practical to deal with the limitation of
fixed parameter PI/PID controller and attain a better
wide-range operation performance in the power plant.

The essential idea of the gain scheduling control
is to change the controller parameters according to

the variations of process dynamics. A measurable
process variable, which is descriptive of the operating
condition, is known as a scheduling variable and used
to adjust the controller parameters.

For the FFPPs, the power load is usually selected
as the scheduling variable since its variation nat-
urally represents various operating points of the
plant, especially when the plant is operating under a
‘constant-pressure’ mode. Then several typical loading
points are selected and at each point, the PID con-
troller parameters are tuned offline. In online opera-
tion, according to the value of the scheduling variable,
the PID parameters can be determined through some
interpolations between the parameters predesigned
at typical loading points.17–19 The block diagram of
a typical gain scheduling PID control is shown in
Figure 12.

Robust Control
One major issue in the control of FFPPs is the
uncertainty. First, modeling mismatches are difficult
to avoid due to the complex dynamics of the plant
and the desire to use simplified model; and secondly,
the unknown disturbances commonly exist all over
the plant due to the equipment wear, environmental
changes, fuel variation, and so on.

In contrast to the adaptive approach which
attempts to learn the uncertainties of the plant and
eventually adjusts the controller to be best suited for
the plant, the robust control has a fixed structure
which yields acceptable performance for a given plant
uncertainty set. Because the robust controllers are
simpler to implement without online-tuning to the
plant variations, they have been extensively studied for
FFPPs over the past few decades.

The H∞ control is the subject of the largest share
of the robust control researches in the FFPPs. The
basic idea of the H∞ control comes from the theory in
the frequency domain. The H∞ norm of the transfer
function (the maximum singular value of the func-
tion over the H∞ space) can be interpreted as a maxi-
mum gain between bounded input energy and output
energy; thus, developing a controller which could min-
imize the H∞ norm as an objective function will natu-
rally reduce the closed-loop impact of a perturbation,
and enhance the stabilization or performance.20,21

To guarantee robust performance of the con-
trollers under unexpected uncertainties, in Refs 22–25
the H∞ control approaches are proposed to the
boiler-turbine coordinated system, gas and oil-fired
heating/cogeneration industrial boilers and gas tur-
bine. In these works, an H∞ approach with mixed
sensitivity has been utilized in the controller design,
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FIGURE 13 | Block diagram of a typical H∞ mixed sensitivity problem.

which can achieve a trade-off between the robustness
and performance.

Figure 13 shows the block diagram of a typical
H∞ mixed sensitivity problem, where G(s) is the
transfer function of the plant, K(s) is the controller;
the variables r, e, u, d, and y are the reference, control
error, control input, disturbance input and system
output, respectively; W1(s), W2(s), and W3(s) are
weighting matrices, and z1, z2, z3 are corresponding
weighted control system outputs.

Performance and robustness are characterized by
various well-known closed-loop functions, in partic-
ular the sensitivity function S(s), the input sensitivity
function R(s) and the complementary sensitivity func-
tion T(s):

S (s) = (I + G (s)K (s))−1 , (3)

R (s) = K (s) (I + G (s)K (s))−1 = K (s) S (s) , (4)

T (s) = G (s)K (s) (I + G (s)K (s))−1 = I − S (s) , (5)

Here, ||S(s)||∞ reflects the disturbance rejection
and reference following ability of the system, ||R(s)||∞

reflects the allowed amplitude of additive uncertainties
G(s)+Δ(s), ||T(s)||∞ reflects the allowed amplitude of
multiplicative uncertainties (I+Δ(s))G(s).

A generalized plant G (s) can be built as follows:

⎡⎢⎢⎢⎣
z1
z2
z3
e

⎤⎥⎥⎥⎦ = G (s)
[

r
u

]
=
⎡⎢⎢⎢⎣
W1 (s) −W1 (s)G (s)

0 W2 (s)
0 W3 (s)G (s)
I −G (s)

⎤⎥⎥⎥⎦
[

r
u

]
, (6)

u = K (s) e, (7)

and a transfer matrix from the disturbance input d
to the control system outputs z= [z1, z2, z3]T can be
constructed as:

Φ (s) =
⎡⎢⎢⎣

W1 (s) S (s)
W2 (s)K (s) S (s)

W3 (s)T (s)

⎤⎥⎥⎦ . (8)

Then, shaping the closed loop transfer functions
S(s), R(s), and T(s) for the control system design
is converted to find the controller K(s) which can
minimize ||Φ(s)||∞.
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In Ref 22, H∞ controller is compared with other
modern control design methods, such as 𝜇-synthesis
and H2 approaches through the simulation on a
boiler-turbine coordinated system model. Their test
results show that under the presence of complicating
factors such as coupling between multi-variables, time
delay, modeling uncertainty, output disturbances and
sensor noise in the FFPPs, the H∞ controller can
provide performance and robustness superior to that
attainable by other designs.

In Refs 26–28, the H∞ loop shaping technique
is utilized to design multi-variable robust PI/PID con-
trollers for the FFPPs. The results show that, owning
to the advantages of the H∞ design approach such
as: yielding MIMO control laws, providing strong
robustness of the system, the proposed controllers
can achieve better performances than the conventional
PI/PIDs.

However, there are some drawbacks which may
limit the application of H∞ design approach in
practice:

1. Relying on the linear model of the plant;

2. The weighting matrices W1(s), W2(s), and
W3(s) are important to attain a balance among
various control performance objectives, how-
ever, the setting and tuning of them is indirect
and inconvenient;

3. In general, the resulting controller has high
order, thus order reduction has to be carried
out without degradation in performance and
robustness;

4. Cannot deal with the input constraints effec-
tively (although tuning W2(s) can impose limi-
tations on the inputs to some extent);

As the FFPPs are required to operate in a wide
loading range, the liner model based H∞ approach is
becoming insufficient, even if the robustness can be
guaranteed within a certain range around the typical
operating point. Therefore, multi-model based H∞
approaches are proposed recently.

In Ref 29, two transfer function models
are developed at different operating point of the
boiler-turbine unit of a coal-fired power plant, and
two H∞ controllers are built based on these models
to guarantee the robustness in each local-region.
A bumpless switchover mechanism is designed to
achieve a smooth transition between the two oper-
ating regions, thus a wide range load following is
attained. In Refs 30 and 31, robust H∞ tracking
controllers are designed for the boiler-turbine unit
via Takagi-Sugeno (T-S) fuzzy model. Based on the

state-space type of local models, Lyapunov theory
and Linear Matrix Inequality (LMI) technique are
employed in these methods, and a robust tracking
control of the boiler-turbine is achieved in a wide
operation range with the stability of the closed-loop
system being guaranteed.

Although H∞ approach is the most popular
one in the area of FFPP robust control, it is by
no means the only approach. Other robust control
approaches such as linear quadratic Gaussian with
loop transfer recovery32 (LQG/LTR) and 𝜇-synthesis33

are also applied to the FFPPs to enhance the system
robustness and performance.

Model Predictive Control
Although better control performance can be attained
by the use of advanced PI/PID controller or robust
controller, none of them can effectively deal with the
input constraints during the controller design stage.
Therefore in practice, when physical limitations of
valves in the FFPPs are involved, the performance
of the controllers will be degraded. In this context,
the model predictive control (MPC) has been widely
employed in recent years.

MPC refers to a class of control approaches
which utilize an explicit process model to predict the
future response of a plant and calculate the control
inputs through the minimization of a dynamic objec-
tive function within the predictive horizon.34 Origi-
nally applied mainly in the petrochemical industry, the
predictive control has progressed steadily and gradu-
ally made a significant impact on the FFPPs control.
The main reasons for its success in FFPP studies and
applications are:

1. It can effectively handle the actuator limitations
and allow the operation closer to constraints,
which frequently leads to more rapid response
and more profitable operation.

2. It handles multivariable control problems natu-
rally.

3. It can effectively deal with the large inertial and
time-delay behavior of the plant.

4. The tuning of the parameters is easy and intu-
itive; no special attention needs to be placed on
constraints and optimization.

The basic idea and principle of the MPC is
shown in Figure 14, and can be briefly explained in
three steps:

1. At current time k, based on the available infor-
mation and predictive model, predict the future
response of the plant within the predictive
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FIGURE 14 | Basic working principle of the MPC.

horizon Ny, and express the future predic-

tive outputs
{

ŷk+1, ŷk+2, … , ŷk+Ny

}
in terms of

future inputs
{

uk+1,uk+2, … ,uk+Nu

}
.

2. Through minimizing a given dynamic control
objective function, calculate the optimal future
control sequence

{
u∗

k+1
,u∗

k+2
, … ,u∗

k+Nu

}
,

which can drive the predictive output ŷ to
follow the reference r in an optimal way.

3. Send only the first input in the optimal sequence
to the plant, and repeat the entire calculation at
subsequent time.

Linear MPC
The first generation of MPCs applied to the FFPPs is
the linear MPCs, in which linear model for the plant is
utilized and the optimal control inputs are determined
through minimizing a finite horizon quadratic perfor-
mance objective:

J
(
k
)
=

Ny∑
j=1

[
ŷ
(
k + j|k) − r

(
k + j

)]T

× Q
[
ŷ
(
k + j|k) − r

(
k + j

)]
+

Nu∑
j=1

Δu
(
k + j − 1|k)T

RΔu
(
k + j − 1|k) .

(9)

The future projected output ŷ can be related
directly back to the input vector Δu through the linear
model and the objective function can be re-written in
the form of a standard quadratic programming (QP)
problem with all input output constraints collected

into a matrix inequality involving the input vector. As
QP is one of the simplest possible optimization prob-
lems, the optimal inputs can be found efficiently.34

Because the linear step response model of the
plant can be easily obtained, dynamic matrix control
(DMC) has been extensively studied. In Ref 35, DMC
is applied to a drum-type boiler-turbine system to
achieve a simultaneous control of electrical power,
drum pressure and water level. It shows that the
step-response model based on the test data is better
suited than the linearized model. In Refs 36 and
37, DMC techniques have been applied to control
the superheater/reheater steam temperature of the
FFPPs, the results demonstrate that better control
performance can be achieved as compared to the
conventional PID control.

Another linear MPC that has been widely used
in the FFPPs is the generalized predictive control
(GPC), where auto regressive moving-average model
is employed.38–41 In Refs 38 and 39, multi-variable
GPCs are developed for a coordinated control of
the boiler-turbine; their simulation results indicate
that, compared with PID, the GPCs can not only
track the target value smoothly and rapidly with
smaller overshoot and shorter adjusting time, but
also has stronger robustness. In Ref 40, GPC is
designed to regulate the superheater and reheater
steam temperatures of a 200 MW power plant. To
further enhance the robustness of the system and
attain a wide range operation of the plant, recursive
least square based adaptive algorithm is added to the
GPC, which can tune the controller parameters online
using the real-time input/output data. In Ref 41, the
adaptive GPC is tested in a real power plant and
evident improvements were observed in the results.

Nonlinear MPC
Although the linear MPC can effectively improve the
control performance of FFPPs, due to the fact that
the linear model works only for linear system, its
application is limited to a small operating region of a
plant. For this reason, nonlinear plant model has been
used instead of the linear model in the MPC design to
achieve a wide range plant operation.

To overcome the issues associated with nonlinear
modeling and computational requirement, artificial
intelligence techniques have been applied. In Ref 42,
the nonlinear analytical model of the plant is employed
as the predictive model, and GA is utilized to cal-
culate the optimal control sequence under the input
constraints. In Ref 43, neural network-auto regres-
sive exogenous (NN-ARX) model is identified for a
200 MW oil-fired drum-boiler plant, and an MPC is
designed based on the model. Simulation results show
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that a satisfactory control of main steam pressure
and temperature and reheat steam temperature can
be attained during load-cycling and other severe plant
operating conditions. To improve the computational
performance of the nonlinear optimization, the par-
ticle swarm optimization (PSO) and its modifications
have been used in Refs 44–46 to search for the opti-
mal control sequence in the NN based nonlinear MPC;
the advantages and effectiveness of these approaches
have been clearly shown through simulations of the
superheater and reheater steam temperature control of
the FFPPs. In Refs 15 and 47 online-update diagonal
recurrent neural network (DRNN) models have been
developed for 500 and 1000 MW FFPPs, and PSO
based nonlinear MPCs are then designed to achieve
a plant-wide control.

Besides the intelligence-based nonlinear MPC,
in Ref 48, a load-dependent exponential ARX
(Exp-ARX) model that can effectively describe
the plant nonlinear properties is identified off-line,
and then used to establish a constrained multivariate
multistep predictive controller. Simulation studies on
a 600 MW FFPP indicate that owing to the ability of
the nonlinear model capturing the plant dynamics,
much better control performance can be attained
without using the online-update method. Based on
the technique of input-output feedback linearization,
GPC is combined with the nonlinear state feedback
controller in Ref 49 to solve the control problem of a
160 MW boiler-turbine unit.

The nonlinear MPC is naturally suited for con-
trol of the nonlinear FFPPs; however, there are two
main issues, which greatly limit its application: (1)
the satisfactory nonlinear dynamic model is difficult
to build; and (2) the nonlinear optimization lacks in
robustness and suffers from computational require-
ment. To overcome these issues, the multi-model based
predictive controllers are developed recently.

Multi-Model MPC
The essential idea of the multi-model technique is
‘divide and conquer’, which uses a combination of
several linear models to approximate the nonlinear
behavior of the plant.50 Because the advances in linear
modeling and control theory can be directly taken
into account, the multi-model techniques bring an
alternative way to handle the nonlinearity, and its
integration with the MPC approach has been shown
to be effective to control the power plants.49,51–66

The earliest multi-model MPC used in power
plant control is presented in Ref 51, where networks of
dynamic local linear models are created after dividing
the whole operating region into a number of zones and
the global model is built by using the interpolation

among these local models. GPC is then designed on
the basis of the global model to achieve a wide range
control of the power plant, as shown in Figure 15.
Based on the Radial Basis Function (RBF) neural
network and Adaptive Neuro-Fuzzy Inference System
(ANFIS) approaches, local linear MPCs developed
at different loading points are combined for the
coordinated control of a 500 MW plant.52,53 Although
the multi-model strategy seems more complicated than
the direct nonlinear approaches, in fact, it is easier
and more efficient to implement. To improve the
wide-range operation of a boiler-turbine system, a
fuzzy interpolated DMC is proposed in Ref 54, which
can be viewed as an extension of the linear DMC in
Ref 35.

In Refs 49, 55, 56, GPCs are developed on
the basis of neuro-fuzzy networks (NFNs), both the
local linear model weighted and controller weighted
approaches are given in these works. Through the
simulation studies on the boiler-turbine coordinated
system and superheater steam temperature system,
better control performance is shown compared to the
linear GPC.

In Refs 57–66, multi-model MPCs are pro-
posed on the piecewise linear (PWL) models, piecewise
affine (PWA) models or Takagi-Sugeno (T-S) fuzzy
model using various kinds of objective functions and
computational tools, such as QP,57,58,60 LMIs,63–66

multi-parameter programming (MPT),59 GA61 and
iterative learning control (ILC).62 Besides Ref 62, it is
interesting to note that, a state-space type of local lin-
ear model is adopted in most of the multi-model MPCs
because of the advances in multi-variable systems
and the-state-of-the-art control techniques for linear
systems.

In Refs 59 and 61, the stability of the closed-loop
control system is achieved and the overall control
performance is improved by including a terminal
inequality constraint, which forces the states at the
end of the finite prediction horizon to lie within a
prescribed terminal region, and by adding a quadratic
terminal state penalty cost in the objective function.
In Refs 63–66, an infinite-horizon objective function
is adopted and a Lyapunov function is constructed to
find the upper-bound of the objective function and
ensure the stability. The control input can be solved
by minimizing this upper-bound while subjecting to
the stability and input constraints in the form of
linear matrix inequalities (LMIs). In Refs 61, 65, 66, a
disturbance observer and steady-state target calculator
(SSTC) are added to the MPC structure to achieve
a tracking control of the boiler-turbine unit even in
the case of significant unknown disturbances or plant
parameter variations.
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Intelligent Control
The development of intelligent techniques in power
plant control are increasing steadily in recent years
owing to its advantages, such as overcoming the sig-
nificant nonlinear and uncertain dynamics, computa-
tional complexity and other problems associated with
large-scale distributed complex power plants.

Intelligent control is a class of control tech-
niques that use various computational intelligence
techniques to develop the computer-based control sys-
tems. Because, the intelligent control system behaves
as humans or species in nature, with the ability to
learn and discover knowledge, emulate human exper-
tise and decision making, and accomplish the tasks, it
can autonomously achieve a high level goal even in the
complicated or unexpected case.67

As was already introduced in the advanced
PI/PID control and MPC sections, many different
intelligent techniques have been applied to power
plant control, and their structures are modified in gen-
eral depending on the purpose of application. The
most popular intelligent techniques are neural net-
work, fuzzy logic, evolutionary programming, genetic
algorithm, particle swarm optimization, multi-agent
systems, as well as their combinations.

The first intelligent technique investigated in the
section is the neural network (NN). Since the NN
has outstanding abilities in knowledge discovery, or
discovering underlying, hidden patterns in data sets,
it provides an effective way to develop the model for
the nonlinear power plant using only the input-output
data, which is generally the first and foremost impor-
tant step in the advanced controller design.

To provide dynamic information about the plant
for controller design, the usual NN modeling is
combining the conventional feedforward networks

(such as BP or RBF neural networks) with tapped
delays.68 Beside this, in Refs 44–46, Elman neural
networks (ENN) and their modifications are utilized
to approximate the behavior of the steam temper-
ature systems of FFPPs. The ENN differs from the
conventional feedforward networks in that it includes
recurrent or feedback connections. The delay in these
connections store values in the previous time-step and
use them as inputs in the current step, which makes the
network sensitive to the history of input and output
data, suitable for dynamic system modeling.

The basic structure of an ENN with M inputs
and N outputs is shown in Figure 16, where the
recurrent neurons are in the context layer. The outputs
in each layer of an ENN are given by:

xj
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)
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(
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W1
i,jui
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(
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)
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(
k
)
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(
R∑
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W2
i,jxi

(
k
))

, (12)

where, W1
i,j is the weight that connects node i in the

input layer to node j in the hidden layer; W2
i,j is the

weight that connects node i in the hidden layer to node
j in the output layer; W3

i,j is the weight that connects
node i in the context layer to node j in the hidden layer;
and f (·) and g(·) are the transfer functions of the hidden
layer and the output layer neurons, respectively, where
f (·) mostly takes logsig or tansig function and g(·) often
takes purelin function.
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FIGURE 16 | Basic structure of the ENN.

As a special case of the ENN, the diagonal recur-
rent neural network (DRNN) is also popular in the
area of FFPP dynamic modeling.13,15,47,69 Compared
with the ENN, the context layer of DRNN is col-
lapsed to the hidden layer, which eliminates the cross
talks and reduces the number of weights between the
context layer and the hidden layer. Therefore, fewer
training iterations are needed and the DRNN is better
suited for real-time application.69

In order to capture the complex dynamic of the
whole power plant, the DRNN based combined model
is proposed in Refs 15 and 69, where each primary
component of the plant is approximated by a DRNN
model. Then these DRNNs are connected by using the
outputs of a DRNN as the inputs of another DRNN.
The composed hierarchical structure can achieve a
satisfactory accuracy, thus can be used as the plant
simulator.

With the dynamic process model being suc-
cessfully developed, various advanced controller
can be designed, for example, the aforementioned
Auto-tuning PI/PID Control and nonlinear MPC.
To generate solutions to the highly complex nonlin-
ear optimization problem, heuristic optimization
techniques, such as evolutionary programming
(EP),13,70 genetic algorithm (GA)14,42 or particle
swarm optimization (PSO)15,44–47 have been employed
extensively, providing quality solutions and fast con-
vergence compared with the conventional nonlinear
programming.

The basic principle for all these heuristic opti-
mization algorithms can be concluded as: initializa-
tion, evaluation and modification as we introduced in
the Auto-tuning PI/PID Control section. In Ref 71,
basic GA and PSO algorithms are compared and the
results show that PSO can attain a better performance.
However, because the search procedure by the PSO
strongly depends on the agent best value so far (pbest)
and the global best value (gbest), the search area can be
limited by them, which may lead to the local minima.

PlantNNIC

ΔΔ

yref

u(k) y(k+1)

FIGURE 17 | Control system of the NNIC.

Therefore, by introducing a natural selection mecha-
nism, which is usually performed by the EP and GA,
the effect of pbest and gbest is gradually curtailed and
a broader search area can be realized. The resulting
hybrid PSO can have a higher performance.

Besides the traditional model based controller,
the neural network technique can also be used to
design the model-free controllers directly, which is
called the neural network inverse control (NNIC).

The essential idea of the NNIC is to identify an
input/output mapping:
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which can be viewed as a nonlinear inverse mapping
of the conventional dynamic model:
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The inverse mapping function g(·) can be iden-
tified by using the ENN or DRNN, and it is capable
to find the control input u(k) to drive the system to an
expected point y(k+ 1). Therefore, it can be used as
a controller by replacing the future expected output
y(k+1) in Equation (13) with the desired output, yref.
If the network represents the exact inverse, the control
input produced by the network will drive the system
output y(k+ 1) to yref. Figure 17 illustrates how the
NNIC is applied as a controller in the system.

As the NNIC is a feedforward controller, in order
to deal with the unavoidable modeling mismatches
and the unknown plant variations and disturbances,
a PID compensator is usually augmented to the sys-
tem, and the resulting control structure is shown
in Figure 18. The NNIC is used as a feedforward
controller, which provides the main contribution to
the control signal to make the plant respond quickly
to the set-point changes, thus shorten the stabilization
time and reduce the overshot of the control process,
and the PID compensator is serving as the feedback
controller to eliminate the steady-state control error
induced by the NNIC.

The feedforward-feedback control system is
utilized in Refs 72 and 73 to regulate the superheater
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FIGURE 18 | NNIC augmented by a PID compensator.

steam temperature in the FFPPs. The results in these
works show that owing to the advantages of both
NNIC and the PID compensator, better control per-
formance can be realized than the original cascade
PID control.

Another intelligent technique being widely used
in the area of FFPP modeling and control is the fuzzy
logic control (FLC), which has advantage in capturing
the tacit knowledge of the system. The Takagi-Sugeno
(T-S) fuzzy modeling technique is now the most pop-
ular FFPP modeling strategy.74 Its basic idea is using
the fuzzy set to divide the whole operation region
of the system into several overlapping local regions;
in each local region, a simple linear model is devel-
oped to represent the local dynamics of the system,
and then the global model is finally derived from the
weighted summation of all the local models. Because
the T-S fuzzy model can approximate the nonlinear
behavior of the plant using the combination of several
linear models, the advanced linear control theory can
be used to overcome the nonlinear control problem.
Moreover, since the overlaps between different regions
can guarantee smooth transitions between local mod-
els, the T-S fuzzy model naturally provides a bumpless
switchover.

Take the discrete-time, state-space form of local
model, for instance, the T-S fuzzy model can be
described as follows:
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where Ri denotes the ith fuzzy rule, L the num-
ber of fuzzy rules, Mi

j (j = 1,2, … ,N) the fuzzy sets;
x(k)∈ℜn the state vector, u(k)∈ℜm the control
input vector, and y(k)∈ℜl the output vector. The
matrices (Ai, Bi, Ci, Di) are local system matrices, and
Z(k)= (z1(k), z2(k), … , zN(k)) is the antecedent vector

of the fuzzy model, which is composed by current and
past measurable variables of the plant.

By using fuzzy blending, the dynamic fuzzy
model (15) can be expressed by the following global
model: {
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, and all other matrices Bz, Cz, and

Dz are defined in the same way.
In Refs 30, 60–62, 64–66 an approximation or

transformation of the nonlinear system has been used
to obtain the linear state-space model at different load-
ing conditions, then according to the expert knowl-
edge or the nonlinear investigation of the plant, the
fuzzy rules are developed to connect the local mod-
els and form the integrated T-S fuzzy model of the
FFPP. In Ref 75, a data-driven fuzzy modeling strategy
is proposed, where Gaustafson-Kessel (G-K) cluster-
ing is used to provide an appropriate division of the
operation region and develop the structure of the T-S
fuzzy model. Then by combining the input data with
the corresponding fuzzy membership functions, the
subspace identification (SID) method is extended to
extract the local state-space model parameters. Owing
to the advantages of the both methods, the resulting
fuzzy model can represent the boiler-turbine unit of
an FFPP very closely for advanced controller design.

The fuzzy technique also provides an effective
way to design the controller. In Refs 76 and 77, control
rules are first given based on the expert knowledge to
determine the linguistic value of the control signal cor-
responding to the current output error e(k) and its first
difference valueΔe(k) . Fuzzy logic controllers are then
developed based on Gaussian and Triangular-shaped
membership functions to control the nonlinear
boiler system and boiler-turbine system in the FFPP,
respectively.

In Ref 78, a Fuzzy Auto-Regressive Mov-
ing Average (FARMA) controller is applied to the
boiler–turbine system, the controller is an inverse
mapping of the FARMA model, which finds the
control input according to the reference value and
historic input–output data. Unlike a conventional
FLC, where an expert gives the linguistic values of the
antecedent and consequent variables and makes rules;
in the FARMA controller, these linguistic values are
determined from the crisp values of the input–output
history at each sampling time. It has been shown
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in the simulation that by using the self-organizing
procedure to update the rule base, better controls can
be applied as time progresses.

Meeting the power demand of the grid has
been the primary FFPP operation task. However, due
to the energy shortage and environmental concern
worldwide as well as competition among utilities and
other society driven forces, more stringent require-
ments, such as minimization of fuel consumption,
maximization of duty life and minimization of pollu-
tion, etc., have to be fulfilled by the power plant to
achieve an optimal operation. Therefore, not only the
conventional dynamic control performance, but also
the set-point optimization considering the aforemen-
tioned multiple objectives is important to realize an
integrated optimal control of the FFPP, where vari-
ous computational intelligence techniques are utilized
to overcome the nonlinear modeling and calculation
issues of the FFPP.

In Refs 79–81, multi-objective optimization is
performed to adjust the power-pressure mapping
to optimally accommodate different operating sce-
narios, where more economic, environmental and
safety concerns are taken into account. Steady-state
ANN models are first developed in these works to
capture the steady-state nonlinear behavior between
multi-variables in the boiler-turbine system, and then
PSO algorithm is employed to calculate the optimal
set-points. In Refs 13, 15, 71, the similar methods are
used in large-scale FFPP simulators to achieve a plant
wide optimization of the set-points.

To reduce the nitrogen oxides (NOx) emission
during coal combustion in the FFPPs, combustion
optimization is studied in Refs 82–85 to find the opti-
mal openings for the primary, secondary and over-fire
air valves at different layers of the boiler. Since the
development of an accurate analytical model for a
coal-fired boiler is difficult owing to the complexity
of the system, data-driven modeling methods such as
ANN, support vector machine (SVM), fuzzy c-means
clustering as well as their mixtures are proposed to
build the steady-state relationships between these air
valves and NOx emission.

The electric utility industry is charged to deliver
power as inexpensively and as reliably as possible.
Meeting these dual obligations has become increas-
ingly difficult over the past 30 years. Environmental
and economic concerns pressed the utility industry
to develop clean and efficient ways of burning coal
and oil. This has required major improvements in
not only the optimization and control, but also the
monitoring of electric power plant components such
as boilers. It has become a challenge to measure high
temperature distributions of high-pressure liquids,

steam, combustion gases, and heat transfer compo-
nents in extremely adverse power plant environments.
Traditional sensors have not exhibited sufficient
stability and long-term accuracy without requiring
expensive maintenance and recalibration. However,
intelligent distributed parameter estimation coupled
with the fiber-optic sensor system promises better
estimate of the temperature distribution of a boiler
furnace and for improved combustion.85,86 The
basic approach in developing the intelligent mon-
itoring system is in two folds: (1) development of
distributed parameter system (DPS) models to map
the three-dimensional (3D) temperature distribution
for the furnace; and (2) development of an intelligent
monitoring system for real-time monitoring of the
3D boiler temperature distribution based on the 1D
fiber-optic sensors.

The aforementioned intelligent techniques have
been applied extensively in the area of power plant
modeling, control, optimization and monitoring, and
their effectiveness in dealing with the nonlinearity
and uncertainty of the plants has been demonstrated
through simulations. However, both the FFPP and its
operation system are large-scale complex system con-
sisting of many subsystems and functions, and it is dif-
ficult and dangerous to manage the system using only
the centralized control schemes or loosely decentral-
ized control schemes because a single failure can bring
down the entire system. Therefore, recently, there has
been growing interest in multi-agent systems (MASs)
in order to deal successfully with the complexity and
distributed problems in power plants and make the
control system operate at a higher level of automation,
flexibility and robustness.

The basic unit in the MAS is the agent which
has intelligent and autonomous properties because
it is reactive, proactive, social, flexible and robust,
and has multiple algorithms for solving problems.
After receiving and confirming the objective through
the communication with other agents, the agent will
choose a plan for the objective and select an algorithm
to launch the plan.

The agents are arranged into a hierarchical
structure and form the MAS. In the highest level of
the MAS, the task delegation agent allocates tasks
to different agents and investigates the performance
and problems of the lower level. In the middle level,
the mediate agent coordinates the cooperation of the
lower agents such as, asks a certain agent to share the
information directly with the information requesters.
A monitoring agent is also placed in this layer to
select, store and analyze the sensing data of the power
plant. In the lowest level, intelligent agents that have
multiple algorithm modules are cooperating together
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to identify the system, perform the multi-objective
optimization and determine the set-points and control
law. Design of single agents and the integrated MAS
as well as its implementation in the FFPPs are well
introduced in Refs 13, 67, 79, 80.

ADVANCED CONTROL TECHNOLOGY
PRODUCTS FOR THE FFPP

Although the power plant industry may still be reluc-
tant to accept changes that would revolutionize well
assessed procedures due to the reasons such as: relia-
bility, complex design, tuning parameters and train-
ing of plant personnel, the environment of growing
energy and pollution issues, increased FFPP control
challenges as well as the significant improvements
reported by the academic studies has already led to
the technology development in the industry. Moreover,
over the course of the last two decades, the widespread
use of distributed control system (DCS) in power
plant and the development of computer technologies
have facilitated the employment of advanced con-
trol approaches. The new control software could be
installed in the programmable logic controllers (PLCs)
or industrial computers and communicates with the
DCS through the object linking and embedding for
process control (OPC) or Modbus protocols, which
will then collect the required data and send the com-
mands to regulate the actuators. For these reasons,
several companies have presented their own commer-
cial FFPP control solution products, aiming at improv-
ing the operation performance of the FFPPs. The
purpose of this section is to introduce several examples
of commercial products provided by different compa-
nies to demonstrate the effectiveness of the advance
technologies in the FFPP practice.

The first product introduced is the BCOS-ZOLO
offered by ZOLOBOSS,87 which is an FFPP opera-
tion optimizer on the basis of direct monitoring of
the combustion zone in the furnace and combustion
optimization. As is well known, the combustion in
the furnace is the energy source of the FFPP, how-
ever, the high temperature (beyond 1500∘C) in the
combustion zone of the furnace makes it impossi-
ble to measure the combustion condition (tempera-
ture, and the contents of O2, CO, etc., in the flue
gas) using the traditional instrumentations such as the
thermocouple, Zirconium oxide detector, CO detec-
tor, and so on. Therefore, so far, the plant personnel
can only estimate the parameters in the combustion
zone according to the experience; based on the mea-
surement data around the rear flue gas channel, which
is inaccurate and thus brings great challenges in the

combustion control and the resulting difficulties in
steam temperature and pressure control.

For this reason, a novel laser based measure-
ment product is developed by the ZOLOBOSS based
on the technology of tunable diode laser absorption
spectroscopy (TDLAS). The TDLAS instruments rely
on well-known spectroscopic principles and sensitive
detection techniques, coupled with advanced diode
lasers and optical fibers developed by the telecommu-
nications industry. The principles are straightforward:
Gas molecules absorb energy at specific wavelengths in
the electromagnetic spectrum. At wavelengths slightly
different from these absorption lines, there is essen-
tially no absorption. Thus, by (1) transmitting a light
beam through the gas mixture in the boiler furnace
where the target gas is contained, and (2) tuning the
wavelength of the beam to one of the absorption lines
of the target gas, and (3) accurately measuring the
absorption of that beam, one can deduce the concen-
tration of target gas molecules as well as the flue gas
temperatures distributed over the beam’s path. In gen-
eral, multiple light paths are assigned in the grid form
on the certain layer of the furnace, so that through
the computer aided calculation and tomography, the
temperature and gas concentration distribution can be
obtained and viewed.

Knowing the combustion condition in the fur-
nace will provide a direct guidance for the FFPP oper-
ators to achieve a safe and efficient operation of the
boiler; for example, prevent the dust deposition and
slagging in the furnace, reduce the deviation of the
flue gas temperature at the exit of the furnace to pre-
vent the explosion of the heating surface, etc. More-
over, by using the data in the combustion zone of
the furnace, more accurate combustion model can be
developed or updated. The BCOS-ZOLO proposes the
use of the ANN to capture the dynamics between the
boiler operation condition (load, fuel variations, envi-
ronmental temperature, etc.), distributions of fuel and
air, and the performance of the combustion (boiler
efficiency, NOx emission, etc.). On the basis of the
model, the best distributions of the fuel and air
can be calculated for different loading condition and
fuel variation through multiple computational intel-
ligence algorithms to realize an optimal operation of
the boiler.

Furthermore, the flue gas temperature in the fur-
nace can be used to calculate the equivalent radiation
energy in the boiler, which can represent a balance
between the boiler and turbine. Thus, by using the
radiation energy signal as a feedforward signal, the
issues of large inertia behavior of the steam pressure
and temperature control system can be overcome to a
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large extent, and a better load following operation can
directly be achieved.

A similar TDLAS based FFPP optimization is
also offered by the SIEMENS SPPA-P3000 Process
optimizer.88 Both the two products have now been
applied in more than 20 FFPPs in the world, mostly
in the United States, Germany and Korea. The main
features of them can be concluded as:

1. Direct measuring of the parameters in the com-
bustion zone of the boiler through the TDLAS;

2. Developing the combustion model using the
ANN technique;

3. Using the computational intelligence technolo-
gies to optimize the combustion;

4. Improving the control performance of the steam
pressure and temperature.

To improve the control performance of
the large-scale power plant, many companies
such as SIEMENS,89 EMERSON,90 ABB91 and
HONEYWELL,92 have launched their own FFPP
coordinated control optimizers. The common features
of these commercial products are: (1) identifying
the process model to approximate the dynamics of
the plant; and (2) utilizing advanced control strate-
gies such as multi-variable control methods, MPCs
or intelligent control algorithms to improve the
performance of the plant.

Among these commercial products, the PROFI
UCC offered by SIEMENS89 is the most widely used
one. The essential idea of the PROFI UCC is devel-
oping/updating a nonlinear model of the boiler and
using the technology of MPC to estimate the ‘ther-
mal energy’ produced by the boiler, through which,
a pre-action command can be given to the fuel feeder
to compensate for the inertia and delay behavior of
the boiler so that a quick load following performance
and a smooth response of the main steam pressure and
temperature can be achieved.

On the basis of model prediction, a multi-input
multi-output rate-optimal controller (MIMOROC)
is proposed by the HONEYWELL’s UES92 for the
optimization of the combustion, steam pressure and
temperature control. By using the MPC’s ability
of dealing with the input–output constraints, the
MIMOROC allows operation closer to the constraints
compared with conventional control, which leads to
quicker load following and more efficient and prof-
itable operation. Remarkable plant efficiency and
profit improvement have been reported on the FFPPs,
where these advanced plant operation optimizers are
implemented.

DISCUSSIONS AND CONCLUSIONS

Over the past hundred years, FFPPs have been the
primary power generation plants in the world, and
made a solid foundation for the people’s lives, and
social and industrial developments. Design of FFPP
has evolved dramatically in the area of scale, working
parameters, configurations and techniques to meet the
growing power demand.

In recent 20 years, in order to solve the control
issues of FFPPs such as wide range load following,
fuel and plant behavior variations, and achieve a more
safe and efficient operation, various advanced FFPP
control techniques have progressed swiftly in both
the academic researches and industrial applications,
challenging the classical PI/PID based control system.
The major FFPP control developments include:

1. Advanced PI/PID controllers using auto tuning
or gain scheduling techniques to improve the
operation of the FFPPs in a wide load range;

2. Robust controllers in order to deal with the fuel
and plant behavior variations, uncertainties and
disturbances;

3. Linear, nonlinear or multi-model based MPCs to
handle the large-inertia behavior and the strict
input–output constraints of the plants;

4. Computational intelligence techniques in model-
ing, optimization and control, solving the non-
linear issues of the plants.

These advanced control methods as well as their
mixtures have all been implemented in the FFPP
control practices and we cannot answer which one
is the best and will be the future trends of the
FFPP control. But, considering the benefits brought by
these advanced technologies and the facilities provided
by the wide use of DCS and fast development of
computer technologies, it is safe to say that much more
development in nonlinear, intelligent and model-based
MIMO control of FFPPs is ahead of us, and the
advanced control techniques will replace the classical
PI/PID controllers in a foreseeable future.

However, through the investigation of many
advanced FFPP control works, there are several issues
that may need to be studied further in the future:

1. Measurement of key parameters during the
plant operation. For example, novel mea-
surement technologies can be developed to
monitor the pulverized coal concentration and
primary air flow rate from pulverizing mills to
the burners (Some products have already been
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developed recently, for example, the PfMaster
by ABB/Greenbank). These parameters are
unknown in the FFPPs, but have been found to
be the main factors causing the uneven distri-
bution of the temperature field in the furnace
and the explosions of the waterwalls and super-
heaters. Therefore, through the measurement of
them, additional regulators can be installed in
the outlets of the pulverizing mills to guarantee
even and balanced combustion in the furnace.

Another example is the coal properties. Cur-
rently the variation of the fuel is one of the
key problems in the coal-fired power plants,
the uncertainty greatly influences the safety,
stability and efficiency of the combustion and
plant operation. Therefore, soft measurement
technologies of the coal properties are expected
to be developed using the combination of ther-
modynamic knowledge and plant operation
data, so that more optimal and robust control
can be attained through its estimation.

2. Optimal control. As mentioned before, in the
context of global energy and environmen-
tal issues, the control objective of the FFPP
should be broadened from a simple objective
of dynamic control optimality to simultane-
ous and multiple objectives of plant economic
operation, emission and dynamic control perfor-
mance. Thus, on the one hand, advanced multi-
objective optimization with Pareto optimality
can be developed based on the plant models and
dynamics and environmental changes to provide
optimal set-points for the control layer, replac-
ing current fixed and non-optimal set-points
given at specific loading condition; on the other
hand, more simple and efficient method such
as novel economic MPC can be investigated,
where both the dynamic control objective and
other non-quadratic economic objectives are
integrated together in the controller.

3. Closed-loop data-driven modeling. Modeling
is the first and foremost important step in
advanced controller design. In most of the
studies, the researchers focused on the control
algorithm, but failed to consider the model
development. In many of their works, the
results are relying on the availability of the
nonlinear analytical model. However, con-
sidering the complexity of real FFPP, it is
difficult to develop an accurate analytical model
without the knowledge of thermodynamics

and design specifications of many components,
which becomes the major limitation for the
application of advanced control methods. For
this reason, system identification methods using
the closed-loop plant operation data provide
an efficient way to develop a control oriented
model in practice. In that case, how to design an
optimal input signal for identification, examine
and polish the data, select the model structure,
and test the model sufficiently for healthy inter-
action with the identification theory, are all
important issues in the FFPP practices.

4. Better combination of the analytical model and
modern control theory. Although difficult to
develop, an analytical model is after all the
best one to accurately portray the dynamics
of nonlinear FFPPs; it can also provide much
information which will guide the controller
design. Therefore, how to better integrate the
knowledge of analytical model and advanced
control technology to develop a controller better
suited for the FFPP is a possible future research
topic, for example, leading to an analytical
model based nonlinear predictive controller.

5. Reliability. Although the advance controllers
will effectively deal with the control issues of
the FFPP and greatly improve the operational
performance, we have to admit that, compared
to the single-input, single-output PI/PID control
loops currently used in FFPPs, these advanced
controllers are complicated in structure, param-
eter tuning and computation; therefore, it has
limitations in reliability. Furthermore, because
the multi-variable controller would work in a
centralized control unit in most of the applica-
tions, a failure of the control algorithm would
induce a failure of the entire plant. These are
also the main reasons that the plant person-
nel are reluctant to employ the modern control
techniques.

Besides careful design and testing of the con-
troller and training of the plant personnel, a
possible way to directly ensure the reliability
of the system is keeping the well-assessed SISO
PID loops present in the control structure. Thus,
the new control system could be disconnected at
anytime, without compromising the plant safety.
In this case, study of bumpless switchover mech-
anism between advanced controller and PID
controller could be made.

© 2015 John Wiley & Sons, Ltd.



Advanced Review wires.wiley.com/wene

ACKNOWLEDGMENTS

This work was supported in parts by the National Natural Science Foundation of China (NSFC) under
Grant 51036002, Grant 11190015 and Grant 51306082, the Doctoral Fund of the Ministry of Education of
China under Grant 20130092110061, the Natural Science Foundation of Jiangsu Province, China under Grant
BK20141119, the Cooperative Innovation Foundation of Jiangsu Province-Prospective Joint Research Project
under Grant BY2013073-07 and the U.S. National Science Foundation under Grant ECCS 0801440.

REFERENCES
1. Flynn D, ed. Thermal Power Plant Simulation and

Control. Stevenage, UK: IEE Press; 2003.

2. Souza GFM. Thermal Power Plant Performance Analy-
sis. Heidelberg: Springer; 2012.

3. Gilman GF, Boiler control system engineering, ISA,
Research Triangle Park, USA, 2005.

4. Raja AK, Srivastava AP, Dwivedi M. Power Plant Engi-
neering. New Delhi: New Age International Publishers;
2006.

5. Lindsey D. Power-Plant Control and Instrumentation:
The Control of Boilers and HRSG Systems. Stevenage,
UK: IEE Press; 2000.

6. Quazza G, Ferrari E. Role of power station control in
overall system operation. In: Proceedings of Symposium
on Real-Time Control of Electric Power Systems, Baden,
Switzerland, 215–257, 1972.

7. Russell T. Utility front end controls. Instrument Society
of America, paper #88-0418, 113–122, 1988.

8. Landis R, Wulfsohn E. The control philosophy for a unit
control system for co-ordinated operation of a boiler
and turbine. Electron 1988, February:19–23.

9. Gery HC. The evolution of coordinated control. Instru-
ment Society of America, paper #88-0417, 109–112,
1988.

10. Babcock & Wilcox. Chapter 41: Controls for fossil
fuel-fired steam generating plants. In: Steam: Its Gener-
ation and Use. 40th ed. New York: Babcock & Wilcox;
1992.

11. Zhang S, Taft CW, Bentsman J, Hussey A, Petrus B.
Simultaneous gains tuning in boiler/turbine PID-based
controller clusters using iterative feedback tuning
methodology. ISA Trans 2012, 51:609–621.

12. Garduno-Ramirez R, Lee KY. Compensation of
control-loop interaction for power plant wide-range
operation. Control Eng Pract 2005, 13:1475–1487.

13. Heo JS, Lee KY. A multi-agent system-based intelligent
heuristic optimal control system for a large-scale power
plant. In: Proceedings of the IEEE World Congress on
Computational Intelligence, Vancouver, Canada, July
16–21, 5693–5700, 2006.

14. Dimeo R, Lee KY. Boiler-turbine control system design
using a genetic algorithm. IEEE Trans Energy Conver
1995, 10:752–759.

15. Lee KY, Van Sickel JH, Hoffman JA, Jung W-H, Kim
S-H. Controller design for a large-scale ultra super
critical once-through boiler power plant. IEEE Trans
Energy Conver 2010, 25:1063–1070.

16. Fei W, Li Y, Shen J, Xiang X. Optimization of
superheated steam temperature control system using
extremum seeking algorithm. J Southeast Univ 2010,
40:952–956.

17. Li S, Liu H, Cai WJ, Soh YC, Xie LH. A new coordinated
control strategy for boiler-turbine system of coal-fired
power plant. IEEE Trans Contr Syst Technol 2005, 13:
943–954.

18. Garduno-Ramirez R, Lee KY. Fuzzy gain-scheduling
PID+decoupling control for power plant wide-range
operation. In: Proceedings of International Conference
on Intelligent Systems Application to Power Systems,
Kaohsing, Taiwan, November 5–8, 233–238, 2007.

19. Garduno-Ramirez R, Lee KY. Power plant fuzzy PID
scheduling control over full operating space. In: Pro-
ceedings of the International Conference on Intel-
ligent System Application to Power Systems (ISAP
2003), CD ISAP03-086.pdf, Lemnos, Greece, August
31–September 3, 2003.

20. Zames G. Feedback and optimal sensitivity: model
reference transformations, multiplicative seminorms,
and approximate inverses. IEEE Trans Autom Control
1981, 26:301–320.

21. Doyleand JC, Stein G. Multivariable feedback design:
concepts for a classical/modern synthesis. IEEE Trans
Autom Control 1981, 26:4–16.

22. Zhao H, Li W, Taft C, Bentsman J. Robust controller
design for simultaneous control of throttle pressure and
megawatt output in a power plant unit. In: Proceedings
of the 1999 IEEE International Conference on Control
Applications, 802–807, Kohala Coast, HI August 1999.

23. Bentsman J, Zheng K, Taft CW. Advance boiler/turbine
control and its benchmarking in a coal-fired power
plant. In: Proceedings of the 14th Annual Joint ISA
POWID/EPRI Controls and Instrumentation Confer-
ence, Colorado Springs, CO, June 2004.

24. Pellegrinetti G, Bentsman J. H∞ controller design for
boilers. Int J Robust Nonlin Cont 1994, 4:645–671.

25. Najimi E, Ramezani MH. Robust control of speed and
temperature in a power plant gas turbine. ISA Trans
2012, 51:304–308.

© 2015 John Wiley & Sons, Ltd.



WIREs Energy and Environment Steam power plant configuration, design, and control

26. Nademiand H, Tahami F. Robust controller design for
governing steam turbine power generators. In: Interna-
tional Conference on Electrical Machines and Systems,
Tokyo, Japan, November 2009.

27. Tan W, Niu Y, Liu J. H∞ control for a boiler-turbine
unit. In: Proceedings of the 1999 IEEE International
Conference on Control Applications, 910–914, Kohala
Coast, HI August 1999.

28. Tan W, Marquez HJ, Chen T. Multivariable robust con-
troller design for a boiler system. IEEE Trans Control
Syst Technol 2002, 10:735–742.

29. Zheng K, Bentsman J, Taft CW. Full operating range
robust hybrid control of a coal-fired boiler/turbine
unit. J Dyn Syst Meas Control 2008, 130:041011-1–
041011-14.

30. Wu J, Nguang SK, Shen J, Liu G, Li Y. Robust H∞
tracking control of boiler–turbine systems. ISA Trans
2010, 49:369–375.

31. Liu S, Liu X, Shen J, Li Y, Wu J. Design of tracking
controller for coordinated boiler-turbine control system
based on fuzzy Lyapunov functions. Proc CSEE 2013,
33:96–103.

32. Park Y, Choi M, Lee J, Kim B, Lee KY. An auxiliary
LQG/LTR robust controller design for cogeneration
plants. IEEE Trans Energy Conver 1995, 11:407–413.

33. Weng C, Ray A. Robust wide-range control of
steam-electric power plants. IEEE Trans Control
Syst Technol 1997, 5:74–88.

34. Qin SJ, Badgwell TA. A survey of industrial model
predictive control technology. Control Eng Pract 2003,
11:733–764.

35. Moon U, Lee KY. Step-response model development for
dynamic matrix control of a drum-type boiler-turbine
system. IEEE Trans Energy Conver 2009, 24:423–430.

36. Sanchez-Lopez A, Arroyo-Figueroa G, Villavicencio-
Ramirez A. Advanced control algorithms for steam
temperature regulation of thermal power plants. Electr
Power Energy Syst 2004, 26:779–785.

37. Kim W, Moon U, Lee KY, Jung W, Kim S.
Once-through boiler steam temperature control using
Dynamic Matrix Control technique. In: 2010 IEEE
PES General Meeting, Minneapolis, MN, 2010.

38. Karampoorian HR, Mohseni R. Generalized model
predictive control for a multivariable boiler-turbine
unit. In: 11th International Conference on Control,
Automation and Systems, Kintex, Korea, 811–814,
2011.

39. Hou G, Xi Y, Liu J, Zhang J. Simulation research of
the multi-variable generalized predictive control in 500
MW Unit Plant Coordinated Control System. In: 2011
International Conference on Advanced Mechatronic
Systems, Zhengzhou, China, 196–201, 2011.

40. Hogg BW, El-Rabaie NM. Multivariable generalized
predictive control of a boiler system. IEEE Trans Energ
Conver 1991, 6:282–288.

41. Moelbak T. Advanced control of superheater steam
temperatures—an evaluation based on practical appli-
cations. Control Eng Pract 1999, 7:1–10.

42. Wu J, Shen J, Krug M, Nguang SK, Li Y. GA-based non-
linear predictive switching control for a boiler-turbine
system. J Contr Theor Applicat 2012, 10:100–106.

43. Prasad G, Swidenbank E, Hogg BW. A neural net
model-based multivariable long-range predictive con-
trol strategy applied in thermal power plant control.
IEEE Trans Energy Conver 1998, 13:176–182.

44. Ma L, Ge Y, Cao X. Superheated steam temperature
control based on improved recurrent neural network
and simplified PSO algorithm. App Mech Mat 2012,
128-129:1065–1069.

45. Lee KY, Ma L, Boo C, Jung W, Kim S. Intelligent
modified predictive optimal control of reheater steam
temperature in a large-scale boiler unit. In: 2009 IEEE
Power Engineering Society General Meeting, Calgary,
Canada, 2009.

46. Ma L, Ge Y, Lee KY. An improved predictive optimal
controller with elastic search space for STC of a LSSPU.
In: 51th IEEE Conference on Decision and Control,
Maui, TX, 7024–7029, 2012.

47. Lee KY, Heo JS, Hoffman JA, Kim S, Jung W. Modified
predictive optimal control using neural network-based
combined model for large-scale power plants. In: 2007
IEEE PES General Meeting, Tampa, FL, 2007.

48. Peng H, Ozaki T, Haggan-Ozaki V, Toyoda Y. A
nonlinear exponential ARX model-based multivari-
able generalized predictive control strategy for thermal
power plants. IEEE Trans Control Syst Technol 2002,
10:256–262.

49. Liu X, Guan P, Chan CW. Nonlinear multivariable
power plant coordinate control by constrained pre-
dictive scheme. IEEE Trans Contr Sys Technol 2010,
18:1116–1125.

50. Murray-Smith R, Johansen TA. Multiple Model
Approaches to Modeling and Control. London, UK:
Taylor & Francis; 1997.

51. Prasad G, Swidenbank E, Hogg BW. A local model net-
works based multivariable long-range predictive control
strategy for thermal power plants. Automatica 1998,
34:1185–1204.

52. Hou G, Liu H, Sun Y, Zhang J. Multi-model predic-
tive function control based on neural network and its
application to the coordinated control system of power
plants. In: 2010 Chinese Control and Decision Confer-
ence, Xuzhou, China, 3950–3954, 2010.

53. Wang D, Huang B, Meng L, Han P. Predictive con-
trol for boiler-turbine unit using ANFIS. In: 2009 Inter-
national Conference on Test and Measurement, Hong
Kong, China, 2009.

54. Moon U, Lee KY. An adaptive dynamic matrix con-
trol with fuzzy-interpolated step-response model for a
drum-type boiler-turbine system. IEEE Trans Energy
Conver 2011, 26:393–401.

© 2015 John Wiley & Sons, Ltd.



Advanced Review wires.wiley.com/wene

55. Liu XJ, Chan CW. Neuro-fuzzy generalized predictive
control of boiler steam temperature. IEEE Trans Energy
Conver 2006, 21:900–908.

56. Liu X, Liu J. Constrained power plant coordinated pre-
dictive control using neurofuzzy model. Acta Automat-
ica Sinica 2006, 32:785–790.

57. Novak J, Chalupa P. Predictive control of a
boiler-turbine system. In: 16th WSEAS Interna-
tional Conference on Circuits and Systems, Kos Island,
Greece, 2012.

58. Hlava J, Hubka L, Tuma L. Modeling and predic-
tive control of a nonlinear power plant reheater with
switched dynamics. In: 16th International Conference
on Methods and Models in Automation and Robotics,
Miedzyzdroje, Poland, 284–289, 2011.

59. Keshavarz M, Barkhordari Yazdi M, Jahed-Motlagh
MR. Piecewise affine modeling and control of a
boiler-turbine unit. Appl Therm Eng 2010, 30:
781–791.

60. Wu K, Zhang T, Lv J, Xiang W. Model predictive
control for nonlinear boiler-turbine system based on
fuzzy gain scheduling. In: Proceedings of the 2008 IEEE
International Conference on Automation and Logistics,
1115–1120, 2008.

61. Li Y, Shen J, Lee KY, Liu X. Offset-free fuzzy model
predictive control of a boiler-turbine system based on
genetic algorithm. Simul Model Pract Theory 2012,
26:77–95.

62. Liu XJ, Kong XB. Nonlinear fuzzy model predictive
iterative learning control for drum-type boiler-turbine
system. J Process Control 2013, 23:1023–1040.

63. Wu X, Shen J, Li Y. Control of boiler-turbine coordi-
nated system using multiple-model predictive approach.
In: 2010 8th IEEE International Conference on Control
and Automation (ICCA), Xiamen, China, June 9–11,
2010.

64. Wu X, Shen J, Li Y, Lee KY. Stable model predic-
tive control based on TS fuzzy model with application
to boiler-turbine coordinated system. In: Proceedings
of the 50th IEEE Conference on Decision and Con-
trol and European Control Conference (CDC-ECC),
3356–3361, 2011.

65. Wu X, Shen J, Li Y, Lee KY. Stable model predictive
tracking control for boiler-turbine coordinated control
system. IFAC Proc 2012, 8:201–206 8th Power Plant
and Power System Control Symposium, PPPSC 2012.

66. Wu X, Shen J, Li Y, Lee KY. Hierarchical optimization
of boiler-turbine unit using fuzzy stable model predic-
tive control. Control Eng Pract 2014, 30:112–123.

67. Lee KY. Intelligent techniques applied to power plant
control. In: 2006 IEEE Power Engineering Society
General Meeting, Montreal, Canada, 2006.

68. Ma L, Ge Y. Superheated steam temperature predictive
optimal control based on external time-delay BP neural
network and a simpler PSO algorithm. In: Proceedings

of the 31st Chinese Control Conference, Hefei, China,
July 25–27, 2012.

69. Lee KY, Heo JS, Hoffman JA, Kim S, Jung W. Neural
network-based modeling for a large-scale power plant.
In: 2007 IEEE PES General Meeting, Tampa, FL, 2007.

70. Ghezelayagh H, Lee KY. Intelligent predictive control
of a power plant with evolutionary programming opti-
mizer and neuro-fuzzy identifier. In: Proceedings of the
2002 Congress on Evolutionary Computation 2002,
2:1308–1313.

71. Heo JS, Lee KY, Garduno-Ramirez R. Multiobjective
control of power plants using particle swarm opti-
mization techniques. IEEE Trans Energy Conver 2006,
21:552–561.

72. Ma L, Lin Y, Lee KY, Superheater steam tempera-
ture control for a 300 MW boiler unit with inverse
dynamic process models. In: 2010 IEEE Power Engi-
neering Society General Meeting, Minneapolis, MN,
2010.

73. Lee KY, Ma L, Boo CJ, Jung WH, Kim SH. Inverse
dynamic neuro-controller for superheater steam temper-
ature control of a large-scale ultra super critical (USC)
boiler unit. In: Proceedings of the IFAC Symposium
on Power Plants and Power Systems Control, Tampere,
Finland, July 5–8, 2009.

74. Takagi T, Sugeno M. Fuzzy identification of systems and
its application to modeling and control. IEEE Trans Syst
Man Cybern 1985, 15:116–132.

75. Wu X, Shen J, Li Y, Lee KY. Data-driven modeling
and predictive control for boiler-turbine unit using
fuzzy clustering and subspace methods. ISA Trans 2014,
53:699–708.

76. Liu X, Chai T. Fuzzy logic strategy on boiler control
problem. In: Proceedings of the 1997 American Control
Conference, 1264–1265, Albuquerque, NM, June 44–6,
1997.

77. Chang J, Lee KY, Garduno-Ramirez R. Multiagent con-
trol system for a fossil-fuel power unit. In: 2003 IEEE
Power Engineering Society General Meeting, Toronto,
Canada, July 13–17, 2003.

78. Moon U, Lee KY. A boiler-turbine system con-
trol using a fuzzy auto-regressive moving average
(FARMA) model. IEEE Trans Energ Conver 2003, 18:
142–148.

79. Head JD, Gomes JR, Williams CS, Lee KY. Implemen-
tation of a multi-agent system for optimized multiob-
jective power plant control. In: 2010 North American
Power Symposium, Arlington, TX, September 26–28,
2010.

80. Lee KY, Head JD, Gomes JR, Williams CS. Multi-agent
system based intelligent distributed control system
for power plants, In: 2011 IEEE Power Engineer-
ing Society General Meeting, Detroit, MI, July 24–28,
2011.

81. Heo JS, Lee KY, Garduno-Ramirez R. Dynamic mul-
tiobjective optimization of power plant using PSO

© 2015 John Wiley & Sons, Ltd.



WIREs Energy and Environment Steam power plant configuration, design, and control

techniques. In: 2005 IEEE Power Engineering Soci-
ety General Meeting, San Francisco, CA, July 12–17,
2005.

82. Zhou H, Cen K, Fan J. Modeling and optimization of
the NOx emission characteristics of a tangentially fired
boiler with artificial neural networks. Energy 2004,
29:167–183.

83. Lv Y, Liu J, Yang T. Nonlinear PLS integrated
with error-based LSSVM and its application to
NOx modeling. Ind Eng Chem Res 2012, 51:
16092–16100.

84. Lv Y, Liu J, Yang T, Zeng D. A novel least squares
support vector machine ensemble model for NOx emis-
sion prediction of a coal-fired boiler. Energy 2013,
55:319–329.

85. Lee KY, Velas JP, Kim BH. Development of an
intelligent monitoring system with high temperature
distributed fiber-optic sensor for fossil fuel power plant.
In: Proceedings of the IEEE Power Engineering Society
General Meeting, PESGM2004-001350.PDF, Denver,
CO, June 6–10, 2004.

86. Kim BH, Velas JP, Lee KY. Development of intelligent
monitoring system for fossil-fuel power plants using
system type neural networks and semigroup theory. In:

Proceedings of the IEEE Power Engineering Society
General Meeting, San Francisco, CA, June 12–17, 2005.

87. ZOLO Technologies. Coal power plant combus-
tion optimization. Available at: http://zolotech.com/
power-generation/coal-power-plant-efficiency/.
(Accessed December 2013).

88. SIEMENS Power Plant Automation. SPPA-P3000
solutions for process optimization. Available at: http://
www.energy.siemens.com/hq/en/automation/power-
generation/sppa-p3000/. (Accessed February 2014).

89. KWU LPSC Technology Center. PROFI unit coordi-
nated control system, Siemens AG, 2000.

90. EMERSON Process Management. Smart process
optimization solutions. Available at: http://www2.
emersonprocess.com/en-us/brands/smartprocess/pages/
index.aspx. (Accessed March 2014).

91. ABB. OPTIMAX, plant optimization solutions for
power generation. Available at: http://www05.abb.com/
global/scot/scot267.nsf/veritydisplay/e15f7798384e6f
02852573a3004c9a5a/$file/plant_optimization_s_
deabb_1291_06_e.pdf. (Accessed May 2014).

92. Honeywell. Honeywell UES. Available at: https://
www.honeywell.com. (Accessed March 2014).

© 2015 John Wiley & Sons, Ltd.

http://zolotech.com/power-generation/coal-power-plant-efficiency/
http://www.energy.siemens.com/hq/en/automation/power-generation/sppa-p3000/
http://www2.emersonprocess.com/en-us/brands/smartprocess/pages/index.aspx
http://www05.abb.com/global/scot/scot267.nsf/veritydisplay/e15f7798384e6f02852573a3004c9a5a/$file/plant&uscore;optimization&uscore;s&uscore;deabb&uscore;1291&uscore;06&uscore;e.pdf
https://www.honeywell.com

