
Generator stator showing
completed windings for a

757-MVA, 3600-RPM,
60-Hz synchronous

generator (Courtesy of
General Electric)

8
SYMMETRICAL COMPONENTS

The method of symmetrical components, first developed by C. L. Fortescue
in 1918, is a powerful technique for analyzing unbalanced three-phase sys-
tems. Fortescue defined a linear transformation from phase components to a
new set of components called symmetrical components. The advantage of this
transformation is that for balanced three-phase networks the equivalent cir-
cuits obtained for the symmetrical components, called sequence networks, are
separated into three uncoupled networks. Furthermore, for unbalanced three-
phase systems, the three sequence networks are connected only at points of
unbalance. As a result, sequence networks for many cases of unbalanced
three-phase systems are relatively easy to analyze.

The symmetrical component method is basically a modeling technique
that permits systematic analysis and design of three-phase systems. Decou-
pling a detailed three-phase network into three simpler sequence networks
reveals complicated phenomena in more simplistic terms. Sequence network
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results can then be superposed to obtain three-phase network results. As
an example, the application of symmetrical components to unsymmetrical
short-circuit studies (see Chapter 9) is indispensable.

The objective of this chapter is to introduce the concept of symmetrical
components in order to lay a foundation and provide a framework for later
chapters covering both equipment models as well as power system analysis
and design methods. In Section 8.1, we define symmetrical components. In
Sections 8.2–8.7, we present sequence networks of loads, series impedances,
transmission lines, rotating machines, and transformers. We discuss complex
power in sequence networks in Section 8.8. Although Fortescue’s original
work is valid for polyphase systems with n phases, we will consider only
three-phase systems here.

C A S E S T U DY The following article provides an overview of circuit breakers with high voltage ratings
at or above 72.5 kV [4]. Circuit breakers are broadly classified by the medium used to
extinguish the arc: bulk oil, minimum oil, air-blast, vacuum, and sulfur hexafluoride (SF6).
For high voltages, oil circuit breakers dominated in the early 1900s through the 1950s for
applications up to 362 kV, with minimum oil circuit breakers developed up to 380 kV.
The development of air-blast circuit breakers started in Europe in the 1920s and became
prevalent in the 1950s. Air-blast circuit breakers, which use air under high pressure that
is blown between the circuit breaker contacts to extinguish the arc, have been used at
voltages up to 800 kV and many are still in operation today. Air-blast circuit breakers
were manufactured until the 1980s when they were supplanted by lower cost and simpler
SF6 puffer-type circuit breakers. SF6 gas possesses exceptional arc-interrupting properties
that have led to a worldwide change to SF6 high-voltage circuit breakers, which are more
reliable, more efficient and more compact than other types of circuit breakers. Vacuum
circuit breakers are commonly used at medium voltages between 1 and 72.5 kV.

Circuit Breakers Go High Voltage:
The Low Operating Energy of SF6

Circuit Breakers Improves Reliability
and Reduces Wear and Tear

DENIS DUFOURNET

The first sulfur hexafluoride (SF6) gas industrial de-

velopments were in the medium voltage range. This

equipment confirmed the advantages of a technique

that uses SF6 at a low-pressure level concurrently

with the auto-pneumatic blast system to interrupt

the arc that was called later puffer.

High-voltage SF6 circuit breakers with self-blast

interrupters have found worldwide acceptance

because their high current interrupting capability is

obtained with a low operating energy that can be

provided by low-cost, spring-operated mechanisms.

The low-operating energy required reduces the

stress and wear of the mechanical components and

significantly improves the overall reliability of the

circuit breaker. This switching principle was first

introduced in the high-voltage area about 20 years
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ago, starting with the voltage level of 72.5 kV. Today

this technique is available up to 800 kV. Furthermore

it is used for generator circuit breaker applications

with short circuit currents of 63 kA and above.

Service experience shows that when the SF6

circuit breakers of the self-blast technology were

first designed, the expectations of the designers had

been fulfilled completely with respect to reliability

and day-to-day operation.

A HISTORY OF CIRCUIT BREAKERS

Bulk oil circuit breakers dominated in the early 1900s

and remained in use throughout the 1950s, for appli-

cations up to 362 kV for which they had eight breaks

in series. They were replaced by minimum oil and air-

blast circuit breakers for high-voltage applications.

Minimum oil circuit breakers, as shown in

Figure 1, have arc control structures that improve

the arc cooling process and significantly reduce the

volume of oil. They were developed up to 380 kV, in

particular for the first 380 kV network in the world

(Harsprånget–Halsberg line in Sweden in 1952).

There were tentative extensions to 765 kV, 50 kA,

but minimum oil circuit breakers were supplanted

in the EHV range by air-blast circuit breakers that

were the first to be applied in 525, 735, and 765 kV

networks, respectively in Russia (1960), Canada

(1965), and the United States (1969).

Air-blast circuit breakers, as shown in Figure 2,

use air under high pressure that is blown through

the arc space between the opening contacts to ex-

tinguish the arc. The development of air-blast circuit

breakers started in Europe in the 1920s, with fur-

ther development in 1930s and 1940s, and became

prevalent in the 1950s.

Air-blast circuit breakers were very successful in

North America and Europe. They had an inter-

rupting capability of 63 kA, later increased to 90 kA

in the 1970s. Many circuit breakers of this type are

still in operation today, in particular in North

America, at 550 and 800 kV.

Air-blast circuit breakers were manufactured

until the 1980s when they were supplanted by the

lower cost and less complex SF6 puffer-type circuit

breakers.

Figure 1
Minimum oil circuit breaker 145 kV type orthojector
(Courtesy of Alstom Grid)

Figure 2
Air-blast circuit breaker type PK12 applied to 765 kV
in North America (Courtesy of Alstom Grid)
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The first industrial application of SF6 dates from

1937 when it was used in the United States as an

insulating medium for cables (patent by F.S. Cooper

of General Electric). With the advent of the nuclear

power industry in the 1950s, SF6 was produced in

large quantities and its use extended to circuit

breakers as a quenching medium.

The first application of SF6 for current interrup-

tion was done in 1953 when 15–161 kV switches

were developed by Westinghouse. The first high-

voltage SF6 circuit breakers were built also by

Westinghouse in 1956, the interrupting capability

was then limited to 5 kA under 115 kV, with each

pole having six interrupting units in series. In 1959,

Westinghouse produced the first SF6 circuit break-

ers with high current interrupting capabilities:

41.8 kA under 138 kV (10,000 MVA) and 37.8 kA

under 230 kV (15,000 MVA). These circuit breakers

were of the dual pressure type based on the axial

blast principles used in air-blast circuit breakers.

They were supplanted by the SF6 puffer circuit

breakers.

In 1967, the puffer-type technique was in-

troduced for high-voltage circuit breakers where

the relative movement of a piston and a cylinder

linked to the moving contact produced the pressure

build-up necessary to blast the arc. The puffer

technique, shown in Figure 3, was applied in the

first 245 kV metal-enclosed gas insulated circuit

breaker installed in France in 1969.

The excellent properties of SF6 lead to the fast

extension of this technique in the 1970s and to

its use for the development of circuit breakers

with high current interrupting capability, up to

800 kV.

The achievement, around 1983, of the first

single-break 245 kV and the corresponding 420 kV,

550 kV, and 800 kV, with, respectively, two, three,

and four chambers per pole, lead to the domi-

nance of SF6 circuit breakers in the complete high-

voltage range.

Several characteristics of SF6 puffer circuit breakers

can explain their success:

. simplicity of the interrupting chamber which

does not need an auxiliary chamber for breaking
. autonomy provided by the puffer technique
. the possibility to obtain the highest perform-

ances, up to 63 kA, with a reduced number of

interrupting chambers (Figure 4)

Figure 3
Puffer-type circuit breaker

Figure 4
800 kV 50 kA circuit breaker type FX with closing
resistors (Courtesy of Alstom Grid)
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. short interrupting time of 2-2. 5 cycles at 60 Hz

. high electrical endurance, allowing at least

25 years of operation without reconditioning
. possible compact solutions when used for gas-

insulated switchgear (GIS) or hybrid switchgears
. integrated closing resistors or synchronized

operations to reduce switching over voltages
. reliability and availability
. low noise level
. no compressor for SF6 gas.

The reduction in the number of interrupting

chambers per pole has led to a considerable sim-

plification of circuit breakers as the number of parts

as well as the number of seals was decreased. As

a direct consequence, the reliability of circuit

breakers was improved, as verified later by CIGRE

surveys.

SELF-BLAST TECHNOLOGY

The last 20 years have seen the development of

the self-blast technique for SF6 interrupting

chambers. This technique has proven to be very

efficient and has been widely applied for high-

voltage circuit breakers up to 800 kV. It has al-

lowed the development of new ranges of circuit

breakers operated by low energy spring-operated

mechanisms.

Another aim of this evolution was to further in-

crease the reliability by reducing dynamic forces in

the pole and its mechanism.

These developments have been facilitated by the

progress made in digital simulations that were

widely used to optimize the geometry of the inter-

rupting chamber and the mechanics between the

poles and the mechanism.

The reduction of operating energy was achieved

by lowering energy used for gas compression and

by making a larger use of arc energy to produce the

pressure necessary to quench the arc and obtain

current interruption.

Low-current interruption, up to about 30% of

rated short-circuit current, is obtained by a puffer

blast where the overpressure necessary to quench

the arc is produced by gas compression in a

volume limited by a fixed piston and a moving

cylinder.

Figure 5 shows the self-blast interruption princi-

ple where a valve (V) was introduced between the

expansion and the compression volume.

When interrupting low currents, the valve (V)

opens under the effect of the overpressure gen-

erated in the compression volume. The interrup-

tion of the arc is made as in a puffer circuit breaker

thanks to the compression of the gas obtained by

the piston action.

In the case of high-current interruption, the arc

energy produces a high overpressure in the expan-

sion volume, which leads to the closure of the valve

(V) and thus isolating the expansion volume from

the compression volume. The overpressure neces-

sary for breaking is obtained by the optimal use of

the thermal effect and of the nozzle clogging

effect produced whenever the cross-section of the

arc significantly reduces the exhaust of gas in the

nozzle.

This technique, known as self-blast, has been

used extensively for more than 15 years for the

development of many types of interrupting cham-

bers and circuit breakers (Figure 6).

The better knowledge of arc interruption ob-

tained by digital simulations and validation of

performances by interrupting tests has con-

tributed to a higher reliability of these self-blast

circuit breakers. In addition, the reduction in

Figure 5
Self blast (or double volume) interrupting chamber
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operating energy, allowed by the self-blast tech-

nique, leads to a higher mechanical endurance.

DOUBLE MOTION PRINCIPLE

The self-blast technology was further optimized by

using the double-motion principle. This leads to

further reduction of the operating energy by re-

ducing the kinetic energy consumed during opening.

The method consists of displacing the two arcing

contacts in opposite directions. With such a sys-

tem, it was possible to reduce the necessary open-

ing energy for circuit breakers drastically.

Figure 7 shows the arcing chamber of a circuit

breaker with the double motion principle. The pole

columns are equipped with helical springs mounted

in the crankcase.

These springs contain the necessary energy for an

opening operation. The energy of the spring is trans-

mitted to the arcing chamber via an insulating rod.

To interrupt an arc, the contact system must

have sufficient velocity to avoid reignitions. Fur-

thermore, a pressure rise must be generated to

establish a gas flow in the chamber.

The movable upper contact system is connected

to the nozzle of the arcing chamber via a linkage

system. This allows the movement of both arcing

contacts in opposite directions. Therefore the ve-

locity of one contact can be reduced by 50% be-

cause the relative velocity of both contacts is still

100%. The necessary kinetic energy scales with the

square of the velocity, allowing—theoretically—an

energy reduction in the opening spring by a factor

of 4. In reality, this value can’t be achieved because

the moving mass has to be increased. As in the self-

blast technique described previously, the arc itself

mostly generates the pressure rise.

Because the pressure generation depends on

the level of the short-circuit current, an additional

small piston is necessary to interrupt small cur-

rents (i.e., less than 30% of the rated short-circuit

current). Smaller pistons mean less operating

energy.

The combination of both double motion of con-

tacts and self-blast technique allows for the signifi-

cant reduction of opening energy.

GENERATOR CIRCUIT BREAKERS

Generator circuit breakers are connected between

a generator and the step-up voltage transformer.

They are generally used at the outlet of high-power

generators (100–1,800 MVA) to protect them in a

Figure 7
Double motion interrupting chamber

Figure 6
Dead tank circuit breaker 145 kV with spring-operating
mechanism and double motion self blast interrupting
chambers (Courtesy of Alstom Grid)
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sure, quick, and economical manner. Such circuit

breakers must be able to allow the passage of high

permanent currents under continuous service

(6,300–40,000 A), and have a high breaking capacity

(63–275 kA).

They belong to the medium voltage range, but

the transient recovery voltage (TRV) withstand ca-

pability is such that the interrupting principles de-

veloped for the high-voltage range has been used.

Two particular embodiments of the thermal blast

and self-blast techniques have been developed and

applied to generator circuit breakers.

Thermal Blast Chamber
with Arc-Assisted Opening
In this interruption principle arc energy is used, on

the one hand to generate the blast by thermal ex-

pansion and, on the other hand, to accelerate the

moving part of the circuit breaker when interrupt-

ing high currents (Figure 8).

The overpressure produced by the arc energy

downstream of the interruption zone is applied on

an auxiliary piston linked with the moving part. The

resulting force accelerates the moving part, thus

increasing the energy available for tripping.

It is possible with this interrupting principle to

increase the tripping energy delivered by the oper-

ating mechanism by about 30% and to maintain

the opening speed irrespective of the short circuit

current.

It is obviously better suited to circuit breakers

with high breaking currents such as generator cir-

cuit breakers that are required to interrupt cur-

rents as high as 120 kA or even 160 kA.

Self-Blast Chamber with Rear Exhaust
This principle works as follows (Figure 9): In the

first phase, the relative movement of the piston

and the blast cylinder is used to compress the gas

in the compression volume Vc. This overpressure

opens the valve C and is then transmitted to ex-

pansion volume Vt.

In the second phase, gas in volume Vc is ex-

hausted to the rear through openings (O).

The gas compression is sufficient for the inter-

ruption of low currents. During high short-circuit

current interruption, volume Vt is pressurized by

the thermal energy of the arc. This high pressure

closes valve C. The pressure in volume Vc on

the other hand is limited by an outflow of gas

through the openings (O). The high overpressure

generated in volume Vt produces the quenching

blast necessary to extinguish the arc at current

zero.

In this principle the energy that has to be deliv-

ered by the operating mechanism is limited and low

energy spring operated mechanism can be used.

Figure 10 shows a generator circuit breaker with

such type of interrupting chamber.
Figure 8
Thermal blast chamber with arc-assisted opening

Figure 9
Self-blast chamber with rear exhaust
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EVOLUTION OF TRIPPING ENERGY

Figure 11 summarizes the evolution of tripping

energy for 245 and 420 kV, from 1974 to 2003. It

shows that the operating energy has been divided

by a factor of five–seven during this period of

nearly three decades. This illustrates the great

progress that has been made in interrupting tech-

niques for high-voltage circuit breakers during that

period.

Figure 12 shows the continuous reduction of the

necessary operating energy obtained through the

technological progress.

OUTLOOK FOR THE FUTURE

Several interrupting techniques have been pre-

sented that all aim to reduce the operating energy

of high-voltage circuit breakers. To date they have

been widely applied, resulting in the lowering of

drive energy, as shown in Figures 11 and 12.

Present interrupting technologies can be applied

to circuit breakers with the higher rated interrupt-

ing currents (63–80 kA) required in some networks

with increasing power generation (Figure 13).

Progress can still be made by the further indus-

trialization of all components and by introducing

new drive technologies. Following the remarkable

evolution in chamber technology, the operating

mechanism represents a not negligible contribution

to the moving mass of circuit breakers, especially in

the extra high-voltage range (� 420 kV). Therefore

progress in high-voltage circuit breakers can still be

expected with the implementation of the same in-

terrupting principles.

If one looks further in the future, other tech-

nology developments could possibly lead to a

Figure 11
Evolution of tripping energy since 1974 of 245 and
420 kV circuit breakers

Figure 12
Operating energy as function of interrupting principle

Figure 10
Generator circuit breaker SF6 17, 5 kV 63 kA 60 Hz
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further reduction in the SF6 content of circuit

breakers.

CONCLUSIONS

Over the last 50 years, high-voltage circuit breakers

have become more reliable, more efficient, and

more compact because the interrupting capability

per break has been increased dramatically. These

developments have not only produced major

savings, but they have also had a massive impact on

the layout of substations with respect to space

requirements.

New types of SF6 interrupting chambers, which

implement innovative interrupting principles, have

been developed during the last three decades with

the objective of reducing the operating energy of

the circuit breaker. This has led to reduced stress

and wear of the mechanical components and con-

sequently to an increased reliability of circuit

breakers.

Service experience shows that the expectations

of the designers, with respect to reliability and day-

to-day operation, have been fulfilled.
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8.1

DEFINITION OF SYMMETRICAL COMPONENTS

Assume that a set of three-phase voltages designated Va, Vb, and Vc is given.
In accordance with Fortescue, these phase voltages are resolved into the fol-
lowing three sets of sequence components:

1. Zero-sequence components, consisting of three phasors with equal mag-
nitudes and with zero phase displacement, as shown in Figure 8.1(a)

2. Positive-sequence components, consisting of three phasors with equal
magnitudes, G120� phase displacement, and positive sequence, as in
Figure 8.1(b)

3. Negative-sequence components, consisting of three phasors with
equal magnitudes, G120� phase displacement, and negative sequence,
as in Figure 8.1(c)

In this text we will work only with the zero-, positive-, and negative-
sequence components of phase a, which are Va0, Va1, and Va2, respectively.
For simplicity, we drop the subscript a and denote these sequence compo-
nents as V0, V1, and V2. They are defined by the following transformation:

2
64 Va

Vb

Vc

3
75¼

2
64 1 1 1

1 a2 a

1 a a2

3
75
2
64V0

V1

V2

3
75 ð8:1:1Þ

FIGURE 8.1

Resolving phase voltages
into three sets of

sequence components
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where

a ¼ 1 120� ¼ �1

2
þ j

ffiffiffi
3
p

2
ð8:1:2Þ

Writing (8.1.1) as three separate equations:

Va ¼ V0 þ V1 þ V2 ð8:1:3Þ

Vb ¼ V0 þ a2V1 þ aV2 ð8:1:4Þ

Vc ¼ V0 þ aV1 þ a2V2 ð8:1:5Þ

In (8.1.2), a is a complex number with unit magnitude and a 120�

phase angle. When any phasor is multiplied by a, that phasor rotates by 120�

(counterclockwise). Similarly, when any phasor is multiplied by a2 ¼ ð1 120� Þ �
ð1 120� Þ ¼ 1 240� , the phasor rotates by 240�. Table 8.1 lists some common
identities involving a.

The complex number a is similar to the well-known complex number
j ¼

ffiffiffiffiffiffiffi
�1
p

¼ 1 90�. Thus the only di¤erence between j and a is that the angle
of j is 90�, and that of a is 120�.

Equation (8.1.1) can be rewritten more compactly using matrix nota-
tion. We define the following vectors Vp and Vs, and matrix A:

Vp ¼

2
64 Va

Vb

Vc

3
75 ð8:1:6Þ

Vs ¼

2
64V0

V1

V2

3
75 ð8:1:7Þ

A ¼

2
64 1 1 1

1 a2 a

1 a a2

3
75 ð8:1:8Þ

Vp is the column vector of phase voltages, Vs is the column vector of sequence
voltages, and A is a 3� 3 transformation matrix. Using these definitions,
(8.1.1) becomes

Vp ¼ AVs ð8:1:9Þ

The inverse of the A matrix is

A�1 ¼ 1

3

2
64 1 1 1

1 a a2

1 a2 a

3
75 ð8:1:10Þ

TABLE 8.1

Common identities
involving a ¼ 1 120�

a4 ¼ a ¼ 1 120�

a2 ¼ 1 240�

a3 ¼ 1 0�

1þ aþ a2 ¼ 0

1� a ¼
ffiffiffi
3
p
�30�

1� a2 ¼
ffiffiffi
3
p
þ30�

a2 � a ¼
ffiffiffi
3
p

270�

ja ¼ 1 210�

1þ a ¼ �a2 ¼ 1 60�

1þ a2 ¼ �a ¼ 1 �60�

aþ a2 ¼ �1 ¼ 1 180�
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Equation (8.1.10) can be verified by showing that the product AA�1 is the
unit matrix. Also, premultiplying (8.1.9) by A�1 gives

Vs ¼ A�1Vp ð8:1:11Þ

Using (8.1.6), (8.1.7), and (8.1.10), then (8.1.11) becomes2
64V0

V1

V2

3
75¼ 1

3

2
64 1 1 1

1 a a2

1 a2 a

3
75
2
64 Va

Vb

Vc

3
75 ð8:1:12Þ

Writing (8.1.12) as three separate equations,

V0 ¼ 1
3ðVa þ Vb þ VcÞ ð8:1:13Þ

V1 ¼ 1
3ðVa þ aVb þ a2VcÞ ð8:1:14Þ

V2 ¼ 1
3ðVa þ a2Vb þ aVcÞ ð8:1:15Þ

Equation (8.1.13) shows that there is no zero-sequence voltage in a balanced

three-phase system because the sum of three balanced phasors is zero. In an un-
balanced three-phase system, line-to-neutral voltages may have a zero-sequence
component. However, line-to-line voltages never have a zero-sequence compo-
nent, since by KVL their sum is always zero.

The symmetrical component transformation can also be applied to cur-
rents, as follows. Let

Ip ¼ AIs ð8:1:16Þ

where Ip is a vector of phase currents,

Ip ¼

2
64 Ia

Ib

Ic

3
75 ð8:1:17Þ

and Is is a vector of sequence currents,

Is ¼

2
64 I0

I1

I2

3
75 ð8:1:18Þ

Also,

Is ¼ A�1Ip ð8:1:19Þ

Equations (8.1.16) and (8.1.19) can be written as separate equations as fol-
lows. The phase currents are

Ia ¼ I0 þ I1 þ I2 ð8:1:20Þ

Ib ¼ I0 þ a2I1 þ aI2 ð8:1:21Þ

Ic ¼ I0 þ aI1 þ a2I2 ð8:1:22Þ

430 CHAPTER 8 SYMMETRICAL COMPONENTS



and the sequence currents are

I0 ¼ 1
3ðIa þ Ib þ IcÞ ð8:1:23Þ

I1 ¼ 1
3ðIa þ aIb þ a2IcÞ ð8:1:24Þ

I2 ¼ 1
3ðIa þ a2Ib þ aIcÞ ð8:1:25Þ

In a three-phase Y-connected system, the neutral current In is the sum of the
line currents:

In ¼ Ia þ Ib þ Ic ð8:1:26Þ

Comparing (8.1.26) and (8.1.23),

In ¼ 3I0 ð8:1:27Þ

The neutral current equals three times the zero-sequence current. In a bal-
anced Y-connected system, line currents have no zero-sequence component,
since the neutral current is zero. Also, in any three-phase system with no
neutral path, such as a D-connected system or a three-wire Y-connected
system with an ungrounded neutral, line currents have no zero-sequence
component.

The following three examples further illustrate symmetrical compo-
nents.

EXAMPLE 8.1 Sequence components: balanced line-to-neutral voltages

Calculate the sequence components of the following balanced line-to-neutral
voltages with abc sequence:

Vp ¼

2
64Van

Vbn

Vcn

3
75¼

2
64 277 0�

277 �120�

277 þ120�

3
75 volts

SOLUTION Using (8.1.13)–(8.1.15):

V0 ¼ 1
3½277 0� þ 277 �120� þ 277 þ120� � ¼ 0

V1 ¼ 1
3½277 0� þ 277 ð�120� þ 120�Þ þ 277 ð120� þ 240�Þ�

¼ 277 0� volts ¼ Van

V2 ¼ 1
3½277 0� þ 277 ð�120� þ 240�Þ þ 277 ð120� þ 120�Þ�

¼ 1
3½277 0� þ 277 120� þ 277 240� � ¼ 0
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This example illustrates the fact that balanced three-phase systems
with abc sequence (or positive sequence) have no zero-sequence or negative-
sequence components. For this example, the positive-sequence voltage V1

equals Van, and the zero-sequence and negative-sequence voltages are both
zero. 9

EXAMPLE 8.2 Sequence components: balanced acb currents

A Y-connected load has balanced currents with acb sequence given by

Ip ¼

2
64 Ia

Ib

Ic

3
75¼

2
64 10 0�

10 þ120�

10 �120�

3
75 A

Calculate the sequence currents.

SOLUTION Using (8.1.23)–(8.1.25):

I0 ¼ 1
3½10 0� þ 10 120� þ 10 �120� � ¼ 0

I1 ¼ 1
3½10 0� þ 10 ð120� þ 120�Þ þ 10 ð�120� þ 240�Þ�

¼ 1
3½10 0� þ 10 240� þ 10 120� � ¼ 0

I2 ¼ 1
3½10 0� þ 10 ð120� þ 240�Þ þ 10 ð�120� þ 120�Þ�

¼ 10 0� A ¼ Ia

This example illustrates the fact that balanced three-phase systems with acb

sequence (or negative sequence) have no zero-sequence or positive-sequence
components. For this example the negative-sequence current I2 equals Ia, and
the zero-sequence and positive-sequence currents are both zero. 9

EXAMPLE 8.3 Sequence components: unbalanced currents

A three-phase line feeding a balanced-Y load has one of its phases (phase b)
open. The load neutral is grounded, and the unbalanced line currents are

Ip ¼

2
64 Ia

Ib

Ic

3
75¼

2
64 10 0�

0

10 120�

3
75 A

Calculate the sequence currents and the neutral current.
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SOLUTION The circuit is shown in Figure 8.2. Using (8.1.23)–(8.1.25):

I0 ¼ 1
3½10 0� þ 0þ 10 120� �

¼ 3:333 60� A

I1 ¼ 1
3½10 0� þ 0þ 10 ð120� þ 240�Þ� ¼ 6:667 0� A

I2 ¼ 1
3½10 0� þ 0þ 10 ð120� þ 120�Þ�

¼ 3:333 �60� A

Using (8.1.26) the neutral current is

In ¼ ð10 0� þ 0þ 10 120� Þ

¼ 10 60� A ¼ 3I0

This example illustrates the fact that unbalanced three-phase systems may
have nonzero values for all sequence components. Also, the neutral current
equals three times the zero-sequence current, as given by (8.1.27). 9

8.2

SEQUENCE NETWORKS OF IMPEDANCE LOADS

Figure 8.3 shows a balanced-Y impedance load. The impedance of each
phase is designated ZY, and a neutral impedance Zn is connected between the
load neutral and ground. Note from Figure 8.3 that the line-to-ground volt-
age Vag is

Vag ¼ ZYIa þ ZnIn

¼ ZYIa þ ZnðIa þ Ib þ IcÞ

¼ ðZY þ ZnÞIa þ ZnIb þ ZnIc ð8:2:1Þ

FIGURE 8.2

Circuit for Example 8.3
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Similar equations can be written for Vbg and Vcg:

Vbg ¼ ZnIa þ ðZY þ ZnÞIb þ ZnIc ð8:2:2Þ

Vcg ¼ ZnIa þ ZnIb þ ðZY þ ZnÞIc ð8:2:3Þ

Equations (8.2.1)–(8.2.3) can be rewritten in matrix format:2
64Vag

Vbg

Vcg

3
75¼

2
64 ðZY þ ZnÞ Zn Zn

Zn ðZY þ ZnÞ Zn

Zn Zn ðZY þ ZnÞ

3
75
2
64 Ia

Ib

Ic

3
75 ð8:2:4Þ

Equation (8.2.4) is written more compactly as

Vp ¼ ZpIp ð8:2:5Þ

where Vp is the vector of line-to-ground voltages (or phase voltages), Ip is the
vector of line currents (or phase currents), and Zp is the 3� 3 phase imped-
ance matrix shown in (8.2.4). Equations (8.1.9) and (8.1.16) can now be used
in (8.2.5) to determine the relationship between the sequence voltages and
currents, as follows:

AVs ¼ ZpAIs ð8:2:6Þ

Premultiplying both sides of (8.2.6) of A�1 gives

Vs ¼ ðA�1ZpAÞIs ð8:2:7Þ

or

Vs ¼ ZsIs ð8:2:8Þ

where

Zs ¼ A�1ZpA ð8:2:9Þ

The impedance matrix Zs defined by (8.2.9) is called the sequence

impedance matrix. Using the definition of A, its inverse A�1, and Zp given

FIGURE 8.3

Balanced-Y impedance
load
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by (8.1.8), (8.1.10), and (8.2.4), the sequence impedance matrix Zs for the
balanced-Y load is

Zs ¼
1

3

2
64 1 1 1

1 a a2

1 a2 a

3
75
2
64 ðZY þ ZnÞ Zn Zn

Zn ðZY þ ZnÞ Zn

Zn Zn ðZY þ ZnÞ

3
75

�

2
64 1 1 1

1 a2 a

1 a a2

3
75 ð8:2:10Þ

Performing the indicated matrix multiplications in (8.2.10), and using the
identity ð1þ aþ a2Þ ¼ 0,

Zs ¼
1

3

2
64 1 1 1

1 a a2

1 a2 a

3
75
2
64 ðZY þ 3ZnÞ ZY ZY

ðZY þ 3ZnÞ a2ZY aZY

ðZY þ 3ZnÞ aZY a2ZY

3
75

¼

2
64 ðZY þ 3ZnÞ 0 0

0 ZY 0

0 0 ZY

3
75 ð8:2:11Þ

As shown in (8.2.11), the sequence impedance matrix Zs for the balanced-Y
load of Figure 8.3 is a diagonal matrix. Since Zs is diagonal, (8.2.8) can be
written as three uncoupled equations. Using (8.1.7), (8.1.18), and (8.2.11) in
(8.2.8),2

64V0

V1

V2

3
75¼

2
64 ðZY þ 3ZnÞ 0 0

0 ZY 0

0 0 ZY

3
75
2
64 I0

I1

I2

3
75 ð8:2:12Þ

Rewriting (8.2.12) as three separate equations,

V0 ¼ ðZY þ 3ZnÞI0 ¼ Z0I0 ð8:2:13Þ

V1 ¼ ZYI1 ¼ Z1I1 ð8:2:14Þ

V2 ¼ ZYI2 ¼ Z2I2 ð8:2:15Þ

As shown in (8.2.13), the zero-sequence voltage V0 depends only on the
zero-sequence current I0 and the impedance ðZY þ 3ZnÞ. This impedance is
called the zero-sequence impedance and is designated Z0. Also, the positive-
sequence voltage V1 depends only on the positive-sequence current I1 and an
impedance Z1 ¼ ZY called the positive-sequence impedance. Similarly, V2 de-
pends only on I2 and the negative-sequence impedance Z2 ¼ ZY.

Equations (8.2.13)–(8.2.15) can be represented by the three networks
shown in Figure 8.4. These networks are called the zero-sequence, positive-

sequence, and negative-sequence networks. As shown, each sequence network
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is separate, uncoupled from the other two. The separation of these sequence
networks is a consequence of the fact that Zs is a diagonal matrix for a
balanced-Y load. This separation underlies the advantage of symmetrical
components.

Note that the neutral impedance does not appear in the positive- and
negative-sequence networks of Figure 8.4. This illustrates the fact that
positive- and negative-sequence currents do not flow in neutral impedances.
However, the neutral impedance is multiplied by 3 and placed in the zero-
sequence network of the figure. The voltage I0ð3ZnÞ across the impedance
3Zn is the voltage drop ðInZnÞ across the neutral impedance Zn in Figure 8.3,
since In ¼ 3I0.

When the neutral of the Y load in Figure 8.3 has no return path, then
the neutral impedance Zn is infinite and the term 3Zn in the zero-sequence
network of Figure 8.4 becomes an open circuit. Under this condition of an
open neutral, no zero-sequence current exists. However, when the neutral of
the Y load is solidly grounded with a zero-ohm conductor, then the neutral
impedance is zero and the term 3Zn in the zero-sequence network becomes
a short circuit. Under this condition of a solidly grounded neutral, zero-
sequence current I0 can exist when there is a zero-sequence voltage caused by
unbalanced voltages applied to the load.

Figure 2.15 shows a balanced-D load and its equivalent balanced-Y
load. Since the D load has no neutral connection, the equivalent Y load in
Figure 2.15 has an open neutral. The sequence networks of the equivalent Y
load corresponding to a balanced-D load are shown in Figure 8.5. As shown,

FIGURE 8.4

Sequence networks of a
balanced-Y load
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the equivalent Y impedance ZY ¼ ZD=3 appears in each of the sequence net-
works. Also, the zero-sequence network has an open circuit, since Zn ¼y
corresponds to an open neutral. No zero-sequence current occurs in the equiv-
alent Y load.

The sequence networks of Figure 8.5 represent the balanced-D load as
viewed from its terminals, but they do not represent the internal load charac-
teristics. The currents I0, I1, and I2 in Figure 8.5 are the sequence compo-
nents of the line currents feeding the D load, not the load currents within the
D. The D load currents, which are related to the line currents by (2.5.14), are
not shown in Figure 8.5.

EXAMPLE 8.4 Sequence networks: balanced-Y and balanced-D loads

A balanced-Y load is in parallel with a balanced-D-connected capacitor bank.
The Y load has an impedance ZY ¼ ð3þ j4Þ W per phase, and its neutral is
grounded through an inductive reactance Xn ¼ 2 W. The capacitor bank has
a reactance Xc ¼ 30 W per phase. Draw the sequence networks for this load
and calculate the load-sequence impedances.

SOLUTION The sequence networks are shown in Figure 8.6. As shown, the
Y-load impedance in the zero-sequence network is in series with three times
the neutral impedance. Also, the D-load branch in the zero-sequence network
is open, since no zero-sequence current flows into the D load. In the positive-
and negative-sequence circuits, the D-load impedance is divided by 3 and
placed in parallel with the Y-load impedance. The equivalent sequence im-
pedances are

FIGURE 8.5

Sequence networks for
an equivalent Y

representation of a
balanced-D load
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Z0 ¼ ZY þ 3Zn ¼ 3þ j4þ 3ð j2Þ ¼ 3þ j10 W

Z1 ¼ ZYEðZD=3Þ ¼ ð3þ j4Þð� j30=3Þ
3þ j4� jð30=3Þ

¼ ð5 53:13� Þð10 �90� Þ
6:708 �63:43�

¼ 7:454 26:57� W

Z2 ¼ Z1 ¼ 7:454 26:57� W 9

Figure 8.7 shows a general three-phase linear impedance load. The load
could represent a balanced load such as the balanced-Y or balanced-D load,
or an unbalanced impedance load. The general relationship between the line-
to-ground voltages and line currents for this load can be written as2

64Vag

Vbg

Vcg

3
75¼

2
64Zaa Zab Zac

Zab Zbb Zbc

Zac Zbc Zcc

3
75
2
64 Ia

Ib

Ic

3
75 ð8:2:16Þ

or

Vp ¼ ZpIp ð8:2:17Þ

where Vp is the vector of line-to-neutral (or phase) voltages, Ip is the vector
of line (or phase) currents, and Zp is a 3� 3 phase impedance matrix. It is
assumed here that the load is nonrotating, and that Zp is a symmetric matrix,
which corresponds to a bilateral network.

FIGURE 8.6

Sequence networks for
Example 8.4
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Since (8.2.17) has the same form as (8.2.5), the relationship between the
sequence voltages and currents for the general three-phase load of Figure 8.6
is the same as that of (8.2.8) and (8.2.9), which are rewritten here:

Vs ¼ ZsIs ð8:2:18Þ

Zs ¼ A�1ZpA ð8:2:19Þ

The sequence impedance matrix Zs given by (8.2.19) is a 3� 3 matrix with
nine sequence impedances, defined as follows:

Zs ¼

2
64Z0 Z01 Z02

Z10 Z1 Z12

Z20 Z21 Z2

3
75 ð8:2:20Þ

The diagonal impedances Z0, Z1, and Z2 in this matrix are the self-
impedances of the zero-, positive-, and negative-sequence networks. The o¤-
diagonal impedances are the mutual impedances between sequence networks.
Using the definitions of A;A�1;Zp, and Zs, (8.2.19) is2

64Z0 Z01 Z02

Z10 Z1 Z12

Z20 Z21 Z2

3
75¼ 1

3

2
64 1 1 1

1 a a2

1 a2 a

3
75
2
64Zaa Zab Zac

Zab Zbb Zbc

Zac Zbc Zcc

3
75
2
64 1 1 1

1 a2 a

1 a a2

3
75

ð8:2:21Þ

Performing the indicated multiplications in (8.2.21), and using the identity
ð1þ aþ a2Þ ¼ 0, the following separate equations can be obtained (see
Problem 8.18):

Diagonal sequence impedances

Z0 ¼ 1
3ðZaa þ Zbb þ Zcc þ 2Zab þ 2Zac þ 2ZbcÞ ð8:2:22Þ

Z1 ¼ Z2 ¼ 1
3ðZaa þ Zbb þ Zcc � Zab � Zac � ZbcÞ ð8:2:23Þ

FIGURE 8.7

General three-phase
impedance load (linear,

bilateral network,
nonrotating equipment)
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Off-diagonal sequence impedances

Z01 ¼ Z20 ¼ 1
3ðZaa þ a2Zbb þ aZcc � aZab � a2Zac � ZbcÞ ð8:2:24Þ

Z02 ¼ Z10 ¼ 1
3ðZaa þ aZbb þ a2Zcc � a2Zab � aZac � ZbcÞ ð8:2:25Þ

Z12 ¼ 1
3ðZaa þ a2Zbb þ aZcc þ 2aZab þ 2a2Zac þ 2ZbcÞ ð8:2:26Þ

Z21 ¼ 1
3ðZaa þ aZbb þ a2Zcc þ 2a2Zab þ 2aZac þ 2ZbcÞ ð8:2:27Þ

A symmetrical load is defined as a load whose sequence impedance
matrix is diagonal; that is, all the mutual impedances in (8.2.24)–(8.2.27) are
zero. Equating these mutual impedances to zero and solving, the following
conditions for a symmetrical load are determined. When both

Zaa ¼ Zbb ¼ Zcc

Zab ¼ Zac ¼ Zbc

9>>=
>>;

conditions for a
symmetrical load

ð8:2:28Þ

and

(8.2.29)

then

Z01 ¼ Z10 ¼ Z02 ¼ Z20 ¼ Z12 ¼ Z21 ¼ 0 ð8:2:30Þ

Z0 ¼ Zaa þ 2Zab ð8:2:31Þ

Z1 ¼ Z2 ¼ Zaa � Zab ð8:2:32Þ

The conditions for a symmetrical load are that the diagonal phase
impedances be equal and that the o¤-diagonal phase impedances be equal.
These conditions can be verified by using (8.2.28) and (8.2.29) with the

FIGURE 8.8

Sequence networks of a
three-phase symmetrical
impedance load (linear,

bilateral network,
nonrotating equipment)
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identity ð1þ aþ a2Þ ¼ 0 in (8.2.24)–(8.2.27) to show that all the mutual se-
quence impedances are zero. Note that the positive- and negative-sequence
impedances are equal for a symmetrical load, as shown by (8.2.32), and for a
nonsymmetrical load, as shown by (8.2.23). This is always true for linear,
symmetric impedances that represent nonrotating equipment such as trans-
formers and transmission lines. However, the positive- and negative-sequence
impedances of rotating equipment such as generators and motors are gener-
ally not equal. Note also that the zero-sequence impedance Z0 is not equal to
the positive- and negative-sequence impedances of a symmetrical load unless
the mutual phase impedances Zab ¼ Zac ¼ Zbc are zero.

The sequence networks of a symmetrical impedance load are shown
in Figure 8.8. Since the sequence impedance matrix Zs is diagonal for a sym-
metrical load, the sequence networks are separate or uncoupled.

8.3

SEQUENCE NETWORKS OF SERIES IMPEDANCES

Figure 8.9 shows series impedances connected between two three-phase buses
denoted abc and a 0b 0c 0. Self-impedances of each phase are denoted Zaa, Zbb,
and Zcc. In general, the series network may also have mutual impedances
between phases. The voltage drops across the series-phase impedances are
given by2

64 Van � Va 0n

Vbn � Vb 0n

Vcn � Vc 0n

3
75¼

2
64 Vaa 0

Vbb 0

Vcc 0

3
75¼

2
64Zaa Zab Zac

Zab Zbb Zbc

Zac Zcb Zcc

3
75
2
64 Ia

Ib

Ic

3
75 ð8:3:1Þ

Both self-impedances and mutual impedances are included in (8.3.1). It
is assumed that the impedance matrix is symmetric, which corresponds to a
bilateral network. It is also assumed that these impedances represent

FIGURE 8.9

Three-phase series
impedances (linear,

bilateral network,
nonrotating equipment)
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nonrotating equipment. Typical examples are series impedances of transmis-
sion lines and of transformers. Equation (8.3.1) has the following form:

Vp � Vp 0 ¼ ZpIp ð8:3:2Þ

where Vp is the vector of line-to-neutral voltages at bus abc, Vp 0 is the vector
of line-to-neutral voltages at bus a 0b 0c 0, Ip is the vector of line currents, and
Zp is the 3� 3 phase impedance matrix for the series network. Equation
(8.3.2) is now transformed to the sequence domain in the same manner that
the load-phase impedances were transformed in Section 8.2. Thus,

Vs � Vs 0 ¼ ZsIs ð8:3:3Þ

where

Zs ¼ A�1ZpA ð8:3:4Þ

From the results of Section 8.2, this sequence impedance Zs matrix is diago-
nal under the following conditions:

Zaa ¼ Zbb ¼ Zcc

Zab ¼ Zac ¼ Zbc

9>>=
>>;

conditions for
symmetrical
series impedances ð8:3:5Þ

and

When the phase impedance matrix Zp of (8.3.1) has both equal self-
impedances and equal mutual impedances, then (8.3.4) becomes

Zs ¼

2
64Z0 0 0

0 Z1 0

0 0 Z2

3
75 ð8:3:6Þ

where

Z0 ¼ Zaa þ 2Zab ð8:3:7Þ

and

Z1 ¼ Z2 ¼ Zaa � Zab ð8:3:8Þ

and (8.3.3) becomes three uncoupled equations, written as follows:

V0 � V0 0 ¼ Z0I0 ð8:3:9Þ

V1 � V1 0 ¼ Z1I1 ð8:3:10Þ

V2 � V2 0 ¼ Z2I2 ð8:3:11Þ

Equations (8.3.9)–(8.3.11) are represented by the three uncoupled
sequence networks shown in Figure 8.10. From the figure it is apparent
that for symmetrical series impedances, positive-sequence currents produce
only positive-sequence voltage drops. Similarly, negative-sequence currents
produce only negative-sequence voltage drops, and zero-sequence currents
produce only zero-sequence voltage drops. However, if the series impedances
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are not symmetrical, then Zs is not diagonal, the sequence networks are
coupled, and the voltage drop across any one sequence network depends on
all three sequence currents.

8.4

SEQUENCE NETWORKS OF THREE-PHASE LINES

Section 4.7 develops equations suitable for computer calculation of the series
phase impedances, including resistances and inductive reactances, of three-
phase overhead transmission lines. The series phase impedance matrix ZP for
an untransposed line is given by Equation (4.7.19), and ẐP for a completely
transposed line is given by (4.7.21)–(4.7.23). Equation (4.7.19) can be trans-
formed to the sequence domain to obtain

ZS ¼ A�1ZPA ð8:4:1Þ

ZS is the 3� 3 series sequence impedance matrix whose elements are

ZS ¼

2
64Z0 Z01 Z02

Z10 Z1 Z12

Z20 Z21 Z2

3
75 W=m ð8:4:2Þ

In general ZS is not diagonal. However, if the line is completely trans-
posed,

ẐS ¼ A�1ẐPA ¼

2
64 Ẑ0 0 0

0 Ẑ1 0

0 0 Ẑ2

3
75 ð8:4:3Þ

where, from (8.3.7) and (8.3.8),

FIGURE 8.10

Sequence networks of
three-phase symmetrical

series impedances
(linear, bilateral

network, nonrotating
equipment)
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Ẑ0 ¼ Ẑaaeq þ 2Ẑabeq ð8:4:4Þ

Ẑ1 ¼ Ẑ2 ¼ Ẑaaeq � Ẑabeq ð8:4:5Þ

A circuit representation of the series sequence impedances of a completely
transposed three-phase line is shown in Figure 8.11.

Section 4.11 develops equations suitable for computer calculation of
the shunt phase admittances of three-phase overhead transmission lines. The
shunt admittance matrix YP for an untransposed line is given by Equation
(4.11.16), and ŶP for a completely transposed three-phase line is given by
(4.11.17).

Equation (4.11.16) can be transformed to the sequence domain to
obtain

YS ¼ A�1YPA ð8:4:6Þ

where

YS ¼ GS þ jð2p f ÞCS ð8:4:7Þ

CS ¼

2
64C0 C01 C02

C10 C1 C12

C20 C21 C2

3
75 F=m ð8:4:8Þ

In general, CS is not diagonal. However, for the completely transposed line,

ŶS ¼ A�1ŶPA ¼

2
64 ŷ0 0 0

0 ŷ1 0

0 0 ŷ2

3
75 ¼ jð2pf Þ

2
64 Ĉ0 0 0

0 Ĉ1 0

0 0 Ĉ2

3
75 ð8:4:9Þ

FIGURE 8.11

Circuit representation of
the series sequence

impedances of a
completely transposed

three-phase line
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where

Ĉ0 ¼ Ĉaa þ 2Ĉab F=m ð8:4:10Þ

Ĉ1 ¼ Ĉ2 ¼ Ĉaa � Ĉab F=m ð8:4:11Þ

Since Ĉab is negative, the zero-sequence capacitance Ĉ0 is usually much less
than the positive- or negative-sequence capacitance.

Circuit representations of the phase and sequence capacitances of a
completely transposed three-phase line are shown in Figure 8.12.

8.5

SEQUENCE NETWORKS OF ROTATING MACHINES

A Y-connected synchronous generator grounded through a neutral impedance
Zn is shown in Figure 8.13. The internal generator voltages are designated Ea,
Eb, and Ec, and the generator line currents are designated Ia, Ib, and Ic.

FIGURE 8.12

Circuit representations
of the capacitances of a

completely transposed
three-phase line

FIGURE 8.13

Y-connected
synchronous generator
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The sequence networks of the generator are shown in Figure 8.14. Since
a three-phase synchronous generator is designed to produce balanced internal
phase voltages Ea, Eb, Ec with only a positive-sequence component, a source
voltage Eg1 is included only in the positive-sequence network. The sequence
components of the line-to-ground voltages at the generator terminals are de-
noted V0, V1, and V2 in Figure 8.14.

The voltage drop in the generator neutral impedance is ZnIn, which
can be written as ð3ZnÞI0, since, from (8.1.27), the neutral current is three
times the zero-sequence current. Since this voltage drop is due only to zero-
sequence current, an impedance ð3ZnÞ is placed in the zero-sequence network
of Figure 8.14 in series with the generator zero-sequence impedance Zg0.

The sequence impedances of rotating machines are generally not equal.
A detailed analysis of machine-sequence impedances is given in machine
theory texts. We give only a brief explanation here.

When a synchronous generator stator has balanced three-phase positive-
sequence currents under steady-state conditions, the net mmf produced by
these positive-sequence currents rotates at the synchronous rotor speed in the
same direction as that of the rotor. Under this condition, a high value of mag-
netic flux penetrates the rotor, and the positive-sequence impedance Zg1 has a
high value. Under steady-state conditions, the positive-sequence generator
impedance is called the synchronous impedance.

When a synchronous generator stator has balanced three-phase negative-
sequence currents, the net mmf produced by these currents rotates at syn-
chronous speed in the direction opposite to that of the rotor. With respect to
the rotor, the net mmf is not stationary but rotates at twice synchronous
speed. Under this condition, currents are induced in the rotor windings that
prevent the magnetic flux from penetrating the rotor. As such, the negative-
sequence impedance Zg2 is less than the positive-sequence synchronous im-
pedance.

When a synchronous generator has only zero-sequence currents, which
are line (or phase) currents with equal magnitude and phase, then the net
mmf produced by these currents is theoretically zero. The generator zero-
sequence impedance Zg0 is the smallest sequence impedance and is due to
leakage flux, end turns, and harmonic flux from windings that do not pro-
duce a perfectly sinusoidal mmf.

FIGURE 8.14 Sequence networks of a Y-connected synchronous generator
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Typical values of machine-sequence impedances are listed in Table A.1
in the Appendix. The positive-sequence machine impedance is synchronous,
transient, or subtransient. Synchronous impedances are used for steady-state
conditions, such as in power-flow studies, which are described in Chapter 6.
Transient impedances are used for stability studies, which are described in
Chapter 13, and subtransient impedances are used for short-circuit studies,
which are described in Chapters 7 and 9. Unlike the positive-sequence im-
pedances, a machine has only one negative-sequence impedance and only one
zero-sequence impedance.

The sequence networks for three-phase synchronous motors and for
three-phase induction motors are shown in Figure 8.15. Synchronous motors
have the same sequence networks as synchronous generators, except that the
sequence currents for synchronous motors are referenced into rather than out
of the sequence networks. Also, induction motors have the same sequence
networks as synchronous motors, except that the positive-sequence voltage

FIGURE 8.15

Sequence networks of
three-phase motors
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source Em1 is removed. Induction motors do not have a dc source of mag-
netic flux in their rotor circuits, and therefore Em1 is zero (or a short circuit).

The sequence networks shown in Figures 8.14 and 8.15 are simplified
networks for rotating machines. The networks do not take into account such
phenomena as machine saliency, saturation e¤ects, and more complicated
transient e¤ects. These simplified networks, however, are in many cases accu-
rate enough for power system studies.

EXAMPLE 8.5 Currents in sequence networks

Draw the sequence networks for the circuit of Example 2.5 and calculate the
sequence components of the line current. Assume that the generator neutral
is grounded through an impedance Zn ¼ j10 W, and that the generator se-
quence impedances are Zg0 ¼ j1 W, Zg1 ¼ j15 W, and Zg2 ¼ j3 W.

SOLUTION The sequence networks are shown in Figure 8.16. They are ob-
tained by interconnecting the sequence networks for a balanced-D load, for

FIGURE 8.16

Sequence networks for
Example 8.5
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series-line impedances, and for a synchronous generator, which are given in
Figures 8.5, 8.10, and 8.14.

It is clear from Figure 8.16 that I0 ¼ I2 ¼ 0 since there are no sources
in the zero- and negative-sequence networks. Also, the positive-sequence gen-
erator terminal voltage V1 equals the generator line-to-neutral terminal volt-
age. Therefore, from the positive-sequence network shown in the figure and
from the results of Example 2.5,

I1 ¼
V1

ZL1 þ 1
3 ZD

� � ¼ 25:83 �73:78� A ¼ Ia

Note that from (8.1.20), I1 equals the line current Ia, since I0 ¼ I2 ¼ 0.
9

The following example illustrates the superiority of using symmetrical com-
ponents for analyzing unbalanced systems.

EXAMPLE 8.6 Solving unbalanced three-phase networks using sequence components

A Y-connected voltage source with the following unbalanced voltage is ap-
plied to the balanced line and load of Example 2.5.2

64 Vag

Vbg

Vcg

3
75¼

2
64 277 0�

260 �120�

295 þ115�

3
75 volts

The source neutral is solidly grounded. Using the method of symmet-
rical components, calculate the source currents Ia, Ib, and Ic.

SOLUTION Using (8.1.13)–(8.1.15), the sequence components of the source
voltages are:

V0 ¼ 1
3ð277 0� þ 260 �120� þ 295 115� Þ

¼ 7:4425þ j14:065 ¼ 15:912 62:11� volts

V1 ¼ 1
3ð227 0� þ 260 �120� þ 120� þ 295 115� þ 240� Þ

¼ 1
3ð277 0� þ 260 0� þ 295 �5� Þ

¼ 276:96� j8:5703 ¼ 277:1 �1:772� volts

V2 ¼ 1
3ð277 0� þ 260 �120� þ 240� þ 295 115� þ 120� Þ

¼ 1
3ð277 0� þ 260 120� þ 295 235� Þ

¼ �7:4017� j5:4944 ¼ 9:218 216:59� volts

These sequence voltages are applied to the sequence networks of the
line and load, as shown in Figure 8.17. The sequence networks of this figure
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are uncoupled, and the sequence components of the source currents are easily
calculated as follows:

I0 ¼ 0

I1 ¼
V1

ZL1 þ
ZD

3

¼ 277:1 �1:772�

10:73 43:78�
¼ 25:82 �45:55� A

I2 ¼
V2

ZL2 þ
ZD

3

¼ 9:218 216:59�

10:73 43:78�
¼ 0:8591 172:81� A

Using (8.1.20)–(8.1.22), the source currents are:

Ia ¼ ð0þ 25:82 �45:55� þ 0:8591 172:81� Þ

¼ 17:23� j18:32 ¼ 25:15 �46:76� A

Ib ¼ ð0þ 25:82 �45:55� þ 240� þ 0:8591 172:81� þ 120� Þ

¼ ð25:82 194:45� þ 0:8591 292:81� Þ

¼ �24:67� j7:235 ¼ 25:71 196:34� A

FIGURE 8.17

Sequence networks for
Example 8.6
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Ic ¼ ð0þ 25:82 �45:55� þ 120� þ 0:8591 172:81� þ 240� Þ

¼ ð25:82 74:45� þ 0:8591 52:81� Þ

¼ 7:441þ j25:56 ¼ 26:62 73:77� A

You should calculate the line currents for this example without using
symmetrical components, in order to verify this result and to compare the
two solution methods (see Problem 8.33). Without symmetrical components,
coupled KVL equations must be solved. With symmetrical components, the
conversion from phase to sequence components decouples the networks as
well as the resulting KVL equations, as shown above. 9

8.6

PER-UNIT SEQUENCE MODELS OF THREE-PHASE
TWO-WINDING TRANSFORMERS

Figure 8.18(a) is a schematic representation of an ideal Y–Y transformer
grounded through neutral impedances ZN and Zn. Figures 8.18(b–d) show
the per-unit sequence networks of this ideal transformer.

When balanced positive-sequence currents or balanced negative-
sequence currents are applied to the transformer, the neutral currents are zero
and there are no voltage drops across the neutral impedances. Therefore, the
per-unit positive- and negative-sequence networks of the ideal Y–Y trans-
former, Figures 8.18(b) and (c), are the same as the per-unit single-phase
ideal transformer, Figure 3.9(a).

Zero-sequence currents have equal magnitudes and equal phase angles.
When per-unit sequence currents IA0 ¼ IB0 ¼ IC0 ¼ I0 are applied to the high-
voltage windings of an ideal Y–Y transformer, the neutral current IN ¼ 3I0

flows through the neutral impedance ZN , with a voltage drop ð3ZNÞI0. Also,
per-unit zero-sequence current I0 flows in each low-voltage winding [from
(3.3.9)], and therefore 3I0 flows through neutral impedance Zn, with a voltage
drop ð3I0ÞZn. The per-unit zero-sequence network, which includes the im-
pedances ð3ZNÞ and ð3ZnÞ, is shown in Figure 8.18(b).

Note that if either one of the neutrals of an ideal transformer is un-
grounded, then no zero sequence can flow in either the high- or low-voltage
windings. For example, if the high-voltage winding has an open neutral, then
IN ¼ 3I0 ¼ 0, which in turn forces I0 ¼ 0 on the low-voltage side. This can be
shown in the zero-sequence network of Figure 8.18(b) by making ZN ¼y,
which corresponds to an open circuit.

The per-unit sequence networks of a practical Y–Y transformer are
shown in Figure 8.19(a). These networks are obtained by adding external im-
pedances to the sequence networks of the ideal transformer, as follows. The
leakage impedances of the high-voltage windings are series impedances like
the series impedances shown in Figure 8.9, with no coupling between phases
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ðZab ¼ 0Þ. If the phase a, b, and c windings have equal leakage impedances
ZH ¼ RH þ jXH, then the series impedances are symmetrical with sequence
networks, as shown in Figure 8.10, where ZH0 ¼ ZH1 ¼ ZH2 ¼ ZH. Similarly,
the leakage impedances of the low-voltage windings are symmetrical series
impedances with ZX0 ¼ ZX1 ¼ ZX2 ¼ ZX. These series leakage impedances
are shown in per-unit in the sequence networks of Figure 8.19(a).

The shunt branches of the practical Y–Y transformer, which represent
exciting current, are equivalent to the Y load of Figure 8.3. Each phase in
Figure 8.3 represents a core loss resistor in parallel with a magnetizing induc-
tance. Assuming these are the same for each phase, then the Y load is sym-

metrical, and the sequence networks are shown in Figure 8.4. These shunt

FIGURE 8.18

Ideal Y–Y transformer
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branches are also shown in Figure 8.19(a). Note that ð3ZNÞ and ð3ZnÞ have
already been included in the zero-sequence network.

The per-unit positive- and negative-sequence transformer impedances of
the practical Y–Y transformer in Figure 8.19(a) are identical, which is always
true for nonrotating equipment. The per-unit zero-sequence network, how-
ever, depends on the neutral impedances ZN and Zn.

FIGURE 8.19 Per-unit sequence networks of practical Y–Y, Y–D, and D–D transformers
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The per-unit sequence networks of the Y–D transformer, shown in
Figure 8.19(b), have the following features:

1. The per-unit impedances do not depend on the winding connections.
That is, the per-unit impedances of a transformer that is connected
Y–Y, Y–D, D–Y, or D–D are the same. However, the base voltages
do depend on the winding connections.

2. A phase shift is included in the per-unit positive- and negative-
sequence networks. For the American standard, the positive-sequence
voltages and currents on the high-voltage side of the Y–D trans-
former lead the corresponding quantities on the low-voltage side by
30�. For negative sequence, the high-voltage quantities lag by 30�.

3. Zero-sequence currents can flow in the Y winding if there is a neutral
connection, and corresponding zero-sequence currents flow within
the D winding. However, no zero-sequence current enters or leaves the
D winding.

The phase shifts in the positive- and negative-sequence networks of
Figure 8.19(b) are represented by the phase-shifting transformer of Figure 3.4.
Also, the zero-sequence network of Figure 8.19(b) provides a path on the Y side
for zero-sequence current to flow, but no zero-sequence current can enter or
leave the D side.

The per-unit sequence networks of the D–D transformer, shown in
Figure 8.19(c), have the following features:

1. The positive- and negative-sequence networks, which are identical, are
the same as those for the Y–Y transformer. It is assumed that the wind-
ings are labeled so there is no phase shift. Also, the per-unit impedances
do not depend on the winding connections, but the base voltages do.

2. Zero-sequence currents cannot enter or leave either D winding, al-
though they can circulate within the D windings.

EXAMPLE 8.7 Solving unbalanced three-phase networks with transformers

using per-unit sequence components

A 75-kVA, 480-volt D/208-volt Y transformer with a solidly grounded neutral
is connected between the source and line of Example 8.6. The transformer
leakage reactance is Xeq ¼ 0:10 per unit; winding resistances and exciting cur-
rent are neglected. Using the transformer ratings as base quantities, draw the
per-unit sequence networks and calculate the phase a source current Ia.

SOLUTION The base quantities are Sbase1f ¼ 75=3 ¼ 25 kVA, VbaseHLN ¼
480=

ffiffiffi
3
p
¼ 277:1 volts, VbaseXLN ¼ 208=

ffiffiffi
3
p
¼ 120:1 volts, and ZbaseX ¼

ð120:1Þ2=25;000 ¼ 0:5770 W. The sequence components of the actual source
voltages are given in Figure 8.17. In per-unit, these voltages are
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V0 ¼
15:91 62:11�

277:1
¼ 0:05742 62:11� per unit

V1 ¼
277:1 �1:772�

277:1
¼ 1:0 �1:772� per unit

V2 ¼
9:218 216:59�

277:1
¼ 0:03327 216:59� per unit

The per-unit line and load impedances, which are located on the low-voltage
side of the transformer, are

ZL0 ¼ ZL1 ¼ ZL2 ¼
1 85�

0:577
¼ 1:733 85� per unit

Zload1 ¼ Zload2 ¼
ZD

3ð0:577Þ ¼
10 40�

0:577
¼ 17:33 40� per unit

FIGURE 8.20

Per-unit sequence
networks for Example

8.7
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The per-unit sequence networks are shown in Figure 8.20. Note that the per-
unit line and load impedances, when referred to the high-voltage side of the
phase-shifting transformer, do not change [(see (3.1.26)]. Therefore, from
Figure 8.20, the sequence components of the source currents are

I0 ¼ 0

I1 ¼
V1

jXeq þ ZL1 þ Zload1
¼ 1:0 �1:772�

j0:10þ 1:733 85� þ 17:33 40�

¼ 1:0 �1:772�

13:43þ j12:97
¼ 1:0 �1:772�

18:67 44:0�
¼ 0:05356 �45:77� per unit

I2 ¼
V2

jXeq þ ZL2 þ Zload2
¼ 0:03327 216:59�

18:67 44:0�

¼ 0:001782 172:59� per unit

The phase a source current is then, using (8.1.20),

Ia ¼ I0 þ I1 þ I2

¼ 0þ 0:05356 �45:77� þ 0:001782 172:59�

¼ 0:03511� j0:03764 ¼ 0:05216 �46:19� per unit

Using IbaseH ¼
75;000

480
ffiffiffi
3
p ¼ 90:21 A,

Ia ¼ ð0:05216Þð90:21Þ �46:19� ¼ 4:705 �46:19� A 9

8.7

PER-UNIT SEQUENCE MODELS OF THREE-PHASE
THREE-WINDING TRANSFORMERS

Three identical single-phase three-winding transformers can be connected
to form a three-phase bank. Figure 8.21 shows the general per-unit sequence
networks of a three-phase three-winding transformer. Instead of labeling the
windings 1, 2, and 3, as was done for the single-phase transformer, the letters
H, M, and X are used to denote the high-, medium-, and low-voltage wind-
ings, respectively. By convention, a common Sbase is selected for the H, M,
and X terminals, and voltage bases VbaseH, VbaseM, and VbaseX are selected in
proportion to the rated line-to-line voltages of the transformer.

For the general zero-sequence network, Figure 8.21(a), the connection
between terminals H and H 0 depends on how the high-voltage windings are
connected, as follows:

1. Solidly grounded Y—Short H to H 0.

2. Grounded Y through ZN —Connect ð3ZNÞ from H to H 0.
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3. Ungrounded Y—Leave H–H 0 open as shown.

4. D—Short H 0 to the reference bus.

Terminals X–X 0 and M–M 0 are connected in a similar manner.
The impedances of the per-unit negative-sequence network are the same as

those of the per-unit positive-sequence network, which is always true for non-
rotating equipment. Phase-shifting transformers, not shown in Figure 8.21(b),
can be included to model phase shift between D and Y windings.

EXAMPLE 8.8 Three-winding three-phase transformer: per-unit sequence networks

Three transformers, each identical to that described in Example 3.9, are
connected as a three-phase bank in order to feed power from a 900-MVA,
13.8-kV generator to a 345-kV transmission line and to a 34.5-kV distribu-
tion line. The transformer windings are connected as follows:

13:8-kV windings ðXÞ: D; to generator

199:2-kV windings ðHÞ: solidly grounded Y; to 345-kV line

19:92-kV windings ðMÞ: grounded Y through Zn ¼ j0:10 W;
to 34:5-kV line

FIGURE 8.21

Per-unit sequence
networks of a three-
phase three-winding

transformer
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The positive-sequence voltages and currents of the high- and medium-voltage
Y windings lead the corresponding quantities of the low-voltage D winding
by 30�. Draw the per-unit sequence networks, using a three-phase base of
900 MVA and 13.8 kV for terminal X.

SOLUTION The per-unit sequence networks are shown in Figure 8.22. Since
VbaseX ¼ 13:8 kV is the rated line-to-line voltage of terminal X, VbaseM ¼ffiffiffi

3
p
ð19:92Þ ¼ 34:5 kV, which is the rated line-to-line voltage of terminal M.

The base impedance of the medium-voltage terminal is then

ZbaseM ¼
ð34:5Þ2

900
¼ 1:3225 W

Therefore, the per-unit neutral impedance is

Zn ¼
j0:10

1:3225
¼ j0:07561 per unit

FIGURE 8.22

Per-unit sequence
networks for
Example 8.8

458 CHAPTER 8 SYMMETRICAL COMPONENTS



and ð3ZnÞ ¼ j0:2268 is connected from terminal M to M 0 in the per-unit zero-
sequence network. Since the high-voltage windings have a solidly grounded
neutral, H to H 0 is shorted in the zero-sequence network. Also, phase-shifting
transformers are included in the positive- and negative-sequence networks. 9

8.8

POWER IN SEQUENCE NETWORKS

The power delivered to a three-phase network can be determined from
the power delivered to the sequence networks. Let Sp denote the total com-
plex power delivered to the three-phase load of Figure 8.7, which can be
calculated from

Sp ¼ VagI �a þ VbgI �b þ VcgI �c ð8:8:1Þ

Equation (8.8.1) is also valid for the total complex power delivered by
the three-phase generator of Figure 8.13, or for the complex power delivered
to any three-phase bus. Rewriting (8.8.1) in matrix format,

Sp ¼ ½VagVbgVcg�

2
64 I �a

I �b
I �c

3
75

¼ V T
p I �p ð8:8:2Þ

where T denotes transpose and * denotes complex conjugate. Now, using
(8.1.9) and (8.1.16),

Sp ¼ ðAVsÞTðAIsÞ�

¼ V T
s ½ATA��I �s ð8:8:3Þ

Using the definition of A, which is (8.1.8), to calculate the term within the
brackets of (8.8.3), and noting that a and a2 are conjugates,

ATA� ¼

2
64 1 1 1

1 a2 a

1 a a2

3
75

T264 1 1 1

1 a2 a

1 a a2

3
75
�

¼

2
64 1 1 1

1 a2 a

1 a a2

3
75
2
64 1 1 1

1 a a2

1 a2 a

3
75

¼

2
64 3 0 0

0 3 0

0 0 3

3
75 ¼ 3U ð8:8:4Þ
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Equation (8.8.4) can now be used in (8.8.3) to obtain

Sp ¼ 3V T
s I �s

¼ 3½V0 þ V1 þ V2�

2
64 I �0

I �1
I �2

3
75 ð8:8:5Þ

Sp ¼ 3ðV0I �0 þ V1I �1 þ V2I �2 Þ

¼ 3Ss ð8:8:6Þ

Thus, the total complex power Sp delivered to a three-phase network equals
three times the total complex power Ss delivered to the sequence networks.

The factor of 3 occurs in (8.8.6) because ATA� ¼ 3U , as shown by
(8.8.4). It is possible to eliminate this factor of 3 by defining a new transfor-
mation matrix A1 ¼ ð1=

ffiffiffi
3
p
ÞA such that AT

1 A�1 ¼ U , which means that A1 is a
unitary matrix. Using A1 instead of A, the total complex power delivered to
three-phase networks would equal the total complex power delivered to the
sequence networks. However, standard industry practice for symmetrical
components is to use A, defined by (8.1.8).

EXAMPLE 8.9 Power in sequence networks

Calculate Sp and Ss delivered by the three-phase source in Example 8.6.
Verify that Sp ¼ 3Ss.

SOLUTION Using (8.5.1),

Sp ¼ ð277 0� Þð25:15 þ46:76� Þ þ ð260 �120� Þð25:71 �196:34� Þ

þ ð295 115� Þð26:62 �73:77� Þ

¼ 6967 46:76� þ 6685 43:66� þ 7853 41:23�

¼ 15;520þ j14;870 ¼ 21;490 43:78� VA

In the sequence domain,

Ss ¼ V0I �0 þ V1I �1 þ V2I �2

¼ 0þ ð277:1 �1:77� Þð25:82 45:55� Þ

þ ð9:218 216:59� Þð0:8591 �172:81� Þ

¼ 7155 43:78� þ 7:919 43:78�

¼ 5172þ j4958 ¼ 7163 43:78� VA

Also,

3Ss ¼ 3ð7163 43:78� Þ ¼ 21;490 43:78� ¼ Sp 9

460 CHAPTER 8 SYMMETRICAL COMPONENTS



M U L T I P L E C H O I C E Q U E S T I O N S

SECTION 8.1

8.1 Positive-sequence components consist of three phasors with __________ magnitudes,
and __________ phase displacement in positive sequence; negative-sequence compo-
nents consist of three phasors with __________ magnitudes, and __________ phase dis-
placement in negative sequence; and zero-sequence components consist of three phasors
with __________ magnitudes, and __________ phase displacement. Fill in the Blanks.

8.2 In symmetrical-component theory, express the complex-number operator a ¼ 1 120�

in exponential and rectangular forms.

8.3 In terms of sequence components of phase a given by Va0 ¼ V0;Va1 ¼ V1 and
Va2 ¼ V2, give expressions for the phase voltages Va, Vb, and Vc.
Va ¼ __________________; Vb ¼ __________________; Vc ¼ __________________

8.4 The sequence components V0, V1, and V2 can be expressed in terms of phase compo-
nents Va, Vb, and Vc.
V0 ¼ __________________; V1 ¼ __________________; V2 ¼ __________________

8.5 In a balanced three-phase system, what is the zero-sequence voltage?
V0 ¼ __________________

8.6 In an unblanced three-phase system, line-to-neutral voltage ___________ have a zero-
sequence component, whereas line-to-line voltages ___________ have a zero-sequence
component. Fill in the Blanks.

8.7 Can the symmetrical component transformation be applied to currents, just as applied
to voltages?
(a) Yes (b) No

8.8 In a three-phase Wye-connected system with a neutral, express the neutral current in
terms of phase currents and sequence-component terms.
In ¼ __________________ ¼ __________________

8.9 In a balanced Wye-connected system, what is the zero-sequence component of the line
currents?

8.10 In a delta-connected three-phase system, line currents have no zero-sequence component.
(a) True (b) False

8.11 Balanced three-phase systems with positive sequence do not have zero-sequence and
negative-sequence components.
(a) True (b) False

8.12 Unbalanced three-phase systems may have nonzero values for all sequence components.
(a) True (b) False

SECTION 8.2

8.13 For a balanced-Y impedance load with per-phase impedance of ZY and A neutral
impedance Zn connected between the load neutral and the ground, the 3� 3 phase-
impedance matrix will consist of equal diagonal elements given by __________, and
equal nondiagonal elements given by __________. Fill in the Blanks.
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8.14 Express the sequence impedance matrix Zs in terms of the phase-impedance matrix
Zp, and the transformation matrix A which relates Vp ¼ AV s and I p ¼ AI s.
Zs ¼ __________. Fill in the Blank.

8.15 The sequence impedance matrix Zs for a balanced-Y load is a diagonal matrix and the
sequence networks are uncoupled.
(a) True (b) False

8.16 For a balanced-Y impedance load with per-phase impedance of ZY and a neutral im-
pedance Zn, the zero-sequence voltage V0 ¼ Z0 I0, where Z0 ¼ _________. Fill in the
Blank.

8.17 For a balanced-� load with per-phase impedance of Z� the equivalent Y-load will
have an open neutral; for the corresponding uncoupled sequence networks, Z0 ¼
__________, Z1 ¼ __________, and Z2 ¼ __________. Fill in the Blanks.

8.18 For a three-phase symmetrical impedance load, the sequence impedance matrix is
__________ and hence the sequence networks are coupled/uncoupled.

SECTION 8.3

8.19 Sequence networks for three-phase symmetrical series impedances are coupled/
uncoupled; positive-sequence currents produce only _________ voltage drops.

SECTION 8.4

8.20 The series sequence impedance matrix of a completely transposed three-phase line is
_________, with its nondiagonal elements equal to _________. Fill in the Blanks.

SECTION 8.5

8.21 A Y-connected synchronous generator grounded through a neutral impedance Zn,
with a zero-sequence impedance Zg0, will have zero-sequence impedance Z0 ¼
_________ in its zero-sequence network. Fill in the Blank.

8.22 In sequence networks, a Y-connected synchronous generator is represented by its
source per-unit voltage only in _________ network, while synchronous/transient/sub-
transient impedance is used in positive-sequence network for short-circuit studies.

8.23 In the positive-sequence network of a synchronous motor, a source voltage is repre-
sented, whereas in that of an induction motor, the source voltage does/does not come
into picture.

8.24 With symmetrical components, the conversion from phase to sequence components
decouples the networks and the resulting kVL equations.
(a) True (b) False

SECTION 8.6

8.25 Consider the per-unit sequence networks of Y-Y, Y-�, and ��� transformers,
with neutral impedances of ZN on the high-voltage Y-side, and Zn on the low-voltage
Y-side. Answer the following:

(i) Zero-sequence currents can/cannot flow in the Y winding with a neutral connection;
corresponding zero-sequence currents do/do not flow within the delta winding;
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however zero-sequence current does/does not enter or leave the � winding. In zero-
sequence network, 1/2/3 times the neutral impedance comes into play in series.

(ii) In Y(HV)- �(LV) transformers, if a phase shift is included as per the American-
standard notation, the ratio _________ is used in positive-sequence network, and
the ratio _________ is used in the negative-sequence network.

(iii) The base voltages depend on the winding connections; the per-unit impedances
do/do not depend on the winding connections.

SECTION 8.7

8.26 In per-unit sequence models of three-phase three-winding transformers, for the general
zero-sequence network, the connection between terminals H and H0 depends on how
the high-voltage windings are connected:

(i) For solidly grounded Y, ________ H to H0:
(ii) For grounded Y through Zn, connect _________ from H to H0.

(iii) For ungrounded Y, leave H�H0 __________.
(iv) For �, ________ H0 to the reference bus.

SECTION 8.8

8.27 The total complex power delivered to a three-phase network equals 1/2/3 times the
total complex power delivered to the sequence networks.

8.28 Express the complex power Ss Delivered to the sequence networks in terms of se-
quence voltages and sequence currents.
Ss ¼ ___________

P R O B L E M S

SECTION 8.1

8.1 Using the operator a ¼ 1 120� , evaluate the following in polar form: (a) ða� 1Þ=
ð1þ a� a2Þ, (b) ða2 þ aþ jÞ=ð jaþ a2Þ, (c) ð1þ aÞð1þ a2Þ, (d) ða� a2Þða2 � 1Þ.

8.2 Using a ¼ 1 120�, evaluate the following in rectangular form:

a. a10

b. ð jaÞ10

c. ð1� aÞ3

d. ea

Hint for (d): eðxþ jyÞ ¼ exe jy ¼ ex y, where y is in radians.

8.3 Determine the symmetrical components of the following line currents: (a) Ia ¼ 5 90� ,
Ib ¼ 5 320� , Ic ¼ 5 220� A; (b) Ia ¼ j50, Ib ¼ 50, Ic ¼ 0 A.

8.4 Find the phase voltages Van, Vbn, and Vcn whose sequence components are:
V0 ¼ 50 80� , V1 ¼ 100 0� , V2 ¼ 50 90� V.
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8.5 For the unbalanced three-phase system described by

Ia ¼ 12 0�A; Ib ¼ 6 �90�A; IC ¼ 8 150�A

compute the symmetrical components I0, I1, I2.

8.6 (a) Given the symmetrical components to be

V0 ¼ 10 0�V ; V1 ¼ 80 30�V ; V2 ¼ 40 �30�V

determine the unbalanced phase voltages Va, Vb, and Vc.
(b) Using the results of part (a), calculate the line-to-line voltages Vab, Vbc, and Vca.
Then determine the symmetrical components of these ling-to-line voltages, the sym-
metrical components of the corresponding phase voltages, and the phase voltages.
Compare them with the result of part (a). Comment on why they are di¤erent, even
though either set will result in the same line-to-line voltages.

8.7 One line of a three-phase generator is open circuited, while the other two are
short-circuited to ground. The line currents are Ia ¼ 0, Ib ¼ 1000 150� , and Ic ¼
1000 þ30� A. Find the symmetrical components of these currents. Also find the
current into the ground.

8.8 Let an unbalanced, three-phase, Wye-connected load (with phase impedances of Za,
Zb, and Zc) be connected to a balanced three-phase supply, resulting in phase voltages
of Va, Vb, and Vc across the corresponding phase impedances.
Choosing Vab as the reference, show that

Vab; 0 ¼ 0; Vab; 1 ¼
ffiffiffi
3
p

Va; 1e j30� ; Vab; 2 ¼
ffiffiffi
3
p

Va; 2e�j30� :

8.9 Reconsider Problem 8.8 and choosing Vbc as the reference, show that

Vbc; 0 ¼ 0; Vbc; 1 ¼ �j
ffiffiffi
3
p

Va; 1; Vbc; 2 ¼ j
ffiffiffi
3
p

Va; 2:

8.10 Given the line-to-ground voltages Vag ¼ 280 0� , Vbg ¼ 250 �110� , and Vcg ¼ 290 130�

volts, calculate (a) the sequence components of the line-to-ground voltages, denoted
VLg0, VLg1, and VLg2; (b) line-to-line voltages Vab, Vbc, and Vca; and (c) sequence com-
ponents of the line-to-line voltages VLL0, VLL1, and VLL2. Also, verify the following
general relation: VLL0 ¼ 0, VLL1 ¼

ffiffiffi
3
p

VLg1 þ30� , and VLL2 ¼
ffiffiffi
3
p

VLg2 �30� volts.

8.11 A balanced D-connected load is fed by a three-phase supply for which phase C is open
and phase A is carrying a current of 10 0� A. Find the symmetrical components of the
line currents. (Note that zero-sequence currents are not present for any three-wire system.)

8.12 A Y-connected load bank with a three-phase rating of 500 kVA and 2300 V consists
of three identical resistors of 10.58 W. The load bank has the following applied
voltages: Vab ¼ 1840 82:8� , Vbc ¼ 2760 �41:4� , and Vca ¼ 2300 180� V. Determine
the symmetrical components of (a) the line-to-line voltages Vab0, Vab1, and Vab2;
(b) the line-to-neutral voltages Van0, Van1, and Van2; (c) and the line currents Ia0, Ia1,
and Ia2. (Note that the absence of a neutral connection means that zero-sequence cur-
rents are not present.)

SECTION 8.2

8.13 The currents in a D load are Iab ¼ 10 0� , Ibc ¼ 15 �90� , and Ica ¼ 20 90� A. Calcu-
late (a) the sequence components of the D-load currents, denoted ID0, ID1, ID2; (b) the
line currents Ia, Ib, and Ic, which feed the D load; and (c) sequence components of the
line currents IL0, IL1, and IL2. Also, verify the following general relation: IL0 ¼ 0,
IL1 ¼

ffiffiffi
3
p

ID1 �30� , and IL2 ¼
ffiffiffi
3
p

ID2 þ30� A.
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8.14 The voltages given in Problem 8.10 are applied to a balanced-Y load consisting of
ð12þ j16Þ ohms per phase. The load neutral is solidly grounded. Draw the sequence
networks and calculate I0, I1, and I2, the sequence components of the line currents.
Then calculate the line currents Ia, Ib, and Ic.

8.15 Repeat Problem 8.14 with the load neutral open.

8.16 Repeat Problem 8.14 for a balanced-D load consisting of ð12þ j16Þ ohms per phase.

8.17 Repeat Problem 8.14 for the load shown in Example 8.4 (Figure 8.6).

8.18 Perform the indicated matrix multiplications in (8.2.21) and verify the sequence im-
pedances given by (8.2.22)–(8.2.27).

8.19 The following unbalanced line-to-ground voltages are applied to the balanced-Y load
shown in Figure 3.3: Vag ¼ 100 0� , Vbg ¼ 75 180� , and Vcg ¼ 50 90� volts. The Y
load has ZY ¼ 3þ j4 W per phase with neutral impedance Zn ¼ j1 W. (a) Calculate
the line currents Ia, Ib, and Ic without using symmetrical components. (b) Calculate the
line currents Ia, Ib, and Ic using symmetrical components. Which method is easier?

8.20 (a) Consider three equal impedances of ( j27) W connected in D. Obtain the sequence
networks.
(b) Now, with a mutual impedance of ( j6) W between each pair of adjacent branches
in the D-connected load of part (a), how would the sequence networks change?

8.21 The three-phase impedance load shown in Figure 8.7 has the following phase imped-
ance matrix:

Zp ¼

2
64
ð6þ j10Þ 0 0

0 ð6þ j10Þ 0

0 0 ð6þ j10Þ

3
75 W

Determine the sequence impedance matrix Zs for this load. Is the load symmetrical?

8.22 The three-phase impedance load shown in Figure 8.7 has the following sequence im-
pedance matrix:

ZS ¼

2
64
ð8þ j12Þ 0 0

0 4 0

0 0 4

3
75 W

Determine the phase impedance matrix Zp for this load. Is the load symmetrical?

8.23 Consider a three-phase balanced Y-connected load with self and mutual impedances
as shown in Figure 8.23. Let the load neutral be grounded through an impedance Zn.
Using Kirchho¤ ’s laws, develop the equations for line-to-neutral voltages, and then
determine the elements of the phase impedance matrix. Also find the elements of the
corresponding sequence impedance matrix.

8.24 A three-phase balanced voltage source is applied to a balanced Y-connected load with
ungrounded neutral. The Y-connected load consists of three mutually coupled re-
actances, where the reactance of each phase is j12 W and the mutual coupling between
any two phases is j4 W. The line-to-line source voltage is 100

ffiffiffi
3
p

V. Determine the
line currents (a) by mesh analysis without using symmetrical components, and (b)
using symmetrical components.
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8.25 A three-phase balanced Y-connected load with series impedances of ð8þ j24Þ W

per phase and mutual impedance between any two phases of j4 W is supplied by
a three-phase unbalanced source with line-to-neutral voltages of Van ¼ 200 25� ,
Vbn ¼ 100 �155� , Vcn ¼ 80 100� V. The load and source neutrals are both solidly
grounded. Determine: (a) the load sequence impedance matrix, (b) the symmetrical
components of the line-to-neutral voltages, (c) the symmetrical components of the
load currents, and (d) the load currents.

SECTION 8.3

8.26 Repeat Problem 8.14 but include balanced three-phase line impedances of ð3þ j4Þ
ohms per phase between the source and load.

8.27 Consider the flow of unbalanced currents in the symmetrical three-phase line sec-
tion with neutral conductor as shown in Figure 8.24. (a) Express the voltage drops
across the line conductors given by Vaa 0 , Vbb 0 , and Vcc 0 in terms of line currents, self-
impedances defined by Zs ¼ Zaa þ Znn � 2Zan, and mutual impedances defined by
Zm ¼ Zab þ Znn � 2Zan. (b) Show that the sequence components of the voltage drops
between the ends of the line section can be written as Vaa 00 ¼ Z0Ia0, Vaa 01 ¼ Z1Ia1,
and Vaa 02 ¼ Z2Ia2, where Z0 ¼ Zs þ 2Zm ¼ Zaa þ 2Zab þ 3Znn � 6Zan and Z1 ¼
Z2 ¼ Zs � Zm ¼ Zaa � Zab.

FIGURE 8.23

Problem 8.23

FIGURE 8.24

Problem 8.27
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8.28 Let the terminal voltages at the two ends of the line section shown in Figure 8.24 be
given by:

Van ¼ ð182þ j70Þ kV Van 0 ¼ ð154þ j28Þ kV

Vbn ¼ ð72:24� j32:62Þ kV Vbn 0 ¼ ð44:24þ j74:62Þ kV

Vcn ¼ ð�170:24þ j88:62Þ kV Vcn 0 ¼ ð�198:24þ j46:62Þ kV

The line impedances are given by:

Zaa ¼ j60 W Zab ¼ j20 W Znn ¼ j80 W Zan ¼ 0

(a) Compute the line currents using symmetrical components. (Hint: See Problem
8.27.) (b) Compute the line currents without using symmetrical components.

8.29 A completely transposed three-phase transmission line of 200 km in length has the
following symmetrical sequence impedances and sequence admittances:

Z1 ¼ Z2 ¼ j0:5 W=km; Z0 ¼ j2 W=km

Y1 ¼ Y2 ¼ j3� 10�9 s=m; Y0 ¼ j1� 10�9 s=m

Set up the nominal P sequence circuits of this medium-length line.

SECTION 8.5

8.30 As shown in Figure 8.25, a balanced three-phase, positive-sequence source with
VAB ¼ 480 0� volts is applied to an unbalanced D load. Note that one leg of the D is
open. Determine: (a) the load currents IAB and IBC; (b) the line currents IA, IB, and IC,
which feed the D load; and (c) the zero-, positive-, and negative-sequence components
of the line currents.

8.31 A balanced Y-connected generator with terminal voltage Vbc ¼ 200 0� volts is con-
nected to a balanced-D load whose impedance is 10 40� ohms per phase. The line im-
pedance between the source and load is 0:5 80� ohm for each phase. The generator
neutral is grounded through an impedance of j5 ohms. The generator sequence im-
pedances are given by Zg0 ¼ j7, Zg1 ¼ j15, and Zg2 ¼ j10 ohms. Draw the sequence
networks for this system and determine the sequence components of the line currents.

FIGURE 8.25

Problem 8.30
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8.32 In a three-phase system, a synchronous generator supplies power to a 200-volt syn-
chronous motor through a line having an impedance of 0:5 80� ohm per phase. The
motor draws 5 kW at 0.8 p.f. leading and at rated voltage. The neutrals of both
the generator and motor are grounded through impedances of j5 ohms. The sequence
impedances of both machines are Z0 ¼ j5, Z1 ¼ j15, and Z2 ¼ j10 ohms. Draw the
sequence networks for this system and find the line-to-line voltage at the generator
terminals. Assume balanced three-phase operation.

8.33 Calculate the source currents in Example 8.6 without using symmetrical components.
Compare your solution method with that of Example 8.6. Which method is easier?

8.34 A Y-connected synchronous generator rated 20 MVA at 13.8 kV has a positive-
sequence reactance of j2.38 W, negative-sequence reactance of j3.33 W, and
zero-sequence reactance of j0.95 W. The generator neutral is solidly grounded. With
the generator operating unloaded at rated voltage, a so-called single line-to-ground fault
occurs at the machine terminals. During this fault, the line-to-ground voltages at the
generator terminals are Vag ¼ 0, Vbg ¼ 8:071 �102:25� , and Vcg ¼ 8:071 102:25� kV.
Determine the sequence components of the generator fault currents and the generator
fault currents. Draw a phasor diagram of the pre-fault and post-fault generator terminal
voltages. (Note: For this fault, the sequence components of the generator fault currents
are all equal to each other.)

8.35 Figure 8.26 shows a single-line diagram of a three-phase, interconnected generator-
reactor system, in which the given per-unit reactances are based on the ratings of the
individual pieces of equipment. If a three-phase short-circuit occurs at fault point F,
obtain the fault MVA and fault current in kA, if the pre-fault busbar line-to-line volt-
age is 13.2 kV. Choose 100 MVA as the base MVA for the system.

8.36 Consider Figures 8.13 and 8.14 of the text with reference to a Y-connected synchro-
nous generator (grounded through a neutral impedance Zn) operating at no load. For
a line-to-ground fault occurring on phase a of the generator, list the constraints on the
currents and voltages in the phase domain, transform those into the sequence domain,
and then obtain a sequence-network representation. Also, find the expression for the
fault current in phase a.

FIGURE 8.26

One-line diagram for
Problem 8.35

468 CHAPTER 8 SYMMETRICAL COMPONENTS



8.37 Reconsider the synchronous generator of Problem 8.36. Obtain sequence-network
representations for the following fault conditions.
(a) A short-circuit between phases b and c.
(b) A double line-to-ground fault with phases b and c grounded.

SECTION 8.6

8.38 Three single-phase, two-winding transformers, each rated 450 MVA, 20 kV/288.7 kV,
with leakage reactance Xeq ¼ 0:12 per unit, are connected to form a three-phase bank.
The high-voltage windings are connected in Y with a solidly grounded neutral. Draw
the per-unit zero-, positive-, and negative-sequence networks if the low-voltage wind-
ings are connected: (a) in D with American standard phase shift, (b) in Y with an open
neutral. Use the transformer ratings as base quantities. Winding resistances and excit-
ing current are neglected.

8.39 The leakage reactance of a three-phase, 500-MVA, 345 Y/23 D-kV transformer is 0.09
per unit based on its own ratings. The Y winding has a solidly grounded neutral.
Draw the sequence networks. Neglect the exciting admittance and assume American
standard phase shift.

8.40 Choosing system bases to be 360/24 kV and 100 MVA, redraw the sequence networks
for Problem 8.39.

8.41 Draw the zero-sequence reactance diagram for the power system shown in Figure 3.33.
The zero-sequence reactance of each generator and of the synchronous motor is
0.05 per unit based on equipment ratings. Generator 2 is grounded through a neutral
reactor of 0.06 per unit on a 100-MVA, 18-kV base. The zero-sequence reactance of
each transmission line is assumed to be three times its positive-sequence reactance. Use
the same base as in Problem 3.29.

8.42 Three identical Y-connected resistors of 1:0 0� per unit form a load bank, which is
supplied from the low-voltage Y-side of a Y� D transformer. The neutral of the
load is not connected to the neutral of the system. The positive- and negative-sequence
currents flowing toward the resistive load are given by

Ia; 1 ¼ 1 4:5� per unit; Ia; 2 ¼ 0:25 250� per unit

and the corresponding voltages on the low-voltage Y-side of the transformer are

Van; 1 ¼ 1 45� per unit (Line-to-neutral voltage base)

Van; 2 ¼ 0:25 250� per unit (Line-to-neutral voltage base)

Determine the line-to-line voltages and the line currents in per unit on the high-
voltage side of the transformer. Account for the phase shift.

SECTION 8.7

8.43 Draw the positive-, negative-, and zero-sequence circuits for the transformers shown
in Figure 3.34. Include ideal phase-shifting transformers showing phase shifts deter-
mined in Problem 3.32. Assume that all windings have the same kVA rating and that
the equivalent leakage reactance of any two windings with the third winding open is
0.10 per unit. Neglect the exciting admittance.

8.44 A single-phase three-winding transformer has the following parameters: Z1 ¼ Z2 ¼
Z3 ¼ 0þ j0:05, Gc ¼ 0, and Bm ¼ 0:2 per unit. Three identical transformers, as
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described, are connected with their primaries in Y (solidly grounded neutral) and with
their secondaries and tertiaries in D. Draw the per-unit sequence networks of this
transformer bank.

SECTION 8.8

8.45 For Problem 8.14, calculate the real and reactive power delivered to the three-phase
load.

8.46 A three-phase impedance load consists of a balanced-D load in parallel with a
balanced-Y load. The impedance of each leg of the D load is ZD ¼ 6þ j6 W, and
the impedance of each leg of the Y load is ZY ¼ 2þ j2 W. The Y load is grounded
through a neutral impedance Zn ¼ j1 W. Unbalanced line-to-ground source volt-
ages Vag, Vbg, and Vcg with sequence components V0 ¼ 10 60� , V1 ¼ 100 0� , and
V2 ¼ 15 200� volts are applied to the load. (a) Draw the zero-, positive-, and negative-
sequence networks. (b) Determine the complex power delivered to each sequence
network. (c) Determine the total complex power delivered to the three-phase load.

8.47 For Problem 8.12, compute the power absorbed by the load using symmetrical com-
ponents. Then verify the answer by computing directly without using symmetrical
components.

8.48 For Problem 8.25, determine the complex power delivered to the load in terms of
symmetrical components. Verify the answer by adding up the complex power of each
of the three phases.

8.49 Using the voltages of Problem 8.6(a) and the currents of Problem 8.5, compute the
complex power dissipated based on (a) phase components, and (b) symmetrical com-
ponents.

C A S E S T U DY Q U E S T I O N S

A. What are the advantages of SF6 circuit breakers for applications at or above 72.5 kV?

B. What are the properties of SF6 that make it make it advantageous as a medium for
interrupting an electric arc?
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