SYMMETRICAL FAULTS

Short circuits occur in power systems when equipment insulation fails due to system overvoltages caused by lightning or switching surges, to insulation contamination (salt spray or pollution), or to other mechanical causes. The resulting short circuit or “fault” current is determined by the internal voltages of the synchronous machines and by the system impedances between the machine voltages and the fault. Short-circuit currents may be several orders of magnitude larger than normal operating currents and, if allowed to persist, may cause thermal damage to equipment. Windings and busbars may also suffer mechanical damage due to high magnetic forces during faults. It is therefore necessary to remove faulted sections of a power system from service as soon as possible. Standard EHV protective equipment is designed to clear faults within 3 cycles (50 ms at 60 Hz). Lower voltage protective equipment operates more slowly (for example, 5 to 20 cycles).
We begin this chapter by reviewing series R–L circuit transients in Section 7.1, followed in Section 7.2 by a description of three-phase short-circuit currents at unloaded synchronous machines. We analyze both the ac component, including subtransient, transient, and steady-state currents, and the dc component of fault current. We then extend these results in Sections 7.3 and 7.4 to power system three-phase short circuits by means of the superposition principle. We observe that the bus impedance matrix is the key to calculating fault currents. The SHORT CIRCUITS computer program that accompanies this text may be utilized in power system design to select, set, and coordinate protective equipment such as circuit breakers, fuses, relays, and instrument transformers. We discuss circuit breaker and fuse selection in Section 7.5.

Balanced three-phase power systems are assumed throughout this chapter. We also work in per-unit.

CASE STUDY

Short circuits can cause severe damage when not interrupted promptly. In some cases, high-impedance fault currents may be insufficient to operate protective relays or blow fuses. Standard overcurrent protection schemes utilized on secondary distribution at some industrial, commercial, and large residential buildings may not detect high-impedance faults, commonly called arcing faults. In these cases, more careful design techniques, such as the use of ground fault circuit interruption, are required to detect arcing faults and prevent burndown. The following case histories [11] give examples of the destructive effects of arcing faults.

The Problem of Arcing Faults in Low-Voltage Power Distribution Systems

FRANCIS J. SHIELDS

ABSTRACT

Many cases of electrical equipment burndown arising from low-level arcing-fault currents have occurred in recent years in low-voltage power distribution systems. Burndown, which is the severe damage or complete destruction of conductors, insulation systems, and metallic enclosures, is caused by the concentrated release of energy in the fault arc. Both grounded and ungrounded electrical distribution systems have experienced burndown, and the reported incidents have involved both industrial and commercial building distribution equipment, without regard to manufacturer, geographical location, or operating environment.

BURNDOWN CASE HISTORIES

The reported incidents of equipment burndown are many. One of the most publicized episodes involved a huge apartment building complex in New York City (Fig. 1), in which two main 480Y/277-volt switchboards were completely destroyed, and two 5000-ampere service entrance buses were burned-off right back to the utility vault. This arcing fault blazed and sputtered for over an hour, and inconvenienced some 10,000 residents of the development through loss of service to building water.
pumps, hall and stair lighting, elevators, appliances, and apartment lights. Several days elapsed before service resembling normal was restored through temporary hookups. Illustrations of equipment damage in this burndown are shown in Figs. 2 and 3.

Another example of burndown occurred in the Midwest, and resulted in completely gutting a service entrance switchboard and burning up two 1000-kVA supply transformers. This burndown arc current flowed for about 15 minutes.

In still other reported incidents, a Maryland manufacturer experienced four separate burndowns of secondary unit substations in a little over a year; on the West Coast a unit substation at an industrial process plant burned for more than eight minutes, resulting in destruction of the low-voltage switchgear equipment; and this year [1966] several burndowns have occurred in government office buildings at scattered locations throughout the country.

An example of the involvement of the latter type of equipment in arcing-fault burndowns is shown in

Fig. 2. The arcing associated with this fault continued for over 20 minutes, and the fault was finally extinguished only when the relays on the primary system shut down the whole plant.

The electrical equipment destruction shown in the sample photographs is quite startling, but it is only one aspect of this type of fault. Other less graphic but no less serious effects of electrical
equipment burndown may include personnel fatalities or serious injury, contingent fire damage, loss of vital services (lighting, elevators, ventilation, fire pumps, etc.), shutdown of critical loads, and loss of product revenue. It should be pointed out that the cases reported have involved both industrial and commercial building distribution equipment, without regard to manufacturer, geographical location, operating environment, or the presence or absence of electrical system neutral grounding. Also, the reported burndowns have included a variety of distribution equipment—load center unit substations, switchboards, busway, panelboards, service-entrance equipment, motor control centers, and cable in conduit, for example.

It is obvious, therefore, when all the possible effects of arcing-fault burndowns are taken into consideration, that engineers responsible for electrical power system layout and operation should be anxious both to minimize the probability of arcing faults in electrical systems and to alleviate or mitigate the destructive effects of such faults if they should inadvertently occur despite careful design and the use of quality equipment.

7.1 SERIES R–L CIRCUIT TRANSIENTS

Consider the series R–L circuit shown in Figure 7.1. The closing of switch SW at $t = 0$ represents to a first approximation a three-phase short circuit at the terminals of an unloaded synchronous machine. For simplicity, assume zero fault impedance; that is, the short circuit is a solid or “bolted” fault. The current is assumed to be zero before SW closes, and the source angle α determines the source voltage at $t = 0$. Writing a KVL equation for the circuit,

$$\frac{Ldi(t)}{dt} + Ri(t) = \sqrt{2}V \sin(\omega t + \alpha) \quad t \geq 0$$ \hspace{1cm} (7.1.1)

The solution to (7.1.1) is

$$i(t) = i_{ac}(t) + i_{dc}(t)$$

$$= \frac{\sqrt{2}V}{Z} \left[\sin(\omega t + \alpha - \theta) - \sin(\alpha - \theta)e^{-t/T} \right] \quad \text{A}$$ \hspace{1cm} (7.1.2)
where

\[i_{ac}(t) = \frac{\sqrt{2}V}{Z} \sin(\omega t + \alpha - \theta) \quad \text{A} \]

(7.1.3)

\[i_{dc}(t) = -\frac{\sqrt{2}V}{Z} \sin(\alpha - \theta)e^{-t/T} \quad \text{A} \]

(7.1.4)

\[Z = \sqrt{R^2 + (\omega L)^2} = \sqrt{R^2 + X^2} \quad \Omega \]

(7.1.5)

\[\theta = \tan^{-1} \frac{\omega L}{R} = \tan^{-1} \frac{X}{R} \]

(7.1.6)

\[T = \frac{L}{R} = \frac{X}{\omega R} = \frac{X}{2\pi f R} \quad \text{s} \]

(7.1.7)

The total fault current in (7.1.2), called the asymmetrical fault current, is plotted in Figure 7.1 along with its two components. The ac fault current (also called symmetrical or steady-state fault current), given by (7.1.3), is a sinusoid. The dc offset current, given by (7.1.4), decays exponentially with time constant \(T = L/R \).

The rms ac fault current is \(I_{ac} = V/Z \). The magnitude of the dc offset, which depends on \(\alpha \), varies from 0 when \(\alpha = \theta \) to \(\sqrt{2}I_{ac} \) when \(\alpha = (\theta \pm \pi/2) \). Note that a short circuit may occur at any instant during a cycle of the ac source; that is, \(\alpha \) can have any value. Since we are primarily interested in the largest fault current, we choose \(\alpha = (\theta - \pi/2) \). Then (7.1.2) becomes

\[i(t) = \sqrt{2}I_{ac}[\sin(\omega t - \pi/2) + e^{-t/T}] \quad \text{A} \]

(7.1.8)
where
\[I_{ac} = \frac{V}{Z} \text{ A} \]

(7.1.9)

The rms value of \(i(t) \) is of interest. Since \(i(t) \) in (7.1.8) is not strictly periodic, its rms value is not strictly defined. However, treating the exponential term as a constant, we stretch the rms concept to calculate the rms asymmetrical fault current with maximum dc offset, as follows:

\[I_{rms}(t) = \sqrt{I_{ac}^2 + [i_{dc}(t)]^2} \]

\[= \sqrt{I_{ac}^2 + [\sqrt{2}I_{ac}e^{-t/T}]^2} \]

\[= I_{ac}\sqrt{1 + 2e^{-2t/T}} \text{ A} \]

(7.1.10)

It is convenient to use \(T = X/(2\pi f) \) and \(t = t/f \), where \(t \) is time in cycles, and write (7.1.10) as

\[I_{rms}(\tau) = K(\tau)I_{ac} \text{ A} \]

(7.1.11)

where
\[K(\tau) = \sqrt{1 + 2e^{-4\pi\tau/(X/R)}} \text{ per unit} \]

(7.1.12)

From (7.1.11) and (7.1.12), the rms asymmetrical fault current equals the rms ac fault current times an “asymmetry factor,” \(K(\tau) \). \(I_{rms}(\tau) \) decreases from \(\sqrt{3}I_{ac} \) when \(\tau = 0 \) to \(I_{ac} \) when \(\tau \) is large. Also, higher \(X \) to \(R \) ratios (\(X/R \)) give higher values of \(I_{rms}(\tau) \). The above series R–L short-circuit currents are summarized in Table 7.1.

TABLE 7.1

<table>
<thead>
<tr>
<th>Component</th>
<th>Instantaneous Current (A)</th>
<th>rms Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrical (ac)</td>
<td>(i_{ac}(t) = \frac{\sqrt{2}V}{Z} \sin(\omega t + \alpha - \theta))</td>
<td>(I_{ac} = \frac{V}{Z})</td>
</tr>
<tr>
<td>dc offset</td>
<td>(i_{dc}(t) = -\frac{\sqrt{2}V}{Z} \sin(x - \theta)e^{-t/T})</td>
<td></td>
</tr>
<tr>
<td>Asymmetrical (total)</td>
<td>(i(t) = i_{ac}(t) + i_{dc}(t))</td>
<td>(I_{rms}(t) = \sqrt{I_{ac}^2 + [i_{dc}(t)]^2}) with maximum dc offset: (I_{rms}(\tau) = K(\tau)I_{ac})</td>
</tr>
</tbody>
</table>

*See Figure 7.1 and (7.1.1)–(7.1.12).

EXAMPLE 7.1 Fault currents: R–L circuit with ac source

A bolted short circuit occurs in the series R–L circuit of Figure 7.1 with \(V = 20 \text{ kV}, X = 8 \Omega, R = 0.8 \Omega \), and with maximum dc offset. The circuit breaker opens 3 cycles after fault inception. Determine (a) the rms ac fault current, (b) the rms “momentary” current at \(\tau = 0.5 \) cycle, which passes
through the breaker before it opens, and (c) the rms asymmetrical fault current that the breaker interrupts.

SOLUTION

a. From (7.1.9),

\[
I_{ac} = \frac{20 \times 10^3}{\sqrt{(8)^2 + (0.8)^2}} = \frac{20 \times 10^3}{8.040} = 2.488 \text{ kA}
\]

b. From (7.1.11) and (7.1.12) with \(X/R = 8/(0.8) = 10\) and \(\tau = 0.5\) cycle,

\[
K(0.5 \text{ cycle}) = \sqrt{1 + 2e^{-4\pi(0.5)/10}} = 1.438
\]

\[
I_{\text{momentary}} = K(0.5 \text{ cycle})I_{ac} = (1.438)(2.488) = 3.576 \text{ kA}
\]

c. From (7.1.11) and (7.1.12) with \(X/R = 10\) and \(\tau = 3\) cycles,

\[
K(3 \text{ cycles}) = \sqrt{1 + 2e^{-4\pi(3)/10}} = 1.023
\]

\[
I_{\text{rms}}(3 \text{ cycles}) = (1.023)(2.488) = 2.544 \text{ kA}
\]

7.2

THREE-PHASE SHORT CIRCUIT—UNLOADED SYNCHRONOUS MACHINE

One way to investigate a three-phase short circuit at the terminals of a synchronous machine is to perform a test on an actual machine. Figure 7.2 shows an oscillogram of the ac fault current in one phase of an unloaded synchronous machine during such a test. The dc offset has been removed.
from the oscillogram. As shown, the amplitude of the sinusoidal waveform
decreases from a high initial value to a lower steady-state value.

A physical explanation for this phenomenon is that the magnetic flux
caused by the short-circuit armature currents (or by the resultant armature
MMF) is initially forced to flow through high reluctance paths that do not
link the field winding or damper circuits of the machine. This is a result of
the theorem of constant flux linkages, which states that the flux linking a
closed winding cannot change instantaneously. The armature inductance,
which is inversely proportional to reluctance, is therefore initially low. As the
flux then moves toward the lower reluctance paths, the armature inductance
increases.

The ac fault current in a synchronous machine can be modeled by the
series R–L circuit of Figure 7.1 if a time-varying inductance \(L(t) \) or reactance
\(X(t) = \omega L(t) \) is employed. In standard machine theory texts \([3, 4]\), the fol-
lowing reactances are defined:

\[
X''_d = \text{direct axis subtransient reactance} \\
X'_d = \text{direct axis transient reactance} \\
X_d = \text{direct axis synchronous reactance}
\]

where \(X''_d < X'_d < X_d \). The subscript \(d \) refers to the direct axis. There are
similar quadrature axis reactances \(X''_q, X'_q, \) and \(X_q \) \([3, 4]\). However, if the
armature resistance is small, the quadrature axis reactances do not significantly
affect the short-circuit current. Using the above direct axis reactances, the in-
stantaneous ac fault current can be written as

\[
\begin{align*}
 i_{ac}(t) &= \sqrt{2}E_g \left[\left(\frac{1}{X''_d} - \frac{1}{X'_d} \right) e^{-t/T''_d} \\
 &\quad + \left(\frac{1}{X''_d} - \frac{1}{X_d} \right) e^{-t/T_d} + \frac{1}{X_d} \right] \sin \left(\omega t + \varphi - \frac{\pi}{2} \right)
\end{align*}
\]

(7.2.1)

where \(E_g \) is the rms line-to-neutral prefault terminal voltage of the unloaded
synchronous machine. Armature resistance is neglected in (7.2.1). Note that
at \(t = 0 \), when the fault occurs, the rms value of \(i_{ac}(t) \) in (7.2.1) is

\[
I_{ac}(0) = \frac{E_g}{X''_d} = I''
\]

(7.2.2)

which is called the rms subtransient fault current, \(I'' \). The duration of \(I'' \) is
determined by the time constant \(T''_d \), called the direct axis short-circuit sub-
transient time constant.

At a later time, when \(t \) is large compared to \(T''_d \) but small compared to
the direct axis short-circuit transient time constant \(T_d \), the first exponential
term in (7.2.1) has decayed almost to zero, but the second exponential has
not decayed significantly. The rms ac fault current then equals the rms tran-
sient fault current, given by

\[
I' = \frac{E_g}{X_d}
\]

(7.2.3)
When \(t \) is much larger than \(T'_d \), the rms ac fault current approaches its steady-state value, given by

\[
I_{ac}(\infty) = \frac{E_g}{X'_d} = I
\]

(7.2.4)

Since the three-phase no-load voltages are displaced 120° from each other, the three-phase ac fault currents are also displaced 120° from each other. In addition to the ac fault current, each phase has a different dc offset. The maximum dc offset in any one phase, which occurs when \(\alpha = 0 \) in (7.2.1), is

\[
i_{dc\max}(t) = \sqrt{2}I''_d e^{-t/T_A}
\]

(7.2.5)

where \(T_A \) is called the armature time constant. Note that the magnitude of the maximum dc offset depends only on the rms subtransient fault current \(I''_d \).

The above synchronous machine short-circuit currents are summarized in Table 7.2.

<table>
<thead>
<tr>
<th>Component</th>
<th>Instantaneous Current (A)</th>
<th>rms Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetrical (ac)</td>
<td>(I_{ac}(t) = E_g \left(\frac{1}{X'_d} - \frac{1}{X''_d} \right) e^{-t/T'_d} + \left(\frac{1}{X'_d} - \frac{1}{X'_d} \right) e^{-t/T'_d} + \left(\frac{1}{X'_d} - \frac{1}{X'_d} \right))</td>
<td>(I'' = E_g/X''_d)</td>
</tr>
<tr>
<td>Subtransient</td>
<td></td>
<td>(I' = E_g/X'_d)</td>
</tr>
<tr>
<td>Transient</td>
<td></td>
<td>(I = E_g/X_d)</td>
</tr>
<tr>
<td>Steady-state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum dc offset</td>
<td>(i_{dc}(t) = \sqrt{2}I''_d e^{-t/T_A})</td>
<td>(i_{rms}(t) = \sqrt{I^2_{ac}(t) + i_{dc}(t)^2}) with maximum dc offset:</td>
</tr>
<tr>
<td>Asymmetrical (total)</td>
<td>(i(t) = i_{ac}(t) + i_{dc}(t))</td>
<td>(i_{rms}(t) = \sqrt{I^2_{ac}(t) + [\sqrt{2}I''_d e^{-t/T_A}]^2})</td>
</tr>
</tbody>
</table>

*See Figure 7.2 and (7.2.1)–(7.2.5).

EXAMPLE 7.2 Three-phase short-circuit currents, unloaded synchronous generator

A 500-MVA 20-kV, 60-Hz synchronous generator with reactances \(X''_d = 0.15 \), \(X'_d = 0.24 \), \(X_d = 1.1 \) per unit and time constants \(T''_d = 0.035 \), \(T'_d = 2.0 \), \(T_A = 0.20 \) s is connected to a circuit breaker. The generator is operating at 5% above rated voltage and at no-load when a bolted three-phase short circuit occurs on the load side of the breaker. The breaker interrupts the fault
3 cycles after fault inception. Determine (a) the subtransient fault current in per-unit and kA rms; (b) maximum dc offset as a function of time; and (c) rms asymmetrical fault current, which the breaker interrupts, assuming maximum dc offset.

SOLUTION

a. The no-load voltage before the fault occurs is $E_g = 1.05$ per unit. From (7.2.2), the subtransient fault current that occurs in each of the three phases is

$$I'' = \frac{1.05}{0.15} = 7.0 \text{ per unit}$$

The generator base current is

$$I_{\text{base}} = \frac{S_{\text{rated}}}{\sqrt{3}V_{\text{rated}}} = \frac{500}{(\sqrt{3})(20)} = 14.43 \text{ kA}$$

The rms subtransient fault current in kA is the per-unit value multiplied by the base current:

$$I'' = (7.0)(14.43) = 101.0 \text{ kA}$$

b. From (7.2.5), the maximum dc offset that may occur in any one phase is

$$i_{\text{dc max}}(t) = \sqrt{2}(101.0)e^{-t/0.20} = 142.9e^{-t/0.20} \text{ kA}$$

c. From (7.2.1), the rms ac fault current at $t = 3$ cycles $= 0.05$ s is

$$I_{\text{ac}}(0.05 \text{ s}) = 1.05\left[\left(\frac{1}{0.15} - \frac{1}{0.24}\right)e^{-0.05/0.035} + \left(\frac{1}{0.24} - \frac{1}{1.1}\right)e^{-0.05/2.0} + \frac{1}{1.1}\right]$$

$$= 4.920 \text{ per unit}$$

$$= (4.920)(14.43) = 71.01 \text{ kA}$$

Modifying (7.1.10) to account for the time-varying symmetrical component of fault current, we obtain

$$I_{\text{rms}}(0.05) = \sqrt{[I_{\text{ac}}(0.05)]^2 + [\sqrt{2}I''e^{-t/T_a}]^2}$$

$$= I_{\text{ac}}(0.05)\sqrt{1 + 2\left[\frac{I''}{I_{\text{ac}}(0.05)}\right]^2e^{-2t/T_a}}$$

$$= (71.01)\sqrt{1 + 2\left[\frac{101}{71.01}\right]^2e^{-2(0.05)/0.20}}$$

$$= (71.01)(1.8585)$$

$$= 132 \text{ kA}$$
In order to calculate the subtransient fault current for a three-phase short circuit in a power system, we make the following assumptions:

1. Transformers are represented by their leakage reactances. Winding resistances, shunt admittances, and Δ–Y phase shifts are neglected.

2. Transmission lines are represented by their equivalent series reactances. Series resistances and shunt admittances are neglected.

3. Synchronous machines are represented by constant-voltage sources behind subtransient reactances. Armature resistance, saliency, and saturation are neglected.

4. All nonrotating impedance loads are neglected.

5. Induction motors are either neglected (especially for small motors rated less than 50 hp (40 kW)) or represented in the same manner as synchronous machines.

These assumptions are made for simplicity in this text, and in practice they should not be made for all cases. For example, in distribution systems, resistances of primary and secondary distribution lines may in some cases significantly reduce fault current magnitudes.

Figure 7.3 shows a single-line diagram consisting of a synchronous generator feeding a synchronous motor through two transformers and a transmission line. We shall consider a three-phase short circuit at bus 1. The positive-sequence equivalent circuit is shown in Figure 7.4(a), where the voltages $E_0^n_g$ and $E_0^n_m$ are the prefault internal voltages behind the subtransient reactances of the machines, and the closing of switch SW represents the fault. For purposes of calculating the subtransient fault current, $E_0^n_g$ and $E_0^n_m$ are assumed to be constant-voltage sources.

In Figure 7.4(b) the fault is represented by two opposing voltage sources with equal phasor values V_F. Using superposition, the fault current can then be calculated from the two circuits shown in Figure 7.4(c). However, if V_F equals the prefault voltage at the fault, then the second circuit in Figure 7.4(c) represents the system before the fault occurs. As such, $I_{F2}'' = 0$ and V_F,
which has no effect, can be removed from the second circuit, as shown in Figure 7.4(d). The subtransient fault current is then determined from the first circuit in Figure 7.4(d), $I_{F}'' = I_{F1}''$. The contribution to the fault from the generator is $I_{g}'' = I_{g1}'' + I_{g2}'' = I_{g1}'' + I_{L}$, where I_{L} is the prefault generator current. Similarly, $I_{m}'' = I_{m1}'' - I_{L}$.

EXAMPLE 7.3 Three-phase short-circuit currents, power system

The synchronous generator in Figure 7.3 is operating at rated MVA, 0.95 p.f. lagging and at 5% above rated voltage when a bolted three-phase short circuit occurs at bus 1. Calculate the per-unit values of (a) subtransient fault current; (b) subtransient generator and motor currents, neglecting prefault
current; and (c) subtransient generator and motor currents including prefault current.

SOLUTION

a. Using a 100-MVA base, the base impedance in the zone of the transmission line is

\[Z_{\text{base, line}} = \frac{(138)^2}{100} = 190.44 \ \Omega \]

and

\[X_{\text{line}} = \frac{20}{190.44} = 0.1050 \ \text{per unit} \]

The per-unit reactances are shown in Figure 7.4. From the first circuit in Figure 7.4(d), the Thévenin impedance as viewed from the fault is

\[Z_{\text{Th}} = jX_{\text{Th}} = j \frac{(0.15)(0.505)}{(0.15 + 0.505)} = j0.11565 \ \text{per unit} \]

and the prefault voltage at the generator terminals is

\[V_F = 1.05/0^\circ \ \text{per unit} \]

The subtransient fault current is then

\[I_{F}'' = \frac{V_F}{Z_{\text{Th}}} = \frac{1.05/0^\circ}{j0.11565} = -j9.079 \ \text{per unit} \]

b. Using current division in the first circuit of Figure 7.4(d),

\[I_{q1}'' = \left(\frac{0.505}{0.505 + 0.15} \right) I_{F}'' = (0.7710)(-j9.079) = -j7.000 \ \text{per unit} \]

\[I_{m1}'' = \left(\frac{0.15}{0.505 + 0.15} \right) I_{F}'' = (0.2290)(-j9.079) = -j2.079 \ \text{per unit} \]

c. The generator base current is

\[I_{\text{base, gen}} = \frac{100}{(\sqrt{3})(13.8)} = 4.1837 \ \text{kA} \]

and the prefault generator current is

\[I_L = \frac{100}{(\sqrt{3})(1.05 \times 13.8)} / \cos^{-1} 0.95 = 3.9845/-18.19^\circ \ \text{kA} \]

\[= \frac{3.9845/-18.19^\circ}{4.1837} = 0.9524/-18.19^\circ \]

\[= 0.9048 - j0.2974 \ \text{per unit} \]
The subtransient generator and motor currents, including prefault current, are then
\[I''_g = I''_{g1} + I_L = -j7.000 + 0.9048 - j0.2974 \]
\[= 0.9048 - j7.297 = 7.353/-82.9^\circ \text{ per unit} \]
\[I''_m = I''_{m1} - I_L = -j2.079 - 0.9048 + j0.2974 \]
\[= -0.9048 - j1.782 = 1.999/243.1^\circ \text{ per unit} \]

An alternate method of solving Example 7.3 is to first calculate the internal voltages \(E''_g \) and \(E''_m \) using the prefault load current \(I_L \). Then, instead of using superposition, the fault currents can be resolved directly from the circuit in Figure 7.4(a) (see Problem 7.11). However, in a system with many synchronous machines, the superposition method has the advantage that all machine voltage sources are shorted, and the prefault voltage is the only source required to calculate the fault current. Also, when calculating the contributions to fault current from each branch, prefault currents are usually small, and hence can be neglected. Otherwise, prefault load currents could be obtained from a power-flow program.

7.4 BUS IMPEDANCE MATRIX

We now extend the results of the previous section to calculate subtransient fault currents for three-phase faults in an \(N \)-bus power system. The system is modeled by its positive-sequence network, where lines and transformers are represented by series reactances and synchronous machines are represented by constant-voltage sources behind subtransient reactances. As before, all resistances, shunt admittances, and nonrotating impedance loads are neglected. For simplicity, we also neglect prefault load currents.

Consider a three-phase short circuit at any bus \(n \). Using the superposition method described in Section 7.3, we analyze two separate circuits. (For example, see Figure 7.4d.) In the first circuit, all machine-voltage sources are short-circuited, and the only source is due to the prefault voltage at the fault. Writing nodal equations for the first circuit,

\[Y_{\text{bus}} E^{(1)} = I^{(1)} \quad (7.4.1) \]

where \(Y_{\text{bus}} \) is the positive-sequence bus admittance matrix, \(E^{(1)} \) is the vector of bus voltages, and \(I^{(1)} \) is the vector of current sources. The superscript \((1) \) denotes the first circuit. Solving (7.4.1),

\[Z_{\text{bus}} I^{(1)} = E^{(1)} \quad (7.4.2) \]
where
\[Z_{\text{bus}} = Y_{\text{bus}}^{-1} \] (7.4.3)

\(Z_{\text{bus}} \), the inverse of \(Y_{\text{bus}} \), is called the positive-sequence bus impedance matrix. Both \(Z_{\text{bus}} \) and \(Y_{\text{bus}} \) are symmetric matrices.

Since the first circuit contains only one source, located at faulted bus \(n \), the current source vector contains only one nonzero component,
\[I_{\text{1}}(1) = \frac{V_{\text{F}}}{Z_{NN}} \]

Rewriting (7.4.2),
\[
\begin{bmatrix}
Z_{11} & Z_{12} & \cdots & Z_{1n} & \cdots & Z_{1N} \\
Z_{21} & Z_{22} & \cdots & Z_{2n} & \cdots & Z_{2N} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
Z_{n1} & Z_{n2} & \cdots & Z_{nn} & \cdots & Z_{nN} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
Z_{N1} & Z_{N2} & \cdots & Z_{Nn} & \cdots & Z_{NN}
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
\vdots \\
-I_{\text{F}}^n \\
\vdots \\
0
\end{bmatrix}
=
\begin{bmatrix}
E_{1}^{(1)} \\
E_{2}^{(1)} \\
\vdots \\
-E_{1}^{(1)} \\
\vdots \\
E_{N}^{(1)}
\end{bmatrix}
\] (7.4.4)

The minus sign associated with the current source in (7.4.4) indicates that the current injected into bus \(n \) is the negative of \(I_{\text{F}}^n \), since \(I_{\text{F}}^n \) flows away from bus \(n \) to the neutral. From (7.4.4), the subtransient fault current is
\[I_{\text{F}}^n = \frac{V_{\text{F}}}{Z_{nn}} \] (7.4.5)

Also from (7.4.4) and (7.4.5), the voltage at any bus \(k \) in the first circuit is
\[E_{k}^{(1)} = Z_{kn}(-I_{\text{F}}^n) = -\frac{Z_{kn}}{Z_{nn}} V_{\text{F}} \] (7.4.6)

The second circuit represents the prefault conditions. Neglecting pre-fault load current, all voltages throughout the second circuit are equal to the prefault voltage; that is, \(E_{k}^{(2)} = V_{\text{F}} \) for each bus \(k \). Applying superposition,
\[E_{k} = E_{k}^{(1)} + E_{k}^{(2)} = -\frac{Z_{kn}}{Z_{nn}} V_{\text{F}} + V_{\text{F}} \]
\[= \left(1 - \frac{Z_{kn}}{Z_{nn}}\right)V_{\text{F}} \quad k = 1, 2, \ldots, N \] (7.4.7)

EXAMPLE 7.4 Using \(Z_{\text{bus}} \) to compute three-phase short-circuit currents in a power system

Faults at bus 1 and 2 in Figure 7.3 are of interest. The prefault voltage is 1.05 per unit and prefault load current is neglected. (a) Determine the \(2 \times 2 \) positive-sequence bus impedance matrix. (b) For a bolted three-phase short circuit at bus 1, use \(Z_{\text{bus}} \) to calculate the subtransient fault current and the contribution to the fault current from the transmission line. (c) Repeat part (b) for a bolted three-phase short circuit at bus 2.
SOLUTION

a. The circuit of Figure 7.4(a) is redrawn in Figure 7.5 showing per-unit admittance rather than per-unit impedance values. Neglecting prefault load current, \(E_{00}'' = E_{m}'' = V_F = 1.05/0^\circ \) per unit. From Figure 7.5, the positive-sequence bus admittance matrix is

\[
Y_{\text{bus}} = -j \begin{bmatrix} 9.9454 & -3.2787 \\ -3.2787 & 8.2787 \end{bmatrix} \text{ per unit}
\]

Inverting \(Y_{\text{bus}} \),

\[
Z_{\text{bus}} = Y_{\text{bus}}^{-1} = +j \begin{bmatrix} 0.11565 & 0.04580 \\ 0.04580 & 0.13893 \end{bmatrix} \text{ per unit}
\]

b. Using (7.4.5) the subtransient fault current at bus 1 is

\[
I_{F1}'' = \frac{V_F}{Z_{11}} = \frac{1.05/0^\circ}{j0.11565} = -j9.079 \text{ per unit}
\]

which agrees with the result in Example 7.3, part (a). The voltages at buses 1 and 2 during the fault are, from (7.4.7),

\[
E_1 = \left(1 - \frac{Z_{11}}{Z_{11}}\right) V_F = 0
\]

\[
E_2 = \left(1 - \frac{Z_{21}}{Z_{11}}\right) V_F = \left(1 - \frac{j0.04580}{j0.11565}\right) 1.05/0^\circ = 0.6342/0^\circ
\]

The current to the fault from the transmission line is obtained from the voltage drop from bus 2 to 1 divided by the impedance of the line and transformers T1 and T2:

\[
I_{21} = \frac{E_2 - E_1}{j(X_{\text{line}} + X_{T1} + X_{T2})} = \frac{0.6342 - 0}{j0.3050} = -j2.079 \text{ per unit}
\]

which agrees with the motor current calculated in Example 7.3, part (b), where prefault load current is neglected.
c. Using (7.4.5), the subtransient fault current at bus 2 is

\[I''_{F2} = \frac{V_F}{Z_{22}} = \frac{1.05/0^\circ}{j0.13893} = -j7.558 \text{ per unit} \]

and from (7.4.7),

\[E_1 = \left(1 - \frac{Z_{12}}{Z_{22}}\right) V_F = \left(1 - \frac{j0.04580}{j0.13893}\right) 1.05/0^\circ = 0.7039/0^\circ \]
\[E_2 = \left(1 - \frac{Z_{22}}{Z_{22}}\right) V_F = 0 \]

The current to the fault from the transmission line is

\[I_{12} = \frac{E_1 - E_2}{j(X_{\text{line}} + X_{T1} + X_{T2})} = \frac{0.7039 - 0}{j0.3050} = -j2.308 \text{ per unit} \]

Figure 7.6 shows a bus impedance equivalent circuit that illustrates the short-circuit currents in an \(N \)-bus system. This circuit is given the name rake equivalent in Neuenswander [5] due to its shape, which is similar to a garden rake.

The diagonal elements \(Z_{11}, Z_{22}, \ldots, Z_{NN} \) of the bus impedance matrix, which are the self-impedances, are shown in Figure 7.6. The off-diagonal elements, or the mutual impedances, are indicated by the brackets in the figure.

Neglecting prefault load currents, the internal voltage sources of all synchronous machines are equal both in magnitude and phase. As such, they can be connected, as shown in Figure 7.7, and replaced by one equivalent source \(V_F \) from neutral bus 0 to a references bus, denoted \(r \). This equivalent source is also shown in the rake equivalent of Figure 7.6.
Using Z_{bus}, the fault currents in Figure 7.6 are given by

$$
\begin{bmatrix}
Z_{11} & Z_{12} & \cdots & Z_{1n} & \cdots & Z_{1N} \\
Z_{21} & Z_{22} & \cdots & Z_{2n} & \cdots & Z_{2N} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
Z_{n1} & Z_{n2} & \cdots & Z_{nn} & \cdots & Z_{nN} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
Z_{N1} & Z_{N2} & \cdots & Z_{Nn} & \cdots & Z_{NN}
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_n \\
\vdots \\
I_N
\end{bmatrix}
=
\begin{bmatrix}
V_F - E_1 \\
V_F - E_2 \\
\vdots \\
V_F - E_n \\
\vdots \\
V_F - E_N
\end{bmatrix}
$$

(7.4.8)

where I_1, I_2, \ldots are the branch currents and $(V_F - E_1), (V_F - E_2), \ldots$ are the voltages across the branches.

If switch SW in Figure 7.6 is open, all currents are zero and the voltage at each bus with respect to the neutral equals V_F. This corresponds to pre-fault conditions, neglecting prefault load currents. If switch SW is closed, corresponding to a short circuit at bus n, $E_n = 0$ and all currents except I_n remain zero. The fault current is $I_{Fn} = V_F / Z_{nn}$, which agrees with (7.4.5). This fault current also induces a voltage drop $Z_{kn}I_n = (Z_{kn} / Z_{nn})V_F$ across each branch k. The voltage at bus k with respect to the neutral then equals V_F minus this voltage drop, which agrees with (7.4.7).

As shown by Figure 7.6 as well as (7.4.5), subtransient fault currents throughout an N-bus system can be determined from the bus impedance matrix and the prefault voltage. Z_{bus} can be computed by first constructing Y_{bus}, via nodal equations, and then inverting Y_{bus}. Once Z_{bus} has been obtained, these fault currents are easily computed.

EXAMPLE 7.5

PowerWorld Simulator case Example 7_5 models the 5-bus power system whose one-line diagram is shown in Figure 6.2. Machine, line, and transformer data are given in Tables 7.3, 7.4, and 7.5. This system is initially unloaded. Prefault voltages at all the buses are 1.05 per unit. Use PowerWorld Simulator to determine the fault current for three-phase faults at each of the buses.
SOLUTION To fault a bus from the one-line, first right-click on the bus symbol to display the local menu, and then select “Fault.” This displays the Fault dialog (see Figure 7.8). The selected bus will be automatically selected as the fault location. Verify that the Fault Location is “Bus Fault” and the Fault Type is “3 Phase Balanced” (unbalanced faults are covered in Chapter 9). Then select “Calculate,” located in the bottom left corner of the dialog, to determine the fault currents and voltages. The results are shown in the tables at the bottom of the dialog. Additionally, the values can be animated on the one-line by changing the Oneline Display Field value. Since with a three-phase fault the system remains balanced, the magnitudes of the a phase, b phase and c phase values are identical. The 5×5 Z_{bus} matrix for this system is shown in Table 7.6, and the fault currents and bus voltages for faults at each of the buses are given in Table 7.7. Note that these fault currents are subtransient fault currents, since the machine reactance input data consist of direct axis subtransient reactances.

<table>
<thead>
<tr>
<th>TABLE 7.3</th>
<th>Machine Subtransient Reactance—X''_d (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>0.045</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0225</td>
</tr>
</tbody>
</table>

| *$S_{base} = 100$ MVA |
| $V_{base} = 15$ kV at buses 1, 3 |
| $= 345$ kV at buses 2, 4, 5 |

<table>
<thead>
<tr>
<th>TABLE 7.4</th>
<th>Equivalent Positive-Sequence Series Reactance (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus-to-Bus</td>
<td>0.1</td>
</tr>
<tr>
<td>2–4</td>
<td></td>
</tr>
<tr>
<td>2–5</td>
<td>0.05</td>
</tr>
<tr>
<td>4–5</td>
<td>0.025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 7.5</th>
<th>Leakage Reactance—X (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus-to-Bus</td>
<td>0.02</td>
</tr>
<tr>
<td>1–5</td>
<td></td>
</tr>
<tr>
<td>3–4</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 7.6</th>
<th>Z_{bus} for Example 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0279725</td>
<td>0.0177025</td>
</tr>
<tr>
<td>0.0085125</td>
<td>0.0122975</td>
</tr>
<tr>
<td>0.0179725</td>
<td>0.0176475</td>
</tr>
<tr>
<td>0.0085125</td>
<td>0.016353</td>
</tr>
<tr>
<td>0.0122975</td>
<td>0.0236</td>
</tr>
<tr>
<td>0.020405</td>
<td>0.029475</td>
</tr>
</tbody>
</table>

SECTION 7.4 BUS IMPEDANCE MATRIX

TABLE 7.3: Synchronous machine data for SYMMETRICAL SHORT CIRCUITS program

<table>
<thead>
<tr>
<th>Bus</th>
<th>Machine Subtransient Reactance—X''_d (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.045</td>
</tr>
<tr>
<td>3</td>
<td>0.0225</td>
</tr>
</tbody>
</table>

*|$S_{base} = 100$ MVA |

<table>
<thead>
<tr>
<th>TABLE 7.4</th>
<th>Equivalent Positive-Sequence Series Reactance (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus-to-Bus</td>
<td>0.1</td>
</tr>
<tr>
<td>2–4</td>
<td></td>
</tr>
<tr>
<td>2–5</td>
<td>0.05</td>
</tr>
<tr>
<td>4–5</td>
<td>0.025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 7.5</th>
<th>Leakage Reactance—X (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus-to-Bus</td>
<td>0.02</td>
</tr>
<tr>
<td>1–5</td>
<td></td>
</tr>
<tr>
<td>3–4</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 7.6</th>
<th>Z_{bus} for Example 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0279725</td>
<td>0.0177025</td>
</tr>
<tr>
<td>0.0085125</td>
<td>0.0122975</td>
</tr>
<tr>
<td>0.0179725</td>
<td>0.0176475</td>
</tr>
<tr>
<td>0.0085125</td>
<td>0.016353</td>
</tr>
<tr>
<td>0.0122975</td>
<td>0.0236</td>
</tr>
<tr>
<td>0.020405</td>
<td>0.029475</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 7.7</th>
<th>Z_{bus} for Example 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0279725</td>
<td>0.0177025</td>
</tr>
<tr>
<td>0.0085125</td>
<td>0.0122975</td>
</tr>
<tr>
<td>0.0179725</td>
<td>0.0176475</td>
</tr>
<tr>
<td>0.0085125</td>
<td>0.016353</td>
</tr>
<tr>
<td>0.0122975</td>
<td>0.0236</td>
</tr>
<tr>
<td>0.020405</td>
<td>0.029475</td>
</tr>
</tbody>
</table>
TABLE 7.7
Fault currents and bus voltages for Example 7.5

<table>
<thead>
<tr>
<th>Fault Bus</th>
<th>Fault Current (per unit)</th>
<th>Contributions to Fault Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.536</td>
<td>G 1 GRND–1 23.332 T 1 5–1 14.204</td>
</tr>
<tr>
<td>2</td>
<td>18.436</td>
<td>L 1 4–2 6.864 L 2 5–2 11.572</td>
</tr>
<tr>
<td>3</td>
<td>57.556</td>
<td>G 2 GRND–3 46.668 T 2 4–3 10.888</td>
</tr>
<tr>
<td>4</td>
<td>44.456</td>
<td>L 1 2–4 1.736 L 3 5–4 10.412 T 2 3–4 32.308</td>
</tr>
<tr>
<td>5</td>
<td>35.624</td>
<td>L 2 2–5 2.78 L 3 4–5 16.688 T 1 1–5 16.152</td>
</tr>
</tbody>
</table>

Per-Unit Bus Voltage Magnitudes during the Fault

<table>
<thead>
<tr>
<th>$V_F = 1.05$</th>
<th>Fault Bus:</th>
<th>Bus 1</th>
<th>Bus 2</th>
<th>Bus 3</th>
<th>Bus 4</th>
<th>Bus 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.7236</td>
<td>0.5600</td>
<td>0.5033</td>
<td>0.3231</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.3855</td>
<td>0.0000</td>
<td>0.2644</td>
<td>0.1736</td>
<td>0.1391</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.7304</td>
<td>0.7984</td>
<td>0.0000</td>
<td>0.3231</td>
<td>0.6119</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.5884</td>
<td>0.6865</td>
<td>0.1089</td>
<td>0.0000</td>
<td>0.4172</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2840</td>
<td>0.5786</td>
<td>0.3422</td>
<td>0.2603</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 7.8
Fault Analysis Dialog for Example 7.5—fault at bus 1
EXAMPLE 7.6

Redo Example 7.5 with an additional line installed between buses 2 and 4. This line, whose reactance is 0.075 per unit, is not mutually coupled to any other line.

SOLUTION The modified system is contained in PowerWorld Simulator case Example 7.6. Z_{bus} along with the fault currents and bus voltages are shown in Tables 7.8 and 7.9.

![FIGURE 7.9 Screen for Example 7.5—fault at bus 1](image)

TABLE 7.8

Z_{bus} for Example 7.6

<table>
<thead>
<tr>
<th>j</th>
<th>0.027723</th>
<th>0.01597</th>
<th>0.00864</th>
<th>0.01248</th>
<th>0.02004</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01597</td>
<td>0.04501</td>
<td>0.01452</td>
<td>0.02097</td>
<td>0.02307</td>
<td></td>
</tr>
<tr>
<td>0.00864</td>
<td>0.01452</td>
<td>0.01818</td>
<td>0.01626</td>
<td>0.01248</td>
<td></td>
</tr>
<tr>
<td>0.01248</td>
<td>0.02097</td>
<td>0.01626</td>
<td>0.02349</td>
<td>0.01803</td>
<td></td>
</tr>
<tr>
<td>0.02004</td>
<td>0.02307</td>
<td>0.01248</td>
<td>0.01803</td>
<td>0.02895</td>
<td></td>
</tr>
</tbody>
</table>
A SHORT CIRCUITS computer program may be utilized in power system design to select, set, and coordinate protective equipment such as circuit breakers, fuses, relays, and instrument transformers. In this section we discuss basic principles of circuit breaker and fuse selection.

AC CIRCUIT BREAKERS

A circuit breaker is a mechanical switch capable of interrupting fault currents and of reclosing. When circuit-breaker contacts separate while carrying...
current, an arc forms. The breaker is designed to extinguish the arc by elongating and cooling it. The fact that ac arc current naturally passes through zero twice during its 60-Hz cycle aids the arc extinction process.

Circuit breakers are classified as power circuit breakers when they are intended for service in ac circuits above 1500 V, and as low-voltage circuit breakers in ac circuits up to 1500 V. There are different types of circuit breakers depending on the medium—air, oil, SF₆ gas, or vacuum—in which the arc is elongated. Also, the arc can be elongated either by a magnetic force or by a blast of air.

Some circuit breakers are equipped with a high-speed automatic reclosing capability. Since most faults are temporary and self-clearing, reclosing is based on the idea that if a circuit is deenergized for a short time, it is likely that whatever caused the fault has disintegrated and the ionized arc in the fault has dissipated.

When reclosing breakers are employed in EHV systems, standard practice is to reclose only once, approximately 15 to 50 cycles (depending on operating voltage) after the breaker interrupts the fault. If the fault persists and the EHV breaker recloses into it, the breaker reinterrupts the fault current and then “locks out,” requiring operator resetting. Multiple-shot reclosing in EHV systems is not standard practice because transient stability (Chapter 11) may be compromised. However, for distribution systems (2.4–46 kV) where customer outages are of concern, standard reclosers are equipped for two or more reclosures.

For low-voltage applications, molded case circuit breakers with dual trip capability are available. There is a magnetic instantaneous trip for large fault currents above a specified threshold and a thermal trip with time delay for smaller fault currents.

Modern circuit-breaker standards are based on symmetrical interrupting current. It is usually necessary to calculate only symmetrical fault current at a system location, and then select a breaker with a symmetrical interrupting capability equal to or above the calculated current. The breaker has the additional capability to interrupt the asymmetrical (or total) fault current if the dc offset is not too large.

Recall from Section 7.1 that the maximum asymmetry factor $K(t = 0)$ is $\sqrt{3}$, which occurs at fault inception $(t = 0)$. After fault inception, the dc fault current decays exponentially with time constant $T = (L/R) = (X/\omega R)$, and the asymmetry factor decreases. Power circuit breakers with a 2-cycle rated interruption time are designed for an asymmetrical interrupting capability up to 1.4 times their symmetrical interrupting capability, whereas slower circuit breakers have a lower asymmetrical interrupting capability.

A simplified method for breaker selection is called the “E/X simplified method” [1, 7]. The maximum symmetrical short-circuit current at the system location in question is calculated from the prefault voltage and system reactance characteristics, using computer programs. Resistances, shunt admittances, nonrotating impedance loads, and prefault load currents are neglected. Then, if the X/R ratio at the system location is less than 15, a breaker with a symmetrical interrupting capability equal to or above the
<table>
<thead>
<tr>
<th>Identification</th>
<th>Nominal Voltage Class (kV, rms)</th>
<th>Nominal 3-Phase MVA Class</th>
<th>Rated Max Voltage (kV, rms)</th>
<th>Rated Voltage Range Factor (K)</th>
<th>Rated Withstand Test Voltage Low Frequency Impulse (kV, Crest)</th>
<th>Rated Continuous Current at 60 Hz (Amperes, rms)</th>
<th>Rated Short-Circuit Current (at Rated Max kV) (kA, rms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col 1</td>
<td>Col 2</td>
<td>Col 3</td>
<td>Col 4</td>
<td>Col 5</td>
<td>Col 6</td>
<td>Col 7</td>
<td>Col 8</td>
</tr>
<tr>
<td>14.4</td>
<td>250</td>
<td>15.5</td>
<td>2.67</td>
<td></td>
<td>600</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>14.4</td>
<td>500</td>
<td>15.5</td>
<td>1.29</td>
<td></td>
<td>1200</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>500</td>
<td>25.8</td>
<td>2.15</td>
<td></td>
<td>1200</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>1500</td>
<td>38</td>
<td>1.65</td>
<td></td>
<td>1200</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>1500</td>
<td>48.3</td>
<td>1.21</td>
<td></td>
<td>1200</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>2500</td>
<td>72.5</td>
<td>1.21</td>
<td></td>
<td>1200</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>121</td>
<td>1.0</td>
<td></td>
<td>1200</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>121</td>
<td>1.0</td>
<td></td>
<td>1600</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>121</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>121</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>121</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>121</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>1200</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>1600</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>145</td>
<td>1.0</td>
<td></td>
<td>1200</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>169</td>
<td>1.0</td>
<td></td>
<td>1600</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>169</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>169</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>242</td>
<td>1.0</td>
<td></td>
<td>1600</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>242</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>242</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>242</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>242</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>242</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td></td>
<td>362</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td></td>
<td>362</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>550</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>550</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>765</td>
<td>1.0</td>
<td></td>
<td>2000</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>765</td>
<td>1.0</td>
<td></td>
<td>3000</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 7.10
(continued)

<table>
<thead>
<tr>
<th>Col 9</th>
<th>Col 10</th>
<th>Col 11</th>
<th>Col 12</th>
<th>Col 13</th>
<th>Col 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>5.8</td>
<td>24</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>12</td>
<td>23</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>23</td>
<td>36</td>
<td>36</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>40</td>
<td>21</td>
<td>21</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>60</td>
<td>23</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>121</td>
<td>20</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>121</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>121</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>121</td>
<td>63</td>
<td>63</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>121</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>121</td>
<td>63</td>
<td>63</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>20</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>63</td>
<td>63</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>80</td>
<td>80</td>
<td>128</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>63</td>
<td>63</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>80</td>
<td>80</td>
<td>128</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>145</td>
<td>16</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>169</td>
<td>16</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>169</td>
<td>31.5</td>
<td>31.5</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>169</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>169</td>
<td>50</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>242</td>
<td>31.5</td>
<td>31.5</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>242</td>
<td>31.5</td>
<td>31.5</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>242</td>
<td>31.5</td>
<td>31.5</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>242</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>242</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>242</td>
<td>63</td>
<td>63</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>362</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>362</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>550</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>550</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>765</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>765</td>
<td>40</td>
<td>40</td>
<td>64</td>
</tr>
</tbody>
</table>
calculated current at the given operating voltage is satisfactory. However, if
\(X/R\) is greater than 15, the dc offset may not have decayed to a sufficiently
low value. In this case, a method for correcting the calculated fault current to
account for dc and ac time constants as well as breaker speed can be used
[10]. If \(X/R\) is unknown, the calculated fault current should not be greater
than 80% of the breaker interrupting capability.

When selecting circuit breakers for generators, two cycle breakers are
employed in practice, and the subtransient fault current is calculated; there-
fore subtransient machine reactances \(X''_d\) are used in fault calculations. For
synchronous motors, subtransient reactances \(X''_d\) or transient reactances \(X'_d\)
are used, depending on breaker speed. Also, induction motors can moment-
tarily contribute to fault current. Large induction motors are usually modeled
as sources in series with \(X''_d\) or \(X'_d\), depending on breaker speed. Smaller in-
duction motors (below 50 hp (40 kW)) are often neglected entirely.

Table 7.10 shows a schedule of preferred ratings for outdoor power cir-
cuit breakers. We describe some of the more important ratings shown next.

Voltage ratings

Rated maximum voltage: Designates the maximum rms line-to-line op-
erating voltage. The breaker should be used in systems with an opera-
ting voltage less than or equal to this rating.

Rated low frequency withstand voltage: The maximum 60-Hz rms line-
to-line voltage that the circuit breaker can withstand without insulation
damage.

Rated impulse withstand voltage: The maximum crest voltage of a volt-
age pulse with standard rise and delay times that the breaker insulation
can withstand.

Rated voltage range factor \(K\): The range of voltage for which the sym-
metrical interrupting capability times the operating voltage is constant.

Current ratings

Rated continuous current: The maximum 60-Hz rms current that the
breaker can carry continuously while it is in the closed position without
overheating.

Rated short-circuit current: The maximum rms symmetrical current that
the breaker can safely interrupt at rated maximum voltage.

Rated momentary current: The maximum rms asymmetrical current that
the breaker can withstand while in the closed position without damage.
Rated momentary current for standard breakers is 1.6 times the sym-
metrical interrupting capability.

Rated interrupting time: The time in cycles on a 60-Hz basis from
the instant the trip coil is energized to the instant the fault current is
cleared.
Rated interrupting MVA: For a three-phase circuit breaker, this is $\sqrt{3}$ times the rated maximum voltage in kV times the rated short-circuit current in kA. It is more common to work with current and voltage ratings than with MVA rating.

As an example, the symmetrical interrupting capability of the 69-kV class breaker listed in Table 7.10 is plotted versus operating voltage in Figure 7.10. As shown, the symmetrical interrupting capability increases from its rated short-circuit current $I_{\text{max}} = 19$ kA at rated maximum voltage $V_{\text{max}} = 72.5$ kV up to $I_{\text{max}} = KI = (1.21)(19) = 23$ kA at an operating voltage $V_{\text{min}} = V_{\text{max}}/K = 72.5/1.21 = 60$ kV. At operating voltages V between V_{min} and V_{max}, the symmetrical interrupting capability is $I \times V_{\text{max}}/V = 1378/V$ kA. At operating voltages below V_{min}, the symmetrical interrupting capability remains at $I_{\text{max}} = 23$ kA.

Breakers of the 115-kV class and higher have a voltage range factor $K = 1.0$; that is, their symmetrical interrupting current capability remains constant.

EXAMPLE 7.7 Circuit breaker selection

The calculated symmetrical fault current is 17 kA at a three-phase bus where the operating voltage is 64 kV. The X/R ratio at the bus is unknown. Select a circuit breaker from Table 7.10 for this bus.

SOLUTION The 69-kV-class breaker has a symmetrical interrupting capability $I(V_{\text{max}}/V) = 19(72.5/64) = 21.5$ kA at the operating voltage $V = 64$ kV. The calculated symmetrical fault current, 17 kA, is less than 80% of this capability (less than $0.80 \times 21.5 = 17.2$ kA), which is a requirement when X/R is unknown. Therefore, we select the 69-kV-class breaker from Table 7.10.
FUSES

Figure 7.11(a) shows a cutaway view of a fuse, which is one of the simplest overcurrent devices. The fuse consists of a metal “fusible” link or links encapsulated in a tube, packed in filler material, and connected to contact terminals. Silver is a typical link metal, and sand is a typical filler material.

During normal operation, when the fuse is operating below its continuous current rating, the electrical resistance of the link is so low that it simply acts as a conductor. If an overload current from one to about six times its continuous current rating occurs and persists for more than a short interval of time, the temperature of the link eventually reaches a level that causes a restricted segment of the link to melt. As shown in Figure 7.11(b), a gap is then formed and an electric arc is established. As the arc causes the link metal to burn back, the gap width increases. The resistance of the arc eventually reaches such a high level that the arc cannot be sustained and it is extinguished, as in Figure 7.11(c). The current flow within the fuse is then completely cut off.

FIGURE 7.11

Typical fuse

(a) Cutaway view

(b) The link melts and an arc is established under sustained overload current

(c) The “open” link after clearing the overload current.
If the fuse is subjected to fault currents higher than about six times its continuous current rating, several restricted segments melt simultaneously, resulting in rapid arc suppression and fault clearing. Arc suppression is accelerated by the filler material in the fuse.

Many modern fuses are current limiting. As shown in Figure 7.12, a current-limiting fuse has such a high speed of response that it cuts off a high fault current in less than a half cycle—before it can build up to its full peak value. By limiting fault currents, these fuses permit the use of motors, transformers, conductors, and bus structures that could not otherwise withstand the destructive forces of high fault currents.

Fuse specification is normally based on the following four factors.

1. **Voltage rating.** This rms voltage determines the ability of a fuse to suppress the internal arc that occurs after the fuse link melts. A blown fuse should be able to withstand its voltage rating. Most low-voltage fuses have 250- or 600-V ratings. Ratings of medium-voltage fuses range from 2.4 to 34.5 kV.

2. **Continuous current rating.** The fuse should carry this rms current indefinitely, without melting and clearing.

3. **Interrupting current rating.** This is the largest rms asymmetrical current that the fuse can safely interrupt. Most modern, low-voltage current-limiting fuses have a 200-kA interrupting rating. Standard interrupting ratings for medium-voltage current-limiting fuses include 65, 80, and 100 kA.

4. **Time response.** The melting and clearing time of a fuse depends on the magnitude of the overcurrent or fault current and is usually specified by a “time–current” curve. Figure 7.13 shows the time–current curve of a 15.5-kV, 100-A (continuous) current-limiting fuse. As shown, the fuse link melts within 2 s and clears within 5 s for a 500-A current. For a 5-kA current, the fuse link melts in less than 0.01 s and clears within 0.015 s.
It is usually a simple matter to coordinate fuses in a power circuit such that only the fuse closest to the fault opens the circuit. In a radial circuit, fuses with larger continuous current ratings are located closer to the source, such that the fuse closest to the fault clears before other, upstream fuses melt.
Fuses are inexpensive, fast operating, easily coordinated, and reliable, and they do not require protective relays or instrument transformers. Their chief disadvantage is that the fuse or the fuse link must be manually replaced after it melts. They are basically one-shot devices that are, for example, incapable of high-speed reclosing.

MULTIPLE CHOICE QUESTIONS

SECTION 7.1

7.1 The asymmetrical short-circuit current in series R–L circuit for a simulated solid or “bolted fault” can be considered as a combination of symmetrical (ac) component that is a __________, and dc-offset current that decays __________, and depends on __________. Fill in the Blanks.

7.2 Even though the fault current is not symmetrical and not strictly periodic, the rms asymmetrical fault current is computed as the rms ac fault current times an “asymmetry factor,” which is a function of __________. Fill in the Blank.

SECTION 7.2

7.3 The amplitude of the sinusoidal symmetrical ac component of the three-phase short-circuit current of an unloaded synchronous machine decreases from a high initial value to a lower steady-state value, going through the stages of __________ and __________ periods. Fill in the Blanks.

7.4 The duration of subtransient fault current is dictated by __________ time constant, and that of transient fault current is dictated by __________ time constant. Fill in the Blanks.

7.5 The reactance that plays a role under steady-state operation of a synchronous machine is called __________. Fill in the Blank.

7.6 The dc-offset component of the three-phase short-circuit current of an unloaded synchronous machine is different in the three phases and its exponential decay is dictated by __________. Fill in the Blank.

SECTION 7.3

7.7 Generally, in power-system short-circuit studies, for calculating subtransient fault currents, transformers are represented by their __________, transmission lines by their equivalent __________, and synchronous machines by __________ behind their subtransient reactances. Fill in the Blanks.

7.8 In power-system fault studies, all nonrotating impedance loads are usually neglected. (a) True (b) False
7.9 Can superposition be applied in power-system short-circuit studies for calculating fault currents?
 (a) Yes (b) No

7.10 Before proceeding with per-unit fault current calculations, based on the single-line diagram of the power system, a positive-sequence equivalent circuit is set up on a chosen base system.
 (a) True (b) False

SECTION 7.4

7.11 The inverse of the bus-admittance matrix is called ________ matrix. Fill in the Blank.

7.12 For a power system, modeled by its positive-sequence network, both bus-admittance matrix and bus-impedance matrix are symmetric.
 (a) True (b) False

7.13 The bus-impedance equivalent circuit can be represented in the form of a “rake” with the diagonal elements, which are _______, and the non-diagonal (off-diagonal) elements, which are __________. Fill in the Blanks.

SECTION 7.5

7.14 A circuit breaker is designed to extinguish the arc by __________. Fill in the Blank.

7.15 Power-circuit breakers are intended for service in ac circuit above ________ V. Fill in the Blank.

7.16 In circuit breakers, besides air or vacuum, what gaseous medium, in which the arc is elongated, is used?

7.17 Oil can be used as a medium to extinguish the arc in circuit breakers.
 (a) True (b) False

7.18 Besides a blast of air/gas, the arc in a circuit breaker can be elongated by _______. Fill in the Blank.

7.19 For distribution systems, standard reclosers are equipped for two or more reclosures, whereas multiple-shot reclosing in EHV systems is not a standard practice.
 (a) True (b) False

7.20 Breakers of the 115-kV class and higher have a voltage range factor K = ________, such that their symmetrical interrupting current capability remains constant. Fill in the Blank.

7.21 A typical fusible link metal in fuses is ________, and a typical filler material is __________. Fill in the Blanks.

7.22 The melting and clearing time of a current-limiting fuse is usually specified by a ________ curve.
SECTION 7.1

7.1 In the circuit of Figure 7.1, \(V = 277 \) volts, \(L = 2 \) mH, \(R = 0.4 \) \(\Omega \), and \(\omega = 2\pi 60 \) rad/s. Determine (a) the rms symmetrical fault current; (b) the rms asymmetrical fault current at the instant the switch closes, assuming maximum dc offset; (c) the rms asymmetrical fault current 5 cycles after the switch closes, assuming maximum dc offset; (d) the dc offset as a function of time if the switch closes when the instantaneous source voltage is 300 volts.

7.2 Repeat Example 7.1 with \(V = 4 \) kV, \(X = 2 \) \(\Omega \), and \(R = 1 \) \(\Omega \).

7.3 In the circuit of Figure 7.1, let \(R = 0.125 \) \(\Omega \), \(L = 10 \) mH, and the source voltage is \(e(t) = 151 \sin(377t + \phi) \) V. Determine the current response after closing the switch for the following cases: (a) no dc offset; (b) maximum dc offset. Sketch the current waveform up to \(t = 0.10 \) s corresponding to case (a) and (b).

7.4 Consider the expression for \(i(t) \) given by

\[
i(t) = \sqrt{2}I_{\text{rms}} \left[\sin(\omega t - \theta_2) + \sin \theta_2 e^{i(\omega R/X)t} \right]
\]

where \(\theta_2 = \tan^{-1}(\omega L/R) \).

(a) For \((X/R) \) equal to zero and infinity, plot \(i(t) \) as a function of \((\omega t) \).

(b) Comment on the dc offset of the fault current waveforms.

(c) Find the asymmetrical current factor and the time of peak, \(t_p \), in milliseconds, for \((X/R) \) ratios of zero and infinity.

7.5 If the source impedance at a 13.2 kV distribution substation bus is \((0.5 + j1.5) \) \(\Omega \) per phase, compute the rms and maximum peak instantaneous value of the fault current, for a balanced three-phase fault. For the system \((X/R) \) ratio of 3.0, the asymmetrical factor is 1.9495 and the time of peak is 7.1 ms (see Problem 7.4). Comment on the withstanding peak current capability to which all substation electrical equipment need to be designed.

SECTION 7.2

7.6 A 1000-MVA 20-kV, 60-Hz three-phase generator is connected through a 1000-MVA 20-kV \(\Delta \)/345-kV Y transformer to a 345-kV circuit breaker and a 345-kV transmission line. The generator reactances are \(X''_d = 0.17 \), \(X'_{d} = 0.30 \), and \(X_d = 1.5 \) per unit, and its time constants are \(T''_d = 0.05 \), \(T'_{d} = 1.0 \), and \(T_A = 0.10 \) s. The transformer series reactance is 0.10 per unit; transformer losses and exciting current are neglected. A three-phase short-circuit occurs on the line side of the circuit breaker when the generator is operated at rated terminal voltage and at no-load. The breaker interrupts the fault 3 cycles after fault inception. Determine (a) the subtransient current through the breaker in per-unit and in kA rms; and (b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. Neglect the effect of the transformer on the time constants.

7.7 For Problem 7.6, determine (a) the instantaneous symmetrical fault current in kA in phase \(a \) of the generator as a function of time, assuming maximum dc offset occurs in this generator phase; and (b) the maximum dc offset current in kA as a function of time that can occur in any one generator phase.

7.8 A 300-MVA, 13.8-kV, three-phase, 60-Hz, Y-connected synchronous generator is adjusted to produce rated voltage on open circuit. A balanced three-phase fault is
applied to the terminals at \(t = 0 \). After analyzing the raw data, the symmetrical transient current is obtained as

\[
i_{ac}(t) = 10^4 (1 + e^{-t/\tau_1} + 6e^{-t/\tau_2}) \text{ A}
\]

where \(\tau_1 = 200 \text{ ms} \) and \(\tau_2 = 15 \text{ ms} \). (a) Sketch \(i_{ac}(t) \) as a function of time for \(0 \leq t \leq 500 \text{ ms} \). (b) Determine \(X_{d}^{''} \) and \(X_{d}^{'} \) in per-unit based on the machine ratings.

7.9

Two identical synchronous machines, each rated 60 MVA, 15 kV, with a subtransient reactance of 0.1 pu, are connected through a line of reactance 0.1 pu on the base of the machine rating. One machine is acting as a synchronous generator, while the other is working as a motor drawing 40 MW at 0.8 pf leading with a terminal voltage of 14.5 kV, when a symmetrical three-phase fault occurs at the motor terminals. Determine the subtransient currents in the generator, the motor, and the fault by using the internal voltages of the machines. Choose a base of 60 MVA, 15 kV in the generator circuit.

SECTION 7.3

7.10
Recalculate the subtransient current through the breaker in Problem 7.6 if the generator is initially delivering rated MVA at 0.80 p.f. lagging and at rated terminal voltage.

7.11
Solve Example 7.4, parts (a) and (c) without using the superposition principle. First calculate the internal machine voltages \(E^{''} \) and \(E^{'''} \), using the prefault load current. Then determine the subtransient fault, generator, and motor currents directly from Figure 7.4(a). Compare your answers with those of Example 7.3.

7.12
Equipment ratings for the four-bus power system shown in Figure 7.14 are as follows:

- **Generator G1**: 500 MVA, 13.8 kV, \(X^{''} = 0.20 \text{ per unit} \)
- **Generator G2**: 750 MVA, 18 kV, \(X^{''} = 0.18 \text{ per unit} \)
- **Generator G3**: 1000 MVA, 20 kV, \(X^{''} = 0.17 \text{ per unit} \)
- **Transformer T1**: 500 MVA, 13.8 \(\Delta/500 \text{ Y} \) kV, \(X = 0.12 \text{ per unit} \)
- **Transformer T2**: 750 MVA, 18 \(\Delta/500 \text{ Y} \) kV, \(X = 0.10 \text{ per unit} \)
- **Transformer T3**: 1000 MVA, 20 \(\Delta/500 \text{ Y} \) kV, \(X = 0.10 \text{ per unit} \)
- **Each 500-kV line**: \(X_1 = 50 \Omega \)

A three-phase short circuit occurs at bus 1, where the prefault voltage is 525 kV. Prefault load current is neglected. Draw the positive-sequence reactance diagram in

![Figure 7.14](image-url)
per-unit on a 1000-MVA, 20-kV base in the zone of generator G3. Determine (a) the Thévenin reactance in per-unit at the fault, (b) the subtransient fault current in per-unit and in kA rms, and (c) contributions to the fault current from generator G1 and from line 1–2.

7.13 For the power system given in Problem 7.12, a three-phase short circuit occurs at bus 2, where the prefault voltage is 525 kV. Prefault load current is neglected. Determine the (a) Thévenin equivalent at the fault, (b) subtransient fault current in per-unit and in kA rms, and (c) contributions to the fault from lines 1–2, 2–3, and 2–4.

7.14 Equipment ratings for the five-bus power system shown in Figure 7.15 are as follows:

- **Generator G1:** 50 MVA, 12 kV, $X'' = 0.2$ per unit
- **Generator G2:** 100 MVA, 15 kV, $X'' = 0.2$ per unit
- **Transformer T1:** 50 MVA, 10 kV Y/138 kV Y, $X = 0.10$ per unit
- **Transformer T2:** 100 MVA, 15 kV Δ/138 kV Y, $X = 0.10$ per unit
- **Each 138-kV line:** $X_1 = 40$ Ω

A three-phase short circuit occurs at bus 5, where the prefault voltage is 15 kV. Prefault load current is neglected. (a) Draw the positive-sequence reactance diagram in per-unit on a 100-MVA, 15-kV base in the zone of generator G2. Determine: (b) the Thévenin equivalent at the fault, (c) the subtransient fault current in per-unit and in kA rms, and (d) contributions to the fault from generator G2 and from transformer T2.

7.15 For the power system given in Problem 7.14, a three-phase short circuit occurs at bus 4, where the prefault voltage is 138 kV. Prefault load current is neglected. Determine (a) the Thévenin equivalent at the fault, (b) the subtransient fault current in per-unit and in kA rms, and (c) contributions to the fault from transformer T2 and from line 3–4.
7.16 In the system shown in Figure 7.16, a three-phase short circuit occurs at point F. Assume that prefault currents are zero and that the generators are operating at rated voltage. Determine the fault current.

FIGURE 7.16
Problem 7.16

![Diagram of a power system with 11 kV and 30 MVA connections, showing a three-phase short circuit at point F.](image)

7.17 A three-phase short circuit occurs at the generator bus (bus 1) for the system shown in Figure 7.17. Neglecting prefault currents and assuming that the generator is operating at its rated voltage, determine the subtransient fault current using superposition.

FIGURE 7.17
Problem 7.17

![Diagram of a power system with 25 MVA and 25 MVA connections, showing a three-phase short circuit at bus 2.](image)

7.18 (a) The bus impedance matrix for a three-bus power system is

\[
Z_{bus} = \begin{bmatrix}
0.12 & 0.08 & 0.04 \\
0.08 & 0.12 & 0.06 \\
0.04 & 0.06 & 0.08 \\
\end{bmatrix} \text{ per unit}
\]

where subtransient reactances were used to compute \(Z_{bus}\). Prefault voltage is 1.0 per unit and prefault current is neglected. (a) Draw the bus impedance matrix equivalent circuit (rake equivalent). Identify the per-unit self- and mutual impedances as well as the prefault voltage in the circuit. (b) A three-phase short circuit occurs at bus 2. Determine the subtransient fault current and the voltages at buses 1, 2, and 3 during the fault.

(b) For 7.18 Repeat for the case of

\[
Z_{bus} = \begin{bmatrix}
0.4 & 0.1 & 0.3 \\
0.1 & 0.8 & 0.5 \\
0.3 & 0.5 & 1.2 \\
\end{bmatrix} \text{ per unit}
\]

7.19 Determine \(Y_{bus}\) in per-unit for the circuit in Problem 7.12. Then invert \(Y_{bus}\) to obtain \(Z_{bus}\).

7.20 Determine \(Y_{bus}\) in per-unit for the circuit in Problem 7.14. Then invert \(Y_{bus}\) to obtain \(Z_{bus}\).

7.21 Figure 7.18 shows a system reactance diagram. (a) Draw the admittance diagram for the system by using source transformations. (b) Find the bus admittance matrix \(Y_{bus}\). (c) Find the bus impedance \(Z_{bus}\) matrix by inverting \(Y_{bus}\).
7.22 For the network shown in Figure 7.19, impedances labeled 1 through 6 are in per-unit. (a) Determine Y_{bus}. Preserve all buses. (b) Using MATLAB or a similar computer program, invert Y_{bus} to obtain Z_{bus}.

7.23 A single-line diagram of a four-bus system is shown in Figure 7.20, for which Z_{BUS} is given below:

$$Z_{BUS} = j \begin{bmatrix} 0.25 & 0.2 & 0.16 & 0.14 \\ 0.2 & 0.23 & 0.15 & 0.151 \\ 0.16 & 0.15 & 0.196 & 0.1 \\ 0.14 & 0.151 & 0.1 & 0.195 \end{bmatrix} \text{ per unit}$$

Let a three-phase fault occur at bus 2 of the network.
(a) Calculate the initial symmetrical rms current in the fault.
(b) Determine the voltages during the fault at buses 1, 3, and 4.
(c) Compute the fault currents contributed to bus 2 by the adjacent unfaulted buses 1, 3, and 4.
(d) Find the current flow in the line from bus 3 to bus 1. Assume the prefault voltage V_f at bus 2 to be 1/0° pu, and neglect all prefault currents.
PowerWorld Simulator case Problem 7.24 models the system shown in Figure 7.14 with all data on a 1000-MVA base. Using PowerWorld Simulator, determine the current supplied by each generator and the per-unit bus voltage magnitudes at each bus for a fault at bus 2.

Repeat Problem 7.24, except place the fault at bus 1.

Repeat Problem 7.24, except place the fault midway between buses 2 and 4. Determining the values for line faults requires that the line be split, with a fictitious bus added at the point of the fault. The original line’s impedance is then allocated to the two new lines based on the fault location, 50% each for this problem. Fault calculations are then the same as for a bus fault. This is done automatically in PowerWorld Simulator by first right-clicking on a line, and then selecting “Fault.” The Fault dialog appears as before, except now the fault type is changed to “In-Line Fault.” Set the location percentage field to 50% to model a fault midway between buses 2 and 4.

One technique for limiting fault current is to place reactance in series with the generators. Such reactance can be modeled in Simulator by increasing the value of the generator’s positive sequence internal impedance. For the Problem 7.24 case, how much per-unit reactance must be added to G3 to limit its maximum fault current to 2.5 per unit for all 3 phase bus faults? Where is the location of the most severe bus fault?

Using PowerWorld Simulator case Example 6.13, determine the per-unit current and actual current in amps supplied by each of the generators for a fault at the PETE69 bus. During the fault, what percentage of the system buses have voltage magnitudes below 0.75 per unit?

Repeat Problem 7.28, except place the fault at the BOB69 bus.

Redo Example 7.5, except first open the generator at bus 3.

A three-phase circuit breaker has a 15.5-kV rated maximum voltage, 9.0-kA rated short-circuit current, and a 2.67-rated voltage range factor. (a) Determine the symmetrical interrupting capability at 10-kV and 5-kV operating voltages. (b) Can this breaker be safely installed at a three-phase bus where the symmetrical fault current is 10 kA, the operating voltage is 13.8 kV, and the (X/R) ratio is 12?
7.32 A 500-kV three-phase transmission line has a 2.2-kA continuous current rating and a 2.5-kA maximum short-time overload rating, with a 525-kV maximum operating voltage. Maximum symmetrical fault current on the line is 30 kA. Select a circuit breaker for this line from Table 7.10.

7.33 A 69-kV circuit breaker has a voltage range factor $K = 1.21$, a continuous current rating of 1200 A, and a rated short-circuit current of 19,000 A at the maximum rated voltage of 72.5 kV. Determine the maximum symmetrical interrupting capability of the breaker. Also, explain its significance at lower operating voltages.

7.34 As shown in Figure 7.21, a 25-MVA, 13.8-kV, 60-Hz synchronous generator with $X''_d = 0.15$ per unit is connected through a transformer to a bus that supplies four identical motors. The rating of the three-phase transformer is 25 MVA, 13.8/6.9 kV, with a leakage reactance of 0.1 per unit. Each motor has a subtransient reactance $X''_d = 0.2$ per unit on a base of 5 MVA and 6.9 kV. A three-phase fault occurs at point P, when the bus voltage at the motors is 6.9 kV. Determine: (a) the subtransient fault current, (b) the subtransient current through breaker A, (c) the symmetrical short-circuit interrupting current (as defined for circuit breaker applications) in the fault and in breaker A.

![Figure 7.21](image_url)

FIGURE 7.21
Problem 7.34

- **Case Study Questions**
 A. Why are arcing (high-impedance) faults more difficult to detect than low-impedance faults?
 B. What methods are available to prevent the destructive effects of arcing faults from occurring?

Design Project 4 (continued): Power Flow/Short Circuits

Additional time given: 3 weeks
Additional time required: 10 hours

This is a continuation of Design Project 4. Assignments 1 and 2 are given in Chapter 6.
Assignment 3: Symmetrical Short Circuits

For the single-line diagram that you have been assigned (Figure 6.13 or 6.14), convert the positive-sequence reactance data to per-unit using the given base quantities. For synchronous machines, use subtransient reactance. Then using PowerWorld Simulator, create the machine, transmission line, and transformer input data files. Next, run the program to compute subtransient fault currents for a bolted three-phase-to-ground fault at bus 1, then at bus 2, then at bus 3, and so on. Also compute bus voltages during the faults and the positive-sequence bus impedance matrix. Assume 1.0 per-unit prefault voltage. Neglect prefault load currents and all losses.

Your output for this assignment consists of three input data files and three output data (fault currents, bus voltages, and the bus impedance matrix) files.

This project continues in Chapter 9.

REFERENCES