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Emergent Behaviors of Protector, Refugee,
and Aggressor Swarms

Ian A. Gravagne and Robert J. Marks, II

Abstract—Simple rules, when executed by individual agents in a large
group, or swarm, can lead to complex behaviors that are often difficult or
impossible to predict knowing only the rules. However, aggregate behavior
is not always unpredictable—even for swarm models said to be beyond
analysis. For the class of swarming algorithms examined herein, we ana-
lytically identify several possible emergent behaviors and their underlying
causes: clustering, drifting, and explosion. They also analyze the likelihood
of these behaviors emerging from randomly selected swarm configura-
tions and present a few examples. The analytic results are illustrated via
simulation.

Index Terms—Dynamic systems, emergent behavior, swarm intelligence.

I. INTRODUCTION

Often, determination of emergent behavior from simple rules of
interaction in swarm intelligence escapes both analytic and intuitive in-
spection. Swarm intelligence, with important applications in telecom-
munications [9], [15], business [4], robotics [3], [13], and optimization
[10], [11], makes use of a plurality of highly disjoint agents interacting
using simple rules. Simple swarm algorithms have been employed to
assist with load balancing of peer-to-peer networks [18], routing within
mobile ad hoc radio networks [12], and self-organizing construction
and assembly [17].

In all but the simplest cases, however, it remains extremely difficult
to predict with certainty the emergent behavior of the swarm as a
whole. Bonabeau and Meyer [4] initially posed a set of problems to
illustrate how simple rules, when applied by many individual agents
simultaneously, can result in a complex and sometimes unpredictable
emergent behavior. Designing specific collective behaviors by specify-
ing the appropriate individual behaviors is a nascent research subject
[5], [6], [8], and in these works researchers sometimes turn to the
“canonical” problem discussed here, or a close variant.

Certain properties of swarms, such as clustering and subgrouping,
have historically been illustrated by simulation; however, such prop-
erties have previously not been predictable or readily explained. In
this correspondence, we analytically describe certain swarm behaviors
by assigning a particular dynamical interpretation to the swarm rules
and examining the properties of the corresponding dynamics. Our
case study derives from a swarming model designed for Icosystem,
Inc. [14], that implements the initial suggestions of Bonabeau and
Meyer. Regarding their model, they state, “Although predicting the
group’s collective behavior is a task beyond human grasp, it can often
be done using simulation modeling.” Later, using mainly geometric
arguments, certain macroscopic behaviors were in fact deduced for
the Icosystem model [1]. However, without reference to the dynamics
that drive these behaviors, little was known about when and why they
occur. Here, we show that Icosystem-type swarms can cluster, drift,
and explode, and we give conditions under which these behaviors
may or may not occur. The following analysis represents a significant
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Fig. 1. Two principle swaming modes, (A) and (B), illustrating “protector”
and “refugee” behavior, and a third special case (C) illustrating “aggressor”
behavior.

step beyond computer simulation and reveals previously unidentified
causes for certain observed behaviors. As importantly, the dynamical
and graphical techniques employed here may be extensible to other
types of swarming systems.

To begin, we first note the simple rules that each swarm agent will
enact, as per the Icosystem model.

A. Protector: Every agent in the swarm picks two others and tries
to position itself between them.

B. Refugee: Every agent in the swarm picks two others and tries to
position itself so that the first is directly between itself and the
second.

These are illustrated in Fig. 1. To be meaningful, we must first trans-
late these rules into some kind of dynamical equations. One simple
choice appears to be a system in which every agent is attracted to its
desired location with an attraction that is negatively proportional to the
distance from that location. For instance, in scenario (A), if a protector
i wishes to place itself between an aggressor j and a refugee k,
then it might employ the formula

ṗi = −γ
(
pi −

pk + pj

2

)
(1)

where γ is an arbitrary positive constant and pi(t) = [x
(1)
i (t),

x
(2)
i (t), . . . , x

(n)
i (t)]T is an n-dimensional Cartesian position. To

avoid confusion between vector and scalar quantities, vectors are
written in bold. Matrices are capitalized. Time derivatives are indicated
by superscript dot. Similarly, in (B), if refugee i wishes to place
protector j between itself and aggressor k, the formula would be

ṗi = −γ (pi − (pk − 2pj)) . (2)

In fact, both rules can be viewed as special cases of the general formula

ṗi =−γ (pi − (αpj + βpk))

= γ (−pi + αpj + βpk) with α + β = 1. (3)

In other words, agent i’s velocity is aimed at a point along the
line connecting agents j and k. The parameter γ will affect the speed
at which individual agents move but not the overall behavior of the
swarm; without loss of generality we may set γ = 1. Thus, “protector”
swarms are implemented if 0 < α < 1, and “refugee” swarms are
implemented if either α > 1 or β > 1. Furthermore, we also see
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the emergence of another rule, corresponding to α = 1 or β = 1,
which states

C. Aggressor: Every agent in the swarm picks another and
chases it.

This is also illustrated in Fig. 1. All three rules attempt to position
agent i somewhere on the line defined by the positions of j and k.
Looking at the system as a whole, all of the agents’ x(1) coordinates
now evolve as

ẋ = Ax x ∈ R
n A ∈ R

n×n (4)

and similarly for their x(2) coordinates, etc., where x = [x
(k)
1 , x

(k)
2 ,

. . . , x
(k)
n ]. The state matrix A might look, for example, like

A =



−1 β α

−1 α β
α β −1

. . .
β α −1


 (5)

and will always have diagonal entries equal to −1.
We note that (3) is actually a kinematic equation, making no

reference to particle accelerations or forces. In the aggregate, however,
(4) is commonly termed a linear “dynamic” equation. Thus, we will
adopt the “dynamic” terminology henceforth.

II. SWARM BEHAVIORS

There are several observations we can make at this point. First,
A always has a nonzero nullspace, spanning at least one dimension
given by the null vector

v1 = [1, 1, 1, . . . , 1]T. (6)

In other words, each row of A must add to zero. Second, by
Gerschgorin’s theorem1 we may restrict the possible locations of A’s
eigenvalues to a circle in the complex plane centered at −1 with radius

r = |α| + |β|. (7)

Note that at least one eigenvalue will reside at the origin (correspond-
ing with the eigenvector v1). Third, there must be at least one zero
eigenvalue associated with the eigenvector v1. Even if v1 is the only
null vector, more zero eigenvalues are possible if they are simply
degenerate [7]. Eigenvalues and eigenvectors are of fundamental im-
portance in what follows; eigenvalues with negative real parts suggest
stable behavior in some sense (opposite for positive real parts), but
zero eigenvalues require closer examination. The eigenvector v1 can
be viewed simply as the point of dynamic equilibrium: if the system
dynamic tends toward, or reaches v1, then all movement will cease.

Perhaps one of the most relevant questions about swarm behavior
in this context is the question of the cohesion of the swarm. Some
Icosystem swarms have been observed to cluster, while others have
been observed to disperse. Mathematically, these are very similar to
questions of stability and convergence, and with the system model
and observations given above we may begin to gain insight into the
question of swarm cohesion. If we assume that v1 is the only null

1Gerschgorin’s theorem [19] states that each eigenvalue of a real n × n
matrix A will fall within one of the n circles in the complex plane with center
c = Akk and radius r =

∑n

i=1,i�=k
|Aki|.

vector, then the solution transition matrix may be written in terms of
its Jordan normal form as

Φ(t) = eAt = V eJtV −1 J =

[
[J1] 0
0 [J2]

]

J1 =




0 1

0
. . .
. . . 1

0m


 J2 =


λm+1

. . .
λn


. (8)

Note the possibility in J1 of multiple degenerate zero eigenvalues.
(While some eigenvalues in J2 may be repeated, we neglect this
possibility because the sign of their real parts determines whether they
dominate the dynamics, not their algebraic multiplicity.) Exponentiat-
ing J1 will yield an upper triangular transition matrix with entries of
the form (1/k!)tk [7, pp. 297 and 298]. Given initial position x0, we
define the product V −1x0 =: w and note then that the system solution
is given by

x(t) =Φ(t)x0

=w1v1 + w2(v1t + v2) + w3

(
v1

t2

2
+ v2t + v3

)

+ · · · + wm

(
m∑

i=1

vi
tm−i

(m − i)!

)
+ wm+1vm+1e

λm+1t

+ · · · + wnvneλnt. (9)

Several possible behaviors now become apparent. One possibility
is that the nonzero eigenvalues may have positive real parts and the
swarm will exponentially explode. Even if the real parts are negative,
it is still possible to see a “polynomial explosion” from terms on line
two of (9). However, this will only occur if there are at least three zero
eigenvalues m = 3. If there is only one, then the swarm will actually
“cluster” (converge) at the location w1 because v1 = [1, 1, 1, . . . , 1]T.
This implies that all agents’ coordinates are now identical. If there are
two zero eigenvalues, the swarm may exhibit “drifting” behavior. In
this case, after the exponential transients have died, the agents will be
left moving along the trajectory (w2t + w1) + w2v2. They may not
converge but they will not separate any further from each other, either;
they are all moving at constant speed in the same direction.

Any of these behaviors is generally possible with swarms executing
“refugee” rule (B), because eigenvalues may exist in the right-hand
complex plane (the Gerschgorin radius is 1 < r ≤ 3). It seems, in fact,
that random initial configurations of rule (B) are divergent more often
than not, especially for large n, a fact evidenced by statistics presented
in the next section.

However, for the “protector” and “aggressor” rules the Gerschgorin
radius is r = 1 so exponential explosion is not possible. Thus, the
swarm will cluster to a single point unless simply degenerate zero
eigenvalues occur in the system matrix A or there are additional null
vectors. The following arguments explore the eigenvalue/eigenvector
problem for “protector” and “aggressor” swarms in more detail. To
begin, we first define the notion of a connected swarm by observing
that the swarm can be represented by a digraph. If agent i uses the
positions of agents j and k to define its motion in (3), then edges
emanate from node i to nodes j and k in the associated digraph;
see Fig. 4, for example. Thus, we naturally define a swarm to be
weakly connected, or simply connected, if its associated digraph is
weakly connected (there is a path from every node to every other
node, regardless of the edge directions). Similarly, a swarm is strongly
connected if its digraph is strongly connected (there is a path from
every node to every other node through the directional edges).
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For a summary of the behaviors exhibited by the three types of
swarms, readers may skip to the first paragraph of the conclusions.

Theorem 1: If a swarm under rules (A) or (C) is strongly connected,
then its agentswill converge to a single point.

Proof: Before continuing, we recall the definition of a row-
stochastic Markov matrix (a matrix with nonnegative entries whose
rows sum to 1) and a positive Markov matrix (a Markov matrix
with strictly positive entries). Though Markov matrices are frequently
associated with stochastic processes, we use them in another capacity
here. Note that we refer interchangeably to row-stochastic Markov
matrices as simply Markov matrices.

Claim 1: The matrix exponential eA is a Markov matrix.
To see this, note that Ã := A + I is a Markov matrix. Thus

eA = eÃ−I =
eÃ

e

I + Ã + 1
2
Ã2 + 1

6
Ã3 · · ·

e
. (10)

Using the fact that, since Ã is a Markov matrix, Ãk is as well, it follows
that eA has only nonnegative entries. Furthermore

eAv1 =
I + Ã + 1

2
Ã2 + 1

6
Ã3 · · ·

e
v1

=
v1 + v1 + 1

2
v1 + 1

6
v1 + · · ·

e
= v1 (11)

ensuring that all rows sum to 1. Note the claim also follows from
the observation that A is a particular type of continuous-time Markov
generator.

Claim 2: The matrix exponential eA is positive.
Assume the entry [eA]i,j is zero. It follows from the Taylor series

above that [Ãk]i,j = 0 for all positive integers k. Thus, it is not
possible to jump from state i to state j in the Markov chain and the
associated state graph is not strongly connected. This contradicts the
theorem’s requirement, however, so it must be that [eA]i,j > 0.

Claim 3: The transition matrix has the property that Φ(t) → M as
t → ∞, where each row of M is identical.

It is known that eAk → M as k → ∞ for integers k [2], because
eA is a positive Markov matrix. Since the Gerschgorin circles of A
admit complex system eigenvalues only with negative real parts, any
oscillatory entries of eAt must die out. The claim then follows by
examining the convergence of eAt at integer values of t.

The proof is completed by noting that the steady-state system
solution is now

Φ(t)x0 → Mx0 = w1v1 (12)

where w1 is a real constant defined in (9) An identical argument can
be presented for all n dimensions in which the swarm operates, thus
proving the theorem. �

We note that Theorem 1 necessarily implies that A must have one
unique eigenvalue at zero, and consequently one unique null vector.
The conditions of Theorem 1 are actually somewhat restrictive; for
example, for “aggressor” swarms, the only strongly connected digraph
with n nodes and n edges is a ring. Fortunately, there is a stronger
result for “aggressor” swarms.

Corollary 1: If a swarm under rule (C) is connected, it will converge
to a single point.

Proof: The proof follows from the observation that a rule-(C)
system matrix A has the form of the (transpose of) a digraph incidence
matrix. It is known [20] that the incidence matrix of a connected graph
has rank(A) = n − 1. Thus, A has one nonzero equilibrium vector
(any multiple of v1). Assume the A has at least two simply degenerate
zero eigenvalues. Then, in steady state after any oscillatory motion has
damped, it will either converge to the equilibrium coordinates w1v1 or

drift. If the agents are drifting, then at least one agent must be moving
away from all others, which violates rule (C). Thus, the only steady-
state solution is convergence to the equilibrium point. �

We conclude this section with a few comments. One might ponder
whether the lesser condition of weak connectedness can be extended
to Theorem 1. Unfortunately, a counterexample proves this is not
possible: it is straightforward to see that there is a two-dimensional
null space for the following rule-(A) system matrix A:

A =




−1 0.5 0.5
0.5 −1 0.5
0.5 0.5 −1

0.5 −1 0.5
−1 0.5 0.5
0.5 −1 0.5
0.5 0.5 −1




. (13)

Here, agent 4 is not strongly connected with the others. Furthermore,
the converse of Theorem 1—that a weakly connected (A) or (C)
swarms will not converge—is not true because the following exam-
ple gives a rule-(A) swarm that converges without being strongly
connected

A =



−1 0.5 0.5

−1 0.5 0.5
0.5 −1 0.5
0.5 0.5 −1


 . (14)

Lastly, we note that the proof of Theorem 1 actually encompasses
a broad class of Icosystem-type swarms that are more general than
either rule (A) or (C). Specifically, without modification it proves the
convergence of any strongly connected swarm in which a given agent
propels itself toward an arbitrary convex combination of the other
agents’ positions. Thus

A =



−1 1
0.2 −1 0.8
0.5 −1 0.5
0.1 0.8 0.1 −1


 (15)

represents a swarm that will cluster to a single point.

III. COMPUTER EXPERIMENTS

The analysis and discussion above has yielded insight into several
possible swarm behaviors (clustering, drifting, and explosion), and
limited the possible behavior of the three cases in question. Since
only “refugee” swarms will exhibit nonclustering behavior, we thought
it interesting to randomly generate many different A matrices and
examine their properties to get a feel for how frequently the different
behaviors might occur. For each case, a computer generated 10 000
system matrices ranging in size from n = 4 to n = 20. (For n = 3
exhaustive search was applied rather than random assignment.) The
diagonals of each matrix were fixed at −1; then, by uniform random
probability, the computer picked two nondiagonal locations on each
row. In one location, the number α was inserted, in the second the
number 1 − α. Ten thousand matrices were generated and analyzed for
each of four α values: α ∈ {1.50, 1.75, 2.00, 2.25}. These values were
selected because a fundamental change in the behavior of the simple
three-agent system occurs when α ≥ 2. A real eigenvalue was deemed
to be nonzero if its magnitude was greater than 10−8 after normalizing
the largest magnitude eigenvalue to unity. The same rule was applied
to determining if the real part of a complex eigenvalue was zero or not.
Matrices of nonstrongly connected swarms were discarded.
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Fig. 2. Percentages of unstable swarm configurations for “refugee” swarms.
The vertical bars on each plot are 95% confidence intervals [16].

Fig. 3. (a) Nonconnected five-agent swarm and (b) a connected one. An arrow
from j to k indicates that j is “chasing” k.

The computer looked for eigenvalues with positive real parts (indi-
cating exponential explosion), or multiple zero eigenvalues (indicating
possible drift or explosion). Contrary to the prevailing opinion about
“refugee” swarms, Fig. 2 illustrates that stable-clustering behavior is
possible, but increasingly unlikely as the number of swarm agents
grows. At 20 agents (α = 2), 9967 of 10 000 configurations were
unstable (prone to drift or explode). It is also interesting to note
that, as α increases (and β = 1 − α decreases) the likelihood of
an unstable configuration increases as well. This is mathematically
explained because, as the Gerschgorin radius r = |α| + |β| grows, a
greater fraction of the Gerschgorin circle lies in the unstable right-hand
plane.

IV. EXAMPLES

We now present a few example configurations and note their
properties. For example, consider the following two system matrices
for “aggressors:”

A1 =



−1 1

−1 1
−1 1

1 −1
1 −1




A2 =



−1 1

−1 1
1 −1
1 −1

1 −1


 . (16)

Fig. 4. Five-agent “refugee” swarm. Arrows indicate relationships, e.g., ar-
rows from i to j and k indicate that i is trying to place j between itself and k
(or vice versa).

Empty entries are zero. In what follows, we implement the swarm
dynamics in two dimensions. As there is no dimensional cross cou-
pling, the x and y dynamics are independent. The eigenvvalues of A1

are {−1, 0, 0,−2,−2}, suggesting a drifting behavior. However, A1

represents a nonconnected swarm, as easily shown in the Fig. 3(a).
On the other hand, A2 has eigenvalues {−1,−1,−1.5 ± 0.866j, 0},
representing a swarm that will cluster, shown in Fig. 3(b).

The “refugee” case presents the most interesting behaviors. Con-
sider the system represented by A3

A3 =



−1 2 −1
−1 −1 2

−1 2 −1
−1 2 −1

−1 2 −1


 . (17)

The eigenvalues are {0, 0,−1,−2 ± j}, with the zeros being simply
degenerate. This swarm (Fig. 4) will generally drift after the initial
transient movements die away. However, it is possible to arrange the
swarm agents with initial positions that do not induce drifting, such as

x0 = y0 = [0.4173, 0.8166, 0.3561,−0.0970,−0.1509]T. (18)

Looking back at (9), a Jordan decomposition gives w = V −1x0 =
[0, 0, 0.0153, 0.0307 ± 0.4837j]; therefore, the only terms remaining
in (9) are the decaying exponentials and the swarm will cluster.
Figs. 5–7 illustrate the phenomena of clustering and drifting on larger
swarms.

V. CONCLUSION

In summary, we have explored the emergent behaviors of three
related swarming rules derived from the original Icosystem swarm
model. Assigning simple linear dynamics to these rules and using well-
understood concepts from linear analysis, the following three possible
behaviors emerge under different circumstances.

1) Clustering is the tendency of the swarm agents to simultaneously
move toward a single point. Clustering can occur under any of
the three rules. However, it is increasingly unlikely for “refugee”
swarms as the number of agents grows. Clustering always occurs
for connected “aggressor” swarms and strongly connected “pro-
tector” swarms.

2) Drifting, a situation in which all agents move in the same direc-
tion at the same (constant) speed, may occur only for “refugee”
swarms.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 2, APRIL 2007 475

Fig. 5. One thousand randomly placed “protector” agents (some off screen)
for α = 1/2. Here, and in subsequent figures, the trajectory history of each
agent is shown. All fields are 500 × 500 units. Snapshots of the convergence
are shown for 1, 500, 1000, and 1500 steps using γ = 0.01. The agents, as
predicted by the stability analysis, are converging to a point.

3) Explosion is an unstable behavior that occurs when agents
diverge from each other. Strongly connected “protector” swarms
and connected “aggressor” swarms cannot explode.

We note in closing that simulations of Icosytem-type swarms some-
times produce a behavior we term subgrouping, a condition in which
several smaller swarms emerge, each with its own behavior. In light of
the preceding analysis, subgrouping will arise when

dim {null(A)} > 1.

A necessary (not sufficient) condition for subgrouping, then, is for a
“protector” swarm to be weakly connected, or of course for “protector”

Fig. 6. For “aggressor” swarms, agents eventually cluster. “Follow-the-
leader” behavior results in an ever-tightening loop.

or “aggressor” swarms to be nonconnected. In these cases, each sub-
swarm will exhibit one of the three emergent behaviors listed above.

This analysis is certainly not the last word on Icosystem-type
swarms. It is entirely possible to formulate nonlinear dynamics that
instantiate these rules, in which case questions of emergent behavior
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Fig. 7. Drifting behavior for “refugees.” To keep view of the swarm, when
an agent exits the right of the image, it immediately reenters the left, and
similarly for the top and bottom. The swarm eventually moves in a straight
line at constant velocity.

become much more difficult. One may instantiate simple nonlinear
dynamics for the types of swarms studied here by updating the position
of each agent sequentially (as opposed to simultaneously) or limiting
the step size of an agent’s movement to a constant (i.e., constant
speed). These are illustrated and animated at the universal resource
locator [21], and produce surprising behaviors. In fact, the original
Icosystem Internet application [14] approximates linear dynamics with
constant step-size increments for each agent. The qualitative behaviors
described above still occur, with the exception that clustering swarms
never appear to actually converge. (The constant step position updates
prevent this and give the appearance of random motion near the
cluster point.) Though certain stability arguments may still be possible,
other behaviors such as chaos may also appear, while certain linear
behaviors outlined in this correspondence may not occur at all.

Qualitative classification of emergent swarm behavior, independent
of the specific dynamics that instantiate the swarm rules, may prove to
be a very difficult problem in general. Even assuming such classifica-
tion is possible generally, this correspondence reveals a certain “luck of
the draw” aspect to behavior predication; for example, a given swarm
may behave differently from one simulation to another based merely
on the initial configuration of the agents and/or their topological
connections. For example, if initial position x0 is chosen orthogonal
to the m eigenvectors that correspond to zero eigenvalues, drifting
behavior cannot occur. (The coefficients w1 · · ·wm in (9) will be zero.)
Simply knowing the rules is evidently insufficient to predict group
behavior. Even in this correspondence, one can see a faint connection

between syntactical, topological (e.g., graphical) and numerical/
analytical methods that all come into play in the overall dissection
of the problem. Such connections will need significantly more de-
velopment in order to arrive at sufficiently abstract swarming models
from which emergent behaviors can be deduced directly from syntac-
tical rules.
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