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Abstract

We analyze several examples of switched linear circuits and a switched spring–mass system to illustrate the physical
manifestations of regressivity and nonregressivity for discrete and continuous time systems as well as hybrid discrete/continuous
systems from a time scales perspective. These examples highlight the role that nonregressivity plays in modeling and applications,
and they point out a fascinating dichotomy between purely continuous systems and discrete, continuous, or hybrid systems. We
conclude with a physically realizable null space criterion for inducing nonregressivity.
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1. Introduction

Discrete and continuous dynamical systems are ubiquitous in engineering applications and the interaction between
discrete and continuous (so called hybrid) systems is itself a rapidly emerging field of research [1,2]. The introduction
of mixed discrete/continuous domains leads to many intriguing mathematical questions. In this paper, we investigate
these types of systems from the unified perspective of time scales and point out how this theory illuminates various
interesting phenomena in applications of switched circuits and mechanical systems. By doing so, we present several
interesting consequences of the formerly abstract concept of regressivity and nonregressivity of dynamic systems.

Time scales have proven effective in various applications such as high-gain adaptive control [3] and improved
bandwidth allocation for real-time communication networks [4]. However, these applications have relied heavily on
new results in stability theory [5–7] for time scales. This highlights the connection between progress in the theoretical
arena and breakthrough applications.

Both mathematicians and engineers have shown interest in switched systems of various complexities, evidenced
by vast number of papers in the area; [8–19] should serve as a representative sample of references. It is our hope that
time scales can be helpful here, too.
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Various methods have been brought to bear on questions involving the stability of switched systems such as Lie
algebraic techniques [8,13], stability preserving mappings [17], and an average dwell time approach with piecewise
Lyapunov functions [18]. Switched systems provide a natural context for applying classical Floquet theory for ordinary
differential equations in the continuous case [10] and hence a generalized Floquet theory for the time scale case
[6]. Several of the aforementioned papers achieve asymptotic stability for a switched system whose subsystems are
unstable [15] as well as instability for a system whose subsystems are stable [8]. This illuminates the subtleties of this
type of analysis even in the continuous case. The general time scale case is even more delicate as our examples will
indicate.

A complete tutorial on the theory of time scales is beyond the scope of this paper; however, we refer the reader to
the excellent texts by Bohner and Peterson [20,21] for a thorough treatment.

The paper is organized as follows. In Section 2, we compare and contrast the concept of nonregressivity in scalar
versus multidimensional (vector) problems. In Sections 3–6, we look at three examples of nonregressivity in switched
linear circuits on three different time scales. In Section 7, we do a similar analysis of nonregressivity in a switched
spring–mass system. In Section 8, we give a simple null space criterion for nonregressivity for multidimensional
systems, and in Section 9 we verify that our models tend to the familiar continuous models in the limit. We present
our conclusions in Section 10.

2. Regressivity and nonregressivity

The scalar dynamic equation on a time scale T

x1(t) = a(t)x(t) (1)

is said to be regressive if a(t) ∈ R, the regressive group, given by

R := { f : T → R | 1 + f (t)µ(t) 6= 0 ∀t ∈ Tκ and f ∈ Crd}. (2)

A system is nonregressive if it is not regressive. To the best of our knowledge, regressivity was first introduced in
the seminal works of Stefan Hilger [22,23] and plays a crucial role in developing the fundamental theory of linear
dynamic equations. In particular, any results that appeal to the generalized time scale exponential function require
regressivity since ea(t, t0) is defined only for a ∈ R. See Chapter 2 of [21].

This topic might be unfamiliar to those who study ordinary differential equations (ODEs) exclusively. This is
because purely continuous1 dynamical systems (e.g., ODEs) are always regressive since the underlying time scale, R,
has µ(t) ≡ 0 and hence (2) holds for all t ∈ R. However, nonregressivity is always a possibility in purely discrete
dynamical systems (difference/recursive equations with uniform or nonuniform step size) or dynamical systems where
the underlying domain consists of a mixture of discrete and continuous parts (e.g., hybrid systems). In fact, if there is
even one point in T with nonzero graininess, then nonregressivity is possible.

Having identified when nonregressivity is ruled in or out by the domain of the system, what are the consequences
of nonregressivity? An almost immediate observation is the following: assuming a nontrivial initial condition, (1) is
nonregressive at t∗ if and only if x(t) ≡ 0 for all t ≥ t∗. The physical ramifications of this are interesting: a system
modeled by (1) is nonregressive if and only if there exists some time t∗ such that the right combination of graininess
µ(t∗) and system parameter a(t∗) will force the state variable to be zero and stay zero thereafter. This may prove
useful in applications as we will see later.

Regressivity in multidimensional (vector) systems such as

Ex1(t) = A(t)Ex(t), A ∈ Rn×n, Ex ∈ Rn×1, t ∈ T, (3)

is very different from the scalar case. In [21], Eq. (3) is said to be regressive if and only if

det(I + µ(t)A(t)) 6= 0, ∀t ∈ Tκ . (4)

It turns out that this is equivalent to having all of the (scalar) eigenvalues λi (t), i = 1, . . . , n, of A(t) regressive in the
sense of (2).

1 By this, we mean dynamical systems whose underlying domain is continuous, such as a closed interval.
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Fig. 1. Left: A switched capacitor circuit. Right: The resistor circuit approximated by the switched capacitor circuit.

A natural question to ask at this juncture is whether the “hit zero, stay zero” phenomenon apparent in nonregressive
scalar systems carries over to multidimensional systems. We will show that the answer is no, but we will provide
nonregressivity conditions sufficient to force (3) to behave this way. This leads to some interesting revelations about
regressive/nonregressive dynamic equations in the context of switched circuits and switched spring–mass systems.

3. Switched capacitor circuits

A commonly used2 switched circuit is the switched capacitor circuit [24,25] shown on the left side of Fig. 1. A
switch connects the capacitor, C , to the voltage source with voltage v on the left. The switch then connects the right
hand short circuit at times {tn}. The back and forth process continues. The time scale consists of these discrete points,
i.e. T = {tn}. The variable under consideration is the cumulative charge, x , delivered from the capacitor to the short
circuit. The entire charge of the capacitor, Cv, is discharged instantaneously through the short circuit at time tn . Thus,
the cumulative charge is

x(tn+1) = x(tn)+ vC,

which we can recast as the dynamic equation

x1(t) = Cv/µ(t), t ∈ T.

The Hilger derivative of the charge is an approximation for the temporal derivative of charge: the current emanating
from the voltage source. The voltage is in turn proportional to the Hilger derivative of the current, and the
proportionality constant is the resistance, R. When the graininess is constant, say µ(t) ≡ µ, then resistance3 is
given by R = µ/C . Insofar as the Hilger derivative of the charge approximates the continuous time derivative of
charge [21], the switched capacitor circuit on the left in Fig. 1 approximates the resistor circuit on the right.

4. A switched LC circuit

Another simple switched circuit is shown in Fig. 2. When the switch is to the left at time t2n , the inductor with
inductance L and the capacitor with capacitance C form an oscillator with voltage satisfying ẍ = −ω2x and frequency
ω = 1/

√
LC . When the switch is to the right, between times t2n and t2n+1, the value of x(t) is a constant, i.e. ẋ = 0;

otherwise, there is sinusoidal oscillation. An illustration of the dynamics4 is shown in Fig. 2.
Due to the physics of the circuit,5 immediately after the switch connects the inductor, ẋ+

2n+1 = 0, where we have
adopted the notation z+

k = z(t+k ). Thus, the solution x(t) is of the form

x(t) =

{
x+

2n, t ∈ [t2n, t2n+1],

x+

2n+1 cos(ω(t − t+2n+1)), t ∈ [t2n+1, t2n+2].
(5)

2 One reason is that in VLSI applications, resistance requires much chip area, but capacitance does not. So resistors are emulated by using
switched capacitor circuits.

3 The resistance in switched capacitor circuits is commonly written as R = ( f C)−1 where f = 1/µ is the switching frequency.
4 To discuss the dynamics at switching point tm , let t−m denote instances immediately before the switching occurs and t+m immediately after.
5 Let y denote the current entering the top of the capacitor. The same current, passing through the inductor L , is related to the voltage x as

x = −L ẏ. Thus, for x to be bounded at t+2n+1, y must be continuous. The current through the inductor immediately prior to the switching is zero.

Hence, y = 0 both immediately before and immediately after the switching occurs at t2n+1. For the capacitor, y = Cẋ . Since y = 0 at t+2n+1, so
too does ẋ = 0.
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Fig. 2. A simple switched LC circuit.

There are three time scales we consider for this switched circuit, all illustrated in Fig. 2:

T1 = {t ∈ [t2n, t2n+1], n ∈ N0},

T2 = {t ∈ [t2n+1, t2n+2], n ∈ N0},

T3 = {tn, n ∈ N0}.

For T1, from (5),

x+

2n+2 = x−

2n+2 = x(t+2n+1) cos(ωµ(t2n+1)).

Hence, on T1, we have a scalar problem of the form (1) with

a(t) =


0, t ∈ [t2n, t2n+1),

cos(ωµ(t))− 1
µ(t)

, t = t2n+1.

Nonregressivity of the system, when modeled on T1, can occur only at t = t2n+1. From (2), nonregressivity occurs
when 1 + µ(t)a(t) = cos(ωµ(t)) = 0, t = t2n+1, that is, when µ(t) =

π(2p−1)
2ω , t = t2n+1, p ∈ N. If switching

occurs at the point where the sinusoid hits zero, the system is nonregressive. Thus, x(t) becomes zero and remains
zero thereafter.

Although nonregressivity occurs on T1 for the circuitry in Fig. 2, analysis with time scale T2 shows that the system
is always regressive on T2. This is true, despite the clear demonstration in the previous example that x(t) can hit zero
and stay there. Since x(t2n) = x(t2n+1), then (3) takes the form[

ẋ1(t)
x1(t)

]
= A(t)

[
ẋ(t)
x(t)

]
,

where

A(t) =


[

0 1
−ω2 0

]
, t ∈ [t2n+1, t2n+2),[

0 0
0 0

]
, t = t2n+2.

Since the determinant condition in (4) always holds, the system is always regressive on time scale T2. This
points out how the same physical phenomenon—when modeled on different time scales—can lead to different
regressivity/nonregressivity results.

For time scale T3, we are again dealing with a scalar problem of the form (1) with

a(t) =


cos(ωµ(t))− 1

µ(t)
, t = t2n+1,

0, t = t2n+2.

Nonregressivity via (2) on T3 occurs under the same condition as for T1.
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Fig. 3. A second order switched LCL circuit capable of nonregressivity for appropriate choices of graininess.

Fig. 4. A second order switched CLC circuit capable of nonregressivity for appropriate choices of graininess.

5. A switched LCL circuit

A second switched oscillator is shown in Fig. 3. The switch to the left connects the capacitor, C , to the inductor
Ln . At time tn+1 the switch goes to the right to inductor Ln+1. The inductor Ln is replaced by Ln+2 and the process
continues. The oscillation over the interval [tn, tn+1] occurs at frequency ωn = 1/

√
LnC . Sample dynamics are shown

in Fig. 3.
We consider the time scale T3 as illustrated in Fig. 3. Analogously to the oscillator case in Fig. 2 (and for the same

physical reasons), ẋ+
n = 0. Thus

x(t) = x+
n cos(ωn(t − tn)), t ∈ [tn, tn+1],

and so

x+

n+1 = x−

n+1 = x+
n cos(ωnµ(tn)),

which leads to

x1(t) =
cos(ωnµ(t))− 1

µ(t)
x(t), t = tn . (6)

Similarly to the case for the first oscillator, nonregressivity occurs when µn =
π(2p−1)

2ω for any p ∈ N. For p = 2,
nonregressivity in Fig. 3 occurs at tn+2 corresponding to the clamping of x(t) to zero at tn+3.

6. A switched CLC circuit

A third oscillator is illustrated in Fig. 4. Note that the two capacitors are equal here. As in the previous examples,
ẋ = 0 immediately after a switch is closed. An illustration of the response of this circuit is also shown in Fig. 4. The
dynamics of the right hand circuit are

x(t) = x+
n cos(ω(t − tn)), t ∈ [tn, tn+1).

Thus x−

n+1 = x+
n cn , where cn := cos(ωnµn). Since x+

n+2 = x−

n+1, we have

x1n+1 = (x+

n+2 − x+

n+1)/µ(tn+1) = (cn x+
n − x+

n+1),
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Fig. 5. A switched spring–mass system.

and it follows that

[
x1n+1

x1n

]
=


−1
µn+1

cn

µn+1

1
µn

−1
µn

 [
xn+1
xn

]
. (7)

Thus

I + µ(tn)A(t) =

1 −
µn

µn+1

µn

µn+1
cn

1 0

 ,
and hence det(I + µ(t)A(t)) = 0 when µn = 0 or cn = 0, but the former is physically unrealizable. Unlike the
case for the previous two oscillators, the total response does not go identically to zero when this occurs. For ck = 0,
the response goes to zero over every other interval, i.e. the intervals t ∈ [tk+2p+1, tk+2p+2], p ∈ N0. If, in addition,
ck+1 = 0, the entire solution clamps to zero.

7. A switched mechanical system

A mechanical equivalent of the switched circuit in Fig. 3 is shown in Fig. 5. During time [tn, tn+1), the spring
supports mass mn and oscillates with frequency ωn =

√
k/mn where k is the Hooke’s constant of the spring. Since

we cannot (in general) specify that ẋ(tn) = 0, the general solution of the oscillation is

x(t) = x+
n cos(ωn(t − tn))+

ẋ+
n

ωn
sin(ωn(t − tn)), t ∈ [tn, tn+1).

Thus

ẋ(t) = −ωn x+
n sin(ωn(t − tn))+ ẋ+

n cos(ωn(t − tn)), t ∈ [tn, tn+1).

Evaluating the above two expressions at t = t−n+1 gives[
ẋ−

n+1

x−

n+1

]
=

[
cn ωnsn

sn/ωn cn

] [
ẋ+

n

x+
n

]
, (8)

where sn := sin(ωnµn).
To make the transition from ẋ−

n+1 to ẋ+

n+1, assume inelastic momentum conservation of the mass, mn , moving at
velocity ẋ−

n+1, with a mass 1mn traveling with velocity u̇n+1. This is illustrated in Fig. 5. Then

mn+1 ẋ+

n+1 = mn ẋ−

n+1 +1mn u̇n+1.
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Fig. 6. An example of the circuit in Fig. 4 in a nonregressive state.

Equivalently, since 1mn = mn+1 − mn ,

ẋ+

n+1 = αn ẋ−

n+1 + (1 − αn)u̇n+1,

where αn := mn+1/mn . Express the velocity of 1mn as proportional to ẋ−

n+1,

u̇n+1 = λn ẋ−

n+1,

so that ẋ−

n+1 = ẋ+

n+1. By the continuity of position, we obtain[
ẋ+

n+1

x+

n+1

]
=

[
βn 0

0 1

] [
ẋ−

n+1

x−

n+1

]
,

where βn := αn + λn(1 − αn). Applying (8), we see[
ẋ+

n+1

x+

n+1

]
=

[
βncn −βnωnsn

sn/ωn cn

] [
ẋ+

n

x+
n

]
,

or, equivalently,[
ẋ1(t)
x1(t)

]
= A(t)

[
ẋ(t)
x(t)

]
=

1
µ(t)

[
βncn − 1 −βnωnsn

sn/ωn cn − 1

] [
ẋ(t)
x(t)

]
, t = tn . (9)

Setting det(I + µ(t)A(t)) = 0 yields βn = 0. Thus, for the system to be nonregressive on T3 (Fig. 6), we require

λn =
−αn

1 − αn
=

−mn

1mn
. (10)

To illustrate, if mn = 1mn , then λn = −1. Two equal masses collide going at the same velocity but in opposite
directions. If the collision occurs at the equilibrium point of the spring (x = 0), the system will be at rest thereafter.
The nonregressivity condition in (10) indicates the equal and opposite velocities, but does not require the collision to
occur at the system’s point of equilibrium. If nonregressive collision occurs at a nonequilibrium point, the composite
mass will be motionless momentarily before resuming its oscillations (see Fig. 7).

8. A null space criterion for nonregressivity

If we rewrite (3) in its recursive form, we obtain

Ex(tn+1) = (I + µ(t)A(t))Ex(t),

which leads to the following null space criterion for nonregressivity: If there exists a t∗ ∈ T such that Ex(t∗) ∈

ker(I+µ(t)A(t)), then Ex(t) ≡ 0 for all t ≥ t∗. This is consistent with the observation in the spring–mass systems that
both position and velocity need to be zero at the switching instance in order to have the “hit zero, stay zero” behavior.

Since (3) is nonregressive if and only if all of the (scalar) eigenvalues λi (t), i = 1, . . . , n, of A(t) are regressive
(in the sense of (1)), one might conjecture that it is possible to induce this “hit zero, stay zero” phenomenon—
which characterizes nonregressivity in scalar equations—in vector systems via a sequence of times ti , i = 1, . . . , n,
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Fig. 7. Illustration of nonregressivity in the mechanical system in Fig. 5. At both times tn and tn+1, the nonregressivity condition in (10) holds for
λ = −1. In both cases, the oscillating mass on the spring is hit by a second mass going at the same velocity in the opposite direction. Doing so
always makes the instantaneous velocity of the mass after the impact equal to zero. At time tn , the spring continues to oscillate. At time tn+1, it
does not. This is because the impact occurs when the mass position is at equilibrium.

such that λi (ti ) = 0. However, this is not the case; counterexamples can be easily constructed which demonstrate,
for example in the switched spring–mass example, that even though one state variable becomes zero through this
“sequential nonregressivity” process, it does not have to stay zero at future times. Of course, this does not occur in
scalar problems, and we see yet another interesting dichotomy between scalar and vector problems.

9. Limiting dynamic equations

To evaluate the limiting case of the time scale dynamics, let Th = htn and h → 0. Then

µ(t) → lim
h→0

hµ(t) = ψ(t) dt,

ωn → ω(t),

cn = cos(µ(tn)ωn) → 1,

x1 → ẋ,

ẋ1 → ẍ .

9.1. The second oscillator circuit

For the time scale dynamics in (6) on T3, the limiting equation is ẋ = 0. Physically, the voltage across the capacitor
is not permitted to change due to the current inertia of the inductors.

9.2. The mechanical system

For the spring–mass problem, the following additional limits are needed:

1mn → dm := dm(t),

mn → m := m(t),

λn → λ := λ(t)

sn = sin(µ(tn)ωn) → ψ(t)ω(t)dt,
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αn →

(
1 +

dm

m

)−1

,

βn →
m + λdm

m + dm
.

Then, as h → 0, (9) becomes[
ẋ1n

x1n

]
→

[
ẍ

ẋ

]
=

 1 − λ

mψ(t)

dm

dt
−ω2(t)

1 0

 [
ẋ

x

]
. (11)

Of special interest is the case where mass is being added or subtracted at the same velocity of the oscillating mass.
Then λ = 1, and (11) becomes the standard second order system[

ẍ
ẋ

]
=

[
0 −ω2(t)
1 0

] [
ẋ
x

]
,

corresponding to the harmonic oscillator ẍ + ω2x = 0.

10. Consequences and conclusions

Our goal with this short paper was to give some insight into the unexplored concept of regressivity and
nonregressivity and see what role they play in physical systems. These are not purely abstract mathematical conditions
one might impose on a system; indeed, there are physical ramifications of doing so. Maybe this “hit zero, stay zero”
phenomenon and its connection to nonregressivity can be exploited in discrete problems such as sampled data systems
or adaptive control problems with nonuniform, discrete sampling as well systems where the domain is a mixture of
discrete and continuous parts such as hybrid systems.
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[22] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math. 18 (1990) 18–56.
[23] S. Hilger, Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988.
[24] P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design, Oxford University Press, London, 1987.
[25] P.V.A. Mohan, V. Ramachandran, M.N.S. Swamy, Switched Capacitor Filters: Theory, Analysis and Design, Prentice Hall, New York, 1995.


	Nonregressivity in switched linear circuits and mechanical systems
	Introduction
	Regressivity and nonregressivity
	Switched capacitor circuits
	A switched LC circuit
	A switched LCL circuit
	A switched CLC circuit
	A switched mechanical system
	A null space criterion for nonregressivity
	Limiting dynamic equations
	The second oscillator circuit
	The mechanical system

	Consequences and conclusions
	References


