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On the Structure of Minimum Effort Solutions with robotics community which depends upon the concept of minimum ef-
Application to Kinematic Redundancy Resolution fort [9], [10], [19], we believe minimum effort techniques will prove an
invaluable tool in the future, provided their properties and limitations
lan A. GravagneMember, IEEEand lan D. WalkerMember, IEEE  are well understood.

. ) . - Il. BACKGROUND
Abstract—There exist in robotics, as in many other disciplines, problems

described by an underdetermined set of constraints, possessing an infinite  The most commonly found example of underdetermined systems in
number of solutions. The problem of robot manipulator redundancy reso- e ropotics literature is probably that of kinematically redundant ma-

lution is just such a situation, requiring that a particular solution be chosen inulat hich h b th biect of ext . h th
according to some type of optimization criterion. One possibility employs nipulators, which have been the subject or extensive research over the

a type of optimization which minimizes the maximum magnitude of the so- last few years (see, for example, the survey papers [4], [5]). For these
lution vector. This is the minimum infinity norm solution, also known as  types of manipulators, there are more degrees of freedom (joints) than

the “minimum effort solution.” This paper explores the details of least in-  gpecified end effector (task) variables, and the key issue is how to ex-
finity norm optimization, using kinematic redundancy resolution as a test loit this overabundance of ioints in the svstem
case to explore the details of infinity-norm optimization. We introduce for p e . ] Y S -
the first time a closed-form expression for minimum effort solutions, illus- .More §peC|flcaIIy, given er.ld effe(?tor, ortask variables R™, and
trating the heretofore unknown properties of nonuniqueness and disconti- joint variables§ € R", for kinematically redundant robots, > m,
nuity in time-varying situations, and postulating a possible remedy for the and there are in general an infinite number of configuratibisatis-
discontinuity problem. Additionally, to reinforce the mathematics, simula- fying the (forward) kinematic relatiom = f(#), for a given end ef-
tions of four-link robots are included, as well as an extended discussion of fector locati This feat f red _d t _t; t ki ti I
minimum-effort solutions from a geometric point of view. ector loca |0n§_. IS ea_ure 0_ re L_m antro Q 'ner_na 'C_S aflows a
“preferred” choice of configuration histog{t¢) which avoids singular-
ities or obstacles, minimizes energy or torques, etc., while maintaining
the task trajectory:(¢) [4], [5]. The vast majority of approaches in the
literature choose joint space trajectories (resolving the redundancy) at
. INTRODUCTION the velocity (rate) level, inverting the Jacobian relationship

Index Terms—Infinity-norm, kinematics, manipulators, minimum effort,
redundancy, underdetermined.

The utility of minimum effort solutions to underdetermined systems
became apparent in the study of linear control techniques several
decades ago. Researchers observed that a minimum-time (discretized)
system control input, which could theoretically achieve the contro
objective within a certain time frame (number of steps), could § = [Tulté + [I _ JTJ']M] c @)
unfortunately exceed the real-world amplitude specifications for the - - : -
system. It was observed that, if a longer sequence of control inputs Wagng the Jacobian pseudoinversd;,, where J3, =
used, the system could be nudged toward the objective over a gregley” (JMJ*)"t, (with M € R™*™ a positive definite matrix) is a
period of time. The set of feasible inputs in this case is not uniqueliyht-sided inverse off, andz € R" is an arbitrary vector, whose
determined (generally, it is infinitely large), and the question arosgelection determines which of the possible choices of configurations
for a given input sequence length, does a control solution exist whigii| be selected.
will not exceed the maximum input amplitude specifications? SeveralThe use of the Jacobian pseudoinverse is attractive for a number of
researchers successfully answered this question, known variouslyagsons. In particular, the structure of the pseudoinverse has been well
the minimum effort problem or the minimum amplitude problem, anghvestigated [6], and the behavior of solutions generated using it are
their work serves as background in this paper [14]-[18]. convenient and well understood. In particular, the solution with 0,

Later work subsequently adapted the resulting minimum effort glg ¢ = Ji,#, is the solution to the problem
gorithms for the resolution of manipulator redundancy resolution, and
began to explore the effects and properties of minimum effort solu- min {éTﬂfflé} subject tai: = .J (6) 3 3)
tions in this context [12], [13]. Unfortunately, two critical questions re- - - - -
mained: are the resulting joint-level trajectories guaranteed to be con-

tinuous over time, and are minimum effort solutions unique? In tr']Ti(i%)Numerous researchers have exploited the above property of the pseu-

paper, we discuss the answers to these questions, providing a nu gverse [4],’, [5]. c_hoosm@[ In various ways tp synthesize “min-
of examples along the way. As the underlying mathematical conce ’m gnergyl SO'U“‘”?S to.varloug prpblems of |nterest [for example,
do not generally lend themselves to simple and elegant closed-fo o_os!ngM‘ as the me_ma_matrlx yields the solution that (locally)
arguments, we also endeavor to foster the reader’s intuition with géB'—mm'ZES mz:lznputlator kmet'? enertg)t/al. | ith physical
metrical arguments, and we round out our discussion with a discussio#owever’ € two-norm 1S no € only norm with physica

of discontinuity avoidance. As more and more literature surfacesin |gn|f|cance. The infinity-norm of a vectar € R" is defln_ed as
|v]|se = max(|v1], |vz2], ..., |va]). Thus for redundant manipulator

i=J(0)f 1)

inverse kinematics, the infinity-norm problem analogous to (3) above
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There is strong practical motivation for such solutions—consideation of manipulator redundancy, they are general and can be found
the common case of joint velocity (or actuator torque) limits. In thim literature such as [14]-[17] and [23].
case, minimum energy (i.e., pseudoinverse-based) solutions, by thein order to discuss nonuniqueness and discontinuity, we then deviate
nature, can constrain only the sum of squares of the components offtleen previous discussions on infinity-norm algorithms, and hypothe-
solution vector, yielding no information about individual componentsize the existence of a generalized inverse, called the “infinity inverse,”
This is an important issue practically, since if the solution generatedich yields minimum infinity norm solutions in a closed form. Using
has an unexpected component outside the joint velocity limits, ttiee equal magnitude property, we extract certain properties about the
actual trajectory implemented will be “clipped” at the correspondingfinity inverse, most notably the “Haar basis property.” From there, we
joint, leading to solutions that will not in fact satisfy (1), and taslproceed to a discussion of the geometric meaning of least infinity-norm
space trajectories that will deviate from This could be disastrous solutions, designed to develop the reader’s intuition about the problem
in many applications (consider robot surgery, for example). On tla@d answer some questions which are very difficult to tackle in abstrac-
other hand, the minimum infinity norm (i.e., minimum effort) solutiortion. These geometric insights will allow us to discuss the nonunique-
explicitly seeks to minimize the maximum component magnitude, thagss of least infinity norm solutions. The property of nonuniqueness
will always find a solution satisfying the physical limit constraints ifopens the door to understanding when and how a discontinuity might
one exists. (Note that by definition, the pseudoinverse solution alwayscur in a time-varying underdetermined system. Having examined the
has maximum component magnitude greater or equal to that of tieture of nonuniqueness and discontinuity, we then proceed to con-
infinity-norm solution). This is very appealing practically, suggestingtruct one possible mechanism for avoiding discontinuities by gener-
that in many cases, minimum infinity-norm solutions can be tailoregting a metric which measures “how far away” a point of nonunique-
more effectively for physical constraints than can those using thess is during a time-varying trajectory. We also provide several exam-
pseudoinverse. ples throughout the text to help the reader gain familiarity with various
There have been several works investigating the use of minimum {fraracteristics of least infinity-norm solutions.
finity-norm solutions in robotics in the last few years. The first discus-
sion of the infinity norm in the context of robot kinematics appears to be IV. DuAL OPTIMIZATION THEOREM AND COROLLARIES
in [2_0_]. Minimum |n_f|n_|ty-r_10rm motions for open-c_haln mgnlpul_atorsA_ Dual Optimization Theorem
via joint torque optimization has been proposed in [19], in which the :
minimum-infinity solution is shown to utilize energy more efficiently Given the systent = .J§ of m consistent equations inunknowns

for several examples. (m < n), then
However, there are a number of problems and heretofore unresolved . .
issues when using the infinity norm compared to the two-norm. Algo- min QH = | jrpzﬁx " f. (5)
Jo=i oo JTfllp=1" =

rithms for computing minimum infinity norms are numerical in nature

[14]-{18], and a closed form quantity paralleling the pseudoinverse hasThere is a beautiful symmetry in the dual optimization theorem [14],
not previously been available to aid in analysis of the structure and 9

computation of the solutions. In addition, unlike the case for the ps 2locity solution has been reformulated as a maximization of the end-

doinverse, the question of continuity and uniqueness of minimum ifoector work(i" f). Furthermore, the work must be maximized sub-

finity-norm solutiqns h_as not been answered previously. This is impigct to the constraint that the associated jointtorques,J T f, exhibit
Itatr);r?ﬁ(:mgg;rl%cg:cgi?r?oct bsezg dkﬂg\;]v:e\,\r/]r;?r']n:)rlgnritrnhtzrtyltge ré) unit 1-norm. (Itis important to realize that these are static torques and
tiuc‘lellly y : inuou 'mp PIgS ces, introduced to aid our analysis of a purely kinematic problem.

- Thﬁse torques and forces are not equivalent to those necessary to move
Taken together, the above restrictions and concerns have relegfﬁlI

the infinity-norm (a.k.a. minimum-effort) approach to something of a% end-effector along a given trajectory.)
curiosity, since even though the results reported in the literature thus far
have been promising, the general behavior of the solutions could not . .
be guaranteed. In this paper, we introduce a new closed-form expred-0r an optimal forcef™ such that
sion for an “infinity-inverse” which parallels the pseudoinverse, and

use it to resolve the issues of continuity and uniqueness for the least in-
finity-norm solutions. The analysis resolves the difficulties mentioned

gb_O\_/e, and results_ in a deeper understanding of the nature of minimllplt@n m — 1 components off” f
infinity-norm solutions.

[5], and at its heart we see that the minimization of the infinity norm

Orthogonality Corollary

iTf = max i'f (6)
T flla=1" —

* are equal to zero with the corre-
sponding columns of linearly independent.
This corollary indicates that the optimal force maximizing the dual
problem in (5) will be orthogonal to at least — 1 linearly indepen-
I1l. TOWARDS DISCONTINUITY dent columns off, an important property as we will see later. It should
be noted that more than — 1 components oﬂTf may be zero, but
Before continuing on with our analysis of the behavior of least irsince.J € R®™*", this would imply thatf* is orthogonal to at least:
finity norm solutions, it will be helpful to outline the precise steps weolumns which would indicate a degeﬁerate case, wheheps rank.

will need to take to arrive at a meaningful result. We will start with /e save the discussion of least infinity norm solutions near singulari-

statement of the theorem at the heart of infinity norm analysis, know@s for later.

as the “dual optimization theorem.” Following the dual optimization

theorem we review two corollaries, the “alignment corollary” and th€. Alignment Corollary

“orthogonality corollary.” The orthogonality and alignment corollaries 4ying found the optimaf*, the minimum infinity norm solution

Ie_ad to the important equgl magr_utude prppe_rty, an_d _these_to_g(_at@ere (.. is “aligned” with JT £* € ¢,. That is

will help to generate a basic algorithm for finding a minimum infinity™ =

norm solution to a consistent underdetermined system. Though we will [ AT 1o
SN

rephrase the theorem and two corollaries to suit the notation and appli- A

7"

)

1
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A very important consequence of the alignment between a vectai®es not construct a “feed-forward” inverse; thatfis,must already
in (-, and{, we dub the “equal magnitude property,” which will com-be known (from an algorithm like Cadzow [14]) in order to infe@a
plete the background necessary to examine a basic least infinity-nastmich would generate it in closed from. At first glance this might seem

algorithm [23], [27]. of limited utility, however remember that we have not designed this
inverse as a computational tool but rather an analysis tool.
D. Equal Magnitude Property While n — m + 1 rows of @ are either a positive or negative row

An optimal minimum infinity norm velocity solutiors,*, always ex- Of ones,m — 1 rows .remain to be assigned in step 3. An interesting
ists with at least: — 1 + 1 components of equal magnitude; further-choice would be to pick from the set of-vectors whose components

more, that magnitude is the maximum magnitude of all of the comp8te 1. The cardinality of this set i8™ — 2, more than enough for

nents ofé*. them — 1 remaining rows. (Rows of all 1 or1 are already used to
Stated another way, whellé” || .. = k, thenn —m + 1 components construct) in the recipe above.) Basis vectors consisting of 1's and

of 6* will be equal to=k. To foreshadow future results, note that the~1's are generically known as “Haar” basis vectors, and concept of the

equal magnitude property does not prohibit more thanm + 1 com- Haar basis is very powerful in fields like wavelet analysis. Naturally,

ponents off* from having equal magnitude, nor does it imply that aff the rows of@ consist of a Haar basis subset, then the columrgg of

optimal solution must have — m + 1 equal magnitude components.Must also consists of a (higher dimensional) Haar basis subset, which

It simply says that, except for degenerate cases, theatlesast one We term the “Haar basis condition.”

optimal solution which will possess— m + 1 equal magnitude com- . giti

ponents. This will prove to be an extremely important property in tHe: Haar Basis Condition.

discussion of generalized inverses. To satisfy an infinity inversd* = Q(JQ) ', a (nonunique)
may be constructed whose linearly independent columns are a subset
V. INFINITY INVERSE of the extended Haar basis sft+1 +1 --- il][} Cc R".

At this point, it may be instructive to see an example. Take the ran-

In order to discuss the issue of the uniquenes§gdt|.., we first dﬁmly generated matrif as

imagine that there is an inverse, similar to the pseudoinverse, which wi

provided* in closed-form. Such an inverse would be one of an infinite 0.4660 0.8462 0.2026 0.8381
class of “generalized inverses.” For the least infinity norm problem, we = {0.4186 0.5252 0.6721 0.0196} : (11)
adopt a general form for inverse
Now takex as
JE=QUQ)™",  Qewrmm, 8) )
. i=| ;] 12)
SettingQ = J7 yields the pseudoinverse, so adopting the form in (8) -2
would seem intuitively “good.” However, the obvious problem remain L . .
to quantify, if possible, the construction@f Just as with the pseudoin- éomputlngQ via the Cadzow algorithm gives
verse in this form, we require full rank fof and@. —2.9978
The choice fot7# in (8) is so general, in fact, thanychoice ofQ . 0.7356
for which (JQ) ™! exists will generate a solution. This can be seen by 0" = _929978 | - (13)

simply observing that, i = Q(JQ)~'4, thenJ§ = JQ(JQ) ‘s =
&. In general, there seems to be no obvious method to producg the
which generates any give but in the specific case of least infinity (Note then — m + 1 = 3 equal magnitude components.) Following
magnitude property yields the following simple rules for constructingye indexk = 1). Then the third and fourth rows must bh 1] and
@ giveng” from one of the algorithms in [14]-{16]. [—1, —1]. The second row must simply be linearly independent of ev-
2) Pick some index such thalf™ (k)| = ||8*||- (there will be at erything else, so a candidafgis
leastn — m + 1 choices). Set

2.2278

1 1
[kthrow of Q] £ Q(k) = [1, 1, ..., 1] € R™. ) 0= 1 —1 _ (14)
3) For rowsi where|6*(i)| = 8" (k)] -1 -1
O(i) = (sign [é*(z’)] . sign[é*(k)]) k). (10) Now, the usual infinity inverse relation holds
6" =QUIQ) i (15)

If there are more than — m + 1 equal magnitude elements of
6+, stop after determining — m + 1 rows.

4) All other rows (the remaining: — 1) must be linearly indepen-
dent (a good choice will be presented shortly). If there are more
thann — m + 1 equal magnitude elements f and(JQ) "
does not exist, return to step 2 and choose a different set of rowdNe now introduce a geometric illustration of the mathematics be-
in expression (10). hind infinity norms. At this point, a few images combined with the in-

We should note several items regarding the algorithm above. Fifgtrmation presented in the previous sections will help to clear up issues

the rows of ones assigned in (9) is arbitrary, though as we shall seeh as the seemingly arbitrary choice of the Haar basis columgks for
shortly, very meaningful. Second, the algorithm assumes full famls The geometric arguments also provide exactly the right framework for
without that condition(.J@)) ! cannot exist under any circumstancediscussing nonuniqueness and discontinuity, and we have found them
Third, by designy must have full rank. Also, the algorithm as suchyuite intuitively satisfying.

andé* will be the solution of minimal maximum magnitude.

VI. GEOMETRIC VIEW
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A natural way to formulate a constraint set, calisdchere, would be
Co:{éi:—kggéisz}y 1=1,2,...,n (18)

and note tha, C R", and takes the shape of a polytope aligned
with the elementary basis vectdrs 0, 0, ..., 0], [0, 1, 0, ..., 0],

..+ [0,0, ..., 1]. (If some actuator constraints are dependent, then
the polytope may not align with certain basis directions.) If we make
a variable substitutiorf = Dé, in the vast majority of cases, there
exists a nonsingular weighting matriX such that we may normalize

polytopeC, into a new constraint sét; with

Solution space

61:{5i;—kgéigk}, i=1,2....n. (19

LettingJ = JD™!, the optimization problem can be solved in nor-

malized space, and the solution then de-normalized at thefénd,

D~'6*. The important observation here is thhe weighting matrix

D “stretches” and “squashes” the original constraint polytope into a
ﬁ \ hypercubesuch that

Solution space

B(r, o) C C; Vr <k (20)

If the joint constraints are not to be exceeded, the solution sface
(in general, a “hyperplane”) must interset, otherwise no solutions
exist which do not exceed the constraint conditions. In general, an infi-
nite number of solutions may in fact exist which intersect the constraint

hypercube, including the minimum infinity-norm solution. Recall that
Fig. 1. Here are the two-norm angb-norm equinorm surfaces iR®. The | t infinit uti r&* be f d by “ ina” a h
solution setS is one-dimensional, and it is clear exactly where the equinorr[rhe east infinity-norm solutiod™ can be found by “growing” a hy-
surfaces intersed (the minimum norm solutions). percube surfac8(r, oo) from» = 0 until the very first point where
{B(r, ) N S} # ¢. Remembering tha}f*||.. = r, and using the
hypercube constraint relation in (20), we may deduce one of the most
useful and important properties of minimum infinity-norm solutions:

Imagine the sef of all possible solutions

s {Q Jb = i} (16) A. Optimal Constraint Property

For a solutior* obtained using a normalized least infinity norm (as
above), if any element of* exceeds the associated joint constraint,
thenno solution exists which will not exceed the constraint set

To see this, assume that a least infinity norm squbedoes not sat-
isfy a particular constraint s€f ; in this case the minimum equinorm
hypercube surfacB(r, ~o) is “bigger” thanC, (i.e.,r > k). If an so-
B(r, p) 2 {5; zll, = ,r} , zER" (17) lution g... € S exists which does satisfy the constraints, then solution

spaceS must intersecf; at some point. However, siné¥r, oo) sur-

roundsCy, thenB(r, co) must not be the smallest hypercube which

whe_rer > 0is krlown as the equinorm _radlus. T_hg shape of tnﬂtersect&? (C; is smaller), implying that™ is not the least infinity
equinorm surface is extremely important in determining the charaﬁ:érm solution

teristics of a minimunp-norm solution forw. If the equinorm surface e eforth, we will assume that the problem has already been nor-
starts as a point- = 0) and gradually grows-(gets larger and larger) ;a4 (or does not need to be normalized) in order to simplify nota-
then eventually a point is reached where the equinorm surface justin,

tersects the solution set. The point of intersection is a minimamarm
solution,§*.

This situation can be seen clearly in Fig. 1, which would represent
the case thaf € ®***. The equinorm surfaces intersect the solution At last we are in a position to discuss the issue of nonuniqueness.
space at a unique point, the minimum norm solution for two-norm adjain consider the case of a minimum two-norm solution. Because a
infinity-norm domains, respectively. sphere is “round,” and& for a set of linear equations must be convex

At this point, it is instructive to see why the notion of joint vari-and complete (all elements and limit points of the set are linear com-
able constraints fits so nicely with this geometric picture. Since we adpeations of other points in the set), as the hypersphere grows from the
solving a velocity kinematics problem, the constraints of interest woutdigin, there will be one point where the sphere uniquely intersects the
be maximum joint speeds. (As in [10] and [19] the problem may ®olution space. This is the intuitive reason why minimum two-norm
reformulated to optimize generalized static forces or torques, respsotutions are always unique. However, it is possibleSfoo align itself
tively, in which case the constraint sets would represent maximum dg-be “parallel” to a face of the infinity-norm hypercube. In this case,
namic torques or maximum static forces achievable by the actuatoragr grows, the intersection s€3(r, ~) NS} has infinite cardinality!

Because the constraint equatiof[é = k& are linear,S will take the
form of a line, a plane or in general a hyperplaneriimensions.
Now imagine an “equinorm” surfadé(r, p), defined by all the points

o

VIlI. N ONUNIQUENESS
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Solution space

Solution space

Fig. 2. Here, while the intersection of the sphere @hdemains unique,
the cube intersect§ allowing an infinite number of minimum infinity-norm
solutions.

859

where( is the matrix of ones and minus ones listed in (22). This ex-
plains the reasoning for choosiagto have rows of:1 as we did in the
algorithm for the construction @p in the section on the infinity inverse.
In general, need not merely be a scalar, but could be any full rank
m x m postmultiplier, because the only requirementg)oére that it
have full rank and the solutidgii is contained within the column space
of Q. (In other words, for any full ranl’ € R™*™, if Q = QT then
col space{@} = col space{@}.) The case of a nonunique optimal so-
lution, however, presents the interesting situation that the column space
of J is not enough to represent all of the optimal solutions. Multiple
valid infinity inverses will exist withQ’s which span different spaces.
This is exactly what we expect if the solution space lies on the face of a
hypercube—a particular solution may be a linear combination of more
than the minimally required: hypercube vertices.

Again, a simple example may help to solidify the reader’s intuition.
Take the systenif = i as

. 2
| 2=[]

As necessary,J has full rank. One optimal solutiomj(l)

2

5

-2 -1 -1

3 15 1.5 24)

[0.5 —0.5 —0.5 0.5]", which is given by the combination of
vertices
1 1
. -1 -1
(" —
Q@ =11 4 (25)
1 1

An infinite number of possible solutions, all lying on the face of the hy-

percube, are allowable. They are all minimum infinity-norm solutiongy simple computation will reveal that the solutioﬂ(z)
and this is a point of nonuniqueness. Fig. 2 illustrates this phenomenpij

with the thick line representing all of the allowable portionSivhich
consists of minimum norm solutions.

From the pictures, one can get the intuitive sense that, as
equinorm hypercubeB(r, co) grows, it will first intersect with

solution spacé& at some edge, or at the worst case, along a hypercube
face. It would seem natural to represent a hypercube with a list of its

vertices, which numbe2™ and take the form

-
<
<

—

\3
-
<

vertices = (22)

- =
<

T T T

Thus, where/ € ™", it will require a linear combination of a min-
imum of m vertices to represent the point of intersectigéh, Labeling
those vertices as column vecters .. ., we then write, for some
appropriatec € ®™

v

=i

+1 =1 +1
N +1 +1 +1
Q*:[lla---ﬂﬂvn]'QZr . . s C. (22)
+1 =1 +1

—0.5 0.5 —0.5]" is also valid, and possesses min-
imum infinity norm. The infinity inverse for this solution has

the L1
. -1 -1
(2) _
Q=17 4 (26)
-1
and one can see by observation thatlspace{Q"}  #

colspace{@Q®}. In fact, the pseudoinverse itself yields
i [0.5 —0.3333 —0.1667 —0.1667]” which is also
a valid least infinity-norm solution.

VIII. D ISCONTINUITY

Having developed a sense for why least infinity norm solutions may
be nonunique, and disproved solution uniqueness by example, we now
proceed to discuss the problem of discontinuity in a time-varying un-
derdetermined system. Essentially, the possibility of a discontinuity in
the system exists purely because of the possibility for nonuniqueness:
if the system trajectory orients the solution sp&cso that it is “par-
allel” to a hypercube face, the solution may jump from one edge to the
other (i.e., fromg'm to Q'(z) in the previous example) before continuing
smoothly on its way. It should noted however, that reaching a point of
nonuniqueness isnly a necessary conditiolo experience a discon-
tinuity, not sufficient, because the system trajectory may not actually
complete the jump, choosing instead to reverse course or “veer away.”

We now recall the general form for the optimal infinity inverse, Before continuing, we should note that our discussion of solution
8" = Q(JQ)™'i, and set this equal with expression (22). Nowdiscontinuity assumes that the system Jacobi&@(t)) varies

[vi, ..., vm] = @, and we may simplify so that

-1
£

0" =[o1, ..oy umle=Q (JC?)

=Qr(JQr i =QUQ)™'i (23)

smoothly with time (true for all usual robot Jacobians), and that the
desired system inpuit also varies smoothly. We begin by making the
qualitative observation that, after the system moves around a bit, at
some point the column span &f in the infinity inverse will have to
change; it cannot remain constant over all trajectories. Since we know
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Circular Trajectory, min infinity-norm solution Joint Velocities vs. Time for Pseudolnverse Circular Trajectory
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Fig. 3. The robot starts out in the initial configuration [23590, 45, 0]
(pointing vertically) in CCW degrees from the previous link. The robot %3
executes a CW circular trajectory.

Joint 4
(=]
T

that it can always be constructed s, we infer that when one or

more columns of) change, they do so abruptly and discontinuously. ' i 2 s z 5 6 7

(In other words, the space spanned by the columrég wfill abruptly

change.) If the system outp@ts to remain continuous during a changé:ig' 4. Thejc_)ir_mt velocities for the circular trajectory using the pseudoinverse.
- . .~ The speed of joints 2, 3, and 4 drops to zero.

of the column space, thémust be independent of the columns which

experience the change at the instant in time when the change occurs.

Consider four-link planar robot executing a circular trajectory, as the difference between the next computed solution and the previous so-
Fig. 3. A circular trajectory about the first joint will, by its very nature Jution exceeds a certain threshold. Then, solutions already in the buffer
force the distal joints (2, 3, and 4) to zero velocity because only jointcbuld be modified to smoothly switch from the old trajectory to the
need move to maintain a constant end-effector radius. While the sinew. However, this method degrades one of the golden properties of
ulated robot behaves very similarly for both the minimum two-norrjust-in-time (local) optimization, the ability to react to changing envi-
and minimum infinity-norm algorithms, Figs. 4 and 5 illustrate theonments. Because the procedure now contains a “delay,” the system
real story. Clearly the minimum two-norm solution allows the speeashnnot react instantly to changes in the input.
of joints 2, 3, and 4 to settle around zero, as expected. However, giverTo repair the discontinuity problem, we propose a predictive method
that efficient least-infinity norm algorithms are based on the equal magsing a metric which “senses” when a discontinuity is near, and gradu-
nitude property, the only way to approximate zero net motion in a joiatly takes corrective action. We dub the method “rate mixing,” [2] and
is to slam the desired joint speeds between the maximum positive a@ldlas the following form:
negative allowable values as fast as possible (in this case, at the update
rate). Clearly the circle trajectory, by design, forces discontinuous be- 6" =16 4+ (1= r)§?, 0<r<l. 27)
havior in the least infinity-norm algorithm. -

As per the earlier discussion on nonuniqueness, during the disc

tinuity there are alternate solutions which will accomplish the eng\?e denote the optimal (final) solution &, the least infinity-norm

yed (00) ) - i) !
effector trajectory—namely the solution to which the pseudoinverégIlJtlon asy and the least two-norm solution QE‘Z - Essentially,

tends(ﬁ' —[=0.78, 0, 0, 0]7 ). However, the least-infinity norm solu- expression (27) “mixes” the optlmal infinity-norm s.,olutloln WIFh an-
fer solution known to be continuous but suboptimal (in this case,

tion would not be able to smoothly decay the speeds of joint 2, 3, an(gf . . . . .
. . . . e pseudoinverse solution, though any suboptimal continuous solution
to zero as with the pseudoinverse; in order to choose that particular $

lution the least infinity norm algorithm would have to discontinuousIW(ﬂl \‘{vo.rk.). Concepﬂtually, e now wantto vary this parametecallgd
. d . - The “mixing factor,” so that it stays near 1 most of the time, moving to
jump there and remain there. It would seem there is no way to avoid ai ; ) - . . :
. - . . : : 0 at points of discontinuity. Under these constraints,véries contin-
least one discontinuity during the circle trajectory using an unadultet- e . A(2) .
PP ; uously, ™ will vary continuously becausg'“’ is always unique and
ated least infinity norm solution. . . .
continuous. The choice of a good mixing factor depends on several
conditions which we explore next.
From a geometric point of view, recall that findirﬁ”) involves
Now that discontinuities are known to exist, the natural questidgrowing” the hypercube [i.e., increasirign (19) from 0] until one
to ask is how to avoid them. One possibility would involve storing adge of it touches the solution spag¢19], whereS = {6: J8 = i}
small number of sequential solutions in a buffer, and detecting whandS is always parallel to the nullspace #f denoted\’. Note A" €

IX. AVOIDING DISCONTINUITIES



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 6, DECEMBER 2000 861

Joint Velocities vs. Time for min infinity-norm Circular Trajectory
1 T T T T T T T

face of the hypercube in-space. While Figs. 1 and 2 involve only a
one-dimensional solution spacel, in general the solution space is
multidimensional ink™ and may be parallel not just to a & 1)-di-

A. Zero Subspace Angle Condition

% of - mensional face of the hypercube, but any subfaces or edges of it as well.
- This generalization makes the problem significantly harder, and is the
-05\ T . .
reason we investigate the concept of the subspace angle.
15 ; 3 5 ; . 5 = We begin by assigning; = N. (BecauseS and\ are parallel
linear spaces, the subspace angle will be the same whether the columns
! ' - — - N ' ‘ of S| span the solution space or the nullspace). Since we are concerned
05l LK ‘ : HHEEENE ; with the solution space intersecting edges and faces of the hypercube
~ “ (which are always aligned with the elementary basis vectors), we will
g ° " choosen of these basis vectors to be the column$gfso that, ifA”
o5} ‘ [l 1 , ! Il I andS; are independent spaces US. = R". Thatis, if the spaces are
“ . , , L , L L independent, then their union should be the complete spacé&low
0 1 2 3 4 5 6 7 the question is, whiclr basis vectors should spa&h? There will be
, : . . : : : i (1) possible arrangements and, from the above discussion, we want to
i ‘ know if the nullspace has a zero subspace angle with any one of those
05 " choices. Now we note the following result.
|
|

i ‘ Wi For an underdetermined system employing least infinity norm op-
0 1 2 s 4 5 5 7 timization with an optimum solutiod' ™, if §™ is nonunique then
there exists somé&, spanned by elementary basis vectors such that
[ (i ‘ I m cos_l(m):O.
051 ' " Finding the subspace angle (qt) subspaces could take a long time
using the singular value decomposition method, and yields little intu-
ition. Since we do not need the actual angle, only a number represen-
e ; Il i i tative of the angle (in a one-to-one correspondence) we may note that,
-1 . L L . - L - by filling a » x » matrix with columns which span the two subspaces,
a zero determinant indicates that the column space is not complete.
Fig. 5. Joint velocities of the circle trajectory using infinity-norm proceduressince we know that, by constructiafi; consists ofn columns of 0's
Because of the equal-magnitude property, the speed of joints 2, 3, and 4 neyed 1's (no column repeating), it will always sp&ff'. Recall that we
approach zero, but oscillate around zero. must consider all possible choices $f. Therefore, to find the min-
imum subspace angle over all possible faces and edges of the hyper-
R®™~™, and we will represent the nullspace with a mathixsuch that cube (all possibles.), we may concatenatd and.S; into an x n
the orthogonal columns af span the nullspace. In other words, let matrix and find its determinant. A zero determinant corresponds to a
zero minimum subspace angle; larger absolute value determinants in-
N ¢ jXm), span {ni, na, ..., Np—m} = N. (28) dicate larger subspace angles. Note that we may also swap rows in this
concatenation matrix in the following manner:
As the hypercube expands, just where it first intersects the solution
space is the poirﬁ(“‘) (refer back to Figs. 1 and 2). If the nullspace [N]Ss] — {
is exactly aligned with a side or an edge of the hypercube, then
{B(r, o) n.S} contgins an infin.ipo/oc;f sol.utio.ns, r.eprese.nting the _Cas\?vith the result that
of a nonunique optimal solutioft . This situation, which we will
call the “zero s_ubspe_tce ang_lt_e condition_," will prove useful, so we now | det[N]Sa]| = | det[N1] * det[I]] = | det[N:]|. (31)
proceed to define this condition more rigorously.

The subspace anglés defined geometrically as the angle betweegq, () subspace angle calculations have been distilled dowfj o
two hyperplanes (subspacel and S:) embedded in a higher yeterminants of sizén — m) x (n — m). Define

Joint 4
=3
T

Ny 0

;\72 Inz Xm

} VS, (30)

dimensional space. For instance, épan{[0, 1, 0]'} = S
and span{[0, (1/v/2), (1/v2)]",[1,0,0]"} = S, then dinin = min{| det[N4][}. 32)
subspace(Si, S2) = 45°. More precisely, letS; be a matrix 82
with orthogonal columns which spafy, and S: be a matrix with L
orthogonal columns which spa. Then In an evolving trajectory, ifl...n approaches zero, the SO|UtiQ§’i%)
gets closer and closer to a point of nonuniqueness, and possible discon-

subspace(Sy, Sz) = Cosfl(g)’ o = min{diag ¥)} tinuity. Noted i is continuous (although not smooth) if the elements

with of N vary continuously; this implies the elements.bfvarying con-

L " tinuously—a reasonable expectation if the input trajectory contains no
ULV® =51 5. (29)  discontinuities.
Only one step remains to refink,;, into the mixing factor from
Thesubspace angle is the inverse cosine of the minimum singularvadgg. We must limitr to exist only between 0 and 1, which can be
of 51 5> [22]. accomplished as
This is relatively unwieldy, but its use will be simplified shortly. Con-

ceptually, we want to know if the solution spaSes “parallel” to any p=1—¢ min (33)
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Fig. 6. Plots of the mixing factor and the joint velocities of the corrected circleig. 7. A corrected linear trajectory. Note how the rate-mixing algorithm
example. Thick lines are trajectories corrected for discontinuities; thin linssiccessfully avoids one discontinuity, but also suffers one “false alarm.”
represent what a pure least infinity-norm solution would have produced.

o insight into the conditions when the manipulator might possibly reach
Recall thatdmin > 0. The factora determines how quickly will points of nonuniqueness.

switch from a least infinity norm solution to a two-norm solution,
tending to “round out” the sharp edges of the hypercube.

The rate mixing method has proven quite effective in a number of
examples, including the circle example, for which the mixing factor Unfortunately, space does not permit the further examination of de-
and joint velocities appear in Fig. 6. The first plot shows howaries tails like behavior of the infinity inverse near singularities and exam-
with time, heavily favoring the pseudoinverse solution to avoid theation of possibilties that the produdt) might not have full rank.
oscillations present from Fig. 5. Also shown is a linear trajectory, iHowever, these details do not materially affect the observations and al-
Fig. 7, specifyingt = [—0.8, —(.8] for about 4 s. Note that this tra- gorithms in this paper, and they can be found in [3].
jectory contains an isolated discontinuity which the robot smoothly We have endeavored in this paper to illustrate and explore many de-
avoids, favoring the infinity norm solution most of the time. Also notéails and subtleties of infinity norms and least effort solutions in gen-
that the mixing factor hits zero once where there is no discontinuitgral, using kinematic redundancy resolution as a test case for the math-
This represents a point of nonuniqueness, however the robot’s trajematical theory. After briefly reviewing the dual optimization theorem
tory did not take it “across” the nonunique point to create a discontind its associated corollaries, we used the equal magnitude property to
nuity. This instance reflects the necessary, but not sufficient, quality eftract the composition of a closed-form inverse, the “infinity inverse.”
the mixing factor and would seem to be inevitable from time to tim&he properties of this inverse, combined with a geometric knowledge of
without apriori knowledge of the future trajectory. least infinity norm solutions, provided the foundations for a discussion

Although the general algorithm requires a search for the minimuaf solution nonuniqueness and the potential for trajectory discontinuity
determinant of alln —m) x (n —m) minors of NV, for most rigid-link  as a result. We illustrated one possible method for “preemptive” avoid-
robots, the typical degree of redundancy will be only one or two. lance of such discontinuities and attempted to provide examples of least
the most common case—one degree redundant—the determinantsfinity normbehavior throughout the text.

(32) boil down to a simple search for the smallest magnitude elementfrom this discussion and others in the current literature, it would
of the nullspace vector. This should make intuitive sense. For exampeem that for any type of analysis involving polytope-like variable con-
in three dimensions, if the element of a one-dimensional nullspacestraints, or any situation emphasizing the importance of a minimum
vector equals zero, then that vector must be parallel tetygplane, a maximal magnitude to an underdetermined system, the infinity norm
necessary condition for discontinuity in least infinity-norm problemss an invaluable tool. AImost every instance in the robotics literature
Given this fact, if the Jacobian nullspace vector exists in closed formhere a pseudoinverse appears might represent a situation better served
determining if and when any component goes to zero ought to provide a least infinity-norm solution, and subjects such as multiple-arm

X. CONCLUSIONS
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