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Abstract—There exist in robotics, as in many other disciplines, problems
described by an underdetermined set of constraints, possessing an infinite
number of solutions. The problem of robot manipulator redundancy reso-
lution is just such a situation, requiring that a particular solution be chosen
according to some type of optimization criterion. One possibility employs
a type of optimization which minimizes the maximum magnitude of the so-
lution vector. This is the minimum infinity norm solution, also known as
the “minimum effort solution.” This paper explores the details of least in-
finity norm optimization, using kinematic redundancy resolution as a test
case to explore the details of infinity-norm optimization. We introduce for
the first time a closed-form expression for minimum effort solutions, illus-
trating the heretofore unknown properties of nonuniqueness and disconti-
nuity in time-varying situations, and postulating a possible remedy for the
discontinuity problem. Additionally, to reinforce the mathematics, simula-
tions of four-link robots are included, as well as an extended discussion of
minimum-effort solutions from a geometric point of view.

Index Terms—Infinity-norm, kinematics, manipulators, minimum effort,
redundancy, underdetermined.

I. INTRODUCTION

The utility of minimum effort solutions to underdetermined systems
became apparent in the study of linear control techniques several
decades ago. Researchers observed that a minimum-time (discretized)
system control input, which could theoretically achieve the control
objective within a certain time frame (number of steps), could
unfortunately exceed the real-world amplitude specifications for the
system. It was observed that, if a longer sequence of control inputs was
used, the system could be nudged toward the objective over a greater
period of time. The set of feasible inputs in this case is not uniquely
determined (generally, it is infinitely large), and the question arose,
for a given input sequence length, does a control solution exist which
will not exceed the maximum input amplitude specifications? Several
researchers successfully answered this question, known variously as
the minimum effort problem or the minimum amplitude problem, and
their work serves as background in this paper [14]–[18].

Later work subsequently adapted the resulting minimum effort al-
gorithms for the resolution of manipulator redundancy resolution, and
began to explore the effects and properties of minimum effort solu-
tions in this context [12], [13]. Unfortunately, two critical questions re-
mained: are the resulting joint-level trajectories guaranteed to be con-
tinuous over time, and are minimum effort solutions unique? In this
paper, we discuss the answers to these questions, providing a number
of examples along the way. As the underlying mathematical concepts
do not generally lend themselves to simple and elegant closed-form
arguments, we also endeavor to foster the reader’s intuition with geo-
metrical arguments, and we round out our discussion with a discussion
of discontinuity avoidance. As more and more literature surfaces in the
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robotics community which depends upon the concept of minimum ef-
fort [9], [10], [19], we believe minimum effort techniques will prove an
invaluable tool in the future, provided their properties and limitations
are well understood.

II. BACKGROUND

The most commonly found example of underdetermined systems in
the robotics literature is probably that of kinematically redundant ma-
nipulators, which have been the subject of extensive research over the
last few years (see, for example, the survey papers [4], [5]). For these
types of manipulators, there are more degrees of freedom (joints) than
specified end effector (task) variables, and the key issue is how to ex-
ploit this overabundance of joints in the system.

More specifically, given end effector, or task variables,x 2 Rm, and
joint variables� 2 Rn, for kinematically redundant robots,n > m,
and there are in general an infinite number of configurations� satis-
fying the (forward) kinematic relationx = f(�), for a given end ef-
fector locationx. This feature of redundant robot kinematics allows a
“preferred” choice of configuration history�(t) which avoids singular-
ities or obstacles, minimizes energy or torques, etc., while maintaining
the task trajectoryx(t) [4], [5]. The vast majority of approaches in the
literature choose joint space trajectories (resolving the redundancy) at
the velocity (rate) level, inverting the Jacobian relationship

_x = J (�) _� (1)

as

_� = [JM ]+ _x+ I � J
+

MJM " (2)

using the Jacobian pseudoinverseJ+
M

, where J+
M

=
MJT (JMJT )�1, (with M 2 Rn�n a positive definite matrix) is a
right-sided inverse ofJ , and" 2 Rn is an arbitrary vector, whose
selection determines which of the possible choices of configurations
will be selected.

The use of the Jacobian pseudoinverse is attractive for a number of
reasons. In particular, the structure of the pseudoinverse has been well
investigated [6], and the behavior of solutions generated using it are
convenient and well understood. In particular, the solution with" = 0,
i.e., _� = J+

M
_x, is the solution to the problem

min _�TM�1 _� subject to_x = J (�) _�: (3)

Numerous researchers have exploited the above property of the pseu-
doinverse [4], [5], choosingM in various ways to synthesize “min-
imum energy” solutions to various problems of interest [for example,
choosingM�1 as the inertia matrix yields the solution that (locally)
minimizes manipulator kinetic energy].

However, the two-norm is not the only norm with physical
significance. The infinity-norm of a vectorv 2 Rn is defined as
kvk1 = max(jv1j; jv2j; . . . ; jvnj). Thus for redundant manipulator
inverse kinematics, the infinity-norm problem analogous to (3) above
becomes

min _�
1

subject to_x = J (�) _�: (4)

Note that computing a solution by minimizing the infinity-norm
yields a joint velocity vector whose maximum (absolute) joint velocity
will be minimum among all vectors_� satisfying (1). Such a solution
can thus be thought of as a minimum effort solution, as opposed to
the minimum energy solution produced using the pseudoinverse [13].
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There is strong practical motivation for such solutions—consider
the common case of joint velocity (or actuator torque) limits. In this
case, minimum energy (i.e., pseudoinverse-based) solutions, by their
nature, can constrain only the sum of squares of the components of the
solution vector, yielding no information about individual components.
This is an important issue practically, since if the solution generated
has an unexpected component outside the joint velocity limits, the
actual trajectory implemented will be “clipped” at the corresponding
joint, leading to solutions that will not in fact satisfy (1), and task
space trajectories that will deviate fromx. This could be disastrous
in many applications (consider robot surgery, for example). On the
other hand, the minimum infinity norm (i.e., minimum effort) solution
explicitly seeks to minimize the maximum component magnitude, thus
will always find a solution satisfying the physical limit constraints if
one exists. (Note that by definition, the pseudoinverse solution always
has maximum component magnitude greater or equal to that of the
infinity-norm solution). This is very appealing practically, suggesting
that in many cases, minimum infinity-norm solutions can be tailored
more effectively for physical constraints than can those using the
pseudoinverse.

There have been several works investigating the use of minimum in-
finity-norm solutions in robotics in the last few years. The first discus-
sion of the infinity norm in the context of robot kinematics appears to be
in [20]. Minimum infinity-norm motions for open-chain manipulators
via joint torque optimization has been proposed in [19], in which the
minimum-infinity solution is shown to utilize energy more efficiently
for several examples.

However, there are a number of problems and heretofore unresolved
issues when using the infinity norm compared to the two-norm. Algo-
rithms for computing minimum infinity norms are numerical in nature
[14]–[18], and a closed form quantity paralleling the pseudoinverse has
not previously been available to aid in analysis of the structure and/or
computation of the solutions. In addition, unlike the case for the pseu-
doinverse, the question of continuity and uniqueness of minimum in-
finity-norm solutions has not been answered previously. This is impor-
tant practically, since it has not been known when or whether the so-
lution may become discontinuous and hence not implementable prac-
tically.

Taken together, the above restrictions and concerns have relegated
the infinity-norm (a.k.a. minimum-effort) approach to something of a
curiosity, since even though the results reported in the literature thus far
have been promising, the general behavior of the solutions could not
be guaranteed. In this paper, we introduce a new closed-form expres-
sion for an “infinity-inverse” which parallels the pseudoinverse, and
use it to resolve the issues of continuity and uniqueness for the least in-
finity-norm solutions. The analysis resolves the difficulties mentioned
above, and results in a deeper understanding of the nature of minimum
infinity-norm solutions.

III. T OWARDS DISCONTINUITY

Before continuing on with our analysis of the behavior of least in-
finity norm solutions, it will be helpful to outline the precise steps we
will need to take to arrive at a meaningful result. We will start with a
statement of the theorem at the heart of infinity norm analysis, known
as the “dual optimization theorem.” Following the dual optimization
theorem we review two corollaries, the “alignment corollary” and the
“orthogonality corollary.” The orthogonality and alignment corollaries
lead to the important “equal magnitude property,” and these together
will help to generate a basic algorithm for finding a minimum infinity
norm solution to a consistent underdetermined system. Though we will
rephrase the theorem and two corollaries to suit the notation and appli-

cation of manipulator redundancy, they are general and can be found
in literature such as [14]–[17] and [23].

In order to discuss nonuniqueness and discontinuity, we then deviate
from previous discussions on infinity-norm algorithms, and hypothe-
size the existence of a generalized inverse, called the “infinity inverse,”
which yields minimum infinity norm solutions in a closed form. Using
the equal magnitude property, we extract certain properties about the
infinity inverse, most notably the “Haar basis property.” From there, we
proceed to a discussion of the geometric meaning of least infinity-norm
solutions, designed to develop the reader’s intuition about the problem
and answer some questions which are very difficult to tackle in abstrac-
tion. These geometric insights will allow us to discuss the nonunique-
ness of least infinity norm solutions. The property of nonuniqueness
opens the door to understanding when and how a discontinuity might
occur in a time-varying underdetermined system. Having examined the
nature of nonuniqueness and discontinuity, we then proceed to con-
struct one possible mechanism for avoiding discontinuities by gener-
ating a metric which measures “how far away” a point of nonunique-
ness is during a time-varying trajectory. We also provide several exam-
ples throughout the text to help the reader gain familiarity with various
characteristics of least infinity-norm solutions.

IV. DUAL OPTIMIZATION THEOREM AND COROLLARIES

A. Dual Optimization Theorem

Given the system_x = J _� of m consistent equations inn unknowns
(m < n), then

min
J _�=_x

_�
1

= max
kJ fk =1

_xT f: (5)

There is a beautiful symmetry in the dual optimization theorem [14],
[15], and at its heart we see that the minimization of the infinity norm
velocity solution has been reformulated as a maximization of the end-
effector work( _xT f). Furthermore, the work must be maximized sub-
ject to the constraint that the associated joint torques,� = JT f , exhibit
a unit 1-norm. (It is important to realize that these are static torques and
forces, introduced to aid our analysis of a purely kinematic problem.
These torques and forces are not equivalent to those necessary to move
the end-effector along a given trajectory.)

B. Orthogonality Corollary

For an optimal forcef� such that

_xT f� = max
kJ fk =1

_xT f (6)

thenm � 1 components ofJT f� are equal to zero with the corre-
sponding columns ofJ linearly independent.

This corollary indicates that the optimal force maximizing the dual
problem in (5) will be orthogonal to at leastm � 1 linearly indepen-
dent columns ofJ , an important property as we will see later. It should
be noted that more thanm� 1 components ofJT f� may be zero, but
sinceJ 2 <m�n, this would imply thatf� is orthogonal to at leastm
columns which would indicate a degenerate case, whereJ drops rank.
We save the discussion of least infinity norm solutions near singulari-
ties for later.

C. Alignment Corollary

Having found the optimalf�, the minimum infinity norm solution
_�� 2 `1 is “aligned” withJT f� 2 `1. That is

_��
T

J
T
f
� = _��

1
J
T
f
�

1

: (7)
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A very important consequence of the alignment between a vectors
in `1 and`1 we dub the “equal magnitude property,” which will com-
plete the background necessary to examine a basic least infinity-norm
algorithm [23], [27].

D. Equal Magnitude Property

An optimal minimum infinity norm velocity solution,_��, always ex-
ists with at leastn �m+ 1 components of equal magnitude; further-
more, that magnitude is the maximum magnitude of all of the compo-
nents of _��.

Stated another way, wherek _��k1 = k, thenn�m+1 components
of _�� will be equal to�k. To foreshadow future results, note that the
equal magnitude property does not prohibit more thann�m+1 com-
ponents of_�� from having equal magnitude, nor does it imply that an
optimal solution must haven �m+ 1 equal magnitude components.
It simply says that, except for degenerate cases, there isat least one
optimal solution which will possessn�m+1 equal magnitude com-
ponents. This will prove to be an extremely important property in the
discussion of generalized inverses.

V. INFINITY INVERSE

In order to discuss the issue of the uniqueness ofk _��k1, we first
imagine that there is an inverse, similar to the pseudoinverse, which will
provide _�� in closed-form. Such an inverse would be one of an infinite
class of “generalized inverses.” For the least infinity norm problem, we
adopt a general form for inverse

J
# = Q(JQ)�1; Q 2 <n�m: (8)

SettingQ = JT yields the pseudoinverse, so adopting the form in (8)
would seem intuitively “good.” However, the obvious problem remains
to quantify, if possible, the construction ofQ. Just as with the pseudoin-
verse in this form, we require full rank forJ andQ.

The choice forJ# in (8) is so general, in fact, thatanychoice ofQ
for which (JQ)�1 exists will generate a solution. This can be seen by
simply observing that, if_� = Q(JQ)�1 _x, thenJ _� = JQ(JQ)�1 _x =
_x. In general, there seems to be no obvious method to produce theQ

which generates any given_�, but in the specific case of least infinity
norm solutions, but a little bit of logic and judicious use of the equal
magnitude property yields the following simple rules for constructing
Q given _�� from one of the algorithms in [14]–[16].

2) Pick some indexk such thatj _��(k)j = k _��k1 (there will be at
leastn �m + 1 choices). Set

[kth row ofQ]
�
=Q(k) = [1; 1; . . . ; 1] 2 <m: (9)

3) For rowsi wherej _��(i)j = j _��(k)j

Q(i) = sign _��(i) � sign _��(k) Q(k): (10)

If there are more thann �m+ 1 equal magnitude elements of
_��, stop after determiningn �m+ 1 rows.

4) All other rows (the remainingm� 1) must be linearly indepen-
dent (a good choice will be presented shortly). If there are more
thann � m + 1 equal magnitude elements of_�� and(JQ)�1

does not exist, return to step 2 and choose a different set of rows
in expression (10).

We should note several items regarding the algorithm above. First,
the rows of ones assigned in (9) is arbitrary, though as we shall see
shortly, very meaningful. Second, the algorithm assumes full rankJ , as
without that condition,(JQ)�1 cannot exist under any circumstance.
Third, by designQ must have full rank. Also, the algorithm as such

does not construct a “feed-forward” inverse; that is,_�� must already
be known (from an algorithm like Cadzow [14]) in order to infer aQ
which would generate it in closed from. At first glance this might seem
of limited utility, however remember that we have not designed this
inverse as a computational tool but rather an analysis tool.

While n � m + 1 rows ofQ are either a positive or negative row
of ones,m � 1 rows remain to be assigned in step 3. An interesting
choice would be to pick from the set ofm-vectors whose components
are�1. The cardinality of this set is2m � 2, more than enough for
them � 1 remaining rows. (Rows of all 1 or�1 are already used to
constructQ in the recipe above.) Basis vectors consisting of 1’s and
�1’s are generically known as “Haar” basis vectors, and concept of the
Haar basis is very powerful in fields like wavelet analysis. Naturally,
if the rows ofQ consist of a Haar basis subset, then the columns ofQ

must also consists of a (higher dimensional) Haar basis subset, which
we term the “Haar basis condition.”

A. Haar Basis Condition.

To satisfy an infinity inverse_�� = Q(JQ)�1 _x, a (nonunique)Q
may be constructed whose linearly independent columns are a subset
of the extended Haar basis set,f[�1 �1 � � � �1 ]T g � <n.

At this point, it may be instructive to see an example. Take the ran-
domly generated matrixJ as

J =
0:4660 0:8462 0:2026 0:8381

0:4186 0:5252 0:6721 0:0196
: (11)

Now take _x as

_x =
1

�2
: (12)

Computing _�� via the Cadzow algorithm gives

_�� =

�2:2278

0:7356

�2:2278

2:2278

: (13)

(Note then �m + 1 = 3 equal magnitude components.) Following
the rules to construct an inverse, let the first row ofQ be [1; 1] (i.e.,
the indexk = 1). Then the third and fourth rows must be[1; 1] and
[�1; �1]. The second row must simply be linearly independent of ev-
erything else, so a candidateQ is

Q =

1 1

1 �1

1 1

�1 �1

: (14)

Now, the usual infinity inverse relation holds

_�� = Q(JQ)�1 _x (15)

and _�� will be the solution of minimal maximum magnitude.

VI. GEOMETRIC VIEW

We now introduce a geometric illustration of the mathematics be-
hind infinity norms. At this point, a few images combined with the in-
formation presented in the previous sections will help to clear up issues
such as the seemingly arbitrary choice of the Haar basis columns forQ.
The geometric arguments also provide exactly the right framework for
discussing nonuniqueness and discontinuity, and we have found them
quite intuitively satisfying.
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Fig. 1. Here are the two-norm and1-norm equinorm surfaces in< . The
solution setS is one-dimensional, and it is clear exactly where the equinorm
surfaces intersectS (the minimum norm solutions).

Imagine the setS of all possible solutions

S
�
= _�: J _� = _x : (16)

Because the constraint equationsJ _� = _x are linear,S will take the
form of a line, a plane or in general a hyperplane inn dimensions.
Now imagine an “equinorm” surfaceB(r; p), defined by all the points

B(r; p)
�
= z: kzk

p
= r ; z 2 <n (17)

wherer > 0 is known as the equinorm radius. The shape of the
equinorm surface is extremely important in determining the charac-
teristics of a minimump-norm solution for_�. If the equinorm surface
starts as a point(r = 0) and gradually grows (r gets larger and larger)
then eventually a point is reached where the equinorm surface just in-
tersects the solution set. The point of intersection is a minimump-norm
solution, _��.

This situation can be seen clearly in Fig. 1, which would represent
the case thatJ 2 <2�3. The equinorm surfaces intersect the solution
space at a unique point, the minimum norm solution for two-norm and
infinity-norm domains, respectively.

At this point, it is instructive to see why the notion of joint vari-
able constraints fits so nicely with this geometric picture. Since we are
solving a velocity kinematics problem, the constraints of interest would
be maximum joint speeds. (As in [10] and [19] the problem may be
reformulated to optimize generalized static forces or torques, respec-
tively, in which case the constraint sets would represent maximum dy-
namic torques or maximum static forces achievable by the actuators.)

A natural way to formulate a constraint set, calledC0 here, would be

C0 = _�i: �ki � _�i � ki ; i = 1; 2; . . . ; n (18)

and note thatC0 � <n, and takes the shape of a polytope aligned
with the elementary basis vectors[1; 0; 0; . . . ; 0], [0; 1; 0; . . . ; 0],
. . ., [0; 0; . . . ; 1]. (If some actuator constraints are dependent, then
the polytope may not align with certain basis directions.) If we make
a variable substitution,~_� = D _�, in the vast majority of cases, there
exists a nonsingular weighting matrixD such that we may normalize
polytopeC0 into a new constraint setC1 with

C1 =
~_�i: �k �

~_�i � k ; i = 1; 2; . . . ; n: (19)

Letting ~J = JD�1, the optimization problem can be solved in nor-
malized space, and the solution then de-normalized at the end,_�� =

D�1
~_��. The important observation here is thatthe weighting matrix

D “stretches” and “squashes” the original constraint polytope into a
hypercubesuch that

B(r; 1) � C1 8 r � k: (20)

If the joint constraints are not to be exceeded, the solution spaceS
(in general, a “hyperplane”) must intersectC1, otherwise no solutions
exist which do not exceed the constraint conditions. In general, an infi-
nite number of solutions may in fact exist which intersect the constraint
hypercube, including the minimum infinity-norm solution. Recall that
the least infinity-norm solution~_�� can be found by “growing” a hy-
percube surfaceB(r; 1) from r = 0 until the very first point where

fB(r; 1) \ Sg 6= �. Remembering thatk~_��k1 = r, and using the
hypercube constraint relation in (20), we may deduce one of the most
useful and important properties of minimum infinity-norm solutions:

A. Optimal Constraint Property

For a solution_�� obtained using a normalized least infinity norm (as
above), if any element of_�� exceeds the associated joint constraint,
thenno solution exists which will not exceed the constraint set.

To see this, assume that a least infinity norm solution_�� does not sat-
isfy a particular constraint setC1; in this case the minimum equinorm
hypercube surfaceB(r; 1) is “bigger” thanC1 (i.e.,r > k). If an so-
lution _�alt 2 S exists which does satisfy the constraints, then solution
spaceS must intersectC1 at some point. However, sinceB(r; 1) sur-
roundsC1, thenB(r; 1) must not be the smallest hypercube which
intersectsS (C1 is smaller), implying that_�� is not the least infinity
norm solution.

Henceforth, we will assume that the problem has already been nor-
malized (or does not need to be normalized) in order to simplify nota-
tion.

VII. N ONUNIQUENESS

At last we are in a position to discuss the issue of nonuniqueness.
Again consider the case of a minimum two-norm solution. Because a
sphere is “round,” andS for a set of linear equations must be convex
and complete (all elements and limit points of the set are linear com-
binations of other points in the set), as the hypersphere grows from the
origin, there will be one point where the sphere uniquely intersects the
solution spaceS . This is the intuitive reason why minimum two-norm
solutions are always unique. However, it is possible forS to align itself
to be “parallel” to a face of the infinity-norm hypercube. In this case,
asr grows, the intersection setfB(r; 1)\Sg has infinite cardinality!



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 6, DECEMBER 2000 859

Fig. 2. Here, while the intersection of the sphere andS remains unique,
the cube intersectsS allowing an infinite number of minimum infinity-norm
solutions.

An infinite number of possible solutions, all lying on the face of the hy-
percube, are allowable. They are all minimum infinity-norm solutions,
and this is a point of nonuniqueness. Fig. 2 illustrates this phenomenon,
with the thick line representing all of the allowable portion ofS which
consists of minimum norm solutions.

From the pictures, one can get the intuitive sense that, as the
equinorm hypercubeB(r; 1) grows, it will first intersect with
solution spaceS at some edge, or at the worst case, along a hypercube
face. It would seem natural to represent a hypercube with a list of its
vertices, which number2n and take the form

vertices =

r

r
...
r

r

r

r
...
r

�r

r

r
...

�r

r

� � �

�r

�r
...
�r

�r

: (21)

Thus, whereJ 2 <m�n, it will require a linear combination of a min-
imum ofm vertices to represent the point of intersection,_��. Labeling
those vertices as column vectorsv

1
; . . . ; v

m
, we then write, for some

appropriatec 2 <m

_�� = [v1; . . . ; vm] � c = r

�1 �1 � � � �1

�1 �1 � � � �1
...

...
...

�1 �1 � � � �1

� c: (22)

We now recall the general form for the optimal infinity inverse,
_�� = Q̂(JQ̂)�1 _x, and set this equal with expression (22). Now,
[v1; . . . ; vm] = Q̂, and we may simplify so that

_�� = [v1; . . . ; vm] c = Q̂ JQ̂
�1

_x

=Qr(JQr)�1 _x = Q(JQ)�1 _x (23)

whereQ is the matrix of ones and minus ones listed in (22). This ex-
plains the reasoning for choosingQ to have rows of�1 as we did in the
algorithm for the construction ofQ in the section on the infinity inverse.
In general,r need not merely be a scalar, but could be any full rank
m �m postmultiplier, because the only requirements ofQ are that it
have full rank and the solution_�� is contained within the column space
of Q. (In other words, for any full rankT 2 <m�m, if Q̂ = QT then
col spacefQ̂g = col spacefQg:) The case of a nonunique optimal so-
lution, however, presents the interesting situation that the column space
of Q is not enough to represent all of the optimal solutions. Multiple
valid infinity inverses will exist withQ’s which span different spaces.
This is exactly what we expect if the solution space lies on the face of a
hypercube—a particular solution may be a linear combination of more
than the minimally requiredm hypercube vertices.

Again, a simple example may help to solidify the reader’s intuition.
Take the systemJ _� = _x as

2 �2 �1 �1

5 3 1:5 1:5
� _� =

2

1
: (24)

As necessary,J has full rank. One optimal solution_�
(1)

=
[ 0:5 �0:5 �0:5 0:5 ]T , which is given by the combination of
vertices

Q
(1) =

1 1

�1 �1

1 �1

1 1

: (25)

A simple computation will reveal that the solution_�
(2)

=
[ 0:5 �0:5 0:5 �0:5 ]T is also valid, and possesses min-
imum infinity norm. The infinity inverse for this solution has

Q
(2) =

1 1

�1 �1

1 1

�1 1

(26)

and one can see by observation thatcol spacefQ(1)g 6=
col spacefQ(2)g. In fact, the pseudoinverse itself yields
_�
(3)

= [ 0:5 �0:3333 �0:1667 �0:1667 ]T which is also
a valid least infinity-norm solution.

VIII. D ISCONTINUITY

Having developed a sense for why least infinity norm solutions may
be nonunique, and disproved solution uniqueness by example, we now
proceed to discuss the problem of discontinuity in a time-varying un-
derdetermined system. Essentially, the possibility of a discontinuity in
the system exists purely because of the possibility for nonuniqueness:
if the system trajectory orients the solution spaceS so that it is “par-
allel” to a hypercube face, the solution may jump from one edge to the
other (i.e., from_�

(1)
to _�

(2)
in the previous example) before continuing

smoothly on its way. It should noted however, that reaching a point of
nonuniqueness isonly a necessary conditionto experience a discon-
tinuity, not sufficient, because the system trajectory may not actually
complete the jump, choosing instead to reverse course or “veer away.”

Before continuing, we should note that our discussion of solution
discontinuity assumes that the system JacobianJ(�(t)) varies
smoothly with time (true for all usual robot Jacobians), and that the
desired system input_x also varies smoothly. We begin by making the
qualitative observation that, after the system moves around a bit, at
some point the column span ofQ in the infinity inverse will have to
change; it cannot remain constant over all trajectories. Since we know
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Fig. 3. The robot starts out in the initial configuration [235,�90, 45, 0]
(pointing vertically) in CCW degrees from the previous link. The robot
executes a CW circular trajectory.

that it can always be constructed of�1’s, we infer that when one or
more columns ofQ change, they do so abruptly and discontinuously.
(In other words, the space spanned by the columns ofQ will abruptly
change.) If the system output_� is to remain continuous during a change
of the column space, then_� must be independent of the columns which
experience the change at the instant in time when the change occurs.

Consider four-link planar robot executing a circular trajectory, as in
Fig. 3. A circular trajectory about the first joint will, by its very nature,
force the distal joints (2, 3, and 4) to zero velocity because only joint 1
need move to maintain a constant end-effector radius. While the sim-
ulated robot behaves very similarly for both the minimum two-norm
and minimum infinity-norm algorithms, Figs. 4 and 5 illustrate the
real story. Clearly the minimum two-norm solution allows the speed
of joints 2, 3, and 4 to settle around zero, as expected. However, given
that efficient least-infinity norm algorithms are based on the equal mag-
nitude property, the only way to approximate zero net motion in a joint
is to slam the desired joint speeds between the maximum positive and
negative allowable values as fast as possible (in this case, at the update
rate). Clearly the circle trajectory, by design, forces discontinuous be-
havior in the least infinity-norm algorithm.

As per the earlier discussion on nonuniqueness, during the discon-
tinuity there are alternate solutions which will accomplish the end-
effector trajectory—namely the solution to which the pseudoinverse
tends( _� = [�0:78; 0; 0; 0]T ). However, the least-infinity norm solu-
tion would not be able to smoothly decay the speeds of joint 2, 3, and 4
to zero as with the pseudoinverse; in order to choose that particular so-
lution the least infinity norm algorithm would have to discontinuously
jump there and remain there. It would seem there is no way to avoid at
least one discontinuity during the circle trajectory using an unadulter-
ated least infinity norm solution.

IX. A VOIDING DISCONTINUITIES

Now that discontinuities are known to exist, the natural question
to ask is how to avoid them. One possibility would involve storing a
small number of sequential solutions in a buffer, and detecting when

Fig. 4. The joint velocities for the circular trajectory using the pseudoinverse.
The speed of joints 2, 3, and 4 drops to zero.

the difference between the next computed solution and the previous so-
lution exceeds a certain threshold. Then, solutions already in the buffer
could be modified to smoothly switch from the old trajectory to the
new. However, this method degrades one of the golden properties of
just-in-time (local) optimization, the ability to react to changing envi-
ronments. Because the procedure now contains a “delay,” the system
cannot react instantly to changes in the input.

To repair the discontinuity problem, we propose a predictive method
using a metric which “senses” when a discontinuity is near, and gradu-
ally takes corrective action. We dub the method “rate mixing,” [2] and
it has the following form:

_�� = r _�(1) + (1� r) _�(2); 0 � r � 1: (27)

We denote the optimal (final) solution as_��, the least infinity-norm
solution as_�(1) and the least two-norm solution as_�(2). Essentially,
expression (27) “mixes” the optimal infinity-norm solution with an-
other solution known to be continuous but suboptimal (in this case,
the pseudoinverse solution, though any suboptimal continuous solution
will work). Conceptually, we now want to vary this parameterr, called
the “mixing factor,” so that it stays near 1 most of the time, moving to
0 at points of discontinuity. Under these constraints, ifr varies contin-
uously, _�� will vary continuously because_�(2) is always unique and
continuous. The choice of a good mixing factor depends on several
conditions which we explore next.

From a geometric point of view, recall that finding_�
(1)

involves
“growing” the hypercube [i.e., increasingkin (19) from 0] until one
edge of it touches the solution spaceS [19], whereS = f _�: J _� = _xg
andS is always parallel to the nullspace ofJ , denotedN . NoteN 2
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Fig. 5. Joint velocities of the circle trajectory using infinity-norm procedures.
Because of the equal-magnitude property, the speed of joints 2, 3, and 4 never
approach zero, but oscillate around zero.

<n�m, and we will represent the nullspace with a matrixN such that
the orthogonal columns ofN span the nullspace. In other words, let

N 2 <n�(n�m): span fn1; n2; . . . ; nn�mg = N : (28)

As the hypercube expands, just where it first intersects the solution
space is the point_�(1) (refer back to Figs. 1 and 2). If the nullspace
is exactly aligned with a side or an edge of the hypercube, then
fB(r; 1)\Sg contains an infinity of solutions, representing the case

of a nonunique optimal solution_�
(1)

. This situation, which we will
call the “zero subspace angle condition,” will prove useful, so we now
proceed to define this condition more rigorously.

The subspace angleis defined geometrically as the angle between
two hyperplanes (subspacesS1 and S2) embedded in a higher
dimensional space. For instance, ifspanf[0; 1; 0]T g = S1
and spanf[0; (1=p2); (1=

p
2)]T ; [1; 0; 0]T g = S2, then

subspace(S1; S2) = 45�. More precisely, letS1 be a matrix
with orthogonal columns which spanS1, andS2 be a matrix with
orthogonal columns which spanS2. Then

subspace(S1; S2) = cos�1(�); � = minfdiag(�)g
with

U�V T =ST1 S2: (29)

The subspace angle is the inverse cosine of the minimum singular value
of ST1 S2 [22].

This is relatively unwieldy, but its use will be simplified shortly. Con-
ceptually, we want to know if the solution spaceS is “parallel” to any

face of the hypercube inn-space. While Figs. 1 and 2 involve only a
one-dimensional solution space in<3, in general the solution space is
multidimensional in<n and may be parallel not just to a (n � 1)-di-
mensional face of the hypercube, but any subfaces or edges of it as well.
This generalization makes the problem significantly harder, and is the
reason we investigate the concept of the subspace angle.

We begin by assigningS1 = N . (BecauseS andN are parallel
linear spaces, the subspace angle will be the same whether the columns
of S1 span the solution space or the nullspace). Since we are concerned
with the solution space intersecting edges and faces of the hypercube
(which are always aligned with the elementary basis vectors), we will
choosem of these basis vectors to be the columns ofS2, so that, ifN
andS2 are independent spaces,N [S2 = <n. That is, if the spaces are
independent, then their union should be the complete space<n. Now
the question is, whichm basis vectors should spanS2? There will be
n

m
possible arrangements and, from the above discussion, we want to

know if the nullspace has a zero subspace angle with any one of those
choices. Now we note the following result.

A. Zero Subspace Angle Condition

For an underdetermined system employing least infinity norm op-
timization with an optimum solution_�

(1)
, if _�

(1)
is nonunique then

there exists someS2 spanned by elementary basis vectors such that
cos�1(�1) = 0.

Finding the subspace angle forn
m

subspaces could take a long time
using the singular value decomposition method, and yields little intu-
ition. Since we do not need the actual angle, only a number represen-
tative of the angle (in a one-to-one correspondence) we may note that,
by filling a n� n matrix with columns which span the two subspaces,
a zero determinant indicates that the column space is not complete.
Since we know that, by construction,S2 consists ofm columns of 0’s
and 1’s (no column repeating), it will always span<m. Recall that we
must consider all possible choices ofS2. Therefore, to find the min-
imum subspace angle over all possible faces and edges of the hyper-
cube (all possibleS2), we may concatenateN andS2 into an � n
matrix and find its determinant. A zero determinant corresponds to a
zero minimum subspace angle; larger absolute value determinants in-
dicate larger subspace angles. Note that we may also swap rows in this
concatenation matrix in the following manner:

[N jS2] ! N1 0

N2 Im�m
8S2 (30)

with the result that

j det[N jS2]j = j det[N1] � det[I]j = j det[N1]j: (31)

Now n

m
subspace angle calculations have been distilled down ton

m

determinants of size(n �m)� (n �m). Define

dmin = min
S

fjdet[N1]jg: (32)

In an evolving trajectory, ifdmin approaches zero, the solution_�
(1)

gets closer and closer to a point of nonuniqueness, and possible discon-
tinuity. Notedmin is continuous (although not smooth) if the elements
of N vary continuously; this implies the elements ofJ varying con-
tinuously—a reasonable expectation if the input trajectory contains no
discontinuities.

Only one step remains to refinedmin into the mixing factorr from
(27). We must limitr to exist only between 0 and 1, which can be
accomplished as

r = 1� e�a�d : (33)
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Fig. 6. Plots of the mixing factor and the joint velocities of the corrected circle
example. Thick lines are trajectories corrected for discontinuities; thin lines
represent what a pure least infinity-norm solution would have produced.

Recall thatdmin > 0. The factora determines how quickly_�
�

will
switch from a least infinity norm solution to a two-norm solution,
tending to “round out” the sharp edges of the hypercube.

The rate mixing method has proven quite effective in a number of
examples, including the circle example, for which the mixing factor
and joint velocities appear in Fig. 6. The first plot shows howr varies
with time, heavily favoring the pseudoinverse solution to avoid the
oscillations present from Fig. 5. Also shown is a linear trajectory, in
Fig. 7, specifying_x = [�0:8; �0:8] for about 4 s. Note that this tra-
jectory contains an isolated discontinuity which the robot smoothly
avoids, favoring the infinity norm solution most of the time. Also note
that the mixing factor hits zero once where there is no discontinuity.
This represents a point of nonuniqueness, however the robot’s trajec-
tory did not take it “across” the nonunique point to create a disconti-
nuity. This instance reflects the necessary, but not sufficient, quality of
the mixing factor and would seem to be inevitable from time to time
without apriori knowledge of the future trajectory.

Although the general algorithm requires a search for the minimum
determinant of all(n�m)�(n�m) minors ofN , for most rigid-link
robots, the typical degree of redundancy will be only one or two. In
the most common case—one degree redundant—the determinants in
(32) boil down to a simple search for the smallest magnitude element
of the nullspace vector. This should make intuitive sense. For example,
in three dimensions, if thez element of a one-dimensional nullspace
vector equals zero, then that vector must be parallel to thex–y plane, a
necessary condition for discontinuity in least infinity-norm problems.
Given this fact, if the Jacobian nullspace vector exists in closed form,
determining if and when any component goes to zero ought to provide

Fig. 7. A corrected linear trajectory. Note how the rate-mixing algorithm
successfully avoids one discontinuity, but also suffers one “false alarm.”

insight into the conditions when the manipulator might possibly reach
points of nonuniqueness.

X. CONCLUSIONS

Unfortunately, space does not permit the further examination of de-
tails like behavior of the infinity inverse near singularities and exam-
ination of possibilties that the productJQ might not have full rank.
However, these details do not materially affect the observations and al-
gorithms in this paper, and they can be found in [3].

We have endeavored in this paper to illustrate and explore many de-
tails and subtleties of infinity norms and least effort solutions in gen-
eral, using kinematic redundancy resolution as a test case for the math-
ematical theory. After briefly reviewing the dual optimization theorem
and its associated corollaries, we used the equal magnitude property to
extract the composition of a closed-form inverse, the “infinity inverse.”
The properties of this inverse, combined with a geometric knowledge of
least infinity norm solutions, provided the foundations for a discussion
of solution nonuniqueness and the potential for trajectory discontinuity
as a result. We illustrated one possible method for “preemptive” avoid-
ance of such discontinuities and attempted to provide examples of least
infinity normbehavior throughout the text.

From this discussion and others in the current literature, it would
seem that for any type of analysis involving polytope-like variable con-
straints, or any situation emphasizing the importance of a minimum
maximal magnitude to an underdetermined system, the infinity norm
is an invaluable tool. Almost every instance in the robotics literature
where a pseudoinverse appears might represent a situation better served
by a least infinity-norm solution, and subjects such as multiple-arm
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kinematics, optimal force distribution for cooperating manipulators,
and multifingered grasping present but a small slice of the potential
uses for least infinity norms. In point of fact, the work in [19] repre-
sents the case where a modified least infinity norm solution optimizes
for minimum dynamic manipulator torques where previous attempts
with pseudoinverses failed due to numerical instability [8]. It would
seem that the infinity norm as an analysis tool may have more to offer
than meets the eye.
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Iterative Regulation of an Electrically Driven Flexible-Joint
Robot with Model Uncertainty

Amit Ailon , Member, IEEE, Rogelio Lozano, Member, IEEE, and
Michael I. Gil’

Abstract—This study considers the set-point regulation control problem
of rigid and flexible-joint electrically driven robots with model uncer-
tainties and unknown payloads. The proposed control scheme is based
on simple linear state and output feedbacks. The resulting controller can
also be implemented in a case where the current signal is not measurable.
Applications of the approach when the Coulomb friction forces are taken
into account have also been considered.

Index Terms—Contraction mapping, flexible-joint robot, friction force,
motor dynamics, output controller, set-point regulation, uncertainty.

I. INTRODUCTION

This study considers the set-point regulation problem of rigid-link
electrically driven (RLED) and rigid-link flexible-joint electrically
driven (RLFJED) robots. As shown in previous papers [14], [11], [7],
[5], [6], the introduction of an electrical system between the control
input and the torque actually applied to the link complicates the con-
troller design in robotics. We assume here brushed DC (BDC) motors
with known electrical circuit parameters [10, Sec. 6.4]. However the
resulting control scheme overcomes the problem arising from the
uncertainty of the mechanical model with an unknown payload.

The proposed control scheme for the set-point regulation problem
is based on contraction mapping theory, which appears to be a useful
framework for studying control problems in robotics. Applications of
the contraction mapping method to robot control were first explored
and demonstrated by [8], and later used in [1]. This paper further
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