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Large Deflection Dynamics and Control for
Planar Continuum Robots

Ian A. Gravagne, Member, IEEE, Christopher D. Rahn, and Ian D. Walker, Senior Member, IEEE

Abstract—This paper focuses on a class of robot manipulators
termed “continuum” robots—robots that exhibit behavior similar
to tentacles, trunks, and snakes. In previous work, we studied
details of the mechanical design, kinematics, path-planning and
small-deflection dynamics for continuum robots such as the
Clemson “Tentacle Manipulator.” In this paper, we discuss the
dynamics of a planar continuum backbone section, incorporating
a large-deflection dynamic model. Based on these dynamics, we
formulate a vibration-damping setpoint controller, and include
experimental results to illustrate the efficacy of the proposed
controller.

Index Terms—Continuum manipulator, dynamics, flexible robot
control, hyper-redundant robot.

I. INTRODUCTION

NATURE motivates the study and design of hyper-re-
dundant and continuum robots. Although nature often

meets locomotive and manipulative needs with rigid-link
designs, some creatures benefit greatly from continuum (or
nearly continuum) arrangements. Examples include snake
backbones, elephants’ trunks, squid and octopus tentacles, and
a host of smaller animals such as worms, various larvae, and
single-celled organizms. Researchers have not emulated the
full functionality of, for example, an elephant trunk, in the
laboratory. However, the artificial designs to date do share sev-
eral key features with their biological counterparts, including a
significant transference of weight and complexity away from
the actual manipulator. We refer to this design as “remote
actuation” [9]; its benefits include a substantial reduction
in design complexity and cost for manipulators such as the
Clemson tentacle manipulator (Fig. 1) and the Rice/Clemson
elephant’s trunk manipulator [29]. Continuum robots also
possess a useful characteristic termedinherent compliance. The
infinite-dimensional kinematics of continuous “backbones”
admit an infinity of possible backbone configurations for any

Manuscript received July 4, 2001; revised April 22, 2002. This work was
supported in part by the National Aeronautics and Space Administration under
Grant NAG5-9785, in part by the National Science Foundation NSF-EPSCOR
program under Grant EPS-9630167, and in part by the South Carolina Space
Consortium Graduate Fellowship Program. This paper was presented in part
at the ASME 18th Biennial Conference on Mechanical Vibration and Noise
(DETC2001), Pittsburgh, PA, September 9–12, 2001. Recommended by Tech-
nical Editor M. Meng.

I. A. Gravagne is with the Department of Engineering, Baylor University,
Waco, TX 76798-7356 USA (e-mail: Ian_Gravagne@baylor.edu).

C. D. Rahn is with the Department of Mechanical and Nuclear Engineering,
Pennsylvania State University, University Park, PA 16802 USA (e-mail:
cdrahn@psu.edu).

I. D. Walker is with the Department of Electrical and Computer
Engineering, Clemson University, Clemson, SC 29634 USA (e-mail:
ianw@ces.clemson.edu).

Digital Object Identifier 10.1109/TMECH.2003.812829

Fig. 1. Clemson tentacle manipulator. The manipulator consists of two
independent sections on a continuous backbone consisting of a thin elastic rod.

given finite set of applied forces or torques along the backbone.
Thus, such manipulators naturally comply with obstacles or
nonconservative forces in a minimum-energy fashion. Properly
controlled, this feature can eliminate the need for expensive and
complex force-feedback mechanisms. In short, the preceding
characteristics of hyper-redundant and continuum manipulators
make them attractive for the kinds of tasks at which their
biological counterparts excel: locomotion through highly
cluttered areas, whole-arm manipulation, and a delicate natural
compliance to the environment, for example.

Research into the characteristics and capabilities of
continuum robotics necessitates an overall increase in the
complexity of the manipulator kinematic and dynamic models.
Serial, rigid-link robot kinematics essentially consist of al-
gebraic-trigonometric descriptions, while continuum robot
kinematics involve differential equations for all but the simplest
cases. Rigid-link dynamics usually involve nonlinear ordinary
differential equations, while continuum dynamics employ
nonlinear partial differential equations.

Several researchers have addressed topics related to manip-
ulation and locomotion using hyper-redundant and continuum
robots. Among these, the pioneering work of Hirose [16]
represents a large step forward in the realization of practical
snake-like devices. Chirikjian and Mochiyama, [3]–[7], [21],
[22] contribute to the theoretical development of hyper-re-
dundant kinematics, path planning, and shape optimization;
notably, [4] makes a quantitative comparison between the
dynamics of hyper-redundant and continuum manipulators.
Further work in kinematics, dynamics, control, and practical
design considerations appear in [9]–[15], and [29]. Other
trunk-like prototypes can be seen in [8] and [17]. Robinson and
Davies [24] also provide a good overview of work in the area,
and our previous work in [11] illustrates an application of the
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concepts in this paper to the relatively simple, small-deflection
dynamic rod model. A thorough discussion of vibration and
noise-control techniques for distributed systems appears in
[23]. On the specific subject of continuum manipulation,
Wilson,et al.presented a series of works including a kinematic
and dynamic analysis of planar manipulators with payload
effects [27], [30], [31]; however, their work did not concentrate
on control strategies and the dynamics formulations in this
paper are significantly different and somewhat more general.
Also of interest is the extensive work of Kier [18], detailing
the physical structure of many animals that employ continuous
manipulation techniques.

The objective of this work is to explore the dynamics of a
simple planar continuum manipulator section, and to formulate
a simple controller that achieves setpoint tracking while mini-
mizing the incidental vibrations excited in the backbone. Several
key features of this work make it unique: the use of a large-de-
flection dynamic model incorporating axial extensibility, the
implementation of a controller that seeks to regulate the flex-
ible body to a nonzero equilibrium and the use of cable tension
coupling feedback in the control law. The specific geometry of
the device under consideration in this work will be discussed
shortly.

II. SPRING-STEEL MANIPULATOR

Fig. 1 illustrates the tentacle manipulator. The manipulator
consists of two sections, each with two degrees of freedom
(DOF). Its central backbone is a continuous elastic rod, with
cable guides periodically spaced along its length. Four cable
pairs run through the guide eyelets, two pairs terminating at
the midpoint, and two at the endpoint. Through differential
variation of the cable tensions, torques may be applied in
orthogonal directions at the midpoint or endpoint of the back-
bone. Knowledge of how the rod kinematics respond to the
application of such torques permits prediction of the robot’s
shape and endpoint coordinates. To maximize the workspace of
the tentacle, the rod must be sufficiently long and thin to allow
very large elastic, small strain displacements. Thus, sudden
movements (whether by external forces or the intentional
application of control torques) tend to excite undesirable
vibrations in the rod. At best, these vibrations simply force the
adoption of a “slower” trajectory; at worst they can destabilize
the feedback controller guiding the robot’s position.

Fortunately, friction between the cables and the cable guides
introduces some vibration damping. As the backbone bends,
friction between a cable and its guides increases on the concave
side of the curve. However, cable-guide friction must be mini-
mized to maximize the robot workspace and maintain tractable
kinematics. Near the zero-stress configuration (a straight line in
our case), the effects of cable friction are reduced because the
cable tensions are small. In [11] we argue that this fact warrants
the use of a small-deflection, linear dynamic rod model. The
setpoint analysis in [11] is effective near the straight-line con-
figuration, but the control strategy cannot be proven stable in the
general case because large rod deflections violated the restric-
tions of the dynamic model.

Fig. 2. Spring-steel backbone can bend in excess of 180.

With appropriate assumptions and observations, the small-
deflection rod decouples in orthogonal planes, allowing a
discussion of the rod’s behavior in three dimensions. No such
decoupling occurs in the large-deflection case, so for simplicity
we will restrict ourselves to a planar system. The experimental
testbed for our work uses a backbone of spring steel, very wide
relative to its thickness so that it only bends in one plane. Similar
to the tentacle manipulator, the spring-steel backbone has a
set of cable guides spaced along its length, with cables finally
terminating at the distal end. The backbone can bend 180and
beyond (Fig. 2), clearly requiring the use of a large-deflection
dynamic model; see Section IX for more details.

Additionally, we note that, even though this paper focuses
on a planar model, the work here anticipates further study into
the full three-dimensional (3-D) model. Consequently, we in-
tentionally rule out sensor options which would be relatively
simple to implement in the plane, if they will not also work in
the spatial case. Such options include strain sensors on the flat
side of the spring steel (such sensors could not be attached to
a round backbone), position measurements using an overhead
camera (which can only measure planar deflections), and shear
sensors at the free boundary (due to weight constraints in the
spatial case).

III. L ARGE DEFLECTION DYNAMICS

The set of allowable beam planar configurations contains
the duples where

(1)

The vector is the position of the beam centerline, is
an orientation (i.e., rotation) matrix,is an independent param-
eterization variable, and is the beam length at rest. If the beam
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is inextensible, represents the arc length as measured from the
origin. We include the effects of beam extensibility, so the set
is not strictly arc-length parameterized. Only under the special
conditions of zero axial extension or contraction doestruly
measure arc length. The subsequent analysis requires two mild
conditions on the allowable configurations set.

1) Given the elementary basis vectors and the
product , we assume that

(2)

where .
2) Given the energy in the rod in the form

for , we assume

(3)

where represents the deformation energy den-
sity of the rod, represents lumped-parameter
energy stored in point masses and springs, and

means for all .
Condition 1) states that the beam may not experience infi-

nite shear stress, for reasons which will become clearer later.
For condition 2), we assume that “Dirac delta” distributions in
the energy functional are disallowed; intuitively, this im-
plies that the rod cannot experience single-point changes in dis-
tributed coordinates such as curvatures or positions. Condition
2) does not arise from strictly mathematical arguments; it simply
states a physically reasonable assumption motivated by engi-
neering judgement.

A. Energy Formulations

For beams with high aspect ratios (length to thickness), po-
tential energy can be stored via three basic types of elastic defor-
mations: bending, axial and shear. For a beam of cross-sectional
area , cross-sectional moment of inertia, Young’s modulus

and shear modulus , each elastic deformation has an asso-
ciated stiffness. The product is the bending stiffness, is
the axial stiffness, and is the shear stiffness. (We assume
that the effective shear area equals the cross-sectional area, for
simplicity.)

Fig. 3 illustrates the difference between shear and bending de-
formations, in the case that there is no axial compression or ten-
sion. Note that, in case a), the orientation vectordoes not vary
along the length of the beam. The beam has been divided into
(infinitesimally) small segments, and reflects the orientation
of each segment. Thus, a good measure of the axial and shear
“stretch” of each segment would be the difference of the tangent
vector and the principal orientation vector, i.e., .
Applying Hooke’s Law, the resultant deformation energies for
that segment would be plus , or simply

, where . To generalize this
initial formulation, imagine that the columns ofrepresent the
principal axes of a stiffness ellipsoid centered around the seg-
ment. As the orientation of a segment changes, the ellipsoid ro-
tates also, to keep the principal axes properly aligned. A simple
similarity transformation will accomplish this rotation, so that
shear/axial energy for that segment becomes .

Fig. 3. Beam in (a) experiences significant shear deformations, but no bending.
Conversely, in (b) shear effects are not present. Note that the curve tangent is
the same in both cases.

Fig. 4. Illustration of a small beam segment experiencing axial, shear, and
flexural deformation. Note how the stiffness ellipsoid changes orientation along
the length of the beam.

This is illustrated in the close-up of Fig. 4. “Adding up” the seg-
ment energies gives the potential energy

(4)

The kinetic energy is more straightforward. We simply endow
each quantity above with a time dependency, and sum the kinetic
energies of each infinitesimal segment to get

(5)

where is the mass density of the beam, andis the angular
inertia density.

B. Dynamics Formulation

The preceding energy functionals appear in different forms
in [25] and in [26]. In order to apply Hamilton’s principle to
the energy expressions above, we first formulate the work due
to the application of tension to the cables on the beam. As the
beam bends, the cable tension induces both shear forces
(perpendicular to the backbone centerline) and moments at the
points where the cable passes through a guide standoff. As
shown in [19], standoffs of the correct dimension and quantity
can minimize the effect of the intermediate shears and moments
along the backbone relative to the boundary moment at the
terminal standoff. Consequently, we may formulate a simple
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Fig. 5. Illustration of the various geometric quantities in the cable/pulley
system.

external work function dependent only upon the boundary
moment

(6)

Applying Hamilton’s principle to the expressions for , ,
and yields the resulting dynamical equations and boundary
conditions

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

where is the skew-symmetric matrix

(8)

The boundary conditions in (7d) reveal the absence of applied
axial or shear forces on the free end of the beam; (7e) and (7f)
indicate that the beam is clamped at the origin. We stress that
these dynamics, along with the following analysis, applies only
to one section of a continuum robot; we do not address the chal-
lenges associated with multiple-section dynamics here.

A deeper and more general dynamic analysis of large deflec-
tion planar beams appears in [26].

IV. BOUNDARY TORQUEDAMPER

As illustrated in Fig. 5, the control cables attach to a pulley of
radius , driven by a motor through a gear ratio of . The
angle of the motor is and the angle of the pulley is . Given
that the motor has rotational inertiaand viscous friction ,
we may take the simple motor model

(9)

where is the torque due to the cable tension, and
the applied motor torque. Note the geometric relationship

between the motor angle, the pulley angle and the backbone
boundary angle

(10)

so that (9) becomes

(11)

We choose the feedback control law

(12)

where with , and is
the desired boundary angle setpoint. Substituting (12) back into
(11) and solving for produces boundary torque

(13)

with

(14)

Because of the relatively high gear ratiorequired to bend
the rod, (11) suggests that the motor will feel little of the back-
driving effect of the rod dynamics transmitted though the cable
tension . The coupling factor increases the effective back-
driveability of the motor/gear system, providing greater control
over the rod boundary. Associating (13) with (7c) results in the
new boundary condition

(15)

(Remark: We have implied that is bipolar [a positive or
negative quantity], but a cable can only support tension. The
“tension” really is the subtraction of the two tensions of an
opposing cable pair. This subtraction is performed mechanically,
as in Fig. 5, and without loss of generality we continue to
refer to simply as the cable tension.)

V. CONTROLLER STABILITY

The stability proof for the control system employs an energy-
based Lyapunov functional, consisting of both the distributed
energies of (5) and (4), and two lumped-parameter energies.

(16)

The first lumped-parameter represents a virtual torsional spring,
attached to the free boundary with spring constant. The
second represents the effect of the motor and gear inertias. After
some calculation, the power flow from the system is

(17)

which is negative semidefinite, proving system stability.
Note that, since we know above that , then, it fol-

lows that . Invoking Condition 2 from
Section III implies that , which in turn implies
that . Using boundary condition (7c), we see that

, so that . Similarly, from the Lyapunov result,
it follows that and . Consequently,
the control (12) law must be composed of signals which are all
bounded.
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We reach a similar conclusion in [11], and then proceed to
use an invariance principle to prove that, if , then,
the only allowable rod configuration was the static equilibrium
solution. However, the simple nature of the linear model
used there makes an asymptotic convergence proof possible,
primarily due to separability. On the other hand, the current
dynamical model is highly nonlinear and significantly more
detailed, casting doubt on even the existence of an asymptotic
convergence result. In a continuous elastic system, the possi-
bility exists that a given control scheme or system configuration
might isolate certain vibrational modes. In that case, energy
would remain “trapped” in the system, possibly disallowing
convergence of the system to the control objective. Specifically,
(17) seems to indicate that modes for which
are uncontrollable. In order to address this possibility, we
observe that we may derive a good approximation of the system
motion by linearizing the dynamics about the beam’s static
equilibrium. This is the objective of the following two sections.

VI. EQUILIBRIUM IN THE BEAM

If we neglect all time-derivative terms, the first field equation
(7a) suggests that the shear and axial forces must be constant,
i.e., . But boundary condition
shows that . Since is always full rank, this must
mean that , or

(18)

Therefore, the second field equation simplifies to

(19)

supporting from first principles the constant curvature formulas
found in [9]–[15].

We next dissect the solutions for , and into their static
and dynamic components

(20)

where and are the spatial equilibrium solutions, andand
are the time-varying dynamic coordinates. Thus, (18) and (19)
become

(21)

(22)

which implies

(23)

(24)

(25)

accounting for the geometric boundary conditions. Note the
similarity of these expressions to the analogous ones in [6].
Thus, the equilibrium shape is a circular arc. (Note thatand

always exist even in the case of zero curvature, .)

Using these equilibrium equations, along with boundary condi-
tion (15), we find that the steady-state error for the system is

(26)

which can be arbitrarily reduced by increasing, an intuitive
result.

VII. L INEARIZATION PROCEDURE

The dynamic variables remain unknown, but we next assume
that their range is a “small” neighborhood around the origin.
This being the case, we linearize the dynamics and boundary
conditions about the equilibrium by evaluating a first-order
Taylor expansion about and

where the coordinate vectoris

and

(27)

The equilibrium vector will be

because and all time-derivatives are zero by definition.
As expected, by direct calculation, simplifying with
(23) and (24). Thus, evaluating the Taylor expansion yields

(28)

a nonsingular expression, linear in the “hat” variables. The as-
sociated boundary conditions are

(29)

(30)

(31)

(32)

We next apply LaSalle’s Invariance Principle to the linearized
dynamics, analyzing the possible system solutions if , im-

plying and . Furthermore, we assume
that the linearized system may be spatially and temporally sep-
arated, so that

(33)
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From the Lyapunov argument, we know that the sum of all vi-
brational modes must be stable, so without loss of generality
we may analyze the system one mode at a time, by assigning

. The common temporal term can now be
factored out of the dynamics and boundary conditions, leaving

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

Consequently, the requirement oc-
curs in two cases.

Case 1, : The solution of (34) is and
. The beam equilibrium shape is then the largest invariant set

containing , so LaSalle’s invariance principle proves that
the origin is asymptotically stable.

Case 2, : This case can be thought of as an addi-
tional boundary condition, bringing the list of boundary condi-
tions to

(35a)

(35b)

Unfortunately, the associated boundary value problem is highly
coupled and does not lend itself to closed-form analysis. Also,
neither boundary supports enough conditions to numerically in-
tegrate a solution. The free boundary has the most conditions,
so we now set the condition for in two separate cases. For
each instance, we label the associated solutions as

(36)

(37)

With six final conditions in expressions (35a) and either (36)
or (37), we can integrate backward to , noting that the
integration must also satisfy the initial conditions in (35b). From
linearity, we have

(38)
by superposition. The boundary conditions at the clamped end
of the beam must still hold, implying

(39)

for arbitrary frequency . If has full rank for all , then the
only solution to (39) would be . This would imply
that the only valid free boundary position is .

Numerically integrating (34a) and (34b) with (35a) and
yields and . Therefore, in

the case that we may again invoke LaSalle’s
Invariance Principle to show that the beam will asymptotically
converge to its equilibrium point. However, we find that
does not always have full rank. The next section explores this
observation.

VIII. A XIAL /SHEAR VIBRATIONS

Consider the case of a straight-line equilibrium shape with
zero curvature. Now and so (28) becomes

(40a)

(40b)

The first expression in (40b) is simply the wave equation,
governing the dynamics of axial vibrations in the beam. The
boundary conditions from (30) and (32) are and

. Clearly, if there is any initial axial endpoint
displacement, , these dynamics will advance
unhindered by any dissipative reaction from the controller.
The axial motion decouples from the transverse motion, so
the controller provides no axial damping. The frequencies of
vibration are

(41)

Numerical integration verifies these frequencies correspond to
cases where . Furthermore, the simulations indi-
cate that remains fixed regardless of equilibrium curva-
ture.

Now, consider the possibility that the beam’s material and
dimensions permit (by which we mean at least
an order of magnitude larger). Generally, , so equa-
tion (40a) would render the quantities and relatively
small compared with . Consequently, the second expres-
sion in (40b) would be . As long as and

remain nonzero, this expression will always remain coupled
with (40a), and the boundary torque damper. Nevertheless, this
“thick” beam may exhibit shear vibrations requiring a long time
to damp out. Their frequencies are

(42)

We note that carrying out a numerical integration in (34a)
and (34b) requires the definition of the constants, , ,

, , and . While the integration should produce consis-
tent results with virtually arbitrary (nonzero) choices of these
constants, a great deal of effort may be expended attempting to
interpret results corresponding to constants that cannot physi-
cally attain the chosen values. For instance,and are related
through Poisson’s ratio as
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Fig. 6. Minimum singular value� of M versus frequency!. Bold line
represents the spring-steel backbone. Thin and dotted lines are forEI = GA
andEI = 10GA, respectively.

Since for nearly all solid materials, this places a
fairly tight restraint on the value of the shear modulus relative
to Young’s modulus. Similarly, the elastic, small-strain energy
formulations used to derive the dynamics assume a large beam
aspect ratio (a beam with a high length-to-thickness ratio). Con-
sequently, it will usually be found that . However, even
within the constraint of a large aspect ratio, it is possible for
to vary, over several orders of magnitude, a possibility with in-
teresting implications mentioned above.

For the spring-steel robot, the constants used in the numer-
ical simulation were based partly on measurements, and partly
on material data available from a variety of sources. The cal-
culations of constants and depend on the cross-sectional
shape of the beam; see [20] and [26] for more detail. Using

m, N/m , ,
m , kg/m, kg m, and

m , a plot of the minimum singular value
of , versus frequency appears in Fig. 6. The bold line, re-
flecting simulation results using these constants, indicates al-
lowable frequencies at the predicted values of . The thin
line in Fig. 6 represents the behavior of if . The
dotted line shows the same plot for . Note the pres-
ence of large dips corresponding exactly to the frequencies of

. Images of the first and second modes of axial vibration,
with curvature , appear in Fig. 7. Note that the endpoint
slope remains fixed throughout the motion so rotary end-
point damping has no effect on these modes.

IX. EXPERIMENTAL SETUP AND RESULTS

The experimental spring steel backbone, illustrated back in
Fig. 2, is 64-cm long, 0.8-mm thick, and 1.27-cm wide. The
cables are suspended 1.27 cm from the beam centerline, and
threaded through 11 cable standoffs. The main drawback to
cable designs centers on the problem of friction in the cable
standoffs, a phenomenon not modeled here. As the cable ten-
sions rise to overcome stiffness while the robot bends, friction

Fig. 7. Left and right columns represent the first and second modes of
axial vibration about a nonzero equilibrium curvature, respectively. Note the
semicircular equilibrium shape in the middle frame, andf = 2�! .

at the pass-through points becomes a more severe problem.
In practice, this problem does not seriously hamper normal
operation of manipulator until the backbone reaches curvatures
at or near the recoverable surface strain limits of the material
(around 1% for spring steels), but nevertheless efforts were
made to reduce its effect by flaring the pass-through holes and
using teflon-coated cableswovenfrom very fine steel stands.

A picture of the tension-feedback load cell appears in Fig. 8.
Because the application in this paper involves high-gain tension
feedback, a piezo-based load cell was chosen to measure ten-
sion owing to its extremely clean and noise-free output as well as
simplicity of use (relative to such technologies as strain gauges).
The fact that piezo load cells are fundamentally dynamic sen-
sors did not prove problematic because the particular load cells
chosen have time constants of well over 60 s, meaning that for
all practical purposes they yield “static” outputs for durations of
10 s or less and are more than capable of capturing the lowest
frequency dynamics of the spring steel backbone.

The system was operated by a Pentium IV 400 MHz PC run-
ning Microsoft Windows NT 4 in conjunction with the real-time
micro-kernel HyperKernel (Nematron, Inc.) through a Quanser
MultiQ II I/O card.

The analysis shows that, if there is a nonzero initial shear or
axial displacement on the beam, the torque-damper controller
will drive the endpoint angle to a desired value, but not of the
endpoint position. For thin beams, however, the axial and shear
vibrations occur at high frequencies and with small amplitudes,
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Fig. 8. Differential tension load cell system. Cables, pulleys, and winch are
emphasized in white.

Fig. 9. Endpoint angle error response�(t)� � . (a) Without coupling,k =
0; k = 0. (b) With coupling,k = 6, k = 0:025

rendering them insignificant compared with the bending mo-
tions. The coupling strategy of the controller trades slower angle
convergence for faster position convergence, as illustrated in
Fig. 9 where the beam angle steps over four 22.5increments
up to 90 , and then back to zero in two 45increments. In
Fig. 8(a) the angle error converges quickly to zero under pro-
portional-derivative (PD) control. Adding coupling in Fig. 8(b)
slows the angle transient, allowing the controller to extract en-
ergy from the system through the rotary angle motions. The
manipulator does not have an endpoint position measurement
sensor, but the differential tension measurement reflects the rel-
ative magnitude and duration of flexural vibrations in the beam.
Fig. 10 shows the tension as the beam angle returns to the origin
in the last step of Fig. 9. The presence of coupling along with
a slight increase in overall damping significantly improves the
vibrational characteristics of the beam’s step response. As ex-
pected, the step back to the zero angle produced the worst vi-
brations, owing to the absence of cable friction at the origin.

Fig. 10. Differential cable tension for the cases with and without coupling.
Thin line:k = 0; k = 0. Thick line:k = 6, k = 0:025.

X. CONCLUSION

To summarize, we have taken an in-depth look at the dy-
namics of a single section of a planar, continuum robot backbone
simply consisting of a thin elastic beam. Using an appropriate
large-deflection dynamic model, we applied a PD-plus-cou-
pling setpoint control strategy to attempt to damp out flexural
vibrations near the origin as much as possible. An energy-based
stability proof guaranteed the global stability of the controller.
Also, we illustrated that asymptotic convergence of beam ori-
entation and position is not possible in the presence of axial
vibrations; however numerical estimates of the frequencies of
those vibrations render them relatively benign. Experimental
results on a backbone section made of highly elastic spring
steel illustrated the efficacy of the control strategy.

Much work remains in the modeling, design, and character-
ization of continuum backbones. Clearly, a useful continuum
manipulator consists of multiple sections serially connected, in-
creasing the complexity of the model, as seen in [12], [13]. Dy-
namic and kinematic modeling in the general 3-D case presents
a challenge also. Axial motions, while not practically problem-
atic for a backbone of high axial stiffness, may in fact be highly
desirable for manipulators which can contract and extend. One
design has already been built with this capability [17], and with
appropriate actuation the results in this paper could be extended
to that case. From a sensing and actuation point of view, the pos-
sibility of using continuous actuation materials (e.g., “smart ma-
terials”) exists [1], and the problem of obtaining straightforward
curvature or position measurements for 3-D backbone curves
persists. Nevertheless, the field of continuum and hyper-redun-
dant manipulation holds great promise in both the theoretical
and experimental domains.
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