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Manipulability, Force, and Compliance Analysis
for Planar Continuum Manipulators

Ian A. Gravagne and Ian D. Walker, Senior Member, IEEE

Abstract—Continuum manipulators, inspired by the natural ca-
pabilities of elephant trunks and octopus tentacles, may find niche
applications in areas like human–robot interaction, multiarm ma-
nipulation, and unknown environment exploration. However, their
true capabilities will remain largely inaccessible without proper
analytical tools to evaluate their unique properties. Ellipsoids have
long served as one of the foremost analytical tools available to the
robotics researcher, and the purpose of this paper is to first formu-
late, and then to examine, three types of ellipsoids for continuum
robots: manipulability, force, and compliance.

Index Terms—Compliance, continuum robot, ellipsoid, hyperre-
dundant, manipulability.

I. INTRODUCTION

A NYONE who has observed an elephant for any length
of time cannot help but watch in amazement at the crea-

ture’s ability to control its environment through an appendage
that contains no rigid parts whatsoever. It seems almost coun-
terintuitive that an elephant’s trunk, despite its flexibility, can in
one moment lift huge weights (e.g., tree trunks) with apparent
effortlessness, and in the next position itself with the neces-
sary delicacy and precision to pick up a peanut. As with arms,
legs, and hands, artificially constructed trunklike manipulators
will likely never reach the zenith of complexity represented by
the real thing. Nevertheless, some of the reproducible aspects
and capabilities of trunks and tentacles could enrich the field of
robotic manipulation in certain applications, like material trans-
port from (or exploration of) unknown environments, and whole
arm manipulation. Continuum manipulators’ inherent passive
compliance could also prove beneficial in human–robot interac-
tion [18] and multiarm-cooperating manipulation by reducing
reliance on complex force-feedback schemes that prevent the
arms from fighting one another.

Trunk and tentaclelike devices belong to a category of
manipulators termed continuum, for the lack of joints or
rigid links. The alternate category, high-degree-of-freedom
(HDOF) devices, might best be imagined as snake backbones,
consisting of many joints connected by relatively short links.
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Fig. 1. Tentacle Manipulator.

In fact, the two classes, broadly categorized as hyperredundant,
share many similarities, and a significant body of work exists
attempting to describe the kinematics of HDOF devices with
continuum models. It should be noted, however, that the
dividing classifications mentioned above are somewhat impre-
cise, and the capabilities of a hyperredundant manipulator may
be better characterized by noting the relation of its structure to
its actuation scheme.

Several designs of elephant trunk or snakelike robots appear
in [1], [6], [7], [13], [28], and [30]. Fig. 1 illustrates the
Clemson Tentacle Manipulator. The Tentacle Manipulator is of
very simple design [11], consisting of a highly elastic rod as
its backbone, with antagonistic cable pairs periodically able to
exert moments on the backbone to deform its shape. Although
this is a truly continuous device, as a real tentacle is, it is
only actuated with four degrees of freedom. Its underactuated
backbone may adopt an infinite number of poses for a given
actuator displacement, and endows it with the useful property
of inherent passive compliance, which we will study shortly.
On the other hand, Fig. 2 illustrates the Rice/Clemson Ele-
phant’s Trunk Manipulator [31]. Its backbone has 32 degrees
of freedom, but only eight degrees are actuated; the other 24
are connected with a mesh of springs. Consequently, although
it is actually an HDOF mechanism, it behaves with qualitative
similarity to the Tentacle Manipulator, and in practice we often
treat it as if it were a continuum device.

In contrast to the aforementioned manipulators, the HDOF
devices analyzed in [6] and [20]–[22] are entirely controlled,
with no underactuation at all. Their properties and capabilities
differ substantially from the underactuated mechanisms. And,
of course, there is a third option that does not yet exist (to
our knowledge), a continuum manipulator continuously actu-
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Fig. 2. Elephant’s Trunk Manipulator.

ated. Interestingly, the significant differences between the var-
ious classes of manipulators do not render the models and math-
ematics derived for one class completely useless for another. To
the contrary, unifying theories for kinematics, dynamics, con-
trol, and analysis seem to be developing, including standard
robotic manipulators as a special case. Our purpose in this paper
is to summarize a small cross section of that theory, concen-
trating on the expanded definitions of three new types of ellip-
soids as they apply to underactuated continuum devices. After
presenting some background work, we will define and derive the
global and constrained manipulability and force ellipsoids for
continuum robots, and then look at the passive compliance ellip-
soid as well. Each case will conclude with simulated examples.

The ellipsoid provides one of the standard tools for studying
a manipulator’s characteristics, and a large volume of work
discussing ellipsoids exists in the literature. A representative
sample of the work appears in [2]–[4], [12], [17], [32], and
[34]. Alternatives to ellipsoid analysis also exist, notably
[23]. For background into the kinematics and path planning
of continuum and hyperredundant robots, see [5], [6], [11],
[14], [15], and [31]. The term “continuum” first appears in the
survey paper [25]. The application of passive compliance and
compliance ellipsoids to human–robot interaction appears in
[18]. In this paper, we take an approach derived from the field
of elastica mechanics. Details can be found in [9], [19], and
[24]; furthermore, [7] is a significant work comparing HDOF
and continuum methodologies.

II. PLANAR CONTINUUM KINEMATICS

The continuum robots under consideration here are built upon
one central, highly flexible, and elastic backbone. Modeling the
reaction of an elastic member to a set of applied generalized
forces is theelasticamechanics problem. In this paper, we make
the assumption that the backbone never bends past the small-
strain region, where an applied stress produces a strain that

is recoverable and obeys an approximately linear stress–strain
relationship. (It should be noted that small local strains inte-
grated over a sufficiently long span can yield large displace-
ments; small strain is frequently assumed in works such as [27].)
This being the case, the nonlinearities in a continuum robot kine-
matic model exist for purely geometric reasons, yielding a great
simplification. A thin elastic member, or beam, in two dimen-
sions can undergo three basic types of deformations: bending,
axial tension/compression, and shear (see [9]). Although this
work can be adapted for extensible manipulators, long and thin
backbones made from homogeneous materials will generally
bend far more easily than they stretch and shear. Thus, we em-
ploy a nonextensible kinematic model that closely matches the
characteristics of our prototype robot. If we define the indepen-
dent parameterization variable where is the at-rest
length of the beam, then we may specify the position of the
beam and its cross-sectional angle according to the
governing field equations

(1a)

(1b)

where , is a distributed moment applied to the
beam, appearing later in (5), and is the bending stiffness.
The other quantities are

(2)

with and ; and is a shear/axial force
applied at the end-effector. (Underscores indicate vector quan-
tities.) This formulation can be derived from that found in [27].
Note that we will use the identity

(3)

extensively throughout the paper. The boundary conditions for
the solution of (1) are

(4a)

(4b)

(4c)

The first two conditions, the geometric conditions, reflect the
fact that the backbone is clamped at the origin. The third is ex-
plained next.

The question arises, how should the model account for the
application of moments by the actuators at points in the field,
i.e., intermediate points along the backbone? Two possibilities
exist. The most obvious is to treat each section of the manip-
ulator (the distance between actuation points) as a small beam
unto itself, and enforce continuity through the boundary con-
ditions of each section. However, this method proves tedious
and less insightful than its alternative, to introduce the field mo-
ments via a distributed moment term in the field equation (1a).
Assuming that the actuators applypoint torques at locations

, the distributed moment term will be

(5)
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Fig. 3. Three-actuator continuum manipulator with applied end-effector force
f .

Fig. 4. Simple three-link manipulator.

where is the standard Dirac delta function. It is important
to realize that the moment applied to the end-effector appears
as the th moment in (5), despite the suggestion in (4c) that it
is zero. Fig. 3 illustrates a three-section continuum backbone
subject to an applied end-effector force.

III. GLOBAL MANIPULABILITY ELLIPSOID (GME)

Consider the three-link manipulator of Fig. 4. The forward
kinematics provide the mapping between the actuator joint an-
gles, , and as

(6)

If the joint angles have given angular velocities, then the ve-
locity of the end-effector is linearly related to the velocities of
the joints, so that

(7)

where is the manipulator Jacobian. In the case of our example
three-link robot, we find that

(8)

The traditional manipulability ellipsoid answers the question,
what is the set of all such that has unit norm? That is,

(9)

We will not repeat the explicit derivation of the manipulability
ellipsoid (see [34]), but with the appropriate aid of singular
value and eigenvalue decompositions, we note that the ellip-
soid will have principal axes in the directions, with mag-
nitudes , where and are the eigenvectors and eigen-
values of the symmetric product . (We make the important

remark that the robot pictured above is a remote-drive robot,
as is the class of continuum robots under consideration here.
These manipulators employ absolute joint angle measurements,
whereas integrated or direct-drive robots use relative angle mea-
surements and therefore a slightly different ellipsoid definition.)

A natural extension of the traditional manipulability measure
to continuum robots utilizes a functional norm for the contin-
uous angle velocity . We define the GME as

GME (10)

where

(11)

The set above is termed “global” because it employs the infinite
dimensional functional norm of, accounting for all possible
changes in the backbone angle,even changes not physically
achievable, by the finite number of actuators exerting moments
on the backbone. We first decompose the solution into an infi-
nite sum of orthonormal modal basis functions

(12)

where the vectors and are infinitely long. The functions
can represent any orthonormal basis set defined over

, under the reasonable assumption that . (For
instance, in [10] we discuss the use of wavelet basis sets;
normalized Legendre polynomials would also work well.)
Orthonormality requires

(13)

where is the Kronecker delta. Given that
, use of the chain rule yields the time derivative of

(14)
where the subscript indicates the modal Jacobian. Obviously,
the Jacobian defined above will have infinitely many columns
and clearly does not lend itself to the direct computation of sin-
gular values and principal direction vectors as in [34]. However,
close inspection of

(15)

reveals that each element is simply a coefficient in the spectral
transformation of either or . In fact, let us define

(16)

and then note that the product is

(17)
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Two properties of orthonormal spectral transformations come to
our aid now, allowing simplification of the elements of

(18)

The diagonals reflect the Parseval equality, and the off diagonals
can be easily verified with use of (16) and the orthonormality
property of (13).

As with the traditional manipulability ellipsoid, the GME will
have principal direction vectors with magnitudes , where

and are the eigenvectors and eigenvalues of
. Interestingly, the precise choice of spectral decomposi-

tion chosen above does not really matter, as long as it adheres to
the requirement of orthonormality. Note the intuitive similarity
between (18) and the same quantity for the traditional three-link
manipulator previously mentioned, where

(19)

Examples of the GME will appear shortly.

IV. CONSTRAINEDMANIPULABILITY ELLIPSOID (CME)

Essentially, the GME illustrates how the end-effector would
move if an infinite number of actuators (or a distributed actu-
ator) were specifying the shape of the backbone. In currently
practical designs the function is constrained to move only
in certain directions dictated by the actuator positions and the
physics acting on the backbone; that is, the actuators specify

. This constraint is captured by a functional
mapping from the actuator positions to the modal coefficients

(20)

If we define , we can rewrite the mapping as

(21)

In general, is a one-to-many mapping, as there can be an infin-
itely large set . Because of this, the modal decomposition
in the derivation of the GME required the property of orthonor-
mality in order to arrive at a closed-form simplification of the
product .

Consider, however, a (possibly nonorthogonal) set of basis
functions for which can be reconstructed either exactly,
or to close precision, with a finite small number of coefficients

. In this case, the mapping is finite to finite, or even one
to one, permitting direct calculation of . We have chosen
to employ the finite–element method (FEM) to explore this
possibility.

In its simplest form, a finite element procedure computes rep-
resentative samples of a continuous function and interpolates
between them to reconstruct that function. The representative

Fig. 5. The first two finite element interpolation functions, followed by all
n + 1 functions superimposed.

samples can be thought of as the coefficients, the interpola-
tion functions as the modes , and the reconstructed func-
tion as . Intuitively, a good reconstruction will
require at least as many samples as the number of actuators; in
general, it will require more. In the absence of constraints or
arguments to the contrary, the simple linear interpolation func-
tions seen in Fig. 5 are overwhelmingly chosen in finite element
work

otherwise

(22)

where and . The locations are termed nodes,
and note we have specified that the cable termination locations

must correspond to node locations in Fig. 5. (The exact
ratio of nodes to actuator locations need not be 2 : 1 as in the
figure; this is just for the sake of illustration.)

The Appendix uses the FEM to derive a relationship between
the node displacements and the applied node moments

(23)

Taking a time derivative of (23) yields

(24)

with

(25)

Matrix is the material stiffness matrix, and is the dis-
tributed force tangent matrix. Note will be symmetric but de-
ficient in rank by one dimension. Both vectorsand have
some specified and some unspecified elements. For each an-
gular displacement that is specified by an actuator, the corre-
sponding moment is unspecified. Conversely, specified mo-
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ments correspond to unspecified angles. Thus, we may subdi-
vide relationship (24) so that

(26)

where subscripts and indicate specified and unspecified, re-
spectively. With a little manipulation, the unspecified angular
displacements can be determined in terms of the specified mo-
ments, so

(27)

Since applied moments at backbone locations not co-located
with actuators are zero, we have

(28)

and, remembering that

(29)

where denotes the identity matrix. Note that, as long
as at least one angle is given somewhere along the backbone,

will be invertible. (It should be mentioned that, in the case
of no applied end-effector load, the kinematics in (1a) yield a
piecewise linear function for . This is a special case that the
FEM can solve exactly. In this case, there is little point in making
the dimension of any larger than the number of actuators, so
(29) will be a pure identity, as explored in [12].)

Now we come to the definition of the CME

CME (30)

Augmenting the modal Jacobian in relationship (14) with (29)
gives

(31)

where is the actuator Jacobian. Consequently, the CME will
have principal axis vectors with magnitudes , where

and are the eigenvectors and eigenvalues of
.

Consider Fig. 6, which illustrates a one-section manipulator
with no applied end-effector force. While the CME reflects the
obvious fact that a single-actuator manipulator is always sin-
gular with respect to a two-dimensional positioning require-
ment, the GME illustrates that the device as a whole is not in
a singular configuration. This is an important distinction, as it
highlights two different types of singularities that continuum
manipulators can experience: actuator singularities, where the
robot cannot move in a given direction for lack of actuation,
and configuration singularities, where the robot cannot move
in a given direction under any circumstances. Fig. 7 illustrates
the GME and CME for a given configuration, giving the robot
successively more actuators. Notice that, as the number of actu-
ators increases, the dimensions of the CME approach those of
the GME.

(The parameters used for generating the examples are
. There is no loss of generality because simulated quan-

tities relate to actual quantities via , ,

Fig. 6. For a one-section manipulator, the CME indicates a singular
configuration (bold line) while the GME does not (thin line).

, , where subscripts indi-
cate actual physical measurements.)

V. GLOBAL FORCEELLIPSOID (GFE)

In a rigid-link manipulator, the Jacobian also defines a
simple force–torque relationship between the end-effector and
the actuators

(32)

(In this paper, we have spoken of forces as the generalized forces
exertedon the end-effector, and of torques as the generalized
forces exertedby the actuators.) The traditional force ellipsoid
describes all the end-effector forces that a robot can produce
given actuator torques of unit norm

(33)

A simple calculation reveals that the force ellipsoid has principal
axis vectors with magnitudes , where and are the
eigenvectors and eigenvalues of . Thus, the force ellipsoid
is perpendicular to the manipulability ellipsoid, indicating that
the directions in which the robot can exert the greatest forces
are also the directions in which it is least sensitive to changes in
the actuator displacements.

We approach the derivation of the force–torque relationship
for a continuum manipulator in much the same way as for tra-
ditional manipulators; however, there are a number of differ-
ences in interpretation. For one, unlike with rigid-link designs,
the torques felt at the actuators must necessarily reflect the po-
tential energy of the backbone (i.e., its strain or deformation en-
ergy). In other words, nonzero moments are required simply to
hold the manipulator in a given pose, even in the absence of
gravity or applied end-effector loads. Consequently, we must
speak of how a differential change in applied moments (in the
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Fig. 7. For a given configuration, adding actuators “fills out” the CME (bold
line) so that it approaches the dimension of the GME (thin line).

applied moment density function, actually) results in a change
in potential energy.

We begin by introducing a simple two-step thought experi-
ment. In step 1, we allow the robot to assume a pose with a

strain energy of , distributed moment , and no applied
load. Thus, the principle of virtual work dictates

(34)

In step 2, we then change the applied moment density to ,
but simultaneously keep the end-effector at the same location
by exerting force on the end-effector. Consequently,

(35)

Since and have the same geometric boundary con-
ditions ( ), but are otherwise arbitrary,
we may equalize them without loss of generality, so

. Then, subtracting (34) from (35) and integrating the
left-hand side by parts with reference to (4a) and (4c) gives

(36)

where and . (Distribution of inte-
grals and derivatives through variations is a standard procedure
in variational calculus and appears frequently in works such as
[24].) We may substitute for the second term of the right-hand
side above

(37)

Then, recalling that is arbitrary, the fundamental theorem of
variational calculus gives

(38)

At this point, it is immediately evident that a force contour
corresponding to a constant change in distributed moment (those

corresponding to ) will not be elliptical in general.
This is because not all work applied to (or extracted from) the
backbone produces work at the end-effector. Some of the ap-
plied work increases (or decreases) the backbone strain energy.
If, however, we make the assumption that, for relatively small
applied forces, the backbone configuration change is negligibly
small, i.e., , then we may rewrite (38) as

(39)

(Where it is unambiguous, we will drop the subscript.) The ac-
curacy of this assumption has been borne out with experience;
nevertheless, it relegates (39) to an approximation, and further
illustrates the differences between continuum robots and tradi-
tional robots.

Now a quadratic relationship can be found, which we will call
the GFE

GFE (40)

Employing relation (39), the GFE requires

(41)
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This reads in expanded form as

(42)

which can be seen by reference to (18) as . As
a result, the GFE will have principal axis vectors of
with magnitudes where and are the
eigenvectors and eigenvalues of . As with the traditional
force and manipulability ellipsoids, the principal axes of the
GFE have magnitudes in inverse proportion to those of the
GME, while still pointing in the same direction.

VI. CONSTRAINED FORCEELLIPSOID (CFE)

As we noted in the derivation of the CME, the moment den-
sity function cannot assume arbitrary values. It is constrained
because the actuators may only act at distinct physical locations.
As in the Appendix, we may write the moment density as

(43)

where

(44)

Again, we formulate the backbone angle as a weighted sum of
interpolation basis functions, . Taking the first
variation of the end-effector work gives

(45)

With reference to (31), the first variation of the actuator work
yields

(46)

To complete the last equality above, note that
. Also, applied moments at locations

with no actuator attachments must be zero. Thus, the only
nonzero elements of are the specified moments that, by
definition, correspond to the identity rows of matrix .

Invoking the assumption that the net change in backbone
strain energy is negligible, the principle of virtual work then
equates , giving

(47)

where we have eliminated from both sides because its value
is arbitrary. Intuitively, this result parallels that of a rigid-link
manipulator. If we define the CFE as

CFE (48)

then it will have principal axis vectors with magni-
tudes where and are the eigenvectors
and eigenvalues of .

As expected, a manipulator with numerous actuators will
have a CFE more closely approximating the GFE than one with
few actuators. Fig. 8 illustrates this for two manipulators in
the same configuration, one with eight actuators and one with
only four. However, there is a subtle interpretational difference
from the force ellipsoids of traditional robots. Fig. 8 would
seem to counterintuitively suggest that continuum robots with
few actuators can apply, or resist, forces of larger magnitude
than robots with many actuators, for a given configuration.
While for a rigid-link robot, this conclusion is sound, such a
conclusion may not apply in the case of a continuum robot.
Fig. 8 simply illustrates the relative force magnitudes that will
generate unit norm changes in the applied moments. Clearly
the robot of Fig. 6 cannot resist forces of infinite magnitude
perpendicular to its CME because it is not in aconfiguration
singularity, only anactuationsingularity.

VII. COMPLIANCE ELLIPSOID (CE)

Perhaps one of the greatest assets of a continuum manip-
ulator is its inherent passive compliance. Passive compliance,
i.e., compliance built into a mechanism via purely mechanical
means, can often eliminate the need for complex and expen-
sive force/torque sensors and feedback systems. Passive com-
pliance is suggested in [18] as a practical and straightforward
means to increase the safety margin of human–robot interaction
without relying on third-person vision systems or impractical
sensor skins, and without sacrificing the precision or utility of a
manipulator. Additionally, compliance will almost certainly be
a necessary ingredient in the successful formulation of whole
arm grasping algorithms for hyperredundant robots.

The CE provides the critical first step in evaluating and ef-
fectively using a compliant system. We are interested here in
the natural system compliance, the ability of the manipulator to
comply while the actuators hold fixed positions. There are sev-
eral possible definitions of CEs. We choose one based on varia-
tional concepts

(49)
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Fig. 8. An illustration of the CFE (bold line) and the GFE (thin line) for two
manipulators in the same configuration but with differing numbers of actuators.

Essentially, we want to know where the end-effector will move
under the influence of external unit forces.

Logically, the key to understanding the relationship between a
small applied force and the induced incremental change in end-
effector position is found in the compliance matrix
that relates the two. The finite–element formulation comes to
our aid again. Recall that and

, so

(50)

We may differentiate (23) with respect to, remembering to
account for implied dependence of the modal coefficients on
with the chain rule

(51)

We previously assigned the sum

and noted that it is always symmetric and invertible. Again, it
is convenient to subdivide the expression above into two sets of
equations: one set for the specified quantities (node displace-
ments or moments), and one set for the unspecified quantities.
Doing so yields

(52)

where we note that the specified node displacements correspond
to actuator angles that are not changing with respect to end-ef-
fector force, and the specified node moments are all zero. Thus,
we arrive at a solution for the desired quantity

(53)

We may then rewrite (50) in the final desired form

(54)

a 2 2 symmetric compliance matrix. Intuitively, this is the
exact analog of the traditional compliance matrix, a product of
manipulator Jacobians weighted by an inverse stiffness matrix.
In this instance, the stiffness inverse is semidefinite, effectively
canceling out columns of the modal Jacobian that correspond to
fixed (and therefore incompliant) actuator nodes.

The CE will have principal axis vectors with mag-
nitudes where and are the eigenvectors and
eigenvalues of the compliance matrix (54).

Figs. 9 and 10 illustrate the nature of the compliance ellip-
soid. In each figure, a two-actuator robot starts in the same
no-load configuration, and then experiences the application of
end-effector forces of 10 and then 20 units. When applied in the
negative direction (Fig. 9), the same forces produce a much
greater end-effector displacement than when applied in the neg-
ative direction (Fig. 10). Although these forces, and the asso-
ciated displacements, can hardly be considered incremental (as
per the definition of the CE), the ellipsoid gives excellent insight
into the relative response of the backbone in each case.

VIII. C ONCLUSIONS

To summarize, the purpose of this paper has been to explore
the manipulability, force, and compliance characteristics of an
emerging class of hyperredundant robots called continuum ma-
nipulators, using ellipsoid analysis. We formulated five types of
ellipsoids, with the assistance of FEMs in some cases, and pro-
duced examples of each. The results bring us one step closer
to the goal of deploying continuum robots for tasks for which
they are well suited: those requiring the delicacy of passive com-
pliance, whole-arm manipulation, or other tentacle or trunklike
behaviors.

Needless to say, much remains to be done. The specifics
of how a tentacle robot achieves a whole-arm task remain
unclear (what kinds of motions can be achieved, what sensors
are required, etc.). Also, the modeling and analysis work must
progress into the three-dimensional regime, a leap much less
intuitive and more difficult than the transition from two–di-
mensional to three-dimensional rigid-link robots. Current work
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Fig. 9. A compliance ellipsoid indicates that the robot is more compliant to
vertical forces on the end-effector than horizontal forces.

Fig. 10. Forces of the same magnitude as the previous figure encounter
relatively less compliance in the horizontal direction.

is focusing on both of these objectives, in addition to ongoing
mechanical and design improvements.

APPENDIX

The FEM begins by dividing the domain of the unknown con-
tinuous function (or functions) into a set ofsections, called
elements, joined by nodes. Each node is assigned at least
one primary displacement variable (positions and/or angles) and
an associated dual variable (forces and/or moments). The un-
known function is then synthesized by interpolating between
the primary variables, i.e., adding up local interpolation
functions whose amplitudes are the values of the corresponding

primary variables. We will not delve into the mathematical jus-
tification for the FEM or the rules for determining what inter-
polation functions to use in this paper (see, e.g., [9] for more
details).

In our case, we wish to synthesize the unknown function.
Referring back to (1), its governing equation is

(55)

which is a nonlinear function. The moment density function
provides the mechanism whereby nodal moments enter the
equation

(56)

where the are the locations of the nodes. Strictly speaking,
since the robot has only actuators, (55) should use the mo-
ment density function of (5), rather than (56). However, we will
remedy this shortly by specifying that the remaining
moments in (56) are zero. Note that theare the dual variables,
and as described throughout this paper, we now synthesize
as a weighted sum of interpolation functions ,
where the are the primary variables. (An important character-
istic of interpolation functions is that and
, so the can be thought of as samples of the function ,

though they will actually only be approximations. Refer back to
Fig. 5.)

The so-called weak form, or variational form, of (55) gives

(57)

with an arbitrary weighting function subject to the same
boundary conditions as . Integrating the left-most term by
parts gives

(58)

where we have used and (4c) to simplify. Because
is arbitrary, we may synthesize it as a weighted sum of the

interpolation functions with coefficients

(59)

without loss of generality. Note that now the are arbitrary.
Substituting the weighted-sum versions of and back
into (58)

(60)
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allowing cancellation of the arbitraryon each side. After one
definition and two simplifications

(61)

we may rewrite (60) as

(62)

Expression (62) is the essential relation between the primary
and dual variables. In this problem, as is typical in finite–ele-
ment analysis, some elements ofare specifieda priori and
some are not. Specified displacements, such as the initial angle
( ), and perhaps intermediate angles held by the actuators
to certain values, correspond with unknown moments ( ).
Similarly, nodes with specified moment application (e.g., nodes
with no actuation, ) must correspond with unknown dis-
placements ( ). In any case, there are always just enough
specified quantities to solve for both types of unknowns in (62).

Interestingly, manipulation of the time-differentiated version
of (62), used in the derivation of the CME, provides exactly the
right mechanism for solving (62). Except when , (62) is
nonlinear in because

(63)

Consequently, an iterative solution algorithm based on (26)
eliminates the need to solve a nonlinear boundary value equa-
tion with field constraints. This procedure is analogous to using
the manipulator Jacobian to iteratively solve inverse kinematics
problems. It exhibits fast convergence and was employed to
create all of the simulation examples throughout this paper.
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