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Abstract—The discrete and continuous Fourier transforms are
applicable to discrete and continuous time signals respectively.
Time scales allows generalization to to any closed set of points
on the real line. Discrete and continuous time are special cases.
Using the Hilger exponential from time scale calculus, the discrete
Fourier transform (DFT) is extended to signals on a set of points
with arbitrary spacing. A time scale 𝔻𝑁 consisting of 𝑁 points in
time is shown to impose a time scale (more appropriately dubbed
a frequency scale), 𝕌𝑁 , in the Fourier domain The time scale
DFT’s (TS-DFT’s) are shown to share familiar properties of the
DFT, including the derivative theorem and the power theorem.
Shifting on a time scale is accomplished through a boxminus and
boxplus operators. The shifting allows formulation of time scale
convolution and correlation which, as is the case with the DFT,
correspond to multiplication in the frequency domain.

I. INTRODUCTION

A time scale is any collection of closed points on the real

line. Continuous time, ℝ, and discrete time ℤ, are special

cases. The calculus of time scales was introduced by Hilger

[11]. Time scales have found utility in describing the behavior

of dynamic systems [1], [13] and have been applied to control

theory [3], [4], [5], [7], [10].

On ℝ and ℤ, respectively, the continuous time and discrete

time Fourier transforms are well studied [16]. Properties of

the Laplace and Fourier transforms on time scales have been

extended to time scales with unbounded domains [1], [6], [8],

[9], [12], [14], [16].

The conventional discrete Fourier transform (DFT) is de-

fined over a finite number of uniformly spaced points. This

paper extends the DFT to a finite number of discrete time

points that are not uniformly spaced.1 The time scale of a finite

number of 𝑁 discrete points, 𝔻𝑁 , is shown to uniquely map

into a frequency scale (a time scale in the frequency domain),

𝕌𝑁 , in the Fourier domain. Familiar Fourier transform theo-

rems, including the shift, convolution and derivative theorems,

are shown to generalize to the time scale DFT (TS-DFT).

II. TIME SCALES

Our introduction to time scales is limited to that needed

to establish notation. A more detailed explanation are in our

previous papers [4], [5], [6], [8], [9], [10], [13], [14], [16] and

1 Our development is distinct from the time scale Fourier transform
proposed by Hilger [12], [14], [16]. Our treatment more closely resembles
Laplace transform generalizations where two signals on a time scale 𝕋, when
convolved, result in a signal on the same time scale, 𝕋 [1], [6], [8], [9].

a complete rigorous treatment is in the text by Bohner and

Peterson [1].

1) A time scale, 𝕋, is any collection of closed intervals on

the real line. Generally, the time scale can contain both

discrete time points and continuous time intervals. Since

our development of TS-DFT is only on time scales con-

taining discrete points, we henceforth restrict attention

to time scales containing discrete points,2 denoted 𝔻.

Discrete time, ℤ, is a special case.

2) The graininess, 𝜇(𝑡), is the distance between adjacent

points in a time scale at time 𝑡 ∈ 𝕋 and is defined

generally by

𝜇(𝑡) =

(
inf

𝜏>𝑡,𝜏∈𝕋

𝜏

)
− 𝑡.

For 𝔻,

𝜇(𝑡𝑛) = 𝑡𝑛+1 − 𝑡𝑛.
3) The Hilger derivative of a function 𝑥(𝑡) at 𝑡 ∈ 𝕋 is

𝑥Δ(𝑡) :=
𝑥(𝑡+ 𝜇(𝑡))− 𝑥(𝑡)

𝜇(𝑡)
.

When 𝜇(𝑡) = 𝑑𝑡 (= 0), the Hilger derivative is

interpreted in the limiting sense and

𝑥Δ(𝑡) =
𝑑

𝑑𝑡
𝑥(𝑡).

For 𝔻, we have

𝑥Δ(𝑡𝑛) =
𝑥(𝑡𝑛+1)− 𝑥(𝑡𝑛)

𝜇(𝑡𝑛)
.

4) If 𝑦(𝑡) = 𝑥Δ(𝑡), then the definite time scale integral is∫ 𝑏

𝑎

𝑦(𝑡)Δ𝑡 = 𝑥(𝑏)− 𝑥(𝑎).

For 𝔻, we have [1]∫ 𝑡𝑞

𝑡𝑝

𝑦(𝑡)Δ𝑡 =

𝑞−1∑
𝑛=𝑝

𝑦(𝑡𝑛)𝜇(𝑡𝑛).

5) When 𝑥(0) = 1, the solution to the Hilger differential
equation,

𝑥Δ(𝑡) = 𝑧𝑥(𝑡),

2We use 𝔻 to denote a time scale with an arbitrary, possibly infinite, set
of discrete isolated points. The notation 𝔻𝑁 indicates the time scale has 𝑁
points.

102978-1-4244-5692-5/10/$26.00 © IEEE 2010

42nd South Eastern Symposium on System Theory
University of Texas at Tyler
Tyler, TX, USA, March 7-9, 2010

M2B.1



is 𝑥(𝑡) = 𝑒𝑧(𝑡) where the generalized exponential is

𝑒𝑧(𝑡) := exp

(∫ 𝑡

𝜏=0

ln (1 + 𝑧𝜇(𝜏))

𝜇(𝜏)
Δ𝜏

)
.

For 𝔻 and 𝑛 > 0,

𝑒𝑧(𝑡𝑛) =
𝑛−1∏
𝑚=0

(1 + 𝑧𝜇(𝑡𝑚)) . (1)

Since 𝜇(𝑡𝑚) is real,

𝑒∗𝑧(𝑡𝑛) = 𝑒𝑧∗(𝑡𝑛) (2)

The properties of the generalized exponential parallel

those of 𝑧𝑛 for the 𝑧-transform and 𝑒𝑗𝜔𝑡 for the Fourier

transform are responsible for the utility of the TS-DFT.

III. TIME SCALE EXPONENTIAL BASIS SETS

Consider a time scale, 𝔻𝑁 , of 𝑁 + 1 real temporal points,

{𝑡𝑛∣0 ≤ 𝑛 ≤ 𝑁} with 𝑡0 = 0 ≤ 𝑡𝑛 < 𝑡𝑛+1 ≤ 𝑡𝑁 . (The

point 𝑡𝑁 is required to determine the graininess of the point

𝑡𝑁−1.) Let 𝑥(𝑡𝑛) and ℎ(𝑡𝑛) be images on 𝔻𝑁 . Define the inner

product

⟨𝑥(𝑡𝑛)∣ℎ(𝑡𝑛)⟩ =
𝑁−1∑
𝑛=0

𝑥(𝑡𝑛)ℎ
∗(𝑡𝑛)𝑤(𝑡𝑛) (3)

where 𝑤(𝑡𝑛) > 0 is a weighting function and the asterisk

denotes complex conjugation. Generally, 𝑤(𝑡𝑛) is arbitrary

but, to make the integration constant with time scale integra-

tion, we will henceforth use the graininess as the weight, i.e.
𝑤(𝑡𝑛) = 𝜇(𝑡𝑛) The corresponding norm is

∣∣𝑥(𝑡)∣∣ =
√

⟨𝑥(𝑡𝑛)∣𝑥(𝑡𝑛)⟩.
Two time scale exponentials are orthogonal if

⟨𝑒𝑧(𝑡𝑛)∣𝑒𝜍(𝑡𝑛)⟩ = 0 for 𝑧 ∕= 𝜍. (4)

If we set 𝜍 = 0, then applying (1) and (3) to (4) gives

⟨𝑒𝑧(𝑡𝑛)∣𝑒𝜍(𝑡𝑛)⟩∣𝜍=0 = ⟨𝑒𝑧(𝑡𝑛)∣1⟩

=
∑𝑁−1

𝑛=0 𝑒𝑧(𝑡𝑛)𝜇(𝑡𝑛)

= 𝜇(𝑡0) +
∑𝑁−1

𝑛=1 𝜇(𝑡𝑛)
∏𝑛−1

𝑚=0 (1 + 𝑧𝜇(𝑡𝑚))

= 0 for 𝑧 ∕= 𝜍 = 0.

(5)

The solution of the 𝑁 − 1st order polynomial can be used to

generate orthogonal time scale exponentials. Motivated by (5),

we dub the roots of the polynomial

𝜇(𝑡0) +

𝑁−1∑
𝑛=1

𝜇(𝑡𝑛)

𝑛−1∏
𝑚=0

(1 + 𝑧𝜇(𝑡𝑚)) = 0 (6)

the frequency roots of the time scales, 𝔻𝑁 .

A. Example Frequency Roots

Here are some examples of frequency roots from the poly-

nomial in (6).

1) On a Time Scale of Uniformly Spaced Points: The time

scale of uniformly spaced points is the time scale convention-

ally associated with the DFT. Then 𝜇(𝑡𝑛) = 1 and (5) becomes

⟨𝑒𝑧(𝑡𝑛)∣1⟩ = 1 +
𝑁−1∑
𝑛=1

𝑛−1∏
𝑚=0

(1 + 𝑧)

=
𝑁−1∑
𝑛=0

(1 + 𝑧)
𝑛
= 0.

This is a geometric series with solution

⟨𝑒𝑧(𝑡𝜎𝑛)∣1⟩ =
(1 + 𝑧)𝑁 − 1

𝑧
= 0. (7)

Note that the zeroth order term in the numerator is zero, so

since 𝑧 ∕= 𝜍 = 0, (7) is an (𝑁 − 1)st polynomial with 𝑁 − 1
frequency roots. For 𝑧 ∕= 𝜍 = 0 (required by (4)) and 𝑧 ∕= −1
(the regressivity condition for ℤ [1]), this equation is satisfied

when (1+𝑧)𝑁 = exp(−𝑗2𝜋𝑘) where 𝑘 is an arbitrary integer.

Thus the 𝑁 − 1 polynomial frequency roots are

𝑧𝑘 = −1 + 𝑒−𝑗2𝜋𝑘/𝑁 ; 0 < 𝑘 < 𝑁. (8)

As shown in Figure 1, these are points equally spaced on a

unit circle centered at 𝑧 = −1.

Other time scales do not lend themselves to the ease of

analysis afforded by the time scale of uniformly spaced points.

2)On a log time scale we have 𝔻𝑁 = {𝑡𝑛 = log2(𝑛)}.
Example frequency roots of this time scale are shown in

Figure 1.

3)The Harmonic Time Scale is defined as

𝑡𝑛 =

{
0 ; 𝑛 = 0∑𝑛

𝑘=1
1
𝑘 ; 𝑛 > 0.

The frequency roots are shown in Figure 1 for 𝑁 = 16.

4)The Geometric Time Scale for a parameter 𝑞 > 0, is

defined as3

𝑡𝑛 =

{
0 ; 𝑛 = 0
𝑞𝑛 ; 𝑛 > 0.

The frequency roots are shown in Figure 2 for 𝑁 = 16.

For 𝑞 < 1, the values of the time scale are the same as in

(9) except they are arranged in ascending order.

5)The Poisson Time Scale chooses points in a Poisson

process [16] with parameter 𝜆. The origin, 𝑡0 = 0, is then

included. Example frequency roots are shown in Figure 3.

B. Basis Examples

Here are some examples of time scale exponential basis

sets for some example time scales. For the exponential basis

plots in Figure 4, 𝑁 = 8. Points are linearly connected. The

location of points on the time scale are marked along the time

axis with dots.

1) On a Time Scale with Uniformly Spaced Points the TS-

DFT becomes the conventional DFT [16]. For the uniformly

3This differs from the quantum time scale [2] which includes the origin
and points 𝑞𝑛 for 𝑛 ∈ ℤ.
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Fig. 1. Frequency roots of some time scales. In each plot, the horizontal and vertical scales are the same. LEFT: The frequency roots of the time scales
with equally spaced points lie on a shifted circle in the 𝑧 plane, dubbed the Hilger circle [1]. MIDDLE: The frequency roots of the log time scale, plotted
on the complex 𝑧 plane, discussed in Section III-A1 for 𝑁 = 16. RIGHT: The frequency roots of the harmonic scale, plotted on the complex 𝑧 plane, as
discussed in Section III-A1 for 𝑁 = 16.

Fig. 3. The frequency roots of 15 realizations of a Poisson time scale with
parameter 𝜆 = 1 point per interval. The shape of the root locations varies
considerably. Note that scales can differ from plot to plot.

spaced points described in (III-A1), the orthonormalized ex-

ponential basis functions are

𝑒𝑧𝑘(𝑡𝑛) = 𝑒𝑗2𝜋𝑛𝑘/𝑁 ; for 0 ≤ 𝑛, 𝑘 < 𝑁. (9)

Proof: Since 𝜇(𝑡𝑛) = 1, we have from (1)

𝑒𝑧𝑘(𝑡𝑛) =
𝑛−1∏
𝑚=0

(1 + 𝑧) = (1 + 𝑧)𝑛.

Substituting (8) gives (9). These are the familiar normalized

basis functions for the discrete Fourier transform (DFT) and

are shown in Figure 4.

1) Other Basis Sets: The orthonormalized basis functions

for the log time scale, the harmonic time scale, and the

geometric time scale for 𝑞 = 1.2 are shown in Figure 4.

C. Orthogonal Expansions and Inversion

When the orthogonal basis {𝑒𝑧𝑘(𝑡𝑛)∣0 ≤ 𝑛, 𝑘 < 𝑁} is

complete, we can expand any function, 𝑥(𝑡𝑛), on the time

scale as

𝑥(𝑡𝑛) =

𝑁−1∑
ℓ=0

𝑐ℓ𝑒𝑧ℓ(𝑡𝑛)

where 𝑐𝑛 are the series expansion coefficients. Let

𝑋(𝑧𝑘) :=
𝑁−1∑
𝑛=0

𝑥(𝑡𝑛)𝑒
∗
𝑧𝑘
(𝑡𝑛)𝜇(𝑡𝑛)

=

𝑁−1∑
𝑛=0

[
𝑁−1∑
ℓ=0

𝑐ℓ𝑒𝑧ℓ(𝑡𝑛)

]
𝑒∗𝑧𝑘(𝑡𝑛)𝜇(𝑡𝑛)

=

𝑁−1∑
ℓ=0

𝑐ℓ

[
𝑁−1∑
𝑛=0

𝑒𝑧ℓ(𝑡𝑛)𝑒
∗
𝑧𝑘
(𝑡𝑛)𝜇(𝑡𝑛)

]

=

𝑁−1∑
ℓ=0

𝑐ℓ
[∥𝑒𝑧𝑘∥2𝛿[ℓ− 𝑘]]

= 𝑐𝑘∥𝑒𝑧𝑘∥2.

Thus

𝑐𝑘 =
𝑋(𝑧𝑘)

∥𝑒𝑧𝑘∥2

where

∥𝑒𝑧𝑘∥2 :=

𝑁−1∑
𝑛=0

∣𝑒𝑧𝑘(𝑡𝑛)∣2𝜇(𝑡𝑛).
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Fig. 2. TOP: The frequency roots of the geometric time scale in (9), plotted on the complex 𝑧 plane, as discussed in Section III-A1 for 𝑁 = 16. The values
of 𝑞 are 1.20 ⊙, 1.25 ⊗, 1.30 ⊕, and 1.35 ⋄. BOTTOM: The frequency roots of the geometric time scale, plotted on the complex 𝑧 plane, as discussed in
Section III-A1 for 𝑁 = 16. The values of 𝑞 are 0.85 ⊙, 0.875 ⊗, 0.90 ⊕, and 0.99 ⋄.

We find the following notation useful.4

∂𝑡𝑛 := 𝜇(𝑡𝑛)

and

∂𝑧𝑘 :=
1

∥𝑒𝑧𝑘∥2
. (10)

Note that if 𝑡𝑛 has units of time, then ∂𝑡𝑛 has units of time

and ∂𝑧𝑘 has units of reciprocal time.

From this analysis, we define the time scale DFT (TS-DFT)

and its inverse.

▶ TS-DFT ◀

𝑥(𝑡𝑛) ↔ 𝑋(𝑧𝑘) =

𝑁−1∑
𝑛=0

𝑥(𝑡𝑛)𝑒
∗
𝑧𝑘
(𝑡𝑛)∂𝑡𝑛. (11)

▶ Inverse TS-DFT ◀

𝑥(𝑡𝑛) =

𝑁−1∑
𝑘=0

𝑋(𝑧𝑘) 𝑒𝑧𝑘(𝑡𝑛)∂𝑧𝑘 ↔ 𝑋(𝑧𝑘). (12)

4An alternate possibly more representative notation might be 𝜇𝔻(𝑡𝑛) in
lieu of ∂𝑡𝑛 and 𝜇𝕌(𝑧𝑘) instead of ∂𝑧𝑘 . We have opted for the shorter more
compact notation.

Thus 𝑥(𝑡𝑛) is a finite duration signal on a time scale 𝔻𝑁 with

graininess ∂𝑡𝑛 = 𝜇(𝑡𝑛). This imposes a frequency scale, 𝕌𝑁 ,

with values 𝑋(𝑧𝑘) and graininess ∂𝑧𝑘 given by (10). Thus

𝑢𝑘 =

{
0 ; 𝑘 = 0∑𝑘

ℓ=1 ∂𝑧ℓ = 𝑧𝑘−1 + ∂𝑧𝑘 ; 1 ≤ 𝑘 ≤ 𝑁. (13)

define the point locations on the time scale 𝕌𝑁 . The image

𝑋(𝑧𝑘) is assigned to the point5 𝑢𝑘.

▶ Conjugate Symmetry. When 𝑥(𝑡𝑛) is real,𝑋∗(𝑧𝑘) = 𝑋(𝑧∗𝑘).
Proof: The proof results immediately upon applying (2) to the

TS-DFT definition in (11).

D. TS-DFT Transform Theorems

Here are some theorems that parallel the conventional DFT

[16].

▶ Area Theorem. Since 𝑡0 = 0,

𝑋(𝑧0) =

𝑁−1∑
𝑛=0

𝑥(𝑡𝑛)∂𝑡𝑛

5 An alternate notation might be 𝑋(𝑢𝑘) in lieu of 𝑋(𝑧𝑘). We choose to
continue with the notation 𝑋(𝑧𝑘).
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Fig. 4. The real (top) and imaginary (bottom) components of the orthonormalized basis functions for the linear time scale using 𝑁 = 8. The LINEAR plots
are the familiar sins and cosines of the DFT kernel. The GEOMETRIC time scale is for 𝑞 = 1.2

Proof: Since 𝑧0 = 0 and 𝑒𝑧(0) = 1, this follows immediately

from the TS-DFT definition in (11). Likewise,

𝑥(𝑡0) =
𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)∂𝑧𝑘.

▶ Conjugate Symmetry. When 𝑥(𝑡𝑛) is real,𝑋∗(𝑧𝑘) = 𝑋(𝑧∗𝑘).
Proof: The proof results immediately upon applying (2) to the

TS-DFT definition in (11).

▶ Power Theorem.

𝑁−1∑
𝑛=0

𝑥(𝑡𝑛)ℎ
∗(𝑡𝑛)∂𝑡𝑛 =

𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)𝐻
∗(𝑧𝑘)∂𝑧𝑘. (14)

Proof: Follows from the definition of the TS-DFT in (11) and

its inverse in (12).∑𝑁−1
𝑘=0 𝑋(𝑧𝑘)𝐻

∗(𝑧𝑘)∂𝑧𝑘

=
∑𝑁−1

𝑘=0 𝑋(𝑧𝑘)
[∑𝑁−1

𝑛=0 ℎ(𝑡𝑛)𝑒
∗
𝑧𝑘
(𝑡𝑛)∂𝑡𝑛

]∗
∂𝑧𝑘

=
∑𝑁−1

𝑛=0

[∑𝑁−1
𝑘=0 𝑋(𝑧𝑘) 𝑒𝑧𝑘(𝑡𝑛)∂𝑧𝑘

]
ℎ∗(𝑡𝑛)∂𝑡𝑛

=
∑𝑁−1

𝑛=0 𝑥(𝑡𝑛)ℎ
∗(𝑡𝑛)∂𝑡𝑛

▶ Parseval’s Theorem is a special case of the power theorem

when 𝑥 = ℎ.

𝑁−1∑
𝑛=0

∥𝑥(𝑡𝑛)∥2∂𝑡𝑛 =

𝑁−1∑
𝑘=0

∥𝑋(𝑧𝑘)∥2∂𝑧𝑘.

▶ Derivative theorem.

𝑥Δ(𝑡𝑛) ↔ 𝑧𝑘𝑋(𝑧𝑘), (15)
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Fig. 5. A graphical illustration of the TS-DFT. On the upper left is a signal,
𝑥(𝑡𝑛), on a time scale 𝔻𝑁 where, here, 𝑁 = 8. The time scale 𝔻𝑁 dictates
the frequency roots, 𝑧𝑘 , as illustrated in Figures 1, 2 and 3 and the exponential
basis sets illustrated in Figure 4. The basis set applied to the signal 𝑥(𝑡𝑛)
gives the values of the TS-DFT, namely 𝑋(𝑧𝑘), as illustrated in the bottom
figure. The norms of the basis set components determines the ∂𝑧𝑘’s in (10)
which, in turn, determines the frequency scale, 𝕌𝑁 , in (13). This is shown
in the upper right.

Proof: From (12),

𝑥Δ(𝑡𝑛) =
𝑁−1∑
𝑘=0

𝑋(𝑧𝑘) 𝑒
Δ
𝑧𝑘
(𝑡𝑛)∂𝑧𝑘

=

𝑁−1∑
𝑘=0

[𝑧𝑘𝑋(𝑧𝑘)] 𝑒𝑧𝑘(𝑡𝑛)∂𝑧𝑘,

from which (15) follows.

IV. SHIFTS ON A TIME SCALE

▶ The boxminus shift operator, ⊟, on an arbitrary function,

ℎ(𝑡𝑛) on 𝔻𝑁 , is defined by its TS-DFT.

ℎ(𝑡𝑛 ⊟ 𝑡𝑚) ↔ 𝐻(𝑧𝑘)𝑒
∗
𝑧𝑘
(𝑡𝑚). (16)

▶ The Hilger delta [6] is defined as

𝛿(𝑡𝑛) :=
𝛿[𝑛]

∂𝑡0

where 𝛿[𝑛] is the Kronecker delta6 and we have used 𝑡0 = 0.

▶ The TS-DFT of the Hilger delta is

𝛿(𝑡𝑛) ↔ 1. (17)

Proof: The proof follows directly from the TS-DFT in (11).

▶ The shifted Hilger delta and its TS-DFT is

𝛿(𝑡𝑛 ⊟ 𝑡𝑚) =
𝛿[𝑛−𝑚]

∂𝑡𝑚
↔ 𝑒∗𝑧𝑘(𝑡𝑚). (18)

Proof: Follows from application of (16) to (17).

6𝛿[𝑛] = 1 for 𝑛 = 0 and is otherwise zero.

TS-DFT 𝑥(𝑡𝑛) on 𝔻𝑁 ↔ 𝑋(𝑧𝑘) on 𝕌𝑁

transform 𝑋(𝑧𝑘) =
∑

𝑥(𝑡𝑛)𝑒∗𝑧𝑘 (𝑡𝑛)∂𝑡𝑛

inverse 𝑥(𝑡𝑛) =
∑

𝑋(𝑧𝑘)𝑒𝑧𝑘 (𝑡𝑛)∂𝑧𝑘

area
∑

𝑥(𝑡𝑛)∂𝑡𝑛 = 𝑋(𝑧0)
theorem

symmetry 𝑋∗(𝑧𝑘) = 𝑋(𝑧∗𝑘)
(𝑥 real)

power
∑

𝑥(𝑡𝑛)ℎ∗(𝑡𝑛)∂𝑡𝑛 =
∑

𝑋(𝑧𝑘)𝐻
∗(𝑧𝑘)∂𝑧𝑘

theorem

Parseval’s
∑ ∥𝑥(𝑡𝑛)∥2∂𝑡𝑛 =

∑ ∥𝑋(𝑧𝑘)∥2∂𝑧𝑘
theorem

box minus ℎ(𝑡𝑛 ⊟ 𝑡𝑚) ↔ 𝐻(𝑧𝑘)𝑒
∗
𝑧𝑘

(𝑡𝑚)
shift theorem

inverted ⊟ 𝑥∗(𝑡𝑚 ⊟ 𝑡𝑛) ↔ 𝑋∗(𝑧𝑘)𝑒∗𝑧𝑘 (𝑡𝑚)
shift theorem

box minus 𝑥∗(⊟𝑡𝑛) ↔ 𝑋∗(𝑧𝑘)
theorem

box plus ℎ(𝑡𝑛 ⊞ 𝑡𝑚) ↔ 𝐻(𝑧𝑘)𝑒𝑧𝑘 (𝑡𝑚)
shift theorem

convolution𝑎 𝑥(𝑡𝑛) ∗ ℎ(𝑡𝑛) ↔ 𝑋(𝑧𝑘)𝐻(𝑧𝑘)

correlation𝑏 𝑥(𝑡𝑛) ★ ℎ(𝑡𝑛) ↔ 𝑋∗(𝑧𝑘)𝐻(𝑧𝑘)

derivative 𝑥Δ(𝑡𝑛) ↔ 𝑧𝑘𝑋(𝑧𝑘)

frequency ℎ(𝑡𝑛) ∗ 𝑒𝑧𝑘 (𝑡𝑛) = 𝐻(𝑧𝑘)𝑒𝑧𝑘 (𝑡𝑛)
response

TABLE I
SOME TS-DFT THEOREMS. ALL SUMS ARE FROM 0 TO 𝑁 − 1, i.e OVER 𝑛
WE HAVE

∑
=

∑𝑁−1
𝑛=0 AND, OVER 𝑘,

∑
=

∑𝑁−1
𝑘=0 . (A) CONVOLUTION

IS DEFINED IN (28) AND (B) CORRELATION IN ( 30 ).

▶ The sifting property of Hilger delta follows immediately as

𝑁−1∑
𝑚=0

𝑥(𝑡𝑚) 𝛿(𝑡𝑛 ⊟ 𝑡𝑚) ∂𝑡𝑚 = 𝑥(𝑡𝑛). (19)

▶ Basis Exponential TS-DFT. The TS-DFT of a basis expo-

nential is

𝑒𝑧ℓ(𝑡𝑛) ↔ 𝛿(𝑧𝑘 ⊟ 𝑧ℓ). (20)

where

𝛿(𝑧𝑘 ⊟ 𝑧ℓ) =
𝛿[𝑘 − ℓ]
∂𝑧ℓ

is the Hilger delta on the time scale 𝔻.

A special case is for 𝑡𝑛 = 𝑡0 = 0.

1 ↔ 𝛿(𝑧𝑘).

Proof: Substitute (20) into (11) and use the orthogonal property

in (4).
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DC Values 𝑒𝑧0 (𝑡𝑛) = 1
𝑒𝑧𝑘 (𝑡0) = 1

Hilger delta 𝛿(𝑡𝑛) := 𝛿[𝑛]/∂𝑡0 ↔ 1

shifted Hilger delta 𝛿(𝑡𝑛 ⊟ 𝑡𝑚) ↔ 𝑒∗𝑧𝑘 (𝑡𝑚)

sifting property
∑𝑁−1

𝑚=0 𝑥(𝑡𝑚)

×𝛿(𝑡𝑛 ⊟ 𝑡𝑚)𝜇(𝑡𝑚) = 𝑥(𝑡𝑛)

convolution identity 𝑥(𝑡𝑛) ∗ 𝛿(𝑡𝑛) = 𝑥(𝑡𝑛)

one 1 ↔ 𝛿(𝑧𝑘) = 𝛿[𝑘]/∂𝑧ℓ

basis exponential 𝑒𝑧ℓ (𝑡𝑛) ↔ 𝛿(𝑧𝑘 ⊟ 𝑧ℓ)

conjugate symmetry 𝑒∗𝑧𝑘 (𝑡𝑛) = 𝑒𝑧∗
𝑘
(𝑡𝑛)

box minus shift 𝑒𝑧𝑘 (𝑡𝑛 ⊟ 𝑡𝑚) = 𝑒𝑧𝑘 (𝑡𝑛)𝑒
∗
𝑧𝑘

(𝑡𝑚)

𝑒𝑧𝑘 (⊟𝑡𝑛) = 𝑒∗𝑧𝑘 (𝑡𝑛)

𝑒𝑧𝑘 (𝑡𝑛 ⊟ 𝑡𝑛) = ∣𝑒𝑧𝑘 (𝑡𝑛)∣2

box plus shift 𝑒𝑧𝑘 (𝑡𝑛 ⊞ 𝑡𝑚) = 𝑒𝑧𝑘 (𝑡𝑛)𝑒𝑧𝑘 (𝑡𝑚)

𝑒𝑧𝑘 (⊞𝑡𝑛) = 𝑒𝑧𝑘 (𝑡𝑛)

𝑒𝑧𝑘 (𝑡𝑛 ⊞ 𝑡𝑛) = (𝑒𝑧𝑘 (𝑡𝑛))
2

TABLE II
PROPERTIES OF EXPONENTIALS AND HILGER DELTAS.

▶ Basis Exponential Shift. The box minus basis exponential

shift can be written as

𝑒𝑧ℓ(𝑡𝑛 ⊟ 𝑡𝑚) = 𝑒𝑧ℓ(𝑡𝑛)𝑒
∗
𝑧ℓ
(𝑡𝑚). (21)

Proof: Applying (16) to (20) gives

𝑒𝑧ℓ(𝑡𝑛 ⊟ 𝑡𝑚) ↔ 𝑒∗𝑧𝑘(𝑡𝑚)𝛿(𝑧𝑘 ⊟ 𝑧ℓ)
= 𝑒∗𝑧ℓ(𝑡𝑚)𝛿(𝑧𝑘 ⊟ 𝑧ℓ)

But, from (20),

𝑒𝑧ℓ(𝑡𝑛)𝑒
∗
𝑧ℓ
(𝑡𝑚) ↔ 𝑒∗𝑧𝑘(𝑡𝑚)𝛿(𝑧𝑘 ⊟ 𝑧ℓ).

Since the transforms in both cases are the same, (21) follows.

Interpreting

𝑒𝑧𝑘(⊟𝑡𝑚) = 𝑒𝑧𝑘(0⊟ 𝑡𝑚),

it follows from the basis exponential shift identity in (21) that

𝑒𝑧𝑘(⊟𝑡𝑚) = 𝑒∗𝑧𝑘(𝑡𝑚). (22)

▶ The TS-DFT of an inverted box minus shift is

𝑥∗(𝑡𝑚 ⊟ 𝑡𝑛) ↔ 𝑋∗(𝑧𝑘)𝑒∗𝑧𝑘(𝑡𝑚) (23)

Proof:

𝑥(𝑡𝑚 ⊟ 𝑡𝑛) =

𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑚 ⊟ 𝑡𝑛)∂𝑧𝑘

=

𝑁−1∑
𝑘=0

[𝑋(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑚)] 𝑒∗𝑧𝑘(𝑡𝑛)∂𝑧𝑘

Conjugating both sides gives (23).

A special case of (23) is

𝑥∗(⊟𝑡𝑛) ↔ 𝑋∗(𝑧𝑘).

▶ Boxplus Operation. The box plus operation is defined as

𝑥(𝑡𝑚 ⊞ 𝑡𝑛) := 𝑥 (𝑡𝑚 ⊟ (⊟𝑡𝑛)) .

▶ Boxplus Semigroup Property.

𝑒𝑧𝑘(𝑡𝑛 ⊞ 𝑡𝑚) = 𝑒𝑧𝑘(𝑡𝑛)𝑒𝑧𝑘(𝑡𝑚). (24)

Proof:

𝑒𝑧𝑘(𝑡𝑛 ⊞ 𝑡𝑚) = 𝑒𝑧𝑘 (𝑡𝑛 ⊟ (⊟𝑡𝑚))

= 𝑒𝑧𝑘(𝑡𝑛)𝑒
∗
𝑧𝑘
(⊟𝑡𝑚)

= 𝑒𝑧𝑘(𝑡𝑛)𝑒𝑧𝑘(𝑡𝑚).

Interpreting 𝑒𝑧𝑘(⊞𝑡𝑚) = 𝑒𝑧𝑘(0⊞ 𝑡𝑚), it follows that

𝑒𝑧𝑘(⊞𝑡𝑚) = 𝑒𝑧𝑘(𝑡𝑚). (25)

▶ Box Plus Commutivity. The commutative property of the

box plus shift is

𝑥(𝑡𝑛 ⊞ 𝑡𝑚) = 𝑥(𝑡𝑚 ⊞ 𝑡𝑛). (26)

Proof:

𝑥(𝑡𝑛 ⊞ 𝑡𝑚) =
𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑛 ⊞ 𝑡𝑚)∂𝑧𝑘.

From (24),

𝑒𝑧𝑘(𝑡𝑛 ⊞ 𝑡𝑚) = 𝑒𝑧𝑘(𝑡𝑚 ⊞ 𝑡𝑛).

From which (26) immediately follows.

▶ Box Plus TS-DFT. The TS-DFT of a box plus shift is

𝑥(𝑡𝑛 ⊞ 𝑡𝑚) ↔ 𝑋(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑚). (27)

Proof:

𝑥(𝑡𝑛 ⊞ 𝑡𝑚) =

𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑛 ⊞ 𝑡𝑚)∂𝑧𝑘

=
𝑁−1∑
𝑘=0

[𝑋(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑚)] 𝑒𝑧𝑘(𝑡𝑛)∂𝑧𝑘

from which (27) follows.

▶ Box Plus Identity.

𝑥(⊞𝑡𝑛) = 𝑥(𝑡𝑛).
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Proof: Using (25),

𝑥(⊞𝑡𝑛) =

𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)𝑒𝑧𝑘(⊞𝑡𝑛)∂𝑧𝑘

=
𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑛)∂𝑧𝑘 = 𝑥(𝑡𝑛).

V. TIME SCALE CONVOLUTION AND CORRELATION

▶ Discrete time scale convolution between two functions is

defined as

𝑥(𝑡𝑛) ∗ ℎ(𝑡𝑛) :=
𝑁−1∑
𝑚=0

𝑥(𝑡𝑚)ℎ(𝑡𝑛 ⊟ 𝑡𝑚)∂𝑡𝑚. (28)

▶ The TS-DFT of a convolution is the product of the trans-

forms.

𝑥(𝑡𝑛) ∗ ℎ(𝑡𝑛) ↔ 𝑋(𝑧𝑘)𝐻(𝑧𝑘). (29)

Proof: Let 𝑦 = 𝑥 ∗ ℎ. Then

𝑌 (𝑧𝑘) =

𝑁−1∑
𝑛=0

𝑦(𝑡𝑛)𝑒
∗
𝑧𝑘
(𝑡𝑛)∂𝑡𝑛

=
𝑁−1∑
𝑛=0

[
𝑁−1∑
𝑚=0

𝑥(𝑡𝑚)ℎ(𝑡𝑛 ⊟ 𝑡𝑚)∂𝑡𝑚

]
𝑒∗𝑧𝑘(𝑡𝑛)∂𝑡𝑛

=
𝑁−1∑
𝑚=0

𝑥(𝑡𝑚)

[
𝑁−1∑
𝑛=0

ℎ(𝑡𝑛 ⊟ 𝑡𝑚)𝑒∗𝑧𝑘(𝑡𝑛)∂𝑡𝑛

]
∂𝑡𝑚

=

𝑁−1∑
𝑚=0

𝑥(𝑡𝑚)
[
𝐻(𝑧𝑘)𝑒

∗
𝑧𝑘
(𝑡𝑚)

]
∂𝑡𝑚

=

[
𝑁−1∑
𝑚=0

𝑥(𝑡𝑚)𝑒∗𝑧𝑘(𝑡𝑚)∂𝑡𝑚

]
𝐻(𝑧𝑘) = 𝑋(𝑧𝑘)𝐻(𝑧𝑘).

▶ Discrete time scale convolution is

∙ commutative

𝑥 ∗ ℎ = ℎ ∗ 𝑥,
∙ associative

𝑔 ∗ (ℎ ∗ 𝑥) = (𝑔 ∗ ℎ) ∗ 𝑥,
∙ and distributive over addition

𝑥 ∗ (𝑔 + ℎ) = 𝑥 ∗ 𝑔 + 𝑥 ∗ ℎ.
Proof: The proof follows immediately from the TS-DFT of a

convolution in (29).

▶ Discrete time scale correlation between two functions is

defined as

𝑥(𝑡𝑛) ★ ℎ(𝑡𝑛) :=

𝑁−1∑
𝑚=0

𝑥∗(𝑡𝑚)ℎ(𝑡𝑛 ⊞ 𝑡𝑚)∂𝑡𝑚. (30)

▶ Transformation of Correlation.

𝑥(𝑡𝑛) ★ ℎ(𝑡𝑛) ↔ 𝑋∗(𝑧𝑘)𝐻(𝑧𝑘). (31)

Proof:

𝑥(𝑡𝑛) ★ ℎ(𝑡𝑛) =
𝑁−1∑
𝑚=0

𝑥∗(𝑡𝑚)ℎ(𝑡𝑛 ⊞ 𝑡𝑚)∂𝑡𝑚

↔
𝑁−1∑
𝑛=0

[
𝑁−1∑
𝑚=0

𝑥∗(𝑡𝑚)ℎ(𝑡𝑛 ⊞ 𝑡𝑚)∂𝑡𝑚

]

× 𝑒∗𝑧𝑘(𝑡𝑛)∂𝑡𝑛

=
𝑁−1∑
𝑚=0

𝑥∗(𝑡𝑚)

×
[
𝑁−1∑
𝑛=0

ℎ(𝑡𝑛 ⊞ 𝑡𝑚)𝑒∗𝑧𝑘(𝑡𝑛)∂𝑡𝑛

]
∂𝑡𝑚

=

𝑁−1∑
𝑚=0

𝑥∗(𝑡𝑚) [𝐻(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑚)] ∂𝑡𝑚

= 𝐻(𝑧𝑘)

[
𝑁−1∑
𝑚=0

𝑥(𝑡𝑚)𝑒∗𝑧𝑘(𝑡𝑚)∂𝑡𝑚

]∗

(32)

from which (31) immediately follows.

▶ An alternate expression for correlation in (30) is

𝑥(𝑡𝑛) ★ ℎ(𝑡𝑛) :=
𝑁−1∑
𝑚=0

𝑥∗(𝑡𝑚 ⊟ 𝑡𝑛)ℎ(𝑡𝑚)∂𝑡𝑚. (33)

Proof: Using the power theorem

𝑁−1∑
𝑚=0

𝑥∗(𝑡𝑛 ⊟ 𝑡𝑚)ℎ(𝑡𝑛)∂𝑡𝑛

=
𝑁−1∑
𝑘=0

[
𝑋(𝑧𝑘)𝑒

∗
𝑧𝑘
(𝑡𝑛)

]∗
𝐻(𝑧𝑘)∂𝑧𝑘

=
𝑁−1∑
𝑘=0

[𝑋∗(𝑧𝑘)𝐻(𝑧𝑘)] 𝑒𝑧𝑘(𝑡𝑛)∂𝑧𝑘

which is the same result as (31).

▶ Correlation obeys the following laws.
1) Reversal. If 𝑦 = 𝑥 ★ ℎ, and 𝜆 = ℎ ★ 𝑥, then

𝜆(𝑡𝑛) = 𝑦
∗(⊟𝑡𝑛).

2) Order

𝑔 ★ (ℎ ★ 𝑥) = ℎ ★ (𝑔 ★ 𝑥)

= (ℎ ∗ 𝑔) ★ 𝑥.
3) Distributive over addition

𝑥 ★ (𝑔 + ℎ) = 𝑥 ★ 𝑔 + 𝑥 ★ ℎ.

Proof:
1) Let 𝑦(𝑡𝑛) = 𝑥(𝑡𝑛) ★ ℎ(𝑡𝑛). Then

𝑦(𝑡𝑛) =

𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)𝐻
∗(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑛)∂𝑧𝑘,
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convolution 𝑥 ∗ ℎ ↔ 𝑋𝐻
I.

correlation 𝑥 ★ ℎ ↔ 𝑋∗𝐻

commutative ℎ ∗ 𝑥 = 𝑥 ∗ ℎ

II. associative 𝑔 ∗ (ℎ ∗ 𝑥) = (𝑔 ∗ ℎ) ∗ 𝑥

distributive 𝑥 ∗ (𝑔 + ℎ) = 𝑥 ∗ 𝑔 + 𝑥 ∗ ℎ

reversal 𝑦(𝑡𝑛) = 𝑥 ★ ℎ → ℎ ★ 𝑥 = 𝑦∗(⊟𝑡𝑛)

III. order 𝑔 ★ (ℎ ★ 𝑥) = ℎ ★ (𝑔 ★ 𝑥)
= (ℎ ∗ 𝑔) ★ 𝑥

distributive 𝑥 ★ (𝑔 + ℎ) = 𝑥 ★ 𝑔 + 𝑥 ★ ℎ

correlation 𝑥(𝑡𝑛) ★ ℎ(𝑡𝑛) = 𝑥∗(⊟𝑡𝑛) ∗ ℎ(𝑡𝑛)
IV.

convolution 𝑥(𝑡𝑛) ∗ ℎ(𝑡𝑛) = 𝑥∗(⊟𝑡𝑛) ★ ℎ(𝑡𝑛)

TABLE III
PROPERTIES OF CONVOLUTION AND CORRELATION. (I) TS-DFT. (II)
CONVOLUTION. (III) CORRELATION. (IV) RELATIONSHIPS BETWEEN

CONVOLUTION AND CORRELATION.

and

𝑦∗(𝑡𝑛) =
𝑁−1∑
𝑘=0

𝑋∗(𝑧𝑘)𝐻(𝑧𝑘)𝑒
∗
𝑧𝑘
(𝑡𝑛)∂𝑧𝑘.

Thus

𝑦∗(⊟𝑡𝑛) =

𝑁−1∑
𝑘=0

𝑋(𝑧𝑘)𝐻
∗(𝑧𝑘)𝑒∗𝑧𝑘(⊟𝑡𝑛)∂𝑧𝑘

=
𝑁−1∑
𝑘=0

𝐻∗(𝑧𝑘)𝑋(𝑧𝑘)𝑒𝑧𝑘(𝑡𝑛)∂𝑧𝑘.

= ℎ(𝑡𝑛) ★ 𝑥(𝑡𝑛) = 𝜆(𝑡𝑛).

2) Follows immediately from

𝑔 ★ (ℎ ★ 𝑥) ↔ 𝐺∗𝐻∗𝑋.

3) Follows immediately from the definition of correlation

in (30).

▶ The relationship between convolution and correlation.

𝑥(𝑡𝑛) ★ ℎ(𝑡𝑛) = 𝑥
∗(⊟𝑡𝑛) ∗ ℎ(𝑡𝑛)

and

𝑥(𝑡𝑛) ∗ ℎ(𝑡𝑛) = 𝑥∗(⊟𝑡𝑛) ★ ℎ(𝑡𝑛).

𝑔 ★ (ℎ ★ 𝑥) = ℎ ★ (𝑔 ★ 𝑥)

= (ℎ ∗ 𝑔) ★ 𝑥.

VI. FINAL REMARKS

The TS-DFT establishes a generalization of the DFT to

cases where points are not spaced uniformly. The generaliza-

tion preserves properties of the conventional DFT, including

derivative, shift, convolution and correlation relationships. The

TS-DFT and its inverse are defined in (11) and (12). TS-DFT

theorems are listed in Tables I, II and III.

Much work remains in the development of the foundations

of the TS-DFT. The study of the mapping of time scales,

𝔻𝑁 , to frequency scales, 𝕌𝑁 , remains, for example, an open

problem, as does filtering, sampling, and the mechanics of

convolution and correlation [15].
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[2] P. Cheung and V. Kac, Quantum Calculus, Springer-Verlag, New York,
2002.

[3] J.J. DaCunha, Stability for time varying linear dynamic systems on time
scales, J. Comput. Appl. Math. 176 (2005) 381–410.

[4] Davis, J.M., Henderson, J., Prasad, K.R., Yin, W.K.C.,“Solvability of
a Nonlinear Second Order Conjugate Eigenvalue Problem on a Time
Scale, Abs. Appl. Anal., 5 (2000) 91–99.

[5] Davis, J.M., J. Henderson, J., K.R. Prasad. Upper and Lower Bounds
for the Solution of the General Matrix Riccati Differential Equation on
a Time Scale, J. Comput. Appl. Math., 141 (2002) 133-145.

[6] John M. Davis, Ian A. Gravagne, Billy J. Jackson, Robert J. Marks II
and Alice A. Ramos. The Laplace Transform on Time Scales Revisited,
Journal of Mathematical Analysis Applications, 332 (2007) 1291–1307.

[7] J.M. Davis, I.A. Gravagne, B.J. Jackson, and R.J. Marks II, Controllabil-
ity, observability, realizability, and stability of dynamic linear systems,
Electronic Journal of Differential Equations 2009 (2009) 1–32.

[8] John M. Davis, Ian A. Gravagne and Robert J. Marks II. Convergence
of Unilateral Laplace Transforms on Time Scales, Circuits, Systems, and
Signal Processing (2010).

[9] John M. Davis, Ian A. Gravagne and Robert J. Marks II. Bilateral
Laplace Transforms on Time Scales: Convergence, Convolution, and the
Characterization of Stationary Stochastic Time Series, Circuits, Systems,
and Signal Processing (2010).

[10] I.A. Gravagne, J.M. Davis, J.J. DaCunha, and R.J. Marks II, Bandwidth
reduction for controller area networks using adaptive sampling, Proc. Int.
Conf. Robotics and Automation, New Orleans, LA (2004) 5250–5255.

[11] S. Hilger, Ein Masskettenkalkül mit Anwendung auf Zentrumsmannig-
faltigkeiten. Ph.D. thesis, Universität Würzburg, 1988.

[12] S. Hilger, Special Functions: Laplace and Fourier Transform on Measure
Chains, Dynamic Systems and Applications 8 (1999) 471–488.

[13] R.J. Marks II, I.A. Gravagne, J.M. Davis, J.J. DaCunha. Nonregressivity
in switched linear circuits and mechanical systems, Math. Comput.
Modelling 43 (2006), 1383–1392.

[14] R.J. Marks II, I.A. Gravagne, and J.M. Davis, A generalized Fourier
transform and convolution on time scales. J. Math. Anal. Appl. 340
(2008) 901–919.

[15] R.J. Marks II. Introduction to Shannon Sampling and Interpolation
Theory. Springer- Verlag, New York, 1991.

[16] R.J. Marks II, Handbook of Fourier Analysis and
Its Applications, Oxford University Press, (2009).
HandbookOfFourierAnalysis.com .

−⋉−

110


