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Abstract—We revisit the canonical continuous-time and
discrete-time matrix algebraic and matrix differential equations
that play a central role in Lyapunov-based stability arguments.
The goal is to generalize and extend these types of equations
and subsequent analysis to dynamical systems on domains other
than R or Z, called “time scales”, e.g. nonuniform discrete
domains or domains consisting of a mixture of discrete and
continuous components. In particular, we compare and contrast
a generalization of the algebraic Lyapunov equation and the
dynamic Lyapunov equation in this time scales setting.

I. INTRODUCTION

One of the most widely used tools for investigating the
stability of linear systems is the Second (Direct) Method of
Lyapunov, presented in his dissertation of 1892. An excellent
survey of Lyapunov’s work can be found in [25]. The advan-
tage of this particular approach is that it allows one to infer
the stability of differential (and difference) equations without
explicit knowledge of solutions.

We begin with a review of some tools used in Lyapunov’s
Second (Direct) Method in the context of linear differential
equations on R and linear difference equations on Z. Then,
building on the work of DaCunha [11] we proceed to unify
and extend this theory (from the algebraic equation to the
dynamic equation) for application to dynamic linear systems
defined on arbitrary time scale domains.

A time scale, T, is any closed subset of the real line.
Continuous time, R, and discrete time, Z, are special cases.
Time scales have been useful in the analysis of switched linear
systems [27], Fourier analysis of signals on time scales [26],
and dynamic programming [35]. Control theory, including
stability analysis, has recently been applied to signals on time
scales [3], [4], [11], [12], [30], [31]. A brief introduction to
time scales is in the Appendix. An online tutorial is available
[39] and a detailed development is available in Bohner and
Peterson [8].

This work is but a small subset of [33]; further application
of generalized Lyapunov equations to the stability and control
of switched linear systems on time scales can be found there.

II. STABILITY OF CONTINUOUS-TIME SYSTEMS

We begin by considering the familiar linear state equation

ẋ(t) = A(t)x(t), (II.1)

for A ∈ Rn×n, and t ∈ R. Without loss of generality, assume
that (II.1) has equilibrium x = 0. To establish asymptotic
stability of this equilibrium, a standard approach is to seek a
quadratic Lyapunov function associated with (II.1) as follows.

Let V (x(t)) = xT (t)Px(t). Then

V̇ (x(t)) = xT (t)[AT (t)P + PA(t)]x(t),

and thus it is sufficient to seek a P ∈ S+
n which satisfies the

continuous-time algebraic Lyapunov equation

AT (t)P + PA(t) = −M(t), (CALE)

where M(t) ∈ S+
n is given. Here, S+

n (S−n ) denotes the set of
real, n× n positive (negative) definite symmetric matrices.

Theorem II.1. [1], [34] The unique solution of (CALE) is
given by

P (t) =

∫ ∞
t0

ΦTA(s, t0)M(t)ΦA(s, t0) ds,

where ΦA(t, t0) is the transition matrix for system (II.1).
Moreover, P ∈ S+

n whenever M(t) ∈ S+
n .

On the other hand, suppose we seek a Lyapunov function of
the form V (x(t)) = xT (t)P (t)x(t), the emphasis being that
P is time varying. Then

V̇ (x(t)) = xT (t)[AT (t)P (t) + P (t)A(t) + Ṗ (t)]x(t),

and so we seek a P (t) ∈ S+
n which satisfies the continuous-

time differential Lyapunov equation

AT (t)P (t) + P (t)A(t) + Ṗ (t) = −M(t), (CDLE)

where M(t) ∈ S+
n is specified.

Theorem II.2. [1] The unique solution of (CDLE) subject to
the initial condition P (t0) = P0 is given by

P (t) = Φ−TA (t, t0)P (t0)Φ−1
A (t, t0) −

∫ t

t0

ΦTA(t, s)M(s)ΦA(t, s) ds.

(II.2)
Moreover, P (t) ∈ S+

n whenever M(t) ∈ S+
n .

From the derivation of (CALE), we see that the constant
solution of (CALE) is in fact a steady state solution of (CDLE)
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provided the initial condition P (t0) is chosen to be this
constant solution of (CALE).

In light of the remark above, it is not surprising that
(CALE) takes precedence over (CDLE) in the literature—
matrix algebraic equations are much easier to solve than
matrix differential equations. Even so, (CDLE) is interesting in
its own right. There are problems in which the time varying
nature of a system makes (CDLE) useful, especially in the
context of periodic systems [1], [14]. However, when the time
dependence is not of interest, or has minimal impact on the
system (e.g., slowly time varying systems), it is more efficient
to consider the algebraic equation (CALE) to obtain simpler,
steady state solutions of the differential equation (CDLE).

III. STABILITY OF DISCRETE-TIME SYSTEMS

Next, we quickly summarize the (uniform) discrete ana-
logues of the concepts from the last section. Let t ∈ Z and
consider the discrete linear system

∆x(t) = A(t)x(t), (III.1)

for A ∈ Rn×n, and t ∈ Z, where ∆x(t) := x(t + 1) − x(t)
is the usual forward difference operator. Note that we can
rearrange (III.1), define AR(t) := A(t) + I , and write (III.1)
in its (possibly more familiar) equivalent recursive form

x(t+ 1) = AR(t)x(t).

Let V (x) = xT (t)Px(t). Then

∆V (x(t)) = xT (t)[AT (t)P + PA(t) +AT (t)PA(t)]x(t).

Therefore, to use Lyapunov’s Theorem it is sufficient to seek
a constant P ∈ S+

n satisfying the discrete-time algebraic
Lyapunov equation,

AT (t)P + PA(t) +AT (t)PA(t) = −M(t), (DALE)

for a given M(t) ∈ S+
n .

Equivalently, (DALE) has the recursive form

ATR(t)PAR(t)− P = −M(t), (DALEr)

where AR(t) := A(t) + I . This form seems to be more
common in the literature on Lyapunov analysis of discrete
linear systems [29], [34], [36].

Theorem III.1. [1], [34] For A(t) ≡ A and M(t) ≡ M , the
unique solution of (DALEr) is the constant

P =
∞∑
j=0

(ATR)jMAjR.

Moreover, P ∈ S+
n whenever M ∈ S+

n . The sum converges
provided |λ| < 1 for all λ ∈ specA.

On the other hand, if we start with a Lyapunov candidate
of the form V (x(t)) = xT (t)P (t)x(t), we obtain

∆V (x(t)) = xT (t)[AT (t)P (t+ 1) + P (t+ 1)A(t)

+AT (t)P (t+ 1)A(t) + ∆P (t)]x(t),

so this time we seek a P (t) ∈ S+
n satisfying the discrete-time

difference Lyapunov equation,

AT (t)P (t+ 1) + P (t+ 1)A(t)

+AT (t)P (t+ 1)A(t) + ∆P (t) = −M(t),
(DDLE)

for a given M(t) ∈ S+
n . The equivalent recursive form that

appears more frequently in the literature is

ATR(t)P (t+ 1)AR(t)− P (t) = −M(t). (DDLEr)

Theorem III.2. [37] The unique solution of (DDLE) satisfy-
ing P (t0) = P0 is given by

P (t) = Φ−TA (t, t0)P (t0)Φ−1
A (t, t0) −

t∑
s=t0

ΦTA(s, t)M(s)ΦA(s, t),

(III.2)
where ΦA(t, t0) is the transition matrix for (III.1). Moreover,
P (t) ∈ S+

n whenever M(t) ∈ S+
n .

From the derivation of (DALE), we see that the constant
solution of (DALE) is in fact a steady state solution of (DDLE)
provided the initial condition P (t0) is chosen to be this
constant solution of (DALE).

(DDLE) and its corresponding solution are most useful for
stability analysis of linear systems when the time dependent
nature of the equation is relevant. For example, (DDLE) is
frequently seen in the context of the analysis of discrete
periodic systems [5], [37], [38]. However, when the time-
dependent aspect is not of interest (e.g., A(t) ≡ A or A slowly
time varying), it makes sense to simplify the problem (as we
did in the continuous case) to an algebraic problem by seeking
steady state solutions of (DDLE).

IV. A UNIFIED APPROACH TO LYAPUNOV STABILITY

Now we turn our attention to generalizing the previous
concepts from R and Z to more general time domains (time
scales), e.g. nonuniform discrete sets or sets with a combina-
tion of discrete and continuous components. In case the reader
is unfamiliar with time scales, we have included an appendix
with with a brief overview of time scales and basic time scales
tools needed in this brief paper.

A. Stability of Dynamic Systems on Time Scales

Let T be a time scale, unbounded above with bounded
graininess. We consider the dynamic linear system

x∆(t) = A(t)x(t), (IV.1)

for A(t) ∈ R(Rn×n), and t ∈ T, where x∆ is the generalized
∆-derivative. Notice that (IV.1) reduces to the familiar systems
in (II.1) and (III.1) when T = R and T = Z, respectively.
Having seen how Lyapunov’s Second Method allowed us to
analyze stability of these systems on the familiar continuous
and discrete domains, we would now like to apply this method
to the analysis of (IV.1) defined on an arbitrary time scale.

In 2003, Pötzsche, Siegmund, and Wirth [32] developed
spectral criteria for the exponential stability of (IV.1) in the
scalar case and in the case that A(t) ≡ A. Then DaCunha
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[11] extended these results by adapting the Second Method of
Lyapunov to the analysis of a certain class of nonautonomous
linear systems (slowly time varying systems) defined on time
scales. Here we will explore and further extend those results,
ultimately developing and solving a time scale dynamic Lya-
punov equation which unifies the familiar Lyapunov equations
on R and Z and is applicable to a much broader class of
systems than those DaCunha studied.

We begin by giving generalized characterizations of stability
for dynamic linear systems on time scales and then review a
few necessary results from existing theory.

Definition IV.1. For t ∈ T, an equilibrium x = 0 of (IV.1) is:
• Lyapunov stable if for every ε > 0, there exists a δ =
δ(ε) > 0 such that if ‖x(t0)‖ < δ, then ‖x(t)‖ < ε for
all t ≥ t0.

• asymptotically stable if it is Lyapunov stable and there
exists a δ > 0 such that if ‖x(t0)‖ < δ, then
limt→∞ ‖x(t)‖ = 0.

• exponentially stable if it is asymptotically stable and there
exist constants γ, λ, δ > 0 with −λ ∈ R+ such that if
‖x(t0)‖ < δ, then ‖x(t)‖ ≤ γe−λ(t, t0)‖x(t0)‖ for all
t ≥ t0.

These characterizations of stability for system (IV.1) are
generalizations of the corresponding characterizations of sta-
bility for systems defined on R and Z. Specifically, the
condition that −λ ∈ R+ reduces to λ > 0 and 0 < λ < 1 for
T = R and T = Z, respectively.

Define the (open) Hilger circle1 via

Hµ(t) :=

{
z ∈ Cµ :

∣∣∣∣z +
1

µ(t)

∣∣∣∣ < 1

µ(t)

}
.

Hoffacker and Gard [15] showed that, if 0 ≤ µ(t) ≤ µmax for
all t ∈ T, then there is a region Hmin ⊂ C, corresponding to
µmax and given by

Hmin :=

{
z ∈ Cµmax :

∣∣∣∣z +
1

µmax

∣∣∣∣ < 1

µmax

}
,

such that specA ⊂ Hmin is a sufficient (but not necessary)
condition for the exponential stability of (IV.1) when A(t) ≡
A. Our goal here is to provide a similar sufficient condition
for stability of (IV.1) for nonconstant system matrices by
appealing to Lyapunov methods.

Definition IV.2. A function V : Rn → R is called a
generalized or time scale Lyapunov function for system (IV.1)
if
(i) V (x) ≥ 0 with equality if and only if x = 0, and

(ii) V ∆(x(t)) ≤ 0.

Theorem IV.1 (Lyapunov’s Second Theorem on T, [23],
[24]). Given system (IV.1) with equilibrium x = 0, if there
exists an associated Lyapunov function V (x), then x = 0 is
Lyapunov stable. Furthermore, if V ∆(x(t)) < 0, then x = 0
is asymptotically stable.

1More appropriately, the Hilger disk, but this abuse of language is estab-
lished in the literature now.

B. The Time Scale Algebraic Lyapunov Equation

We begin with the quadratic Lyapunov function candidate
V (x(t)) = xT (t)Px(t). Differentiating with respect to t ∈ T
yields

V ∆(x(t) = xT [AT (t)P + PA(t) + µ(t)AT (t)PA(t)]x.

Therefore, we seek a solution P (t) ∈ S+
n to the time scale

algebraic Lyapunov equation

AT (t)P + PA(t) + µ(t)AT (t)PA(t) = −M(t), (TSALE)

for a given M(t) ∈ S+
n .

This algebraic equation unifies the matrix algebraic Lya-
punov equations on R and Z discussed earlier: (TSALE)
reduces to (CALE) on T = R and (DALE) on T = Z.
However, the solutions to (TSALE) on an arbitrary time
scale are fundamentally different than solutions to (CALE)
and (DALE)—they are generally time varying—as the next
theorem reveals.

Theorem IV.2 (Closed Form Solution of (TSALE), [11]). For
each fixed t ∈ T, define

St :=

{
µ(t)N0, µ(t) 6= 0,

R+
0 , µ(t) = 0.

The unique solution of (TSALE) is given by

P (t) =

∫
St

ΦTA(s, 0)M(t)ΦA(s, 0)∆s, (IV.2)

which converges provided λ ∈ Hmin for all λ ∈ specA and
all t ≥ T . Moreover, P (t) ∈ S+

n whenever M(t) ∈ S+
n .

The upshot here is that even though (IV.2) is a bona
fide solution to (TSALE), it does not (in general) lead to
constant solutions P—and P was assumed to be constant in
the Lyapunov candidate at the start of this subsection. Thus,
(TSALE) is not a “legitimate” Lyapunov equation in the sense
that it is not an appropriate equation to use in a search for
Lyapunov function candidates (even when A(t) ≡ A). We
are forced to seek a Lyapunov function candidate with a time
varying P , which we do next.

C. The Time Scale Dynamic Lyapunov Equation

This time we let V (x(t)) = xT (t)P (t)x(t). Differentiating
with respect to t ∈ T yields

V ∆(x(t)) = xT [AT (t)P (t) + P (t)A(t)

+ µ(t)AT (t)P (t)A(t)

+ (I + µ(t)AT (t))P∆(t)(I + µ(t)A(t))]x.

Therefore, we seek a solution P (t) ∈ S+
n of the time scale

dynamic Lyapunov equation

AT (t)P (t) + P (t)A(t) + µ(t)AT (t)P (t)A(t)

+GT (t)P∆(t)G(t) = −M(t),
(TSDLE)

where G(t) := I + µ(t)A(t) and M(t) ∈ S+
n is specified.

This equation unifies the matrix differential and difference
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Lyapunov equations on R and Z discussed earlier: (TSDLE)
reduces to (CDLE) on T = R and to (DDLE) on T = Z.
Just as importantly, (TSDLE) also generalizes those types of
equations to arbitrary time scales.

Theorem IV.3 (Closed Form Solution of (TSDLE)). The
unique solution of (TSDLE) subject to the initial condition
P (t0) = P0 is

P (t) = Φ−TA (t, t0)P (t0)Φ−1
A (t, t0)

− Φ−TA (t, t0)

[∫ t

t0

ΦTA(s, t0)M(s)ΦA(s, t0) ∆s

]
Φ−1
A (t, t0),

(IV.3)
where ΦA(t, t0) is the transition matrix for (IV.1).

We have already seen that (TSDLE) is a generalized form
unifying the Lyapunov equations (CDLE) and (DDLE) for
systems on R and Z, respectively, and extending them to
arbitrary time domains. Equation (IV.3) is also a generalized
form unifying the solutions of (CDLE) and (DDLE) since
(IV.3) becomes (II.2) on R and (III.2) on Z.

At this point, the analysis diverges from that of R and Z:
the solution of (TSALE) is time varying even when A(t) ≡ A
and M(t) ≡ M are constant, since the domain of integration
in the solution depends on µ(t). Only when operating on time
scales of constant graininess, such as R, Z, and T = hZ, is
the solution of (TSALE) constant. On R and Z, (IV.2) agrees
with the solutions of (CALE) and (DALE) and gives a steady
state solution of (CDLE) and (DDLE) as desired. However, on
an arbitrary T, (IV.2) is not a stationary solution of (TSDLE)
because P (t) is not constant.

This underscores a crucial difference between algebraic
Lyapunov equations on general time scales versus their R
and Z counterparts: only when the time scale has constant
graininess is a solution to an algebraic Lyapunov equation also
a (stationary) solution to the dynamic Lyapunov equation.

Although the closed form solution of (TSDLE) is now
available, to be useful in a Lyapunov argument, we must know
the existence of a solution in the space S+

n ; it is not clear from
(IV.3) that P (t) ∈ S+

n . The next result clarifies the situation.

Theorem IV.4. In Theorem IV.3, if the initial condition is

P (t0) = P0 :=

∫ ∞
t0

ΦTA(s, t0)M(s)ΦA(s, t0) ∆s, (IV.4)

then (IV.3) becomes

P (t) =

∫ ∞
t

ΦTA(s, t)M(s)ΦA(s, t) ∆s. (IV.5)

The choice of initial condition given in Theorem IV.4 is
necessary. Choosing any other initial condition results in the
norm of (IV.3) being unbounded as t→∞.

With this choice of initial condition, P (t) reduces to a useful
form, especially for aligning our results with the literature,
at least in the following sense. If T has constant graininess,
t0 = 0, and M is constant, then the initial matrix P0 in
(IV.4) is in fact a (constant) solution of (TSALE) which is
in turn a stationary solution of (TSDLE). Therefore, precisely

this choice of initial matrix (under the assumptions above)
produces steady-state solutions of (TSDLE) from its algebraic
counterpart (TSALE). This is what happens on R and Z but
fails on general time scales.

APPENDIX

A. What Are Time Scales?

The theory of time scales springs from the 1988 doctoral
dissertation of Stefan Hilger [20] that resulted in his seminal
paper [19]. These works aimed to unify various overarching
concepts from the (sometimes disparate) theories of discrete
and continuous dynamical systems [28], but also to extend
these theories to more general classes of dynamical systems.
From there, time scales theory advanced fairly quickly, cul-
minating in the excellent introductory text by Bohner and
Peterson [7] and the more advanced monograph [8]. A succinct
survey on time scales can be found in [2].

On the other hand, the form of (IV.5) allows us to deduce
P (t) ∈ S+

n whenever M(t) ∈ S+
n , which is essential if we

want to apply Theorem IV.1.
A time scale T is any nonempty, (topologically) closed

subset of the real numbers R. Thus time scales can be (but are
not limited to) any of the usual integer subsets (e.g. Z or N),
the entire real line R, or any combination of discrete points
unioned with closed intervals. For example, if q > 1 is fixed,
the quantum time scale qZ is defined as

qZ := {qk : k ∈ Z} ∪ {0}.

The quantum time scale appears throughout the mathematical
physics literature, where the dynamical systems of interest are
the q-difference equations [6], [9], [10]. Another interesting
example is the pulse time scale Pa,b formed by a union of
closed intervals each of length a and gap b:

Pa,b :=
⋃
k

[k(a+ b), k(a+ b) + a] .

This time scale is used to study duty cycles of various
waveforms. Other examples of interesting time scales include
any collection of discrete points sampled from a probability
distribution, any sequence of partial sums from a series with
positive terms, or even the famous Cantor set.

The bulk of engineering systems theory to date rests on
two time scales, R and Z (or more generally hZ, meaning
discrete points separated by distance h). However, there are
occasions when necessity or convenience dictates the use of an
alternate time scale. The question of how to approach the study
of dynamical systems on time scales then becomes relevant,
and in fact the majority of research on time scales so far has
focused on expanding and generalizing the vast suite of tools
available to the differential and difference equation theorist.
We now briefly outline the portions of the time scales theory
that are needed for this paper to be as self-contained as is
practically possible.
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TABLE I
CANONICAL TIME SCALES COMPARED TO THE GENERAL CASE.

continuous (uniform) discrete time scale

domain R Z T

forward jump σ(t) ≡ t σ(t) ≡ t+ 1 σ(t) varies

step size µ(t) ≡ 0 µ(t) ≡ 1 µ(t) varies

differential
operator

ẋ(t) := lim
h→0

x(t+ h) − x(t)

h
∆x(t) := x(t+ 1) − x(t) x∆(t) := lim

µ∗(t)↘µ(t)

x(σ(t)) − x(t)

µ∗(t)

canonical
equation ẋ(t) = Ax(t) ∆x(t) = Ax(t) x∆(t) = Ax(t)

LTI stability
region in C

TABLE II
DIFFERENTIAL AND INTEGRAL OPERATORS ON TIME SCALES.

time scale differential operator notes integral operator notes

T x∆(t) := lim
µ∗(t)↘µ(t)

x(σ(t)) − x(t)

µ∗(t)
generalized derivative

∫ b
a f(t) ∆t generalized integral

R x∆(t) = lim
h→0

x(t+ h) − x(t)

h
standard derivative

∫ b
a f(t)∆t =

∫ b
a f(t) dt standard Lebesgue integral

Z x∆(t) = ∆x(t) := x(t+ 1) − x(t) forward difference
∫ b
a f(t)∆t =

∑b−1
t=a f(t) summation operator

hZ x∆(t) = ∆hx(t) :=
x(t+h)−x(t)

h
h-forward difference

∫ b
a f(t)∆t =

∑b−h
t=a f(t)h h-summation

qZ x∆(t) = ∆qx(t) :=
x(qt)−x(t)

(q−1)t
q-difference

∫ b
a f(t)∆t =

∑b/q
t=a

f(t)
(q−1)t

q-summation

Pa,b x∆(t) =

{
dx
dt
, σ(t) = t,

x(t+b)−x(t)
b

, σ(t) > t
pulse derivative

∫
I f(t) ∆t =

{∫
I f(t) dt, σ(t) = t,

f(t)µ(t), σ(t) > t
pulse integral

B. The Time Scales Calculus
The forward jump operator is given by σ(t) := infs∈T{s >

t} and the graininess function µ(t) by µ(t) := σ(t) − t. If
f : T → R is a function, then the composition f(σ(t)) is
often denoted by fσ(t).

A point t ∈ T is right-scattered if σ(t) > t and right dense
if σ(t) = t. A point t ∈ T is left-scattered if ρ(t) < t and left
dense if ρ(t) = t. If t is both left-scattered and right-scattered,
we say t is isolated or discrete. If t is both left-dense and right-
dense, we say t is dense. The set Tκ is defined as follows:
if T has a left-scattered maximum m, then Tκ = T − {m};
otherwise, Tκ = T.

For f : T → R and t ∈ Tκ, define f∆(t) as the number
(when it exists), with the property that, for any ε > 0, there
exists a neighborhood U of t such that for all s ∈ U ,∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

∣∣ ≤ ε|σ(t)− s|. (A.1)

The function f∆ : Tκ → R is called the delta derivative or
the Hilger derivative of f on Tκ. Equivalently, (A.1) defines
∆-differential operator via

x∆(t) := lim
µ∗(t)↘µ(t)

x(σ(t))− x(t)

µ∗(t)
.

Since the graininess function induces a measure on T, if we
consider the Lebesgue integral over T with respect to the µ-
induced measure,

∫
T f(t) dµ(t), then all of the standard results

from measure theory are available [18].
A benefit of this general approach is that the realms of

differential equations and difference equations can now be
viewed as special cases of more general dynamic equations on
time scales, i.e. equations involving the delta derivative(s) of
some unknown function. The upshot here is that the concepts
in Tables I and II apply just as readily to any closed subset
of the real line as they do on R or Z. Our goal is to leverage
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this general framework against wide classes of dynamical and
control systems. Progress in this direction has been made in
transforms theory [13], [26], control [12], [16], [17], dynamic
programming [35], and biological models [21], [22].

The function p : T → R is regressive if 1 + µ(t)p(t) 6= 0
for all t ∈ Tκ. We define the related sets R := {p : T →
R : p ∈ Crd(T) and 1 + µ(t)p(t) 6= 0 for all t ∈ Tκ} and
R+ := {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ Tκ}.

For p(t) ∈ R, we define the generalized time scale expo-
nential function ep(t, t0) as the unique solution to the initial
value problem x∆(t) = p(t)x(t), x(t0) = 1, which exists
when p ∈ R. See [8].

Similarly, the unique solution to the matrix initial value
problem X∆(t) = A(t)X(t), X(t0) = I is called the
transition matrix associated with this system. This solution
is denoted by ΦA(t, t0) and exists when A ∈ R. A matrix
is regressive if and only if all of its eigenvalues are in R.
Equivalently, the matrix A(t) is regressive if and only if
I + µ(t)A(t) is invertible for all t ∈ Tκ.
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