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Abstract—A fundamental result in linear system theory is the
development of a linear state feedback stabilizer for time-varying
systems under suitable controllability constraints. This result was
previously restricted to systems operating on the continuous (R)
and uniform discrete (hZ) time domains with constant step size
h. Using the framework of dynamic equations on time scales,
we construct a linear state feedback stabilizer for time-varying
systems on arbitrary time domains1.

I. INTRODUCTION

Linear systems theory is well-studied in both the continuous
and discrete settings [2], [10], [33], i.e. settings in which the
independent variable t (often representing time) is constrained
to t ∈ R or t ∈ hZ with h fixed. Recently, however,
attention has turned to generalizing the theories on R and Z
to nonuniform discrete domains or domains with a mixture
of discrete and continuous parts. Progress toward this has
been made on the topics of controllability/observability and
reachability/realizability [15], [26], Laplace transforms [16],
[17], [18], Fourier transforms [29], Lyapunov equations [13],
[19], and various types of stability results including Lyapunov,
exponential, and BIBO [6], [13], [26]. The goal is not to
simply reprove existing, well-known theories, but rather to
view R and Z as special cases of a single, overarching
theory and to extend the theory to dynamical and control
systems on these more general domains. Doing so reveals
a rich mathematical structure which has great potential for
new applications in diverse areas such as adaptive control
[20], real-time communications networks [21], [22], dynamic
programming [34], switched systems [30], stochastic models
[5], population models [37], and economics [3], [4]. The focus
of this paper is the study of linear state feedback controllers
[28], [35] in this generalized setting and to compare and
contrast these results with the standard continuous and uniform
discrete scenarios.
The fast-growing field of dynamic equations on time scales

(DETS) provides the mathematical foundation for what fol-
lows, including a calculus that is based on the notion of the
dynamic (or "Hilger") derivative. A short introduction to time
scales appears in the Appendix; for a more comprehensive
introduction, readers are referred to two texts [7], [8]. Hence-
forth, a working understanding of DETS is assumed. It is not

1This work was supported by NSF award CMMI-726996.

possible to include the full text of every proof in this paper;
however, these results and others are expanded in complete
detail elsewhere [27].
The paper begins with some definitions, including the con-

trollability Grammian and the weighted-controllability Gram-
mian. After establishing some important properties of the
Grammian, the main theorem postulates a feedback control
law that can uniformly exponentially stabilize time-varying
closed loop systems with arbitrary rate. The paper concludes
with some straightforward experimental results that illustrate
an application of the main theorem.

II. STATE FEEDBACK STABILIZATION
Let A ∈ Rn×n and B ∈ Rn×m be rd-continuous on T with

p,m ≤ n, and consider the open-loop state equation

x∆(t) = A(t)x(t) +B(t)u(t), x(t0) = x0, (1)

In the presence of a linear state feedback controller, we replace
the input u(t) above with u(t) := K(t)x(t) + N(t)r(t),
where r(t) represents a new input signal, and K(t) ∈ Rm×n,
N(t) ∈ Rm×m are rd-continuous. The corresponding closed-
loop system is

x∆(t) = [A(t) +B(t)K(t)]x(t) +B(t)N(t)r(t),

x(t0) = x0, (2)

Without loss of generality, we proceed with r(t) ≡ 0.
Definition 1: [15] Let A(t) ∈ Rn×n and B(t) ∈ Rn×m

both be rd-continuous functions on T, with p,m ≤ n. The
regressive linear system

x∆(t) = A(t)x(t) +B(t)u(t), x(t0) = x0, (3)

is controllable on [t0, tf ] if given any initial state x0 there
exists a rd-continuous input signal u(t) such that the corre-
sponding solution of the system satisfies x(tf ) = xf .
From Davis et al. [15] it is known that invertibility of the

Gramiam matrix

GC(t0, tf ) :=
Z tf

t0

ΦA(t0, σ(t))B(t)B
T (t)ΦTA(t0, σ(t))∆t,

(4)
where ΦZ(t, t0) is the transition matrix for the system
X∆(t) = Z(t)X(t), X(t0) = I , is a necessary and sufficient
condition to ensure controllability of (3).
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Unlike on R or Z, in the general time scales setting, there
are various ways one could legitimately define exponential
stability. Pötzsche, Siegmund, and Wirth [32] first did so
by bounding the state vector above by a decaying regular
exponential function. In this paper, we adopt the definition of
DaCunha, [13] who generalized their definition by allowing
the state vector to be bounded above by a time scale exponen-
tial function of the form e−λ(t, t0), with −λ ∈ R+.
Definition 2: [13] The regressive linear state equation (3) is

uniformly exponentially stable with rate λ > 0, where −λ ∈
R+, if there exists a constant γ > 0 such that for any t0 ∈ T
and x0 the corresponding solution satisfies

kx(t)k ≤ γe−λ(t, t0)kx0k, t ≥ t0. (5)
Before moving to the main result of the paper, a theorem is

needed. Its proof is omitted for space, but it essentially follows
from a generalization of Lyapunov’s direct method to time
scale settings. We note here that, while Lyapunov techniques
were employed in the narrative that follows, results in the
literature suggest that direct examination of the solutions to
time-varying linear dynamical systems may yield insight as
well [36].
Theorem 3: Suppose A(t) ∈ R(T,Rn×n). The regressive

time varying linear dynamic system

x∆(t) = A(t)x(t), x(t0) = x0, (6)

is uniformly exponentially stable if there exists a symmetric
matrix Q(t) ∈ C1rd(T,Rn×n) such that for all t ∈ T
(i) ηI ≤ Q(t) ≤ ρI ,
(ii)

£
(I + μ(t)AT (t))Q(σ(t))(I + μ(t)A(t))−Q(t)

¤
/μ(t)

≤ −νI , where ν, η, ρ > 0 and −ν
ρ ∈ R+.

In order to achieve the desired stabilization result, we first
define a weighted version of the controllability Gramian. For
α > 0 define the α-weighted controllability Gramian matrix
GCα(t0, tf ) by

GCα(t0, tf ) : =

Z tf

t0

(eα(t0, s))
4ΦA(t0, σ(s))B(s)...

BT (s)ΦTA(t0, σ(s))∆s. (7)

With this, we are now in position to show the main result
of the paper.
Theorem 4 (Gramian Exponential Stability Criterion):

Consider the regressive linear state equation of (3) on a time
scale T such that μmin ≤ μ(t) ≤ μmax for all t ∈ T. Suppose
there exist constants ε1, ε2 > 0 and a strictly increasing
function C : T → T such that 0 < C(t) − t ≤ M holds for
some constant 0 < M <∞ and all t ∈ T with

ε1I ≤ GC(t, C(t)) ≤ ε2I, for all t ∈ T. (8)

Then given α > 0, the state feedback gain

K(t) := −BT (t)(I + μ(t)AT (t))−1G−1Cα(t, C(t)), (9)

has the property that the resulting closed-loop state equation
is uniformly exponentially stable with rate α. We call C(t) the
controllability window for the problem.

The essential arguments of the proof follow. We first note
that for N = supt∈T

log(1+μ(t)α)
μ(t) , we have 0 < N <∞ since

T has bounded graininess. Thus,

eα(t, C(t)) = exp
Ã
−
Z C(t)

t

log(1 + μ(s)α)

μ(s)
∆s

!

≥ exp
Ã
−
Z C(t)

t

N∆s

!
= e−N(C(t)−t)

≥ e−MN . (10)

Comparing the quadratic forms xTGC(t, C(t))x and
xTGC(t, C(t))x gives

e−4MNGC(t, C(t)) ≤ GCα(t, C(t)) ≤ GC(t, C(t)), (11)
for all t ∈ T.

Thus, (8) implies

ε1e
−4MNI ≤ GCα(t, C(t)) ≤ ε2I, for all t ∈ T, (12)

and so the existence of G−1Cα(t, C(t)) is immediate.
Next we define Â(t) to be the system matrix under the

closed loop feedback law of (9), i.e.

Â(t) := A(t)−B(t)BT (t)(I+μ(t)AT (t))G−1Cα(t, C(t)). (13)
Rather than attempting to analyze the stability of x∆(t) =
Â(t)x(t) directly, it is more straightforward to show the
uniform exponential stability of

z∆(t) = [Â(t)(1 + μ(t)α) + αI]z(t), (14)

and then induce stability of x∆(t) = Â(t)x(t) by noting that
(14) follows immediately from a change of variables, z(t) =
eα(t, t0)x(t). Since α > 0, if z(t) is exponentially bounded,
then x(t) must be as well.
The uniform exponential stability of (14) follows from

application Theorem 3 with Q(t) = G−1Cα and A(t) replaced by
[Â(t)(1+μ(t)α)+αI]. Requirement (i) of the theorem follows
immediately from (11) and the fact that Q(t) is symmetric
and continuously differentiable. Requirement (ii), namely that
there exists a ν > 0 with −ν

ρ ∈ R+, is more difficult to
establish; readers are referred Jackson, et al. [27].
Given that (14) is uniformly exponentially stable, z must

have some bounding rate λ > 0. From the change of variables,
then, it follows that x is stable with rate at least α, from which
follows the uniform exponential stability of (3). This concludes
the exposition of Theorem 4.

III. THE CONTROLLABILITY WINDOW

It is natural to wonder about the controllability window
defined in Theorem 4. In particular, is it too restrictive to
assume that C(t) always exists, and what form might it
assume?
First, the assumed bound (8) is not overly restrictive – it is

merely a reformulation of the controllability Gramian invert-
ibility criterion, and controllability of the open-loop system is
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a prerequisite for feedback stabilization. The requirement that
C(t) be increasing on an interval just ensures a nondegenerate
interval (in the time scale) on which the open-loop system is
controllable.
One possible construction of C(t) is, for any δ1, δ2 > 0,

C(t) :=

⎧⎪⎨⎪⎩
t+ δ1, if σ(t) = t,

σk(t), if σi(t) 6= t for all 0 ≤ i ≤ k,

σk(t) + δ2, else,
(15)

where σk means the composition of the forward jump operator
σ with itself k − 1 times.
Note that, for T = R, C(t) = t+δ for any δ > 0 is sufficient,

while on T = Z, the function C(t) = t + k for k ∈ N meets
the criteria. These coincide with the controllability windows
found in the literature for both the continuous and discrete
cases [2], [10], [33], a very satisfying result.

IV. EXPERIMENTAL RESULTS
Throughout the preceding discussion, it has been assumed

that the time scale is known a priori; in other words, that a
system’s time domain is known before the system dynamics
“start” at time t = 0. Under this assumption, it is possible
to calculate feedback gain K(t) a priori if the system’s state
matrices A(t) and B(t) are known. Scenarios in which non-
standard time scales (not R or hZ) are useful may come
about for different reasons. For example, it may be that a
computer controller cannot guarantee consistent hard deadlines
(i.e. “real time" response) for communication with sensors
and actuators; in this case, a time scale may be scheduled
that is more amenable to the other tasks the computer is
performing. A similar problem may occur in a networked, or
distributed, control system, in which various network traffic
activities determine the time scale (e.g. packet arrival times are
Poisson-distributed). In any case, if the time scale is known, or
at least known over the controllability window, the feedback
gain may be computed and applied in advance.
To illustrate the paper’s central theorem in hardware, a

simple experiment was devised using a DC motor with an
inertial mass. A system identification procedure produced
approximate 2nd-order state matrices

Â =

∙
0 1
0 −0.15

¸
, B̂ =

∙
0
13.8

¸
,

dx̂(t)

dt
= Âx̂(t) + B̂û(t), t ∈ R, (16)

where state vector x̂(t) is the motor’s angular shaft position
(rev) and velocity (rev/s), and û(t) is the input voltage (V).
Electrical dynamics were neglected due to the relatively small
electrical time constant. The hat notation designates Â and B̂
as the state matrices of a dynamical system on R. Sample-
and-hold discretization to an arbitrary time scale T gives

A(t) =

"
eÂμ(t) − I

μ(t)

#
, B(t) =

" ∞X
i=1

(Âμ(t))i−1

i!

#
B̂,

t ∈ T. (17)

Now equation (3) is in force.
To begin, several discrete time scales T were selected and

populated with anywhere from c = 20 to 100 points (all
of the time scales in these experiments were purely discrete
with no continuous intervals). Choosing a window operator
C(t) = σk(t) simply amounted to choosing a window size
k > 0. Some ramifications of this choice are discussed later.
Next, using MATLAB, K(t) was computed over the first c−k
points in the time scale. K(t) and T, along with control law
u(t) = K(t)x(t)+N(t)r(t) whereN(t) ≡ 1 and r(t) = 2h(t)
where h denotes a unit step function, were programmed into
a computer running the QNX real-time operating system and
outfitted with digital and analog input/output cards. Internal
high-precision timers were employed so that the system would
acquire the motor states x(t), and apply drive current u(t),
only at the pre-determined points in t ∈ T. The resulting
state trajectories therefore illustrate the closed-loop system
step response of the motor and mass.
Three examples of the closed-loop step response are shown

in Figure 1. Time scale Ta of example (a) was created with
widely varying graininess. Graininess μa(t) occurs in multi-
ples of 10ms, with the first four points exhibiting graininess
of 80 or 90ms, and points thereafter exhibiting graininess of
10 or 20ms. This time scale was designed to emulate the
timing of a real-time process that is unable to meet hard 10ms
deadlines. If a deadline is missed, i.e. the controller cannot
respond at the next specified t ∈ Ta, the next point in the time
scale is scheduled some multiple of 10ms in the future. Time
scale Tb of example (b) exhibits graininess from a uniformly
random distribution between 80 and 150ms. The third example
(c) combines two interesting phenomena: a time scale Tc of
uniformly random distribution, with a very large gap in the
middle. Example (c) is particularly interesting because it can
be seen that the controller has computed its best estimate (as
close as the model allows) of the open-loop constant input
current required to move the motor shaft to near-zero error by
the end of the gap.
In each example, it was necessary to choose a window

size k as well as a constant α for the computation of K(t).
The performance impact of different choices is not obvious.
Small controllability windows would seem to induce better
performance in terms of settling time; however, they also
induce large input magnitudes that may exceed the physical
limitations of the system. The effects of k and α are explored
further in [27].

V. CONCLUSION
The paper’s main theorem, Theorom , and the experimental

examples illustrate that the full-state, closed-loop feedback
u(t) = K(t)x(t) will indeed stabilize time-varying linear
dynamical systems on a variety of interesting time scales.
However, there are several practical limitations to overcome.
First, the actual computation of K(t) is very complex; in the
experimental trials, it was computed beforehand and uploaded
to the real-time controller. Second, K(t) depends on knowl-
edge of the time scale over some finite future window (defined
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Fig. 1. Step responses for the three cases discussed in the text. Note that the
time axis in case (a) has been magnified in order to see the individual points
in the time scale.

by the operator C(t)). Thus, K is not strictly causal (although
it does not depend on knowledge of system states other than
time in the future). Third, K depends on knowledge of the
system parameters, which are often not well known. It should
be noted, however, that the first and third of these limitations
also apply in the classical cases as well (feedback control on R
and Z). The second limitation is obviated on R and Z because
the time scale is always known a priori.

VI. APPENDIX: DYNAMIC EQUATIONS ON TIME SCALES

A. What Are Time Scales?

The theory of time scales springs from the 1988 doctoral
dissertation of Stefan Hilger [25] that resulted in his seminal
paper [24]. These works aimed to unify various overarching
concepts from the (sometimes disparate) theories of discrete
and continuous dynamical systems [31], but also to extend
these theories to more general classes of dynamical systems.
From there, time scales theory advanced fairly quickly, cul-
minating in the excellent introductory text by Bohner and
Peterson [8] and the more advanced monograph [7]. A succinct
survey on time scales can be found in [1].
A time scale T is any nonempty, (topologically) closed

subset of the real numbers R. Thus time scales can be (but are
not limited to) any of the usual integer subsets (e.g. Z or N),
the entire real line R, or any combination of discrete points
unioned with closed intervals. For example, if q > 1 is fixed,
the quantum time scale qZ is defined as

qZ := {qk : k ∈ Z} ∪ {0}.
The quantum time scale appears throughout the mathematical
physics literature, where the dynamical systems of interest
are the q-difference equations [9],[11]. Another interesting

example is the pulse time scale Pa,b formed by a union of
closed intervals each of length a and gap b:

Pa,b :=
[
k

[k(a+ b), k(a+ b) + a] .

Other examples of interesting time scales include any collec-
tion of discrete points sampled from a probability distribution,
any sequence of partial sums from a series with positive terms,
or even the famous Cantor set.
The bulk of engineering systems theory to date rests on

two time scales, R and Z (or more generally hZ, meaning
discrete points separated by distance h). However, there are
occasions when necessity or convenience dictates the use of an
alternate time scale. The question of how to approach the study
of dynamical systems on time scales then becomes relevant,
and in fact the majority of research on time scales so far has
focused on expanding and generalizing the vast suite of tools
available to the differential and difference equation theorist.
We now briefly outline the portions of the time scales theory
that are needed for this paper to be as self-contained as is
practically possible.

B. The Time Scales Calculus
The forward jump operator is given by σ(t) := infs∈T{s >

t}, while the backward jump operator is ρ(t) := sups∈T{s <
t}. The graininess function μ(t) is given by μ(t) := σ(t)− t.
A point t ∈ T is right-scattered if σ(t) > t and right dense

if σ(t) = t. A point t ∈ T is left-scattered if ρ(t) < t and left
dense if ρ(t) = t. If t is both left-scattered and right-scattered,
we say t is isolated or discrete. If t is both left-dense and right-
dense, we say t is dense. The set Tκ is defined as follows:
if T has a left-scattered maximum m, then Tκ = T − {m};
otherwise, Tκ = T.
For f : T → R and t ∈ Tκ, define f∆(t) as the number

(when it exists), with the property that, for any ε > 0, there
exists a neighborhood U of t such that¯̄
[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

¯̄ ≤ �|σ(t)−s|, ∀s ∈ U.
(18)

The function f∆ : Tκ → R is called the delta derivative or
the Hilger derivative of f on Tκ. Equivalently, (18) can be
restated to define the ∆-differential operator as

x∆(t) :=
x(σ(t))− x(t)

μ(t)
,

where the quotient is taken in the sense that μ(t)→ 0+ when
μ(t) = 0.
A benefit of this general approach is that the realms of

differential equations and difference equations can now be
viewed as but special, particular cases of more general dy-
namic equations on time scales, i.e. equations involving the
delta derivative(s) of some unknown function. See Table I.
Naturally, with any discussion of derivatives a notion of

"continuity" is required. For f : T → X, the function f is
said to be right-dense continuous, or rd-continuous, if it is
continuous (in the usual sense) over any right-dense interval
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TABLE I
DIFFERENTIAL OPERATORS ON TIME SCALES.

time scale differential operator notes integral operator notes

T x∆(t) =
x(σ(t))−x(t)

μ(t)
generalized derivative b

a f(t)∆t generalized integral

R x∆(t) = limh→0
x(t+h)−x(t)

h
standard derivative b

a f(t)∆t = b
a f(t) dt standard Lebesgue integral

Z x∆(t) = ∆x(t) := x(t+ 1)− x(t) forward difference b
a f(t)∆t = b−1

t=a f(t) summation operator

hZ x∆(t) = ∆hx(t) :=
x(t+h)−x(t)

h
h-forward difference b

a f(t)∆t = b−h
t=a f(t)h h-summation

qZ x∆(t) = ∆qx(t) :=
x(qt)−x(t)
(q−1)t q-difference b

a f(t)∆t =
b/q
t=a

f(t)
(q−1)t q-summation

Pa,b x∆(t) =
dx
dt
, σ(t) = t,

x(t+b)−x(t)
b

, σ(t) > t
pulse derivative

within T. The set of all rd-continuous functions that are n-
times differentiable is denoted Cn

rd(T,X).
Since the graininess function induces a measure on T, if

we consider the Lebesgue integral over T with respect to the
μ-induced measure, Z

T
f(t) dμ(t),

then all of the standard results from measure theory are
available [23]. The upshot is that the derivative and integral
concepts apply just as readily to any closed subset of the real
line as they do on R or Z; see Table 1. Our goal is to leverage
this general framework against wide classes of dynamical and
control systems.
The function p : T → R is regressive if 1 + μ(t)p(t) 6= 0

for all t ∈ Tκ. We define the related sets
R := {p : T→ R : p ∈ Crd(T) and 1 + μ(t)p(t) 6= 0

for all t ∈ Tκ},
R+ := {p ∈ R : 1 + μ(t)p(t) > 0 for all t ∈ Tκ}.

For p(t) ∈ R, we define the generalized time scale expo-
nential function ep(t, t0) as the unique solution to the initial
value problem x∆(t) = p(t)x(t), x(t0) = 1, which exists
when p ∈ R. See [7].
Similarly, the unique solution to the matrix initial value

problem X∆(t) = A(t)X(t), X(t0) = I is called the
transition matrix associated with this system. This solution
is denoted by ΦA(t, t0) and exists when A ∈ R. A matrix
is regressive if and only if all of its eigenvalues are in R.
Equivalently, the matrix A(t) is regressive if and only if
I + μ(t)A(t) is invertible for all t ∈ Tκ.
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