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Abstract
Over the past several years, there has been a rapidly expanding interest in the study and

construction of a new class of robot manipulators which utilize high degree of freedom, or continuous,
backbone structures. In this paper, we consider some basic properties of these "continuum'' or "hyper-
redundant'' robots. We base our analysis around remotely-driven, tendon-actuated manipulators such as
the Rice/Clemson "Elephant's Trunk''. We briefly discuss the kinematic model, before detailing how to
approach the inverse kinematics for a planar continuum robot by decomposition into either a natural or a
wavelet basis. We also examine how a wavelet decomposition method can help resolve redundancy in a
planar continuum robot.

Introduction
By observing manipulation methods in nature, one may eventually reach the conclusion that

rigid-link, low degree of freedom devices should meet the majority of manipulative and locomotive
needs. However, some creatures make use of alternative methods based on very high degree of freedom
(HDOF) backbones, such as snakes, or continuous "trunk'' or "tentacle'' structures. These manipulators, a
subset of a class termed hyper-redundant, exhibit unique capabilities including extremely enhanced
maneuverability. Hyper-redundant manipulators have the potential to navigate extremely complex paths,
and to suffer localized damage or faults while still maintaining a healthy degree of functionality. In
principle, this makes them suitable for a variety of delicate and dangerous tasks where a traditional robot
could not reach, or where failure of a traditional robot would completely paralyze all subsequent
operations. Examples of such tasks are nuclear waste inspection and removal, and navigation or
inspection of highly cluttered environments such as collapsed buildings.

In this paper we will concentrate on the fundamentals of a specific type of hyper-redundant robot,
frequently referring to the Rice/Clemson "Elephant's Trunk''[2]. This is a type of remotely-actuated device
which uses cables, or tendons generally, to transmit forces from a motor platform into the trunk itself. The
salient feature of the Elephant's Trunk is that its high number of links (16), combined with the small size
of each link, allow us to closely approximate it as a truly continuous backbone. Similar robots in our
laboratory do in fact possess continuous backbones made of various materials, termed continuum robots.
The following problems and theories apply to all of these robots. Using a continuous backbone model for
the robot kinematics, we address the issue of how to approach inverse kinematics given physical
properties of the robot.

Background
Several researchers have worked in the area of hyper-redundant, including continuum and HDOF

manipulators, for various reasons. In Japan, Hirose pioneered the development of snake-like robots,
especially with regards to locomotion; an overview of his work exists in [1]. Also, Mochiyama et. al. have
investigated the problem of controlling the shape of an HDOF rigid-link robot with two-degree-of-
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freedom joints using spatial curves[3-5]. For robots possessing continuous back-bones, a good overview
exists in [11]. These authors plus Suzumori et. al.[12] have done significant work in flexible hydraulic
micro-actuators for grippers, which are essentially small, flexible, 3-DOF manipulators. The primary
body of work upon which we draw is that of Chirikjian and Burdick, who laid the foundations for the
kinematic theory of hyper-redundant robots[6-10].

For the most part, research in hyper-redundant manipulators has consisted of creating and
analyzing an "imaginary" or virtual continuous robot, giving it
certain properties and behaviors, and then attempting to match or
"fit" a real robot to the virtual one. However, there are some
drawbacks to this method. Among these we find that the methods
of spatial curve matching assume that one can exactly control the
parameters of the real robots, which are still basically serial,
rigid-link robots tending to be very heavy and expensive.
Additionally, the total system complexity is high because not
only must one account for the kinematics of the virtual
continuum robot and the real robot simultaneously, but also the
curve-fitting algorithm which connects the two. Unfortunately,
the kinematic models for the virtual continuum robots do not
correspond with any known devices in the laboratory, except in
the planar case (which is primarily considered in this paper).
However, much of the fundamental theory for the virtual models,
such as [6-10], will help to describe the real robots.

Kinematic Model
Essentially, we will consider a robot such as the

Elephants Trunk, which is really a HDOF robot, to have a
continuous backbone. This is because its range of motion
combined with its high number of links allow it to assume shapes which, for all practical purposes, appear
continuous (figure 1). As such, continuum robots in general are essentially infinite-degree-of-freedom
devices, controlled by applying forces or torques at periodic locations along the backbone. Since those
forces act upon the robot via the tendons or cables, this usually means that a specific set of tendon lengths
will not imply a unique pose for the robot. The kinematic model must reflect physical parameters such as
the backbone stiffness profile, friction between the cables and the cable guides, external forces due to
gravity, and minimum potential energy constraints. These are qualities which the kinematics of traditional
rigid-link robots need not reflect.

In order to model continuum robots kinematics, we first take a "continuous" frame, i.e. a
mathematical set of 3 orthogonal basis vectors which describe the robot's orientation at any point along its
length. We take as our frame
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where etc. ),(sin ),(cos sssc αααα == The frame evolves continuously because the various angles

which comprise it also vary continuously, according to an independent parameter, usually denoted s. The
parameter s usually is taken to vary between 0 and 1, and if the robot does not extend or contract, s
represents the arc-length from the origin.  The columns of Q(s) correspond to the orthogonal frame vector
triple ),,( 321 eee . (The details for why this choice fits the physical problem at hand can be found in [15].)
The quantities )(sα  and )(sβ  vary continuously along the robot's length, and together determine the

Figure 1.  The
Rice/Clemson
"Elephants Trunk".
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bending of the backbone. The second column of Q(s), denoted )(
2

sq , is tangent to the backbone curve at

all points, and thus the robot "grows" from the origin by integrating )(
2

sq  to get position,
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Because )(sα  and )(sβ  are
functions (i.e. infinite-dimensional
quantities) we must constrain the
kinematics by accounting for
physical realities, the most important
of which is potential energy.

The backbone is taken to be
a homogeneous flexible rod (or
beam) which tends to return to a
straight line. By observing how the
frame Q(s) changes, we may quantify
the spring energy stored in a section
of backbone as
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where w(s) weights the relative "bendability" of the section along its length, and βα &&  ,  are derivatives with
respect to s.

With no other constraints, the methods of variational calculus yield a set of differential equations
which describe )(sα  and )(sβ ,

).(sin2

)(sin)cos1()cos1(

βαββ

ββαβαβα

&&&&&

&&&
&

&&

+−=

−−−=−

w
w

w
w

Initial conditions for this system are

2

1

)0(0)0(
0)0()0(

µαα
βµβ

==
==

&

&

Unfortunately, this differential system contains a singularity at 0=β ; however we will limit our
discussion to the plane, where α = constant, and 0=α& . With this constraint, we need only concern
ourselves with the solution for )(sβ . Furthermore, we assume that each section of the backbone consists
of a material with no affinity for bending in any particular place, therefore )(sw  is constant and 0=w& .
Thus, not accounting for the effects of static friction, we have the system

0)0( and )0(        ;0 1 === βµββ &&&

which has the simple linear solution ss 1)( µβ = .

Shape Control by Modal Decompositions
To reiterate, several conditions have led to the derivation that )(sβ  is linear: the backbone

material bends uniformly, there is no bending out-of-plane, and there are no gravitational effects.
Similarly, there must be limited frictional effects between the cables and the cable guides. While these
constraints are rather limiting, if we are content to abide by them, we may begin to make some headway
in the areas of shape and motion generation using a method first suggested in [6], known as "modal

Figure 2. A graphical representation of the
angles appearing in the frame Q(s). Here

)(sα  is constant, and )(sβ  varies.
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decomposition". (Further comments for the general non-planar robot with greatly relaxed constraints may
be found in [15]).  The work in [6] laid the foundations for modal decompositions, but tended to require
that the continuum robot could bend into any number of "basis shapes" which tendon-driven continuum
robots, at least, cannot achieve. However, using information gained by the kinematics analysis above, we
may now put the method of modal decomposition to good use.

Fundamentally, modal decomposition performs the all-important task of mapping the infinite-
dimensional quantity )(sβ  into a finite-dimensional space, hopefully the same dimension as the number
of degrees of freedom of the system (for rigid-link robots this would be the number of joints), or the
number of actuators in the system. While )(sβ  is a simple linear quantity, the mapping needs only one
dimension to capture the function: that is the slope 1µ . This reflects the fact that a manipulator
constructed of one cable

pair will have only one degree of freedom, and the linearity in )(sβ  implies that the backbone will bend
in a circular arc (see fig. 3).

If we serially "connect" n of these simple planar robots -- as in figure 1, where the Elephant's
Trunk has 4 sections -- then the function )(sβ  will appear continuous, piece-wise linear; alternatively its

derivative )(sβ&  will be discontinuous, piece-wise constant. The constants will be the sequence
}...,{ 21 nµµµ . Splitting the robot backbone into n pieces is equivalent to "sampling" the arc length at n+1

locations, },...,,{ 10 nsss  where 00 =s and 1=ns  by definition. Thus we may "decompose" )(sβ&  into a
finite sum of "box" functions,
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The superscript 'b' on the basis functions )(sb
iφ  denotes the box functions, or the "natural basis set". Note

that the natural basis functions have been scaled so they are orthonormal in the sense of an appropriate
inner product [14]. Integrating yields
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This "natural" basis decomposition, while elementary, provides a stepping stone into more complex
decompositions which have greater utility. Because the natural basis coefficients, }...,{ 21 nµµµ , have
physical meaning (they relate directly to the amount of cable displacement necessary to achieve a
particular bend, see [15]), we must always transform back to the natural basis set somehow. Nevertheless,
it is not a unique choice as we will now demonstrate.

 

Fig 3. A continuum planar robot with one cable pair bends in a semi-circular arc (accounting for
a bit of foreshortening in the image). The backbone consists of a piece of "spring" steel.
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The natural basis functions, being "boxes" of finite extent, each support only one section of a
multi-section planar robot. In other words, these basis functions have well-defined spatial range, but very
limited capacity to affect the entire robot's shape. Of more utility would be a basis set which strikes a

balance, where certain coefficients have the power to change the shape of the whole robot, while others
are more spatially limited for finer detail. This concept is known as "multi-resolution", and has been
extensively studied in wavelet theory [14]. The basic concepts are the same, where we employ an
orthogonal basis set to build up the piece-wise functions of interest,
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The new wavelet basis functions are pictured on the right in figure 4, and are known as the Haar wavelet
basis set. We will not go into the details of its derivation here, but we note that these functions also are
orthonormal. They exhibit the qualities of multiresolution, where )(1 swφ  acts over the entire robot's

backbone (with 1a  representing the average curvature). )(2 swφ  provides rough detail (the ability to bend

in more than one direction), while )(3 swφ  and )(4 swφ  take care of finer but more localized bending still,
as illustrated in figure 4. This process can continue indefinitely, with the next level being

)}(),(),(),({ 8765 ssss wwww φφφφ  and so forth.

Motion of the Backbone
In matrix-vector notation, we may write the natural and wavelet decompositions as

)()()( 1 sass wTbT

n
Φ=Φ= µβ , with T

n ]...[ 1 µµµ = , etc. Given the backbone position,
















=

∫
∫

s

s

d

d
sx  

0 

 

0 

)(cos

)(sin
)(

σσβ

σσβ

we note the standard Jacobian relationship for backbone velocity

Figure 4. The center columns feature a continuum robot with 4 degrees of freedom
(n=4), illustrating the cumulative effect of the natural and wavelet scaled basis
functions, respectively. Note how both sets of bases result in the same robot pose.
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Traditionally only the end-effector velocities will matter, setting the upper limit on the integrals in the
Jacobian to 1. Now, because of the nature of the wavelet bases, the first two columns of J determine the
end-effector velocities due to the low-resolution coefficients  which act on the whole backbone. If the
robot is redundant, with more columns than rows, then some or all of the columns beyond the first two
may be thrown out if their contributions are not desired, until J is square. This represents a form of
redundancy resolution which does not require one to resort to a Jacobian pseudo-inverse, which is
required when using the natural basis decomposition. Of course, any extra capabilities provided by the
redundancy are lost as a result. If one desires to retain these capabilities, a pseudo-inverse with a gradient
projection will work with either basis set.

For instance, we may quantify the "spring" energy in a continuum robot as { }∫=
1 
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Substituting the wavelet decomposition method in for )(sβ  yields, accounting for orthonormality,
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1= . Thus, the gradient pointing in the direction of minimum energy (equivalent to minimum

"bending") is simply aSEa −=∇− )( , and the motion executing local minimum-bending behavior is
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where k  adjusts how strongly the robot will tend toward the minimum bending solution.
In the end, we must still relate the wavelet coefficients back to the natural basis coefficients in

order to command the cable actuators to achieve the desired motions. Fortunately, the Fast Wavelet
Transform (FWT) in matrix form is exactly the transformation needed [14]. For a 4-section robot (4 DOF
or "bends" in the backbone), the transformation is 
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In general, the multiplier of "2" above is replaced with n  and dsssT w
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multiplier, T is unitary and trivially inverted. In fact, for the case in which the problem dimension is
reduced in the wavelet domain (i.e. throwing out columns of the Jacobian), the dimensions of a  and µ
will not be equal. In that case, one may simply ignore the associated columns of T, and still be able to
relate a  to µ .

Conclusions
The purpose of this work in general is to explore alternative types of manipulators based on

flexible backbones. Especially in the case where these can be remotely actuated, they may ultimately
provide manipulation solutions where traditional robots cannot reach, or become too heavy or unwieldy to
use in difficult environments. In this paper specifically, we address the issues of how an appropriate
kinematic model can provide a natural method for reducing the problem dimension via a decomposition
transformation known as "modal analysis". We also illustrate how this decomposition is not unique, and
may be improved upon. Further work remains in analyzing the behavior of continuum robots in non-
planar situations (where the differential system mentioned earlier exhibits a singularity), as well as in
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further classifying the effects of friction and backbone material. Experimental prototypes are under
construction to further examine these properties.

The authors gratefully acknowledge the support of NSF grant CMS-9796328 and DOE contract
DE-FG07-97ER14830. Thanks to Brian Bunnell and Michael Hannan for help constructing the robot
prototypes.
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