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Abstract

Real-time computing platforms are ubiquitous in the
fields of automation, robotics and control. These are
often based on a real-time operating system that o ers
a high level of determism to support processes such
as discrete-event and feedback control. Using methods
derived the theory of dynamic systems on time scales,
this paper discusses through modeling and simulation
the e ects of non-determinism. The paper’s conclu-
sion supports the hypothesis that strict determinism is
not always required to obtain adequate overall system
performance.

1 Introduction

Often, designers of modern engineering systems such
as robotics and automation systems face a challenge
when selecting a computing platform on which to base
the system controller. In the very simplest of sys-
tems, the controller may be a small microprocessor
responding to a periodic interrupt. In more complex
systems, the controller may host an operating system
that supports multi-threading, a file system, network-
ing components and more. Typical choices include
QNX, RT-Linux, COS, HyperKernel, RTX and oth-
ers. The principal feature o ered by these platforms
is determinism, the ability to respond to an event fast
and predictably.

However, even advanced real-time operating sys-
tems are not 100% deterministic. Furthermore, the
processes to be controlled do not always require a high
level of determinism, for example, systems with rela-
tively slow dynamics or high error tolerances. Also,
determinism is particularly di cult to guarantee in
distributed controller networks, which are garnering
significant interest as their use skyrockets in certain
automation fields including manufacturing, robotics
and automotive [7]-[11]. While special scheduling
techniques have been developed to alleviate problems
related to blocking and non-determinism in networked
control situations [1][11], the fact remains that a high
degree of pseudo-random timing variation exists in vir-
tually all but the simplest controllers.
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This paper examines the e ects of timing variation
in feedback controllers using advances in a relatively
new field of mathematics called dynamic equations on
time scales. The theory permits dynamic systems to
be modeled and analyzed independently of the under-
lying time domain, allowing for a rigorous and holistic
study of non-uniformly sampled systems. The cen-
tral hypothesis of the paper is that real-time compu-
tational platforms may often not need to be as de-
terministic as currently thought; simulation examples
are provided in support of this hypothesis.

Readers not already familiar with time scale theory
are encouraged to read the appendix.

2 Time Scale System Analysis

We start with the assumption that the plant to be
controlled can be approximated by a linear system of
the form

˙ = + R
× ; R

× (1)

= R
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and, for simplicity, that full-state feedback control is
available to make the system behave as desired. It is
recognized that linear systems represent but a small
fraction of the variety of dynamical systems encoun-
tered in robotics-related fields. However, time scale
theory has not yet advanced to the point where com-
plex nonlinear systems can be considered. This is an
area of ongoing research.

We next discretize to an isolated time scale T, con-
sisting of possibly non-uniformly spaced points with
unknown graininess. A discretization process captur-
ing typical sample-and-hold behavior, described in [4],
yields
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a convergent power series that behaves similarly to
an exponential. It has several interesting and useful



properties:

P1: expc( ) = ( ) 1 when 1 exists,

P2: expc( ) = 2 sinc( 2)

P3: expc( ) as 0

Property P1 and P2 give the the function its name
(the "exponent cardinal"). Property P3 shows that,
in the special case of continuous time with T = R and

0, the expression expc( ( ) ) reduces to an iden-
tity matrix, giving ˙ = ( + ) as expected in
(3).One can now see that the graininess ( ) — the
distance from the current sampling time to the next
sampling time — is akin to the sample period and may
vary dynamically, depending on the determinism of
the system.
It is useful at this point to revisit some fundamen-

tal results regarding the stability of linear systems on
arbitrary time scales. The authors of [6] prove that
time-invariant linear systems, or a time-varying linear
systems that are Jordan reducible, will be exponen-
tially stable if and only if every system eigenvalue be-
longs to the set of exponential stability S(T). A subset
of S(T), of interest here, is defined as

SC(T) = { C : = (5)
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where ln is the natural logarithm. Looking at (5), it
becomes apparent that the integrand must be negative
on average. Furthermore, under the condition that
( ) 0 on a time scale with no limit points, as in
this paper, it is shown in the author’s previous work
[5] that a proper subset of SC(T) is the set of all C

with

( ) :=
Y

= ( )

|1 + ( ) ( )| 1 (6)

In e ect, (6) conservatively approximates the infinite
integral of (5) over a moving window of points.
The region defined by |1 + | 1 in (5) is termed

the Hilger Circle, a circle in the left-hand complex
plain that passes through the origin, with center at
1 . Note that, for systems of non-constant grain-

iness, the Hilger Circle changes radius dynamically,
and thus one interpretation of (5) is that system eigen-
values must reside in the circle "most" of the time, on
average. However, as with continuous-time systems,
when the system matrix is time varying, simple eigen-
value placement is not su cient to deduce any con-
clusions about the overall system stability. For this
reason the following Lyapunov analysis is introduced.
Take Lyapunov functional

= (7)

where solves the equation

A + A + A A = (8)

with A := A( ) as per the definition in (3). Graini-
ness is the nominal (or expected) constant sample
period, and is selected small enough to guarantee sys-
tem stability, i.e. the eigenvalues of A( ) are strictly
within the Hilger Circle. Equation (8) is termed the
generalized Lyapunov equation. DaCunha [3] proves
that a unique solution exists given that A has
eigenvalues in the Hilger Circle.
When the fixed is replaced by the time-varying
( ), equation (8) then becomes

A + A+ A A

= + ( ( )) (9)

where the explicit time-dependence of A and is
dropped for readability. Note that ( ( )) consists
of

( ( )) = (A A ) + (A A )

A A + A A (10)

with ( ) = 0. Delta-di erentiating using the
time scale product rule gives

= +

= [A + A+ A A]
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1 + max( )

min( )
:= ( ) (11)

where max and min and maximum and minimum
eigenvalues. Examining the formulation of ( ), it is
clear that 0 in a neighborhood of , suggesting
that the system will remain stable over any range of
sampling periods within that neighborhood. However,
it is actually not necessary to restrict to the region
( ) 0 all of the time. To see this, a theorem in [4]
shows that, if SC(T), then there exists a positive
constant 1 such that

(12)

and therefore the state ( ) is exponentially bounded
as well. Herein lies the power of time scale analysis:
the set SC(T) clearly allows for 0 as long as
does not remain positive for too long. In particular,
one or even a string of "long" sample periods will not
a ect the overall system stability as long as ( ) 1
from equation (5). The choice of window length in
(5) is associated with system performance. If = 1,
then the system is required to be "pointwise stable",
i.e. ( ( )) 0 at every T. This corresponds
to the best possible system performance on a given



time scale. On the other hand, if 1, then perfor-
mance may degrade somewhat but exponential stabil-
ity is maintained as long as the time scale does not
have so many long sample periods that ( ) 1.
(Note that 1 is a su cient but not necessary
condition for stability; there may exist some 0

for which 1 but 0 1. This would imply
that the system may require a longer period of time
to stabilize.)

3 Discussion

Perhaps the most important (and common) metric for
real-time determinism is interrupt latency. As men-
tioned earlier, real-time operating systems frequently
juggle many tasks, including file access, network ac-
cess and multi-thread scheduling. Typically, internal
or external timers generate periodic interrupts signal-
ing when it is time to sample sensor values, perform
computations, etc. Interrupt latency is the amount of
time from the point at which the interrupt is gener-
ated to the point at which the computer begins per-
forming the task associated with that interrupt. In-
terrupt latency depends on a host of factors including
the task priority, context switching time, the presence
of other interrupt routines, etc. If a control network is
involved, communication latency — the time required
to communicate with sensors and/or actuators — also
impacts overall system determinism. For the purposes
of this discussion, the term "latency" will encompass
both of these types of latencies, as well as any other
delay that prevents the controller from executing a
given task at some desired constant sampling rate.
Since the factors that impact latency may be unique

and specific to a given platform, it is di cult to give a
reliable statistical distribution for timing delays. How-
ever, as with many statistics that derive from temporal
measurements, latency may reasonably be viewed as
a Poisson process with an associated exponential den-
sity function,

( ) = 0 (13)

(This corresponds roughly with the author’s experi-
ence.) Here, we assume that once an interrupt has
been serviced, the next interrupt is set to occur in
seconds, so that ( ) = + ( ). Consequently, very
large values of yield timescales "near" Z, a set of
uniformly spaced points. A more sophisticated time
scale model would assume that interrupts are gener-
ated uniformly, whether or not the previous interrupt
was serviced. This is more realistic, but more di cult
to model.
Let the system parameters be
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The maximum control period max that leaves the
eigenvalues of A within the Hilger Circle is approx-
imately max = 0 215 In e ect, max is the absolute
upper limit that will still allow the system to be sta-
bilized using uniform sampling. In this example the
nominal sampling period is chosen to be = 0 1, so
that the eigenvalues of A are { 1 67 10 04}, well
within the Hilger circle. As expected, the system step
response is well behaved in figure 1.
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Figure 1: State variable 1( ) versus time under con-
stant graininess = 1 ( = )

Next, we examine a time scale with random laten-
cies introduced ( = 12). As seen in figure 2, state 1

exhibits slightly degraded performance with respect
to the constant graininess case. However, the sam-
pling periods are quite variable (figures 2 and 3), with
a few at or above 5 times the intended duration. In
fact, 76 of 332 control periods exceed max, a level of
determinism that would usually dismiss the simulated
controller as a viable option for this system. In figure
4, we see that, with a window of = 1, monitoring
function ( ) shows that the system is frequently "in-
stantaneously unstable," i.e. 0 in equation (11).
However, a window of = 20 shows that the system
is still stable in the time scale sense.

It may reasonably be argued that relaxing the hard
deterministic timing constraints on a given real-time
system still represents a risk. After all, in the exam-
ple above it is probabilistically possible that another
timescale will have a lengthy string of overly long sam-
ple periods, and after which 20( ) 1. Practition-
ers will recognize, however, that this example is ex-
treme. Furthermore, in many cases it may be possible
to exert some — if not complete — influence over the
system timing. For example, in a distributed control
network communication latency is partially a function
of packet priority, which can be dynamically varied
to prevent extremely long waits (a classic scheduling
problem). Also, the risk may be acceptable occasion-
ally in view of the possible savings in cost and/or com-
plexity that a less deterministic platform might o er.
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Figure 2: System step response on a time scale with
a highly variable latency ( = 12).

4 Conclusions

In summary, the paper discusses the e ect of variable
timing latencies in real time controllers. After devel-
oping a time scale system model for arbitrary discrete
time domains, the discussion illustrates how an exam-
ple system can perform reasonably well under a wide
range of random timing latencies. The analysis sup-
ports the hypothesis that real-time control platforms
may not always have to be as deterministic as often
thought. Looser constraints on system determinism
can lead to simpler and less expensive computation
alternatives for real-time systems; these benefits could
be significant given that a considerable portion of the
cost and development time for complex automation
processes is invested in the controller, software, and
communication pathways.

Given the importance of reliable real-time perfor-
mance in the broad fields of robotics and automation,
it seems natural to explore the e ects of timing vari-
ability. However, only recently have mathematical
tools like time scale theory matured enough to sup-
port a thorough analysis of the behavior of dynamic
systems on variable arbitrary time domains. Future
contributions in this area should focus on the appli-
cation of time scale theory to the types of nonlinear
systems of interest to automation and robotics engi-
neers. While this work focuses on the asymptotic sta-
bility of a variable-timing controller, it may be argued
that determinism is in fact more relevant to a system’s
transient performance. Furthermore, the analysis here
neglects other timing issues such as phase lags between
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Figure 3: A histogram of timing latency for ( ),
showing the expected exponential distribution.
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5 Appendix

A thorough introduction to dynamic equations on
time scales is beyond the scope of this appendix; how-
ever, Bohner and Peterson [2] have written an ex-
cellent overview of the subject. In short, the theory
springs from the doctoral dissertation of S. Hilger in
1988. Starting the early 1990’s, the theory began to
grow until in 2001 a complete treatise on the subject
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Figure 4: Plots of ( ) for = 1 and = 20. Note
that 20( ) never exceeds 1.



appeared [2].
A time scale T in this context is defined as an ar-

bitrary non-empty closed subset of the real numbers.
Thus time scales can be any of the usual integer sub-
sets (e.g. Z or N), the entire real line (R) or any
combination of discrete points unioned with continu-
ous intervals. The bulk of engineering systems theory
to date rests on two time scales, R and Z (or more
generally Z, meaning discrete points separated by
distance ). However, as this paper illustrates, there
are occasional instances when necessity or convenience
dictates the use of an alternate time scale. The ques-
tion of how to how to approach the study of dynamic
systems on time scales then becomes relevant, and in
fact the majority of research on time scales so far has
focused on expanding and generalizing the vast suite of
tools available to the di erential and di erence equa-
tion theorist.
The paper makes use of a few essential definitions

and theorems from this body of work, which are dis-
cussed now.

Definition 1 The forward jump operator ( ) :
T T and the backward jump operator ( ) :
T T are given by

( ) = inf
T

{ } ( ) = sup
T

{ } (15)

The graininess function ( ) : T [0 ) is given
by

( ) = ( ) (16)

Evidently, since the forward jump operator returns
the next point in the time scale, the graininess can be
visualized as the step size. Note that, for a closed in-
terval of R, ( ) = except at the rightmost point, and
therefore ( ) = 0 except at the rightmost point. Thus
it becomes clear that time scales consist of collections
of two types of elements, scattered points (i.e. points
where ( ) 6= and ( ) 6= ) and dense points (i.e.
points where ( ) = or ( ) = .) At the endpoints
of continuous intervals, we have left- and right-dense
points as well. Points that are right- and left-scattered
are termed isolated. If a function is evaluated at a for-
ward or backward jump point, e.g. ( ( )), it is often
denoted ( ). Compositions of forward or backward
jumps are written ( ) or ( ), respectively.

Definition 2 For some function : T R, the
delta derivative of ( ), designated ( ) , is the
number (when it exists) with the property that there is
some neighborhood of where

¯̄
[ ( ( )) ( )] ( )[ ( ) ]

¯̄
| ( ) |

(17)

and 0.

Function is termed delta di erentiable pro-
vided the delta derivative exists for all T

{max(T)} := T , i.e. the timescale minus its right-
most point if that point exists. For simplicity in this
paper we omit the T notation because of the conven-
tion that, if the time scale does not have a maximum,
T = T. Not surprisingly, the condition for existence
of the delta derivative is simply that be continuous
over all closed, continuous intervals, if there are any
(i.e. all subsets of R). If this is the case, the delta
derivative is well defined by the equality

=
( ( )) ( )

( )
(18)

Needless to say, the generalizations of the usual
rules of di erentiation are not always as simple as their
continuous cousins (e.g. [ 3( )] 6= 3 2( )). There is,
however, a straightforward product rule for di erenti-
ation,

( ) = + = + (19)

This rule easily extends to higher order multiples as
well [2].
Of course, along with di erentiation one would like

to have integration. For this, some mild technical con-
ditions are required [2], including that be regulated,
meaning that its right- and left-sided limits exist at
any right- and left-dense points in T.

Theorem 3 Let be regulated. Then there exists a
function and region of di erentiation such that

( ) = ( ) (20)

Definition 4 A function : T R is called an an-
tiderivative of provided

( ) = ( ) T (21)

Theorem 5 Every right-dense continuous function
has an antiderivative. If 0 T, then

( ) =

Z

0

( ) T (22)

As one would hope, the theorems above reveal that,
in the continuous case T = R, delta antiderivatives
and integrals are the usual antiderivatives and defi-
nite integrals from standard calculus. When T = Z,
these quantities correspond to indefinite and definite
sums often seen in the study of di erence equations.
Without further exposition, the usual properties of in-
tegrals hold as well, including linearity and homogene-
ity. However, as with derivatives, the usual integra-
tion "rules of thumb" do not hold. These definitions
lead to a foundational theorem of time scale calculus,
which states:



Theorem 6 If is right-dense continuous, then

Z ( )

( ) = ( ) ( ) (23)

This theorem, along with linearity of the time scale
integral, is what equates the integral to a sum in the
case that T consists only of isolated points.
From the definitions above, the next obvious step is

to investigate linear and the non-linear time scale dif-
ferential equations, e.g. systems of the form ( )+
( ) ( ) + ( ) ( ) = ( ) and beyond. Since the
time scale itself is often allowed to be arbitrary (or
occasionally must adhere to mild assumptions), the
theoretical foundations that underpin the study of dy-
namic equations on time scales are extremely broad.
The types of time scales in this paper are relatively
"tame" in comparison to the variety that are possible,
but nevertheless, time scale theory provides a rigorous
and holistic technique by which to study non-uniform
sampling problems with relative ease.
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