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Abstract

Manipulability and force ellipsoids have long been a use-
ful tool for analyzing the relative capabilities of robotic
manipulators to move in, or to exert forces in, certain di-
rections. The purpose of this paper is to first formulate,
and then to examine, the manipulability and force ellip-
sotds for continuum robots. Continuum robots have con-
tinuously flexible backbones; consequently, their infinite-
dimensional kinematics present special challenges in the
formulation and interpretation of ellipsoids.

1 Introduction

The study of continuum robotics is driven by the obser-
vation that, in nature, octopus tentacles, elephant trunks
and snakes can manipulate their environments with in-
credible agility and maneuverability. The fields of hyper-
redundant, high-degree-of-freedom (HDOF) and contin-
uum robots all seek to reproduce the characteristics and
trunks and tentacles to some extent by endowing ma-
nipulators with far more degrees of freedom than are
absolutely necessary to position and orient their end-
effectors. However, unlike hyper-redundant and HDOF
manipulators, continuum robots feature “backbones”
that are continuously and elastically flexible. They may
be redundantly or even hyper-redundantly actuated, but
do not have to be. Because their actuation schemes are
necessarily finite-dimensional, yet their kinematics are
infinite-dimensional, they possess a unique attribute we
term “inherent compliance”. That is, the shape of the
robot not only conforms to the constraints applied by the
actuators, but also to external forces exerted by the envi-
ronment (by obstacles, for instance). Though continuum
robots will likely never be able to match the positioning
precision of traditional rigid-link robots, they may prove
exceptionally useful in such areas as endoscopy develop-
ment, exploration for hazardous, delicate or unknown en-
vironments, and nano-manipulation, where it is difficult
to build joints and stiff links.

The Clemson Tentacle Manipulator is a prototype con-
tinuum manipulator, seen in figure 1. Its backbone is a
highly elastic rod, forced into certain configurations by
the periodic application of moments along the backbone
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Figure 1: The Tentacle Manipulator in planar configura-
tion.

length. The forces that generate the moments are trans-
mitted via cables up the backbone to a remote actuator
bay, making the manipulator itself very lightweight and of
relatively simple design. Though the Tentacle Manipula-
tor is a three-dimensional device, we focus in this paper on
its planar equivalent, which has a simple piece of spring-
steel as the backbone. The objective of this paper is to
examine the ability of a planar continuum robot’s end-
effector to move in response to given actuator velocities,
and to exert forces in response to given actuator torques.

The ellipsoid provides the standard tool for studying
a manipulator’s velocity and static force characteristics,
and a large volume of work discussing ellipsoids exists in
the literature. For a good overview see [9]. For back-
ground into the kinematics and path-planning of contin-
uum and hyper-redundant robots, see [1}-[7] and [8]. The
term “continuum” first appears in the survey paper [10].
Also, [4] and [5] discuss the dynamics of continuum pla-
nar robots, and in fact we take the dynamic model in [5]
as a starting point in this paper.

2 Background

Before discussing the details of continuum kinematics,
we briefly review the theory of manipulability and force
ellipsoids for standard manipulators. Pictured in fig-
ure 2 is a planar, 3-link robot. We are interested in
what happens at its end-effector, located at the position
Zee = [ Tiee T2ee ]T. The forward kinematics provide
the mapping between the actuator joint angles, §;, and
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If the joint angles have a given velocity, then the velocity
of the end-effector is linearly related to the velocities of
the joints, so that

f.=JOG JE=— 2

8£(8)
80
where J is the manipulator Jacobian. In the case of our
example 3-link robot, we find that
— 50,
Cos

|

where s, £ sin(8;) and cg, £ cos(6;).

One might ask the question, what is the set of all £,
such that § has unit norm? Mathematically, this set 1s
called the “manipulability ellipsoid” (or ME), taking the

form
o -ge-1} o

where we have used the fact that, if a norm equals unity,
its square also does. Without demonstration, the rela-
tionship (2) allows us to rewrite the ME as

=1}. (5)

The term J* is the “pseudoinverse” of the Jacobian. (In-
terestingly, the ME can be defined using a pseudoinverse
regardless of the fact that an infinite number of general-
ized inverses exist which map from the end-effector ve-
locity to the joint velocity.) For our purposes we use the
unweighted pseudoinverse definition,
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ME = {iee

ME = {iee :£5J+TJ+—ice

Jt=Jr(JJn)7, (6)
assuming that the manipulator is not in a singular con-
figuration. Given this definition, we find that the ME
simplifies to

L () e =1}

ME = {zee : &7 M

Consequently, the ME will have principal axes in the di-
rections u;, with magnitudes +/X;, where v; and A; are the
eigenvectors and eigenvalues of JJT. Note that, while the
definition of the ME contains an inverse, the practical re-
sult is an ellipsoid defined with quantities v; and ); which
always exist even if the robot is in a singular configura-
tion.

The other ellipsoid of primary interest is the “force el-
lipsoid” (FE). The FE is the set of all end-effector gener-
alized forces f which the robot can exert given that the
vector of joint torques r has unit norm, i.e.

FE={f: |zl =1} ®)

Fortunately the relationship 7 = JT J does not have to
be “inverted”, so the result follows directly that

FE={f: {7 (1I7) f=1}. 9)
Thus, the FE will have pnnc1pal axes in the directions
of v; with magnitudes T In effect, the FE is “perpen-
dicular” to the ME, so that the directions in which the
robot can exert the greatest force are also the directions
in which it is least sensitive to changes in the joint amn-
gles. This is an intuitive result, and the ME and FE have
been extensively studied and employed to optimize the
configuration of robots needing to achieve specific tasks,

like resisting an end-effector tool force in a particular di-
rection.

3 Continuum Manipulator Kine-
matics

The kinematics of a continuum robot depend not only
upon geometric constraints, but also upon physical prop-
erties of the robot’s backbone. In essence, continuum
kinematics reflect the robot’s minimum potential energy
equilibrium. So, in addition to the physical measurements
of the robot backbone, we need Young’s modulus E for
the backbone material, the cross-sectional moment of in-
ertia I, and the shear modulus G. Given a cross-sectional
area A for the backbone, the quantities EI, EA, and GA
are the bending stiffness, the axial stiffness and the shear
stiffness, respectively. Now the position of the backbone
is parameterized as a continuous function, z(s), and the
angle of the backbone is 8(s). We detail the derivation of
the backbone dynamics in [5], along with the appropriate
assumptions and simplifications. Here, we simply cancel
the time-dependent terms from the dynamics of [5] and
find that the kinematics for the backbone are

I

EIY" +2TTQCQT (' — q) +m 0 (10a)
[QCQTE@ -9] = 0 (10b)

where the primes denote differentiation with respect to
the parameterization variable, s € [0,L], and L is the
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length of the backbone at zero potential energy. The
quantity m(s) is the moment density (moment per unit
length) applied to the backbone. Also,

o 2] -[As] o
3] e[V al

GA
The boundary conditions for the kinematic equations are

Q

q

6(0) = 0 (12a)

z(0) = 0 (12b)

EI6(L) = 0 (12c)
QCQT( -l = f (12d)

The backbone’s shape changes in response to moments
applied at various points along its length, including at
s = L. Cable tensions, applied through moment arms
attached to the backbone, supply these moments. From
the actuators, the cables pass through standoffs until they
reach their terminal moment arm. Consequently, the ca-
bles exert shear forces at every standoff location. The
effect of these shear forces is an interesting subject in
its own right, but given a sufficient number of stand-
offs, along with characteristically high stiffness EA and
GA, the shear forces contribute little to the overall de-
formation of the backbone. They are therefore neglected,
and only the moments produced at the cable termination
points are considered. In past work, when considering
only one section (a backbone with only one cable ter-
mination point), we accounted for this moment in the
boundary term (12¢), e.g. EI¢'(L) = 7. In moving to
a situation where there are multiple moment application
points along the backbone length, we now choose to in-
corporate these moments into the field equation (10a),
rather than treating each section individually and trying
to “glue” the sections together by enforcing continuity of
the boundary conditions. Both methods yield the same
result, but we seek the method that is easiest to use and
manipulate. Given this argument, the distributed mo-
ment of (10a) will consist of a sum of Dirac delta distrib-
utions. Where a moment 7; is applied at location s;, we
find

m(s) = ZT;G(S - 8);

i=1

0<s1<...<s,=L. (13)

Note that (12¢) does not actually imply that the end-
effector moment is zero; rather, it is an algorithmic
“trick” to allow the introduction of the backbone mo-
ments through the moment density function.

We may integrate (10b) and use the boundary ax-
ial/shear condition (12d) to deduce that

QCRT (' -9 =§ (14)

which further implies that

2 =q+QC'QTf. 5)

As a consequence of large FA and GA, (15) suggests that
' ~ g and so |jz'|| = 1, that is, the backbone is essen-
tially inextensible. As an added benefit of this simplifi-
cation, the parameterization variable s is now simply the
arc length of the backbone.

We may also simplify (10a) using boundary condition
(124) to see that

EI" +zTTf+m=0 (16)

and, if no end-effector forces are applied or exerted (f =
0), then the robot exhibits constant curvature behavior,
ie.

EIf +m=0 (17)

so that each section takes a semi-~circular shape. We have
illustrated this phenomenon before in [2]-[3]. In general,
we can integrate (16) from s to L to yield

EI¢(s) = [z(L) —_:g(s)]TT__f + Z'ri (1 —u(s—s:))

i=1

(18)
where u(s) is the Heaviside step function. This ex-
pression simply states that the internal backbone mo-
ment at any point s must balance the sum of the ap-
plied moments and the moment exerted by end-effector
force f acting through distance (L) — z(s). (The prod-
uct [z(L) —z(s)]Tf is analogous to the cross product
[z(L) — z(s)] x f , only in two dimensions.)

4 Global Manipulability Ellipsoid

Given that the angle for a continuum backbone is now a
continuous function of arc length, its norm takes an inte-
gral form and we define the global manipulability ellipsoid
(GME) as

GME = {g‘(L) : ”é(s)n = 1} , (19)

where . L
o] = /0 8(s)2ds.

The set above is termed “global” because it employs the
infinite-dimensional functional norm of 4, accounting for
all possible changes in the backbone angle, even changes
not physically achievable by the (finite number of) ac-
tuators exerting moments on the backbone. Angle 6(s)
has a solution derived from (18), so we decompose the
solution into an infinite sum of orthonormal modal basis
functions,

(20)

0(s) = i a;®;(s) = aT®(s)

t=1

(21)
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where the “vectors” g and ® are “infinitely” long. The
functions ®;(s) can represent any orthonormal basis set
here (for instance, in {2] we discuss the use of wavelet
basis sets), as long as

/ ®;(s)0(s)ds

Given that z(L) = fo q(6(s))ds, use of the chain rule
with reference to (11) yields the time derivative of z(L),

[ TTqQTds} a2 Ja

(23)
Obviously, the Jacobian defined above will have infinitely
many columns and clearly does not lend itself to the di-
rect computation of singular values and principal direc-
tion vectors as in [9]. However, close inspection of J,

J= [ — [s9®1ds — [ 34Dads ] ’ (24)

/ Bi(3)®;(s)ds = ;5. (22)

L 8q 00 da

2R

#D)= | 3654t

[ co®1ds J co®ads

reveals that each element is simply a coefficient in the
linear transformation of either sy or cy. In fact, let us
define

L L
pi= /0 ®,(s)sin(0)ds, gi= /0 P4 (s)cos(9)ds

(25)
and then note that the product JJ7 is
2
gr=| X -Xme 26
[ — 2. Piti qu (26)

Two properties of orthonormal spectral transformations
come to our aid now, allowing simplification of the ele-
ments of JJT,

fD Sg dS
fo sgcads

—f?,

sgcods
cods

JJT = [ } (27

The diagonals reflect the Parseval equality, and the off-
diagonals can be easily verified with use of (25) and the
orthonormality property of (22).

As with the traditional manipulability ellipsoid, the
GME will have principal direction vectors v; with magni-
tudes );, where {u;,v,} an ‘ﬂ{\/—f, vz} are the eigen-
vectors and eigenvalues of JJ*. Interestingly, the precise
choice of spectral decomposition chosen above does not
really matter, as long as it adheres to the requirement
of orthonormality. Note the intuitive similarity between
(27) and the same quantity for the traditional manipula-
tor from earlier, where

3 3
s = 3 cause,
JIT=| 7! 3! (28)
- Z Cy; S0, > 09.'2
i=1 i=1

Examples of the GME will appear shortly.

5 The Constrained Manipulabil-
ity Ellipsoid

As mentioned before, the global manipulability ellipsoid
derives from the functional norm of . In a sense, the
GME illustrates how the end-effector would move if an
infinite number of actuators (or a “distributed” actuator)
were specifying the shape of the backbone. In reality, 8
is constrained to move only in certain directions dictated
by the actuator positions and the physics acting on the
backbone; that is, the actuators specify {#(s1)...0(sn)}.
This constraint is captured by a functional mapping from
the modal coefficients a; to the actuator positions,

h:{0(s1)..0(s)} — {ai}. (29)

If we let 6(s;) through 6(s,) form the elements of the
vector § € R™, we can rewrite the mapping as

= h(g).

In general, h is a one-to-many mapping, as there can be
an infinitely large set {a;}. Because of this, the modal
decomposition in the derivation of the GME required the
property of orthonormality in order to arrive at a closed-
form simplification of the product JJT. If, however, a
(possibly non-orthogonal) set of basis functions exists for
which & is one-to-one or even “finite-to-finite”, then no
such simplification need be made because a direct calcu-
lation of JJT is possible.

(30)

Figure 3: The basis functions ®;(s) as defined in the text.

Under the conditions of small applied end-effector
loads, the planar robots of interest in this paper will ex-
hibit piece-wise linear angle functions. In this case, the
proper choice of basis functions ®;(s) will permit a one-
to-one mapping h. For simplicity, let us assume that the
n cable termination points are equally spaced, such that

s; = i, Now define
o

where sp = 0 and s, = L as before. Illustrated in figure 3,
the ®; clearly do not form an orthonormal set, but where
6 =37, a;®;, there is now a one-to-one correspondence
between the modal coefficients and the actuator positions.
In fact,

2(s—8i-1) 8i-1<8< s
<I>i(s) = %(s;+1 - 8) 8i < 8 < Sit1
0 otherwise

a; = 9(3,’), (32)
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remembering that boundary condition (12a) specifies the robot cannot move in a given direction under any cir-

9(0) = 0.
08
08
07
06

0.5

03
02

0.1

Figure 4: For a 1-section manipulator, the CME indicates
a singular configuration (bold line) while the GME does
pot (thin line).

Now we may again calculate the end-effector velocity,

L 8q 59 8 90

L
oa ;
; = AV R e = T T o=
&0 = | 265296 51 /0 T"q2"ds| 550 (33)

Recognizing the modal Jacobian from earlier, and noting
that 8__%; = Ipxn, the relationship above is
2(L) = Jb. (34)
Now we finally come to the definition of the constrained
manipulability ellipsoid (CME),

CME = {z(L) : “Q” = 1} , (35)
which differs only in computation from the traditional
ME. As expected, the CME will have principal direction
vectors {v;,u,} with magnitudes {v/A1,v/Az} where u;
and ); are the eigenvectors and eigenvalues of the product
JJT.

Consider figure 4, which illustrates a 1-section manip-
ulator. While the CME reflects the obvious fact that a
one actuator manipulator is always singular with respect
to a two-dimensional positioning requirement, the GME
illustrates that the device as a whole is not in a singu-
lar configuration. This is an important distinction, as it
highlights two different types of singularities that contin-
uum manipulators can experience: “actuator” singulari-
ties, where the robot cannot move in a given direction for
lack of actuation, and “configuration” singularities, where

cumstances. Figure 5 illustrates the GME and CME for
a given configuration, giving the robot successively more
actuators. Notice that, as the number of actuators in-

creases, the dimensions of the CME approach those of
the GME.

Figure 5: For a given configuration, adding actuators
“fills out” the CME (bold line), so that it approaches
the dimension of the GME (thin line).
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6 The Global Force Ellipsoid

We approach the derivation of the force-torque relation-
ship for a continuum manipulator in much the same way
as for traditional manipulators; however, there are a few
differences in interpretation. For one, unlike with rigid-
link designs, the torques felt at the actuators must nec-
essarily reflect the potential energy of the backbone (i.e.
its strain energy or deformation energy). In other words,
non-zero moments are required simply to hold the ma-
nipulator in a given pose, even with zero applied end-
effector force. Consequently, we must speak of the how a
differential change in applied moments (moment density,
actually) Am results in a change in potential energy.

The principle of virtual work comes to our aid here.
Simply stated, “small” arbitrary variations in the poten-
tial energy P must balance with variations in the work
W applied to (or extracted from) the backbone via the
actuators, so that

6P, = 6W, and 6P, =6W,. (36)
P, and W, represent the potential energy and applied
work for a given moment density m, with no applied end-
effector force. P, and W, represent the same quantities for
the new moment density m; required to balance an end-
effector force f. Subtracting the second equality from the
first yields

§(AP) = §(AW) (37)

On the right hand side, the applied work consists of two
components, §(AW;) which reflects the work ezerted by
the system moving the end-effector through a virtual dis-
placement of §z(L) with a force f , and §(AW,) which
reflects the work done to the system by changing the ap-
plied moment density. Variations §(AW1) and §(AWs)
must have opposite signs, and, since f = 0 before the
change in moment, AW; = W;.

In a rigid-link robot, AP = 0, unless one is accounting
for gravitational effects, because there is no deformation
energy. However, in a continuum robot, changing the
applied moment density results in the combination of a
change to the net strain energy and the application of
an end-effector force (if something exists to “push again-
st”). The relative magnitudes of each of these ingredients
will depend on how much the backbone shape changes
from before the force is applied to after it is applied.
Fortunately, the principle of virtual work does not re-
quire that any actual work be done, so we can stipulate
that the change in moment density induce no change in
end-effector position, £(L). Consequently, we now make
the critical assumption that, if the end-effector forces are
small and z(L) does not change, then the net change
in backbone curvature will be negligibly small. Conse-
quently,

5(AP) =0 (38)

SO

S{(AW) = §(AW,) — 8(W1) =0 (39)

and the virtual work must obey

/ - Amélds — f - 6z(L) =0 (40)

where Am = mp — m, is the change in applied moment
density. Recall that 2’ = g, so (40) becomes

L L L
/ Amé9ds = fT / TT g60ds (41)
0 0

Because the virtual rotation 6@ is arbitrary (to within

allowable boundary conditions), the fundamental theory
of variational calculus implies that

Am = fTT7q. (42)

Now we define the global force ellipsoid (GFE) as

GFE={f:||am| =1}. (43)

Employing relation (42), the GFE requires

lam]? = / *(my2ds = 47 [TT f - g_qusT] f=1
0 [1]

(4)
This reads in expanded form as
[ [sids — [ceseds | . _
< [ — [coseds [ c3ds f=1 (4)

which can be seen by reference to (27) as iTJJT f=1
As a result, the GFE will have principal axis vectors of
{u,, v, } with magnitudes {ﬁ, ﬁ} where v, and ); are
the eigenvectors and eigenvalues of JJT. As with the tra-
ditional force and manipulability ellipsoids, the principal
axes of the GFE have magnitudes in inverse proportion
to those of the GME, while still pointing in the same di-
rection.

7 The Constrained Force Ellipsoid

The crux of the contrast between the GME and CME lies
with the observation that it is not possible to access all
of the unit-norm angle velocity functions §(s) with only
a finite number of actuators. Similarly, the actuator con-
figuration constrains the applied moment density func-
tion m(s) for a practical continuum manipulator. Look-
ing back at the definition of m(s) in (13), we may write
m as

m(s) = Q(s)TI. (46)

The vector function 7(s) is defined to be a vector of Dirac
delta functions,

n(s) = [ 8(s—s1) 6(s—s2)

not to be confused with the variational operator. Again,
we formulate the angle 0(s) as a weighted sum of basis

8(s — sn) ]T , (47)
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functions. Taking the first variation of the end-effector
work, we have

L
W, = f-6a(l)=f- /0 5qds (48)

L
T [ 17q0ds = £7 / T7 @7 Sads
4]

S~ 5~
o™ ]

Oa
T 5T 9%
T g2 —3Q6st

L
= f7 [ / TngTds] Inxnd8 = fTJ68.
[}

The first variation of the virtual work applied by the ac-
tuators is

L L ag
§(AW:) = ./0 Amébds = [ /0 Amg:o_Td,g] 55589

[ / : (an)” Q(S)Q(S)Tds} 59
0

I

L
(an)” [ f g(s)@(s)Tds] 58.
0
Expanding the term in the brackets with the help of (31),

we find
L
[ / ﬂ(S)SIz(S)TdS] = Lnxn:
1]

So, in the end, the virtual work expression for the planar
continuum robot is

(50)

(Ar)T 60 = £ J80, (51)
and, because 8¢ is arbitrary within allowable boundary
conditions, it follows that

Ar=JTf.

(52)

We now define the constrained force ellipsoid (CFE) to
be

CFE={f:|Azl]=1}. (53)

As usual, if a norm equals one, then so does its square,
S0

IAL)? = fFIITf =1 (54)

and the CFE will have principal axis vectors {v;,v,} with
magnitudes {Tl)‘-‘-, 7’/\=2} where »; and ); are the eigen-

vectors and eigenvalues of JJ7.

As expected, a manipulator with numerous actuators
will have a CFE more closely approximating the GFE
than one with few actuators. Figure 6 illustrates this
for two manipulators in the same configuration, one with
eight actuators and one with only four.

(b)

Figure 6: An illustration of the CFE (bold line) and the
GFE (thin line) for two manipulators in the same
configuration but with differing numbers of actuators.

8 Conclusions

The study of traditional rigid-link robot manipulators has
long benefited from the concept of ellipsoids, with the ma-
nipulability and force ellipsoids arguably the most promi-
nent. The work in this paper highlights the manipulabil-
ity and force characteristics of continuum manipulators
by introducing four new ellipsoids. Two of these, the
global manipulability and force ellipsoids, illustrate the
maximum capabilities of a continuum manipulator. The
other two, the constrained manipulability and force ellip-
soids, take into account the restricted function space ac-
cessible by a practical, finitely-actuated continuum robot.
We illustrated the intuitive result that the constrained el-
lipsoids converge to the global ellipsoids as the number of
actuators becomes redundant or hyper-redundant. We
note that none of the preceding mathematics is restricted
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to analyzing what happens at only the end-effector; other
locations on the backbone could be just as easily scruti-
nized.

Several generalizations remain, however. With an ap-
propriate, more thorough, external work expression that
accounts for the backbone shear forces exerted by the
cables, it might be possible to analyze situations where
the shear/axial stiffness is not extremely large, and the
backbone is capable of shear and axial deformation in ad-
dition to simple bending. Also of interest would be an
analysis of the compliance characteristics of the manipu-
lator — the set of all changes to a given backbone location
given the application of unit norm forces. It appears that
continuum manipulators hold much promise for the fu-
ture, given a sufficiently rich set of tools to aid in their
effective use.
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9785), the NSF-EPSCOR program (grant EPS-9630167)
and the South Carolina Space Consortium.
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