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Abstract 

There are numerous situations in robotics where it 
becomes desirable t o  minimize the maximum magni- 
tude of a solution t o  an under-determined set of linear 
equations. For example, there have been several ap- 
proaches t o  finding the joint velocities of kinematically 
redundant robots using this philosophy. Unfortunately, 
the solution of this optimization problem, known as 
the “minimum infinity-norm solution”, cannot be ex- 
pressed in a closed form in general, thus requiring the 
use of an algorithm to iteratively refine an initial guess 
before reaching the desired solution. In order t o  in- 
crease our understanding and reduce the complexity 
of injinity-norm algorithms, we first formulate a new 
“infinity inverse”, and then use the new inverse to ex- 
plore critical issues such as uniqueness and continuity 
of least infinity-norm solutions. The new inverse is 
compared with the well-known pseudoinverse, or min- 
imum two-norm solution. We discuss when and why 
one particular norm might produce a better solution 
than the other, reinforcing the discussion with an in- 
teresting example of a kinematically redundant manip- 
ulator. 

1 Introduction 

One need not ponder too long to find a plethora of 
situations requiring the optimization of a finite set of 
variables in terms of some kind of scalar constraint. 
These applications range from financial investment to 
airliner flightpath scheduling to manufacturing and 
production efficiency analysis. Sometimes the trade- 
offs can successfully be made in an ad-hoc manner; 
sometimes there are complex computational tools in- 
volved. However, many optimization problems, when 
phrased mathematically, boil down to a simple prob- 
lem: the maximization or minimization of a scalar. 
Plentiful are the techniques for combining all the vari- 
ables into one measure in a sensible way, but few are 
the methods for easily optimizing the measure. This 
reality often rears its head in robotics in the analysis 
of kinematically redundant robots, when researchers 
wonder how to best utilize the excess capability of, 

for example, a 6 degree of freedom (DOF) robot per- 
forming a 4 or 5 DOF task, or of a 7 or greater DOF 
robot in a typical 6 DOF environment. Extra degrees 
of freedom are highly useful because they allow the 
execution of subtasks such as obstacle avoidance or 
singularity avoidance [9,10]. To be specific, redundant 
kinematic degrees of freedom allow an infinite number 
of configurations which all accomplish the end-effector 
trajectory. The end-effector position E ?Xm relates to 
the joint angles e E ?Rn through the forward kinematic 
equation 

For redundant robots, given a desired end effector tra- 
jectory ~ ( t ) ,  to find a joint configuration solution @(t) 
to  generate E ( t ) ,  the velocity level relationship 

T = f(B) (1) 

- r = J S  (2) 

is used, where J is the manipulator Jacobian, given by 

For a kinematically redundant robot, J E SnX“ with 
m < n. 

When J is square and non-singular (i.e the non- 
redundant case), it may simply be inverted to produce 
- b when is known. However, in the general case that 
J is not square (i.e. the robot is redundant), then 
we must find an optimization measure which allows 
the determination of a generalized inverse for J. The 
vast majority of candidate measures ultimately rely on 
variations of the well-known Moore-Penrose pseudo- 
inverse J s  [9,10], 

(3) 

For many applications, the pseudo-inverse is exactly 
the appropriate answer because it can be modified to 
minimize the “weighted energy” of the resulting robot 
motion. However, it is not the only measure of opti- 
mization. While pseudo-inverse calculations yield so- 

0-7803-4465-0/98 $10.00 0 1998 IEEE l .JL 
1 E3 

mailto:clemson.edu
http://clemson.edu


lution vectors of minimum energy, these solutions are 
only one type in a broad class of optimizations known 
as minimum norm optimizations. There are, in fact, 
an infinite number of minimum norm solutions; how- 
ever, three in particular have easily identified physi- 
cal meaning. The pseudo-inverse optimizes according 
to the “2-norm”. Cadzow [2,3] explored algorithms 
for minimizing the “l-norm” and the “infinity-norm” . 
Walker and Deo [7,8] successfully applied the least in- 
finity norm to kinematic redundancy, where it provides 
solution vectors with the maximum joint velocity min- 
imized. Yoon and Shim [4] applied a geometric inter- 
pretation of the least infinity-norm to the dynamics of 
a redundant robot. As more and more research sur- 
faces which utilizes the least infinity-norm, it is impor- 
tant to examine its structural properties. As we shall 
see, it is in many ways not as “nice” as the 2-norm, and 
great care must be exercised when using it in certain 
applications. However, as we will see in the following 
section, there are some strong reasons for preferring 
the least infinity-norm in some situations. 

In this paper, we explore the underlying structure of 
the infinity-norm solutions, including the continuity 
and uniqueness of solutions derived for continuously 
evolving systems typified by robot manipulators. For 
this purpose, we formulate a new “infinity-inverse” so- 
lution and relate and compare it with the pseudoin- 
verse. We then use the structure of our solution to 
investigate uniqueness and continuity properties. Fi- 
nally, we illustrate the approach using an example. 

2 Background 

Although there exists a great deal of literature on the 
subject of generalized inverses of under-determined lin- 
ear equations, the main mathematical thrust of that 
work serves mainly to prove that certain classes of in- 
verse exist, demonstrate their qualities, and perhaps 
hint at the structure of other inverses besides the 
Moore-Penrose pseudo-inverse. The pseudo-inverse 
and its many variants remain attractive because those 
inverses represent a minimization of the Euclidean 
length, of the solution vector, or a minimization of 
the “energy” of the corresponding system. More im- 
portantly, simple closed-form expressions exist which 
permit in-depth examination of the characteristics of 
minimum two-norm solutions. Given the expression’ 

Ag= b; A E SmZn,, E %“,b E S m , m  < 72 (4) 

~ 

lHereafter, capital letters denote matrices, and underscored 
small letters denote vectors. If A is a matrix, 9 is the 2nd 
column in A.  If 1: is a vector, ~ ( 3 )  is the 3rd element of E. 

there are an infinite number of generalized inverses [l] 
which will produce solutions of the form 

- x = A*b (5) 
In the case of the pseudo-inverse, A* A+ = 
D-’AT(AD-lAT)-l, and equation (5) solves 

subject to 
Ag = b, D E Vxn. ( 6 )  

and D is nonsingular. Sometimes a different perfor- 
mance measure can provide solutions more suited to 
the physical situation at hand. Recall the definition of 
a vector p-norm, 

Ilzllp = (Iz(1)l” + Iz(2)l” + ...+ Iz(n>IP)$ (7) 

so that, in the limit as p goes toward infinity, 

Another useful norm which will appear in conjunction 
with the infinity-norm is the one-norm, or 

So, it seems reasonable to re-phrase problem (6) using 
(8) or (9) as a performance measure to be minimized. 
The use of (8) as a performance measure yields a so- 
lution vector with the minimum maximal magnitude 
possible, while solving for the two-norm does not guar- 
antee minimum vector component magnitudes, espe- 
cially in the case that m is much smaller than n. Thus, 
in cases where individual joint velocities or torques are 
of concern, the least infinity-norm solution presents an 
attractive alternative to the two-norm solution [7]. 

The question naturally arises, how will a least infinity- 
norm solution behave as a system and its inputs change 
with time? In other words, will there be any surprises 
when computing the solution to 

The majority of candidate algorithms for computing 
the infinity-norm solutions do not permit easy anal- 
ysis of questions such as sensitivity, continuity and 
uniqueness in a time-varying situation (issues easily 
explored in the two-norm solution). These algorithms 
have been designed for computational efficiency, which 
usually means many lines of “if-then” conditionals, 
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comparisons, loops and auxiliary computations before 
a solution arrives [2,3]; possible sources for strange or 
unexpected behavior might remain difficult if not im- 
possible to pin down. Previous work in infinity-norm 
solutions in robotics [4,7,8,12] has largely neglected 
such issues of uniqueness or continuity of solutions. 
In the following, we develop a generalized inverse for 
A which solves (10). While not amenable to direct 
computation, it more importantly yields some insights 
into the nature of the questions posed by (10). 

3 A New Generalized Inverse 

It remains unlikely that a generalized inverse will be 
found which is as simple to compute as the pseudo- 
inverse. However, a good starting point to begin 
searching would be the basic geometric arguments 
which define the norm. Yoon and Shim [4] demon- 
strated that the least infinity norm has a simple geo- 
metric representation, and took advantage of that sim- 
plicity to augment the constraint conditions for solving 
(10). We begin by summarizing the procedure in [4]. 
Let the set Q represent extrema for an n-dimensional 
hypercube with unit dimensions, i.e. Q is given by 
{ E  111~11, = 1). (To prevent carrying D throughout 
the analysis, let g = D1I2$ and A = AD-lI2 where 
- x E Rn solves A$ = b.)  Set Q really contains an infi- 
nite number of elements, but just as an ellipsoid may 
be characterized by its major axes, a polyhedron's ma- 
trix representation needs only the location of each ver- 
tex point. So we may declare the vertex elements in Q 
to be the columns of matrix Q, and two properties of 
Q make themselves immediately evident: each column 
will consist of a vector of the form [fl,  k l  ... f 11 rep- 
resenting the corners of the n-dimensional hypercube 
llgll, = 1, and its dimension is Q E Rraxzn. Then, A 
maps the points in Q to a m-dimensional, closed, con- 
vex polyhedron I' whose vertex points are contained 
in the set P. Again, letting each element of P serve as 
a column of the matrix P ,  P E RmxZn.  To summarize 
this mapping, 

A : Q - P  

a A Q = P  (11) 
In most cases, the mapping of vertices is bijective (i.e. 
onto and one-to-one), but we will see that certain con- 
ditions can cause the mapping to lose bijectivity. Now 
a theorem from convex set theory [5] proves useful: 

Theorem 1. Given the matrix V where the columns 
- vi (i = 1 ,2 ,  ..., K )  represent the m-tuple vertices of 
a closed, bounded convex polyhedron r, ail extreme 
boundary points p B  of must be represented as a con- 
vex combination of those verdices, 

and 
K 

c p ;  = 1. 
i=l 

If gB is not a boundary point, but rather an interior 
point in r, then there always exists some - p such that 
K c Pi < 1. 

i = l  

Conversely, we may formalize the definition of r by 
noting that a closed polyhedron contains the set of all 
points p which can be represented as combinations of 
the vertex points which are columns in V .  

K 

r = { P I P =  - -  v p  - : c p i  I 1) (13) 
i = l  

The surface of I? is covered by hyperplanes contain- 
ing only those p where equality holds in (13). To de- 
duce the least infinity norm solution to (4), first find 
the hyperplane G on the boundary of I' such that the 
vector Xb intersects G with X E X. In other words, 
scale vector b until its endpoint belongs to plane G. 
Note it is possible for Ab to point toward the surface 
where several hyperplanes converge, but in general the 
intersection of k m-dimensional hyperplanes is a (m- 
k+l)-dimensional hyperplane. This is the analog of 
two planes converging to a line, or three planes con- 
verging to a point. To simplify the discussion, let us 
assume there is only one intersecting hyperplane G. G 
is defined by exactly m vertices on I?, each with a corre- 
sponding column in P .  Thus, the sub-matrix contain- 
ing only those vertices is labeled P i E ~  and the points 
q which generated those vertices form the sub-matrix 
Q ~ E G ,  SO AQ~EG = P ~ E G .  When the tip of Xb meets 
hyperplane C, Xb is a boundary point and therefore a 
convex combination of the columns of P~EG, so there 
is at least one p which satisfies the conditions in Theo- 
rem 1, i.e. Xf! P i E ~ p .  Remembering that f! = Ag and 
P ~ E G  = AQ~EG, we may say XAa: = AQjEGp.  Thus, 
when X,p and Q ~ E G  are known, there is a particular 
solution where 

1 

- z* is in fact the least-infinity norm solution to (4) [4]. 
Unfortunately, finding the particular vertices which 
form the hyperplane intersecting Xb can prove exceed- 
ingly time-consuming because not every element of P 
is a boundary point on I?; especially if m << n, a large 
number of those elements are interior points. 

- 

(14) - z* = -Q %€GP.  

At this point, most previous discussions of the least- 
infinity norm structure either proceed to direct com- 
putation X and p ,  or begin to identify strategies for 
iteratively determining the solution. However, there 
has been little discussion or investigation of the struc- 
ture of the iterative solution. In the following we ex- 
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plore these issues more closely. In this paper, we are 
not so concerned with computation as with structure, 
so we first multiply P by a diagonal weighting matrix 
W E ?J22nX2” where the numbers on the diagonal rep- 
resent relative “probabilities” that the corresponding 
column of P belongs to hyperplane G. According to 
Theorem 1, the point at which Ab intersects G must be 
a convex combination of vertices P~EG so incorporating 
the “guessing” matrix W gives 

PWji - = i& ( 1 5 )  

Here 
and &- From this point, Theorem 2 follows. 

and ‘j; are simply the estimated versions of - p 

Theorem 2. Given the underdetermined linear ex- 
pression (4), with Q and P as defined above, the least 
infinity n o r m  solution E* can be wr i t ten  as 

- x* = QiEG (AQieG)-lb (16) 

Proof Starting from (15), we would like to know at 
least one possible - which satisfies the expression, 
so let 

In general the pseudo-inverse will not yield a non- 
negative is whose elements sum to 1, (i.e. satis- 
fying Theorem l ) ,  but this can be corrected by 
assuming W is known well enough to  produce 

with pi 2 0, and then normalizing 2 = A, and 

- ii = (PW)+Xb (17) 

I 

Ilrll, - 2n 

m i= l  
X = so that pi = 1 .  Now 

P W p  - = Ab a p = (PW)+Xb (18) 

With p now conforming to Theorem 1, the corre- 
spond& inverse mapping gives 

Q W p  - = Az: (19) 

Rearranging and substituting for e and A ,  (19) 
becomes = AQWF. Substituting for - from x -  

x = QW(PW)+L, (20) 
(171, 

- 
If W is known exactly, we may eliminate unused 
columns of P ,  and (20) reduces to the desired re- 
sult 

- I*  zz &. a,Gp<L!!  &i€G(A&i€G)-’b (21) 

Q.E.D. 

The above result provides structure to the infinity- 
norm solution, which allows us to relate i t  to the much 
used pseudoinverse, or 2-norm solution as follows. 

Relaxing the initial assumptions about W yields an 
interesting observation: if W is not known at all (all 
entries on the diagonal are equal and constant), then 
(20) may be rewritten2 as 

(22) 
- x* = QWW+P+b = &WW-l(AQ)+& 

= QQ+A+b = A+b 

In this manner, the least two-norm and least infinity- 
norm solutions directly relate to each other based only 
upon how well W is known. Henceforth, the coefficient 
to  & in (20) introduced here will be called the “infinity- 
inverse”, labelled A # .  A# is a generalized inverse, of 
a class sometimes referenced as a {1,2,3} inverse. The 
numbers in brackets denote which of the four Moore- 
Penrose conditions a generalized inverse obeys; the 
pseudo-inverse is the only {1,2,3,4} inverse. Note that 
the structure of A# closely matches the structure of 
A + ;  the dimension of &is? is the dimension of AT.  
The Moore-Penrose Conditions are given below: 

1)AXA = A 
3)(AX)* = AX 

2)XAX = X 
4)(XA)T = X A  

X above si nifies any potential generalized inverse. 

(except under rare conditions to  be illustrated in the 
next section); condition 3 follows because (AA#)* = 
( A & ~ ( A Q ~ ~ ~ ) - ~ ) ~  = I .  Simultaneously satisfying 
conditions 1 and 2, and at least one of either 3 or 4, 
allows a generalized inverse to operate as an orthog- 
onal projector on the nullspace of A [ I $ ] .  Thus, the 
most general form of solution to ( 1 )  holds for A# just 
as for A+:  

and 2 E Sn is arbitrary. Given the apparent sym- 
metry between (23) and the same equation using the 
pseudoinverse, it can be observed that the 2-norm solu- 
tion can be derived by an infinity-inverse summed with 
an appropriate nullspace offset. Similarly, the least 
infinity-norm solution may be derived with a pseu- 
doinverse added to  the negative of the same nullspace 
offset. However, the infinity-inverse is not merely a 
weighted pseudoinverse, and vice-versa. 

The symmetry does not end there. Heretofore and 
hereafter, we assume full rank systems, however the 

For X = A # , conditions 1 and 2 are trivially proven 

- = ~ # b  + ( I  - A # A ) ~  (23) 

21t is difficult to predict he exact conditions under which 
the pseudo-inverse of a matrix product equates to the prod- 
uct of the pseudo-inverses. One thing is known, however [l]: 
if r (ATAQ) C r (Q)  and r (QQTAT)  C .(AT), then (AQ)+ = 
&+A+,  where r ( A )  denotes the rowspace of A.  Given the na- 
ture of the columns of Q, this result holds for all compatible A ,  
though the proof is not shown here. 
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infinity-inverse will behave similarly to the pseudoin- 
verse in the overdetermined case: where the pseudoin- 
verse yields the ‘least mean squared error’ solution, 
the infinity-inverse will yield the ‘least error magni- 
tude’ solution. 

4 Conditions for Injective Failure 

We should recognize a few important observations re- 
garding the geometry at  hand. As mentioned earlier, 
usually the mapping A is bijective. Points which define 
a particular boundary hyperplane G on I? in m-space 
are “nearest neighbors’’ on the hypercube in n-space 
[ll]. Given a point in n-space go the set of nearest 
neighbors contains n vectors +=l,z,,.,n each with scalar 
components 

Recall that Q consists only of 1 and -1, so for example: 
if a = [ 1 1 IT, then the complete set of near- 
est neighbors would be y1 = [ -1 -1 1 ] , 22 = 
[ 1 1 1 IT,and = [ 1 -1 -1 I T .  Assuming 
A E ?J22x3 , and observing that [ po el pz  p3  ] = 

est neighbors to eo. Matrix A will probably not map 
every ei to a vertex in m-space; some will map to in- 
terior points of the polyhedron. However, if a given 
go does locate on a vertex, each associated boundary 
hyperplane of which eo is a member will consist of at 
least m-1 nearest neighbors to eo because A is a lin- 
ear transformation. It is important to remember that 
the measure of “nearest” in m-space is not based on a 
Euclidian metric, but rather the notion that nearest- 
neighbor points in m-space directly descend from Eu- 
clidian nearest-neighbors in n-space. So, every face G 
of l? is composed of vertices descended from nearest 
neighbors in Q ,  meaning that every column of Q i c ~  
must be a nearest neighbor to every other column and 
therefore independent of every other column. With 
this information in hand, we may address the question 
of when transformation A ceases to be injective, so 
that distinct elements of Q map to identical elements 
of P. One more semantic clarification will help: when 
saying, “k columns of matrix A sum to equal another 
column of A” , the meaning is actually “one column of 
A is a linear combination of k other columns, with co- 
efficients l or -1 only.” In other words, some columns 
may be subtracted while others are added; we generi- 
cally refer to this arithmetic combination as a column 
sum. 

-1 
T 

A [ ‘0 ‘2 q-3 ‘4 3 , then pl,pz and & are near- 

Theorem 3 Define A E WXn wath m < n and 
“(A) = m, as in (4). I f  two or more columns 

of A Sam t o  equal any other column of A then the 
one-to-one gaven Q as 

Proof Partition A so A = [B, c , G k ] .  C E ?Emx“, and 
B E !Jlmx(n-c-l). Let the columns of C sum to 
equal column a,, so 

Col = ~ ( j )  E {-1,l)forj = 1,2,  ..., c 
(25) 

This is equivalent to the conditions given in the 
theorem statement. Define a column of Q ,  say, 

go = [PT,gT,-l] with - P ( i )  E {-1,l) for i = 
1,2,  ...( n - c - 1). Pre-multiplying by A so that 
go = Ay, and simplifying by (25) gives 

T 

T 
However, defining g1 = [PT, -gT, 11 , pre- 
multiplying by A and simplifying also yields 

r a i  

So, the result follows that if (25) holds for any 
columns A, at least two columns of P will be iden- 
tical, so mapping A ceases to be injective (one-to- 
one), and therefore not bijective. Q.E.D. 

Remark Theorem 3 will hold not only for columns 
of A which sum to another column A, but also 
whenever a column of A equals zero. Except in 
the case of a null column, equally important is the 
fact that the offending columns of Q, (i.e. 2, and 

satisfying (26) and (27), cannot be nearest 
neighbors in n-space despite that fact that po and 
p1  are identical in m-space. 

‘1) 

Actually, the case that a column of A equals zero is the 
only condition which would allow go and g1 to be near- 
est neighbors. In this rare instance, a m-dimensional 
hyperplane face G (on polyhedron I’) which was de- 
fined by m independent vertices p will now shrink to 
an (m-1)-dimensional face still defined by m vertices, 
two of which are identical and all of which are nearest 
neighbors. In effect, rank(AQicG) < m so (A&iGc)-l 
will not exist. For AQ~EG to lose rank, and for to 
point toward G exactly at  that moment presents an 
extremely unlikely situation, but it is nevertheless a 
situation where the infinity-inverse will fail even if A 
has full rank. 
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As we will see below, problems with uniqueness and 
continuity of solutions, which are critical issues for the 
practicality of using the infinity-norm approach, are 
strongly related to injective failure. 

5 Uniqueness 

The question of uniqueness of least infinity norm 
solutions should be discussed in two distinct cases. 
The first is the simple case that vector Ab inter- 
sects only one hyperplane G on the boundary of J? 
in m-space. If A is full rank and provides a one- 
to-one mapping, AQ~EG is non-singular and unique 
so ( A Q j e ~ ) - l  exists and is unique, thus making A# 
unique. The second case requires investigation into 
what occurs at hyper-plane intersections and vertices 
in m-space. Two intersecting faces of a convex polyhe- 
dron, each defined by at least m vertices, must share 
at  most m-1 vertices. To formalize, let G be the 
set of all points in a hyperplane defined by vertices 

of all points in an intersecting hyperplane defined by 
p = [El, p z ,  ..., E-1, pi 7 , '", 4 . Let 6 be the set 

vertices p = [E1,EZ, ...,P&l>&,Ej+ll '", 4 3 where 
- - 
- - & # p ,  AQ~EG = P and AQjEg = P. Define b as 

some linear combination of points in the intersection 
plane Gn6 (of dimension m-l), i.e. 

- 
y(i) = 0 b = P y = P y  - - 

and 

Since Ab E (GnE), then Ab E G and Ab E 6, therefore 
- 2 = QP-lb and = GF-lb are both valid, least infin- 
ity norm solutions of Ac = b and AE = b, respectively. 
From (22), 

- y E w. (28) 

z = @-l& = @-+y = 47 - 

- 2 = QP-lb = QP-lPy - = Q r  

- - 

and 

but since y ( i )  = 0, column does not affect 4, and 
q .  does not affect g. Q i c ~  differs from QiEg only in 
the ith column, so = E, implying that least infinity 
norm solutions remain unique even at  the intersection 
of two (or more, though not shown here) faces of I?. 

(29) 

- - 

-% 

The problem arises, naturally, when A behaves as in 
Theorem 3, and the mapping AQ = P is not one-to- 
one. Recall from an earlier discussion that the vertices 
defining a face of polyhedron I' must be nearest neigh- 
bors. Usually, this implies that the intersection of two 
faces would also be comprised of nearest neighbors. 
However, when A is not injective, while each individ- 

ual face of r still consists of nearest neighbor vertices, 
the intersection of two faces may not consist of nearest 
neighbors because a single vertex point in the inter- 
section of two faces could descend from two distinct 
vertices on the hyper-cube in n-space. Again, define 
p = ***,P&l!&Ei+l, ...,pi-l,gj,gj+l, -1% 1 , 

I p = [El,E2 ,"., p i - 1 ' F 4 + l '  **Qi-l,ipj+l, .-,& 
- 
with p. # p . ,  but 5. = p . .  Now assume A is no longer 
one-to-one so that y. # q ,  but AT. = Aq. = i;. = 4. 
P differs from F only in the it" column, but the corre- 
sponding Q i e ~  and GjEg now differ in more than one 
column, ;7. # 3, and ;7. # q . . Defining and - y as in 

-a --I -1 -3 

-3 -3 -3 -3 -3 

-a -3 -3 
(27), note r(j) # 0, so 

- 
(30) 

- 
3: = 92: # z = Qr 

even though and 3: are both valid, least infinity norm 
solutions to Ag = b and A z  = b . In fact, in this 
situation where A fits the characteristics of Theorem 3, 
- b is a linear combination of points in Gn6, and Gn6 
contains at least one non-unique vertex point, then 
the elements of E* corresponding to the columns of C 
(and column gk) may be assigned any magnitude less 
or equal to than IIg*lloo, including zero. All vectors f 
fitting this description are perfectly valid least infinity 
norm solutions to (4). In other words, with C as in 
Theorem 3, under these conditions there are an infinite 
number of least-infinity-norm solutions, with the only 
requirement - IIg*IJCa 5 g*(i E C, i = k) 5 11~*11,  
(see Theorem 3). The minimum infinity-norm solution 
to (4) is thus not unique under all conditions. 

6 Continuity 

With knowledge of how and why a particular solu- 
tion might not be unique, a discussion of the conti- 
nuity of such solutions in a continuous-time environ- 
ment follows easily. Recall that E* = QiE~P&b = 
Qic~(A&ic~) - ' b .  (For the sake of brevity, we will 
drop the ' iE~ '  subscript in this section). For this func- 
tion to exhibit continuity, there must always exist some 
small 6b and 6A which can effect an arbitrarily small 
change in 3:. Using the chain rule several times, 

61: = QP-l(Sb) + (6Q)P-lb 
+&[(P + (6A)Q + A(6Q))-l - p-l]h (31) 

In fact, while A& traces out a trajectory along some 
particular face G of polyhedron I', as long as 4 does 

In this case, letting P = AQ gives 

&C = Q[AQI-1(6b) + Q[(AQ + 

- 
not cross over to a neighboring face G, then S Q  = 0. 

- (AQ)-'ll! 
(32) 
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and 

so, adequately small changes in b and A can produce 
arbitrarily small changes in 4. Provided A and b both 
evolve continuously, g will too. If Ab crosses a bound- 
ary between two or more faces on r, corresponding 
columns of P ,  and therefore of Q ,  will abruptly change, 
so there will be non-zero components in those columns 
of 6Q. However, as discussed in the section on unique- 
ness, if A is bijective, the corresponding elements of the 
vector [AQl-Ib and [A(6Q)Iw1b will equal zero during 
this change, so expression (33) holds for all continuous 
b with continuous, bijective A.  On the other hand, 
if Ab crosses boundary Gnc and the boundary plane 
contains a non-unique vertex point, then SQ # 0, and 
expression (31) shows that 

lim Sg = (bQ)[AQ]-'b 
6b-rCJ,6A-0 

implying that the least infinity-norm solution can ex- 
hibit discontinuities at boundary-plane intersections 
with non-bijective A.  

7 Discussion and Examples 

It might seem as though the conditions for misbehav- 
ior of least infinity norm solutions are so rare that 
only contrived examples would serve to  illustrate the 
associated problems. Nevertheless, the real impetus to 
search for answers to the question of continuity came 
when a simple simulation of a 4-DOF planar redun- 
dant manipulator began to exhibit some very strange 
symptoms. The simulator utilized least-infinity norm 
solutions in the velocity domain. Let denote the 
end effector position, and e the angular position of the 
joints. The velocity of the end effector relates to the 
angular velocities of each joint as 

J e  = J E SR2r4 (35) 

- s = J # f  + (I - J # J ) E .  

so, according to (22) 

Here, for simplicity, we will not use the manipulator 
self-motion, letting g = 0. J #  = Q ~ E G ( J & ~ G G ) - '  does 
not lend itself easily to direct computation, because 
of the need to determine the columns of Q ( ~ G ,  but 
the effects are identical when using an algorithm to 
iteratively find the least infinity-norm solution for e. 
Of practical concern is the fact that the preceding work 
applies to the space SR", although at most three of a 
manipulator's variables belong to only a portion of the 

real line, [ 0 , 2 ~ ) .  However, the least norm solutions 
in the redundant robot context apply only in velocity 
space, and angular velocities belong to the entire space 
8". 

Before continuing, an important property of mini- 
mum infinity-norm solutions should be pointed out: 
'Holder's inequality' is a generalization of the Cauchy- 
Schwarz inequality, and states that 

4 3  L 11411, . llblle 
with 

1 1  - + - = I  
P Q  

If we let p + cm, then q = 1 and the condition for 
equality in (31) is known as alignment. If 4 E is 
given, then 

(37) 
The famous "duality theorem" [2,7] used in many of 
the algorithms for finding minimum infinity-norm so- 
lutions provides exactly the right framework for using 
the alignment condition, with the side-effect that b will 
have no fewer than n - (m - 1) nonzero components. 
Stated another way, the optimum infinity-norm solu- 
tion will solve uniquely for only m - 1 components of 
the solution vector; the other n - m + 1 components 
will be identical in magnitude, with that magnitude 
equal to min IIglloo. 
Back to  the example, the questions arises, what will 
happen when the end effector traces out a trajectory 
where the 'best' solution clearly requires that n - m 
components to go to zero? In the land of 4 D O F  planar 
manipulators, commanding the end-effector to track a 
circle around the origin requires exactly the aforemen- 
tioned conditions (figure 1). 

The joint required to move at maximum speed is joint 
1, the origin. Naturally, it  follows that the least 
infinity-norm will, at each time step, minimize d(1). 
It works almost too well, though, because in order 
to compensate for a slower first joint, the manipula- 
tor must extend all the subsequent links further and 
further to achieve the tracking goal. This wouldn't 
present a problem except for the fact that now only one 
joint is contributing to the motion of the end-effector. 
If a pseudo-inverse solution were driving the trajectory, 
the other 3 joints would simply stop, with magnitude 
zero. In the infinity-inverse, n - m + 1 joints must 
move at  the speed of the fastest joint, joint 1 in this 
case; they can't simply stop. So why don't the other 
joints appear to move? The answer becomes clear with 
a plot of the individual joint velocities (figure 2). 
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Figure 1: Here the manipulator attempts to trace a 
circle about the origin. The initial configuration points 
vertically, with initial angles eo [90,45,135,90] in CCW 
degrees from horizontal. The end effector travels clock- 
wise. Note how the links converge to an ‘L’-shaped 
configuration toward the end of the run. 

Velocity of Joint 1 Velocity of Joint 2 
I I I 

Approximately the first 200 time steps proceed 
smoothly while 3 of the 4 joints move at  equal speeds. 
After that point, in order to approximate “zero” mo- 
tion but still obey the rules of least-infinity norms, 
joints 3 and 4 rapidly oscillate between the only two 
values allowed: - llill, and llill . Joints 3 and 4 jerk 
back and forth as rapidly as possible to nullify the av- 
erage motion over the rest of the trajectory. A total of 
( m  - 1) joints are allowed a unique velocity less than l l i l l  in general, a distinction awarded to joint 2 in 
this case, although it must attempt to compensate for 
positional errors in joints 3 and 4 so it also oscillates. 
From a geometric standpoint, figure 3 illustrates that 
the Jacobian in this example does indeed meet the cri- 
teria of Theorem (3) toward the end of the trajectory, 
and the desired end-effector velocity vector points very 
near to a pair of identical vertices. 

03 

00 

Graph of P=JQ 

-1.5 
-10 -5 

Figure 3: A picture of P = J Q .  The desired veloc- 
ity vector is plotted from the origin, labeled rdot. A 
dashed line extends its path to intersect exactly with 
a discontinuity. 

1 I I 

0 200. 400 .600  0 200, 4 0 0 . 6 0 0  
Velocity of Joint 3 Velocity of Joint 4 

An example Jacobian from this trajectory is 

I I 

0 200 400 600 0 200 400 600 
time steps time steps 

Figure 2: Joint velocities for the circle trajectory. 

-1.1166 -0.1433 -0.0987 -0.0454 I -3.2263 -2.9966 -1.9975 -0.9990 J =  [ 
Columns three and four add to produce column two. 
Figure 3 illustrates the convex set P = JQ, with 
pointing directly at  non-unique vertices p4 and ps. 
Polyhedron face G2 is denoted by vertices p3 and p4, 
while face GI is composed of vertices p5 and p6 .  Note 
that GI cannot be constructed using p4 and ps because 
they are not nearest neighbors, i.e. g4 and g, differ by 
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more than one sign. 

-1 -1 -1 -1 
-1 -1 -1 -1 

-1 1 -1 1 -1 1 
! ! ]  Q =  [ -1 -1 1 1 ... 

Velocity vector f approaches from face GI toward the 
discontinuity and at  iteration k (somewhere around 
time-step 200 in the velocity graphs) crosses it,  point- 
ing to GZ. At k+l, a new Jacobian is computed such 
that the old f points again at GI. At  k+2, f again 
crosses over to Ga and a new Jacobian is computed. 
This cat-and-mouse game will never resolve for a least 
infinity-norm algorithm. If the algorithm could run in 
continuous time, at  some time would point directly 
at the discontinuity, and the controller could command 
joints 2, 3 and 4 to zero velocity which would still be 
a valid least infinity-norm solution. This action would 
prevent the subsequent oscillations, though the veloc- 
ities in three joints would still suffer one discontinuity. 

8 Conclusions 

Minimum infinity-norm solutions are attractive in 
kinematic redundancy resolution for manipulators due 
to their potential for explicitly addressing individual 
joint velocities in the solution. This is in contrast to 
the 2-norm solution which results from the well-used 
pseudoinverse technique, where only the effect of a 
combination of all the joint velocities can be analyzed. 
However, the structure of the minimum infinity-norm 
solution is much less well understood than the pseu- 
doinverse solution. 

This paper has attempted to expose some of the de- 
tails and features of minimum infinity-norm solutions 
to under-determined linear systems, with application 
to redundancy resolution for kinematically redundant 
manipulators. The creation of an ”infinity-inverse” of 
a very similar structure to the pseudo-inverse aided 
immensely in revealing some difficulties with least 
infinity-norm solutions. The infinity-inverse, however, 
really does not lend itself as a computational tool be- 
cause Q j E ~  remains difficult to compute, and its rela- 
tion to A and b in equation (1) is uncertain. Unfor- 
tunately, some of these problems stem from the very 
nature of the infinity norm. It looks only at the in- 
dividual components of each solution vector, whereas 
the two-norm considers the contribution of all compo- 
nents. This characteristic causes non-uniqueness and 
discontinuity on least infinity-norm solutions. 

Prospective users of least infinity-norm algorithms 
should not lose hope, however, because such solutions 
have been proven to avoid some of the problems as- 
sociated with two-norms. Perhaps an intelligent con- 
trol scheme could switch between infinity-norm and 

two-norm solutions depending on the conditions. Per- 
haps least-norm solutions have inherent limitations 
and some other criteria might serve better. 
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