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Abstract 
Continuum manipulators are robotic manipulators built 
using one continuous, elastic, and highly deformable 
“backbone” instead of multiple rigid links and joints. I n  
previous work, we illuminated various kinematic and dy- 
namic properties of continuum robots, but the question 
of controller design remained open. This paper presents a 
basic result for continuum robots that has long been knoum 
for rigid-link robots: that a simple PD-plus-feedforward 
controller can exponentially regulate the position of a ma- 
nipulator. 

1 Introduction 
“Continuum robots”, a phrase referenced from a survey 
paper by Robinson and Davies [l], refers to a class of ro- 
botic manipulators that essentially discard the traditional 
robot design paradigm that joins stiff, rigid links with 
rotational or prismatic joints. That this design method- 
ology has been highly successful in the past is certainly 
not under debate; in fact, here and in previous work we 
suggest that rigid-link designs will continue to fulfill the 
majority of automation and manipulation need for the 
foreseeable future. However, rigid-link design and analy- 
sis seems to have reached some practical limits. Among 
these, it is difficult and often expensive to design com- 
pliance into a rigid-link robot at any point except the 
end-effector. We are beginning to see that compliance is 
a critical ingredient in the creation of safe, comfortable 
and interactive human-robot environments [2]. Compli- 
ance is also a significant asset for the manipulation or ex- 
ploration of unknown environments. Additionally, rigid- 
link robots generally do not have the ability to use their 
entire structure to manipulate things, called “whole-arm 
manipulation”, and tend to be complex to build, heavy 
(in order to impart stiffness) and somewhat bulky. 

Some of the aforementioned issues are being addressed 
by creative mechanical designs, which often accept some 
flexibility and vibration in the robot links in exchange for 
lighter weight, less complexity and greater safety margin. 
The question at hand is, why not abandon the joints al- 
together, and make the entire mechanism out of one long 
flexible member? Inspired by trunks, tentacles and snake 
backbones, continuum robot designs such as the simple 
prototype seen in figure 1 attempt to answer this ques- 

tion. However, with new properties and capabilities, con- 
tinuum robots emphasize the need for new or expanded 
results in some areas that long ago matured for rigid-link 
robots. In fact, the purpose of this paper is to estab- 
lish a basic but extremely important result in continuum 
manipulator control, namely, that a PD-plus-feedforward 
controller can exponentially regulate the position of a con- 
tinuum robot - a result long understood for rigid-link de- 
signs. 

Figure 1: The Clemson Tentacle Manipulator is a two- 
section, four degree-of-freedom continuum robot. 

2 Background 

Our work in continuum manipulators grew out of the 
early studies of hyper-redundant and high-degree-of- 
freedom (HDOF) devices. Some of the initial HDOF 
design attempts appear in [3], [4]. More recent designs 
appear in (51 and [6]. For background into the kinematics 
and path-planning of continuum and hyper-redundant ro- 
bots, see [7]- [15]. Also, [lo] and [ll] discuss the dynamics 
of continuum planar robots. Some of the fundamentals in 
this work are derived from the field of elastica mechanics, 
and details can be found in [17]-[19] and [21]. 
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3 Dynamic Model 

The fundamental difference between a rigid-link robot 
and a continuum robot is that a continuum backbone 
exhibits infinite-dimensional kinematics, described by dif- 
ferential equations. Because currently practical actuation 
schemes cannot continuously actuate such a backbone, 
the range of actuation is limited to a finite-dimensional 
subspace of the infinite-dimensional kinematics. The 
“left-over” region permits a desirable property termed 
“inherent passive compliance”, but also permits the ex- 
istence of vibrations that, depending on the system con- 
figuration and physical properties, may or may not be 
controllable. (See [ll] for an example of uncontrollable 
axial vibration of a continuum robot.) Uncontrollable 
modes are only one of several ways that a continuum ro- 
bot design can tax the theoretical limits of our ability to 
model and analyze it. For this reason, the majority of 
our work has so far been limited to planar robots, and 
in this paper we further restrict the design parameters to 
non-extensible backbones wit,h distributed damping and 
negligible shear effects. 

Figure 2: A 3-actuator (3-section) continuum robot. Ac- 
tuators apply moments to points SI, s2 and s3 = L. 

Figure 2 illustrates a backbone of length L. Arc length 
s ranges from 0 to L,  so we employ s as an indepen- 
dent parameter, in addition to time t. Thus, at every 
point s, the backbone has centerline position ~ ( s ,  t )  = 

[ z1(s, t )  z2(s, t )  ]’, and its tangent subtends angle 
e(s, t )  counterclockwise from the horizontal. The back- 
bone has bending stiffness EI,  with linear mass density 
p and rotational inertial density Ip. The kinetic and po- 
tential energies of the robot are then 

In addition, deriving the system dynamics requires 

first variation of the work W ,  

6W = /(-bb)beds + rnS8(L, t )  + 
n-1 

r i68(s i ,  t ) ,  (3) 
i=l 

0 < SI < ... < sn-l< L. 

The term inside the integral represents energy “extract- 
ed” from the system by a linear viscoelastic damping 
mechanism with damping coefficient b. The remaining 
terms reflect intermediate actuator input torques r1 to 
rn-l, applied at points s1 to sn-l, as well as boundary 
torque rn applied at sn = L. Note that the work does 
not reflect the presence of external shear/axial inputs, 
because the robot does not possess actuators capable of 
applying those types of forces. 

To ease the notational and calculational complexities 
associated with the intermediate actuators, we rewrite 
the last term above as 

where S(si) is the Dirac delta distribution, not to be con- 
fused with the variational operator. (The notation should 
be contextually clear.) Then, we define the “distributed 
moment” as 

n-1 

(5) m ( S ,  t )  e Ti(t)6(S - Si) 
i= I 

so that the new virtual work expression is 

6W = (m - b6’)SBds + rn68(L, t ) .  (6) J 
Using the previously defined potential and kinetic ener- 
gies, the dynamics can be derived as [22], [21] 

-Ip8 - bb + - -  fTTTq + EI8” + m = 0 (7a) 

EIO’(L,t) = rn (7c) 

- f ( L , t )  = 0 ( 7 4  

along with the geometric conditions O(0,t) = 0 and 
- z(0, t )  = 0. In a non-extensible thin beam with relatively 
large shear modulus, the tangent vector obeys[l2] 

- f - p g  = 0 (7b) 

and it easily follows that 

a relationship that we will employ repeatedly in the com- 
ing derivations. Note that primes indicate partial differ- 
entiation &. 
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The force f(s, t )  in (7a) identifies closely with the role of 
a temporary variable. Because we have chosen to neglect 
the effects of shear and axial deformations - a physically 
realistic assumption for thin backbones - f does not re- 
late directly to the primary system position coordinates, 
and consequently does not have an associated governing 
equation. (Note that its relation to 6 is direct in the case 
of more complicated models that account for shear, e.g. 
[21] .) Regardless of whether shear/axial forces contribute 
to the deformation of the backbone, they do exist and 
boundary condition (7d) reflects the static shear/axial 
end-effector loading, if there is any. For simplicity here, 
we assume such loading is negligible but also remark that 
this is another important difference between continuum 
robots and traditional robots: end-effector loads do de- 
form the robot’s shape, and must be accounted for in the 
kinematics as well as the dynamics. Details of the pre- 
ceding dynamic derivation appear in [22]. 

4 Regulation Stability 
A regulation controller attempts to drive the system to 
some desired “set-point” . For an infinite-dimensional de- 
vice with only a finite number of actuators, the desired 
system solution 6 d ( S )  must be restricted to a class of func- 
tions defined by the allowable static system solutions. 
Specifically, canceling the time-derivative terms in (7) 
yields 

n - 1  

m ? & ’ ( S )  + T d , i 6 ( s  - S i )  = 0 (104 
i = l  

EIB&(L) = ~ d , ~  (lob) 

where T d , i  is the ith desired static backbone moment ap- 
plied by the actuators. These solutions correspond to 
shapes consisting of semi-circular sections end-teend, as 
explored in [ll] and [12]. 

Now consider the control law 

Ti = T d , i  - k d , i e ( S i , t )  - k p , i 8 ( s i , t )  (11) 

where Td,$  are the desired static holding torques and 
kd,i  > 0. Referring to (7c) and (lob), this gives the bound- 
ary control law 

E d & ,  t )  = - k d , n b ( L ,  t )  - k p , i B ( L ,  t )  (12) 

where 6 = 6 - 6 d .  

The energy-based Lyapunov candidate 

(13) 
has time derivative 

L 
VI = 1 p 2 - 2  + I@ + EdZllds + 2 k P , Z 8 ( S i ,  t ) e ( s i ,  t) .  

i=l 

(14) 

Substituting for the dynamics gives, after integration by 
parts and some cancelation, 

L 
VI = e ( - b b  + m + EIO”) - EIe8l’ds (15) 

n 

+ E l @ ,  t)8’(L, t )  + Icp , i8 (S i ,  @(si, t )  
i= l  

n-I 

Note that (loa) was used in the second step, a le- 
gal substitution because (loa) consists only of desired, 
time-independent quantities and thus remains valid at  
all times. Thus, the individual quantities in V remain 
bounded for any given set of initial conditions e d  desired 
backbone moments, and furthermore, since O(s, t ) ,  5 
Lst(8’)2ds,  then 8 is point-wise bounded as well, a fact 
that will be employed in the next section. 

5 Regulation Convergence 
The new Lyapunov candidate is 

v = VI + v, 

where VI is given in the previous section. First we prove 
that V > 0 for a sufficiently small E > 0. With use of the 
standard inequalities 

L 
l L w ( s ) ’ d s  5 L2 1 w’(s)2ds for w(0) = 0 (18) 

p q  5 a p 2 + $ q 2  for a > o (19) 

we may upper bound V2 as 

+ibL2 ds 
2 

5 € i L I p b 2  + L 2  

Consequently, we may choose e sufficiently small that V 
remains positive definite. 

At this point we make the important observation that, 
while VI appears to be positive definite in four generalized 
coordinates (two linear velocities, one angular velocity 
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and one curvature), in fact only two are required, b(s, t )  
and e’(s, t ) .  This observation can be formalized by noting 
that the inequality (18) gives 

L L 1 p k T i d s  5 L 2 1  pb2ds. 

So, if we define the “minimal” functional, 

L 
v* = f 1 e2 + (8’)2ds + 2 kP, i8(Si ,  t)2 (22) 

k l  

then we may arrive at new upper and lower bounds for 
v, 
ClV* i v IC2V* (23) 

C1 = min {(I - E ) ( ~ L ~  + I ~ ) ,  

C2 = max{(l+E)(pL2+Ip),  

EI - €L2(2pL2 + 21, + b),  1) 

El + eL2(2pL2 + 21, + b),  l} 

where C1 and C2 are constants depending only upon sys- 
tem parameters. Note that C, can always be made posi- 
tive by proper choice of E. 

The time derivative of V is, after some cancelation, 

Integrating the third term in (24) gives (25) [next page]. 
In second step of (25), by (loa), we are simply subtract- 
ing zero but implicitly signifying that we restrict allowable 
desired solutions O,(s) to those that satisfy (loa). Also 
note that, in the fourth step, control law (12) was im- 
plemented, and in the final step, we choose y sufficiently 
small that (E1 - ynL) > 0. Finally, the last term in (24) 
gives 

For the last step here, we refer to the section on “Regu- 
lation Stability”, where it was proven that, for any-initial 
conditions and finite desired backbone moments, O(s, t )2  

is point-wise bounded. Assembling (21), (25) and (26) 
together, along with (15), yields 

-E (EI - p L )  (8’)2ds 

Thus, for any given trajecto!y, E can always be chosen 
small enough to ensure that V is negative definite. With 
(23), we have that 

v 5 -AV, (28) 

1 min b-EpL2 2+maxO , E ( E I - ~ ~ L ) , E  
A =  { ( ‘,t -2) 

Cl 

the solution of which leads to 

V*(t)  5 % * ( O ) e - y  
Cl 

exponential convergence of V* , .nd consequently point- 
wise exponential convergence of O(s, t) .  Of course, a given 
choice of E for one trajectory may not, in general, be 
suitable for another trajectory because maxg2 may differ 
between the two. 

The reader may note that, in the final analysis, the 
point dampers associated with each actuator do not 
contribute to the convergence result. However, we ex- 
perimentally verified in [ll] that additional lumped- 
parameter damping does in fact significantly improve per- 
formance for the PD controller without the feedforward 
term; thus it is necessary to prove that the point dampers 
do not disturb the stability and convergence results re- 
gardless of their utility in the said results per se. 

We make one final remark regarding the presence of 
rotational inertia, I,. Since linear mass density p over- 
whelmingly eclipses Ip for most “long and thin” elastic 
members, it may be stricken from the preceding deriva- 
tions (i.e. Ip = 0). With only slight modification, the 
essential results remain. 

6 Simulation and Conclusions 
In [22] we derive a finite-element model for the dynamics 
of a 2-section continuum robot. Figure 3 illustrates the 
time plot for the simulated robot with parameters EI = 
1, p = 0.7, and I, = 0.001. These constants are scaled 
to realistic ratios for long thin backbones; note how small 
the rotational density is compared to the inertial density. 
The robot has unit length, and is driven with control gains 
of kd,i = 0.4 and kp,i  = 20. The damping coefficient is 
b = 3.5. Figure 4 illustrates a time-lapse image of the 
robot. 
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Figure 3: Angles d ( 4 )  and 8(l) for the simulated two- 
section robot. 

To summarize, this work illustrates that a basic con- 
trol property of rigid-link robots also holds for contin- 
uum robots: a PD plus feed-forward controller can ex- 
ponentially stabilize the system, under the assumption 
that distributed damping exists on the continuum back- 
bone. Though space does not permit closer examination 
here, future work will disclose the details leading up to 
the Lyapunov candidate (16), as well as arguments de- 
fending the use of viscous damping on the distributed 
coordinate 8(s, t) .  Reference [12] contains these details, 
and additional derivations that closely link the structure 

i=l L ’  J 

of continuum and “traditional” manipulators, lending fur- 
ther credence to the concept of a “unified” theory of ma- 
nipulation that describes continuum and rigid-link robots 
simply as special cases. 

,,l . .  .. . .  : . . . . .  ..... : . . . .  . ..: . . . . . .  : ... . . . j  
”” I t=2.0 I 

0 2  0 4  0 6  0 8  
-011 

1 

x1 

Figure 4: The two-section continuum robot moves from 
the horizontal straight configuration to the pose e ( $ )  = 
w/2 and 8(l)  = 0. 

As the idea of continuum robots is still relatively new, a 
multitude of questions remain unanswered. Among those 
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that relate to the topic of control, the results above need 
implementation, and possibly modification to account for 
types of material damping that do not adopt the stan- 
dard “viscous” form. In a broader context, the theoretical 
manipulation capabilities of continuum robots remain ob- 
scured by the mathematical complexity of the kinematics, 
especially in three dimensions. 
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