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Abstract  

In this paper, we focus on  a class of robotic manipu- 
lators that utilize continuous backbone structures. Such 
manipulators, known as "continuum" robots, exhibit be- 
havior similar to tentacles, trunks, and snakes. Specifi- 
cally, we have previously discussed some of the mechanical 
and kinematic details o f  the Clemson "Tentacle Manipu- 
lator.'' Th is  work examines the dynamic characteristics 
of this manipulator, proposing a vibration damping con- 

pensive and complicated force feedback mechanisms. In 
principle, the preceding characteristics make continuum 
and hyper-redundant manipulators suitable for delicate 
or dangerous tasks where a traditional robot could not 
reach, or where single-point failures would paralyze sub- 
sequent operation of the robot. Examples of such tasks 
are toxic waste inspection and removal, and navigation or 
inspection of highly cluttered environments such as col- 
lapsed buildings. 

t ro l  strategy for configurations wi th the worst vibration 
characteristics. W e  begin by formulating the dynamics 
for  one section of the Tentacle Manipulator. W e  then 
proceed to  develop a new vibration control strategy which 
incorporates a setpoint regulator. W e  supplement the the- 
oretical developments wi th experimental results. 

1 Introduction 

The study of hyper-redundant and continuum manipula- 
tors finds motivation from the natural world. Even from a 
qualitative point of view, manipulators such as tentacles 
and trunks exhibit special capabilities not shared with 
low degree-of-freedom (DOF) designs. While it is not 
yet possible to emulate real tentacles or trunks, artificial 
continuum designs do possess several key desirable fea- 
tures, including improved obstacle avoidance capabilities 
and a significant transference of weight and complexity 
away from the actual manipulator, back to a more suit- 
able location. We have previously termed this arrange- 
ment "remote actuation" [3], and it allows a substantial 
reduction in the overall design complexity (and cost) for 
continuum manipulators such as the Clemson Tentacle 
Manipulator (figure 1) and the Rice/Clemson Elephant's 
Trunk Manipulator [3]-[6]. Continuum robots also pos- 
sess another key feature, termed inherent compliance. In 
other words, the infinite-dimensional kinematics admit an 
infinity of possible backbone configurations for any given 
finite set of applied forces or torques along the backbone. 
Thus, the robot will comply with environmental obsta- 
cles or non-conservative loads without the need for ex- 
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Figure 1: The Clemson Tentacle Manipulator. The ma- 
nipulator consists of 2 independent sections on a contin- 
uous backbone consisting of a thin elastic rod. 

In this paper we will focus on a simplified dynamic de- 
scription of the Tentacle Manipulator, which is a small 2- 
section (four DOF) experimental prototype. Its backbone 
consists of a continuous elastic rod, with cable guides pe- 
riodically spaced along its length. Four cable pairs run 
through the guide eyelets, two pairs terminating at the 
midpoint and two at the endpoint. Thus, torques may 
be applied in orthogonal directions at the midpoint or 
endpoint of the backbone by exerting tensions on the ca- 
bles. However, because the backbone is relatively long 
and slender, sudden movements tend to excite undesir- 
able vibratory motions. The objectives of this paper 
are to deduce a simplified dynamical description of the 
backbone by applying a physically reasonable set of con- 
straints and assumptions to the general 3-D dynamics 
for rods and beams; to apply a simple control law which 
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will permit setpoint regulation of the midpoint and end- 
point orientations while improving vibrational damping; 
and to illustrate the effectiveness of the controller by ex- 
perimental implementation on the Tentacle Manipulator. 
In the context of traditional vibration control literature, 
the Tentacle MIanipulator is a 3-dimensional variation on 
the “clamped-free” beam configuration. However, in con- 
trast to the usual application of boundary shear forces 
in the clamped-free problem, here only boundary torques 
are available at the free end. The absence of controllable 
boundary shear forces distinguishes the current problem, 
along with our desire to regulate the section orientation 
to a non-zero setpoint and the multi-dimensional aspect 
of the dynamics. 

Several researchers have addressed topics related to 
manipulation and locomotion using hyper-redundant and 
continuum backbones. Among these, the pioneering work 
of Hirose [1] represented a large step forward in the re- 
alization of practical snake-like devices. Chirikjian and 
Mochiyama, [9]-[la], contributed to the theoretical devel- 
opment of hyper-redundant kinematics, path planning, 
and shape optimization. Further work in kinematics with 
a tilt toward practical design considerations appears in 
[a]-[6]. Another trunk-like prototype can be seen in [SI. 
Similar to the Elephant’s Trunk but significantly larger 
is the GreyPilgrim LLEmma’’ serpentine manipulator [7]. 
Robinson and Davies [13] also provide a good overview of 
work in the area. 

2 Rod Dynamics 

In order to  get the best kinematic properties in a 
remotely-actuated continuum device (such as maximized 
workspace and nearly constant curvature deformations), 
the friction between the cable and the cable guides must 
be minimized. This frictional component depends on con- 
figuration; in other words, it increases significantly as the 
tension in a cable increases and the backbone bends. Con- 
sequently, cable and stand-off friction is minimized near 
the zero-stress reference configuration, a straight line in 
this case. Unfortunately, while minimizing cable fric- 
tion has benefits from a kinematic point of view, lack 
of friction prevents vibrations in the rod from damping 
out quickly after a commanded sequence of movements. 
The naturally antagonistic goals of good kinematic char- 
acteristics and fast vibration damping present a challenge 
to the motion control development, a later topic of this 
paper. 

Pursuant to the observation that vibrations present the 
biggest challenge near the straight reference configura- 
tion, the overall rod dynamics may be substantially sim- 
plified. The following development justifies these simpli- 
fications. We initially constrain the allowable configura- 
tions of a rod of length L to a set of spatial curves C with 

the following properties 

with h’(s) , 2. This set contains all the duples 
{ g ( s ) , Q ( s ) }  where p ( s )  = [ z(s) y(s) z ( s )  1‘ is the 
position of the rod at point s and Q(s )  its corresponding 
orientation tensor. The constraint on the tangent magni- 
tude \\p’(s)l\ = 1 implies non-extensibility of the rod, so 
that the independent parameter s E [O, L] represents arc 
length (look ahead to figure 4). Additionally, we append 
the following conditions on the allowable configurations: 

1. With the triad of inertial elementary basis vectors 
{el, e2, ~ 3 )  and the product &e, , - 4, (s) , we assume 

p’(s) .&(SI = 1 (2 )  

2. Where the energy in the rod takes the form E = 

J: f (s)c is + E, g(sg) for 0 5 sJ 5 L,  we assume 

E < 00 + f ( s )  E C” (3) 

Note f ( s )  2 0 represents deformation energy distrib- 
uted throughout the rod, and g(s3 )  > 0 represents 
lumped-parameter energy stored in point masses and 
springs. 

Because, by the definition of Q we know that q ( s )  
1, the first condition combined with (1) implies that 

= 11-? II 

so that the curve tangent is aligned with (and in fact, 
equal to) the first of the triad of orientation column vec- 
tors in Q. We will see the significance of this assumption 
shortly. 

For the second condition, we assume that any “dirac 
delta” distributions in f ( s )  are disallowed; intuitively 
this implies that the rod cannot experience single-point 
changes in distributed coordinates such as curvatures or 
positions. Condition 2 does not arise from strictly math- 
ematical arguments; it simply states a physically rea- 
sonable assumption motivated by engineering judgement. 
We continue the dynamic development with derivations 
of the potential and kinetic rod energies. 

2.1 Potential Energy 
Consider an infinitesimal change in position on the beam 
from point s to s + ds. During this transition, the local 
rotational rate of change of the orientation Q is [OX] = 
Q’Q’ [19]. Note [ a x ]  is a skew-symmetric matrix whose 
associated axial vector is 4; in other words 

0 
[Ox]=  [ 0 3  -F3 $ 1  + Q =  [ ;;] (5) 

- 0 2  R, 0 
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Figure 2: An illustration of the frame Q ( s )  moving to 
Q(s  + ds) with its associated local angular velocities. 

Each element of Q represents the relative velocity with 
which each axis in Q is rotating as s moves to s + ds. 
Elements and represent two flexural rotations, and 
0 1  represents torsional rotation, or twist, as can be seen 
in figure (2). The potential energy in the rod takes the 
form [15] 

PE = .ioL {GTK12 +p'TQK2QTp'} ds ( 6 )  

1(1 = diag{GJ, E l l ,  EI2) 
K 2  = diag{EA, GA2, GA2) 

For simplicity (and practicality), the robots under consid- 
eration have circular cross-sectional backbones, so EI1 = 
El2 = E l  and GA1 = GA2 = GAS. In general, we re- 
fer to EI as the bending stiffness, GJ as the torsional 
stiffness, EA as the axial stiffness and GAS as the shear 
stiffness. The purely quadratic expression in (6) implic- 
itly assumes small strains; 'given the aspect ratio (length 
to thickness) of the rods at hand, small strain is an ac- 
curate assumption [20]. (Note that small strains do not 
necessarily imply small deflections.) 

The second component of the potential energy de- 
scribes energy due to shear deformations of the rod. How- 
ever, the quantity p_'TQK2QTp' = EA when (2) from 
condition 1 is taken into account. Thus shear deforma- 
tions contribute nothing to the overall potential energy, 
and the axial stiffness contributes only a constant offset 
which may be neglected without loss of generality. In ef- 
fect, condition 1 states that the influence of shear may 
be neglected. Figure ( 3 )  offers a pictorial representation 
of this condition. The robots under consideration in this 
paper have backbones corresponding to case (B) in figure 

At this point we make an important connection with 
previous kinematic analyses. The potential energy may 
be written 

( 3 ) .  

where Wj = diag EI- - , - - , -  { 2 2 2  

Figure 3: The beam in (A) experiences significant shear 
deformations because of its resistance to compression and 
tension along the exterior walls. In (B) shear effects are 
not present because the concave side has shortened and 
the convex side as lengthened. 

Expression (7) exactly duplicates the optimization mea- 
sure used by Chirikjian and Gravagne in [3], [4] and [ll], 
[12] for kinematic Optimization and analysis, indicating 
the close connection between those works and the current 
model. Here, the weighting matrix W2 is configuration 
dependent and may not be positive definite; it therefore 
would not have been an obvious choice apriori. However, 
this analysis illustrates that continuum kinematics tools 
and descriptions developed previously still apply to the 
current physically-motivated model. 

2.2 Kinet ic Energy 
The complete derivation of the kinetic energy is too 
lengthy to cover here; however, the final result makes in- 
tuitive sense. Essentially, we now assume that all quan- 
tities composing the potential energy now vary not only 
with arc length, but also with time. Having the same 
form as the local spatial rate of rotation seen earlier, the 
local angular velocity is [WX]  = QTQ with Q , w. 
Associating the angular velocity vector g with its skew- 
symmetric matrix [ W X ]  in the fashion described previ- 
ously, we write the kinetic energy as 

K E =  t l L M p  II@(s,t)l12 +WT(s,t)Ip(s)W(s,t)ds ( 8 )  

where I,(s) is the rotational inertia density tensor for the 
reference configuration and M,, is the linear mass density 
of the rod. (Note that neither quantity varies with time.) 
Both of the expressions for kinetic and potential energy 
may be seen in similar form with slightly less restrictive 
conditions in [15]. 
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2.3 Work due to Non-Conservative 
Forces 

In addition to potential and kinetic energy, which arise 
from conservation principles, energy may be injected or 
dissipated through the application of forces and torques. 
On the tentacle robot, there are two sets of cables in 
orthogonal planes which run down the backbone. Ten- 
sion in a cable must balance with compressional forces 
in the beam itself, at every point along its length. Thus, 
the cable tension represents a distributed conservative in- 
put which can perform work. The tensions produce a 
distributed torque 2 about the three axes in Q, propor- 
tional to the distance from the backbone to the cable. 
Since the cables are not directly capable of producing 
torsional torques, 7 = [ 0 7 1  7 2  ] where 71 = Fla(s), 
7 2  = F ~ u ( s ) ,  F1 and F2 are the tensions in orthogonal 
planes, and a(s)  is the distance from the cable to the 
backbone. So the work done to the backbone is 

In previous work [4], we have discussed that the small 
spatial variation of U(.) presents some practical design 
challenges but does not materially detract from the de- 
sired kinematic behavior. Thus we consider a as a design 
constant hereafter. 

2.4 Simplifications Due to Small Deflec- 
tions 

with S, , sin(a), c, , cos(a), etc., as in figure (4). Since 
the cables cannot produce twists, the angle a remains 
constant for any particular choice of cable tensions, with 
[4] showing that 2 = [ 0 

Next we note that the region of interest for vibration 
control corresponds to small ,b’ (i.e. ,b’ < 20”). Given 
the restrictions on a and p, the no-shear condition of (2) 
combined with (10) yields 

F1acos(a) Fzusin(a) ] . 

(11) dx - - = 2’ = COSP r~ 1 + ds r~ dz 
ds 

For all practical purposes we allow ds = dz and, because 
z(0, t )  = 0 b’t, then z may replace s as the independent 
spatial variable. A glance back at figure (4) indicates the 
validity of this statement for “small” deflections. Conse- 
quently, we may find the slope of the functions y(z) and 
z(x) approximated as angles 

y’(z, t )  = p(z, t )  cos a and z’(z, t )  = p(z, t )  sina.  
(12) 

(13) 

Evaluating [ a x ]  = Q(s ,  t )TQ(s ,  t)’ yields 

T 
- R = [ o p’cosa @’sincl. ] . 

= [ 0 y ” ( 2 , t )  z”(5, t )  1‘. 
Referring back to (6) the new expression for the potential 
energy is 

Figure 4: An illustration of how the angles Q(S) and p ( s )  
contribute to the moving frame Q(s )  at any instant in 
time. 

This section concentrates on obtaining a tractable expres- 
sion for the dynamics of the beam near the straight config- 
uration, which is the area of interest as discussed earlier. 
First we must make an explicit choice for the orientation 
tensor Q(s , t ) .  In [4] a we argued for the choice 

Q(s ,  t )  = Q ( ~ s ,  t ) ,  P ( s ,  t ) )  (10) 

PE = -EI (y”)’ + ( ~ ” ) ~ d z  : LL 
Similarly, we make one further observation that the ro- 
tational kinetic energy contributes little compared with 
the translational kinetic energy, so referring back to (8) 
reveals 

K E  = - Mp(yz  + i 2 ) d z .  (15) f lL 
To summarize, these expressions for the system energy 

require the following simplifications: negligible shear ef- 
fects, relatively small deflections from the reference con- 
figuration, and that the backbone at any instant in time 
remains planar, or nearly planar. 

2.5 Dynamical Equations 
Given the analysis this far, we employ the expressions for 
potential and kinetic energy and non-conservative work in 
the derivation of the dynamics via Hamilton’s Principle. 
Without demonstration, the results are 
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with an identical expression for z(x, t ) .  Similar expres- 
sions exist in [14] under the subject of vibration damping 
using piezo-electric distributed actuators. Here, we have 
argued that the time-varying distributed torque is spa- 
tially constant over [0, L] so the dynamics, with geomet- 
ric boundary conditions appended, reduce the distributed 
torque to an equivalent boundary torque, 

with an identical expression for z (2 ,  t ) .  
The decoupled, linear mathematical form of (17), along 

with energy expressions (15) and (14), could probably 
have been logically deduced without the need for the 
extensive preceding derivations. However, in a multi- 
dimensional problem, there is always the potential for 
non-linear cross-terms or coupling between the general- 
ized coordinates. Similar complexities here were nulli- 
fied through the careful application of certain assump- 
tions and observations which may not have been obvious 
without a derivation from first principles. 

3 The Actuator Model 
Without loss of generality, we may concentrate on the rod 
behavior in the x, y plane and assume identical behavior 
in the x, z plane since the dynamics are decoupled. Next, 
we note that there is a pulley of radius b to which the 
cables attach, driven by a motor through a gear ratio of 
r > 1. The angle of the motor is 8 ,  and the angle of 
the pulley is O p .  (The reader may refer ahead to figure 
7.) Given that the motor has rotational inertia J and 
viscous friction B, we may take the simple motor model 

J e ,  + se, + T p  = T m  (18) 

where rTP = +F1 is the torque due to the cable tension, 
and T,, the torque generated by the motor itself. Note 
that 

(19) 
ra 8 ,  = r 8 ,  = by’&, t )  

so that (18) becomes 

Now we choose the feedback control law 

with kp,kcj ,kc  > 0 and y; the desired boundary angle 
setpoint. Substituting (21) back into (20) and solving for 
F1 produces 

7-1 = af i  = - Je f f i ’ (L ,  t )  - KdY’(L, t )  - K,fj’(L, t )  (22) 

388 

with 

Because of the relatively high gear ratio T required to 
bend the rod, (20) suggests that the motor will feel little 
of the back-driving effect of the rod dynamics transmit- 
ted though the cable tension F1. The coupling factor kc 
increases the effective back-driveability of the motor/gear 
system, providing greater control over the rod boundary. 
Associating (22) with (17c) results in the new boundary 
condition 

4 Controller Stabil ity 
Proving the stability of the closed loop system requires 
two steps: proving the boundedness of the total sys- 
tem energy, and using an invariance principle to illustrate 
point-wise convergence of the rod to a time independent 
steady state. We begin by choosing a Lyapunov candidate 

1 1 
2 2 

L 
v = ; ~~y2+Ely”2dz+-Kp?I’(L, t)2+-Jeffy’(L,t)* 

(25) 
where V consists the distributed rod energy, plus discrete 
component energies from the effective motor inertia and a 
virtual spring attached to the free boundary. The powes 
dissipated in this system can then be calculated as 

v = -K&j’(L, t ) 2  5 0 (26) 

after accounting for the dynamics in (17) and boundary 
condition (24). Thus boundedness of the system energy 
is proven. 

Next we wish to explore the possible system solutions 
if V 0. This implies that ?j’(L,t) = 0, and to study this 
case we first note that the dynamics in (17) will admit 
a separable solution, y(z,t) = Y(z)W(t ) .  So ?j’(L,t) = 
Y ’ ( L ) W ( ~ )  E o occurs in two cases. 

Case 1 : Y’(L)  = 0. This is simply the zero end-angle 
situation. Admissible spatial solutions take the form 

Y ( x )  = Acos(kx) +Bsin(kx) +Ccosh(kz) + Dsinh(kx). 

Manipulation using the boundan conditions indicates 
(27) 

1 = - C and B = -D and 

A(sin k L  - sinh kL) + B(- cos k L  - cosh kL)  

A(-  sin kL - sinh kL)  + B(cos kL - cosh kL) 

= 0 
A(-coskL-coshkL) +E(-s inkL-sinhkL) = 0 

= 0 



The coefficients of A and B can be placed in a matrix 
M E !R3“ such that 

M [  ; ] = U  

Direct calculation reveals that det(M*M) > 0 VI; which 
implies that rank (M)  = 2 and the only solution to (28) 
is A = B = 0, and therefore C = D = 0. Thus this case 
indicates thaq y(z, t )  = 0. 

Case 2: W ( t )  = 0. This implies that i j (x , t )  = 0: so 
the field equation (17a) suggests Y””(z) = 0. This means 
Y”’(z) = c1 but Y”’(L) = 0 implies e1 = 0. Therefore, 
Y”(z)  = c2 which implies that 

KPG/(L,t) = c2 (29) 

Consequently, admissible solutions look like 

(30) 
1 
2 

W ( z )  = - c 2 2  

illustrating that y(x, t )  is bounded since e2 is bounded by 
hypothesis. So it appears that the largest invariant set 
defined by V 0 contains only one point to which the 
system asymptotically converges: a parabolic rod shape 
with no time-varying component. Manipulation using the 
boundary control law reveals that 

affirming that the steady-state error may be arbitrarily 
reduced by increasing K,, an intuitive result. 

(In previous work, we have verified that the expected 
static shape of a rod deformed by pure boundary torques 
will be semi-circular. The parabolic rod shape above is 
only accurate insofar as it approximates a circular arc. 
This approximation is the net effect of the small-deflection 
assumption.) 

From a practical point of view, we also wish to know 
that the variables comprising the control law (21) will 
always be bounded. From the Lyapunov argument, we 
know that V ( t )  < 03. By inspection, then, we see that 
Ijl’(L,t)l < CO, lfj’(L,t)l < CO and J: Ely”2dx < 03. In- 
voking the energy condition from (3), we can see that 
y”(x,t) E C“ and so y”(L,t) < 03. Since aF1 = y”(L,t), 
then Fl < 00 and (21) consists of bounded, stable quan- 
tities. 

We make the final remark that the use of an invariance 
principle requires a proof of the uniqueness of the solu- 
tions for a system of partial differential equations. This is 
a detailed, time-consuming affair but particulars appear 
in such references as [17] and [18]. 

5 Experimental  Results 
The system was tested using a series of step inputs for 
the desired angle y&. Figure (5) demonstrates the effect 

20 
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Figure 5: Boundary Angle Error for 3 consecutive step 
inputs. The first two steps go from 0+10 and 10420 
degrees. The third returns to 0 degrees. 

of boundary torque damping on the boundary angle. Ex- 
periments support the intuitive conclusion that increas- 
ing k d  produces slower step convergence, but increasing 
kp  too much excites excessive rod dynamics. The com- 
promise in figure (5) requires kd = 0.04, kp  = 0.38 and 
k ,  = 6.0, resulting in improved vibration damping and a 
faster settling time. Zooming in on the large step input, 
figure (6) captures the tension F1 for both of the previous 
cases and one more, that of I;, = 0. The gear ratio on 
the tentacle robot is very large, so with no coupling, the 
desired angle settles within a fraction of a second with 
disregard for the rod dynamics. Thus, this case results in 
the worst vibration problem, seen by the dashed line in 
figure (6). 

Throughout the dynamics and control development, we 
have tacitly assumed that the tension may be a positive 
or negative quantity. Strictly speaking, of course, tension 
takes on only positive values. However, for each manipu- 
lator section, four cables operate in opposing pairs. Thus 
the “tensions7’ we refer to as F1 and F2 are actually differ- 
ential tensions measured by mechanical subtraction. Two 
load cells convert the differential tensions into electrical 
signals, one of which is plotted in figure (6). A schematic 
for this description appears in figure (7). 

6 Conclusions 

In summary, we began by condensing the general spa- 
tial energy expressions for small-strain rods into simpler 
forms for which the dynamics exhibit greater tractability 
and usefulness. These simplifications employed a few key 
assumptions and observations, justifiable for the unique 
type and design of continuum robots at hand. . Subse- 
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pletely, and little is known about the structural stabil- 
ity of multiple section robots (i.e. buckling and snap- 
through, not to be confused with dynamic stability). Cur- 
rent work focuses on large deflection dynamic modeling, 
and the serial connection of multiple sections. Clearly, 
the modeling efforts are only in their infancy, and the 
field of continuum and hyper-redundant robots in general 
presents many unsolved and challenging problems. 
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