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Abstract

Qver the past several years, there has been a rapidly ex-
panding interest in the the study and construction of a
new class of robot manipulators which utilize high de-
gree of freedom, or continuous, backbone structures. In
this paper, we consider and illustrate some basic prop-
erties of a class of “hyper-redundant” robots, known
as “continuum” robots. We base our analysis around
remotely-driven, tendon-actuated manipulators such as
the Rice/Clemson “Elephant’s Trunk”. We discuss such
issues as the kinematic model, the relationship between
tendon lengths and bending, and desirable design con-
straints for continuum robot mechanisms.

1 Introduction

By obscrving manipulation methods in nature, one may
eventually reach the conclusion that rigid-link, low degree
of freedom devices should meet the majority of manipula-
tive and locomotive needs. However, some creatures make
use of alternative methods based on very high degree of
frcedom (HDOF) backbones, such as snakes, or contin-
uous “trunk” or “tentacle” structures. These manipu-
lators, generally termed hyper-redundant, exhibit unique
capabilities including extremely enhanced maneuverabil-
ity. Hyper-redundant manipulators have the potential to
navigate extremely complex paths, and to suffer localized
damage or faults while still maintaining a healthy degree
of functionality. In principle, this makes them suitable
for a varicty of dclicate and dangerous tasks where a tra-
ditional robot could not reach, or where failure of a tra-
ditional robot would completely paralyze all subsequent
operations. Examples of such tasks are nuclear waste
inspection and removal, and navigation or inspection of
highly cluttered environments such as collapsed buildings.

In this paper we will concentrate on the fundamentals
of a specific type of continuum robot, frequently refer-
ring to the Rice/Clemson “Elephant’s Trunk” [2]. This is
a type of remotely-actuated device which uses cables, or
tendons generally, to transmit forces from a motor plat-
form into the trunk itself. The salient feature of the Ele-
phant’s Trunk is that its high number of links (16), com-
bined with the small size of each link, allow us to closely
approximate it as a truly continuous backbone. Similar
to the Elephant’s Trunk but much larger in scale is the
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GreyPilgrim “EMMA” serpentine manipulator [4]. Other
robots in our laboratory do in fact possess continuous
backbones made of various materials, and the following
problems and theories apply to all of these robots. We
will formulate a continuous backbone model for the ro-
bot kinematics, address the relationship between cable
lengths for tendon-driven continuum robots, and use our
observations to infer several design rules for the construc-
tion of such manipulators.

Several researchers have worked in the area of hyper-
redundant or HDOF manipulators for various rcasons. In
Japan, Hirose pioneered the development of snake-like ro-
bots, especially with regards to locomotion; an overview
of his work exists in {1}. Also, Mochiyama, ct. al., have
investigated the problem of controlling the shapc of an
HDOF rigid-link robot with two-degree-of-frcedom joints
using spatial curves [6]-[8]. For robots posscssing contin-
uous back-bones, known as “continuum robots”, a good
overview exists in [15]. These authors plus Suzumori, ct.
al., in [16] have done significant work in flexible hydraulic
micro-actuators for grippers, which arc cssentially small,
flexible, 3-DOF manipulators. The primary body of work
upon which we draw is that of Chirikjian and Burdick, [9]-
[13], who laid the foundations for the kinematic theory of
hyper-redundant robots.

2 Background

Differential geometry has provided a natural starting
point for the theory of hyper-redundant and continuum
robots. Because we will not be using it in this paper, we
defer the details of its usc in robotics to other sources, in-
cluding the references of Mochiyama, [6]-[8]. However, we
retain the basic essence of the differential-gecometric de-
scription of spatial curves; that is, a 3-dimensional curve
C may be parametrically described by a vector z(s) € R3,
and an associated frame Q(s) € %**3 whosc columns crc-
ate the frame bases (sce figure 3), where the independent
parameter s is related to the arc-length from the origin of
the curve. The parameterization variable s usually varics
in s € [0,1], which is the convention in most litcraturc.
The curve is assumed continuous, and two functions, cur-
vature k(s) and torsion 7(s), contain information about
the shape of the curve.

Unfortunately, methods in differential geometry includ-
ing the well-known “Serret-Frenct apparatus” (scc [6],
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[7)) do not lend themselves easily to numerical compu-
tation for various reasons. In addition, while differential-
geometric methods excel at squeezing all of the descrip-
tive information out of any particular curve, they do not
in general describe actual robot kinematics without great
difficulty [14].

To remecdy this problem, Chirikjian and Burdick in
[9]-[13] suggested a different parameterization based not
upon curvature and torsion, but two “continuous angles”,
K(s) and T(s). They chose

CK SKCT —SKST
Q(s)=| —sx ckxer —cksT (1)
0 s cr

with cx = cos K(s), sk = sin K(s),etc. The position of
the robot z(s) = fos (0)g,(0)do where g,(s) is the sec-
ond column of Q(s) (the tangent to the backbone curve),
and [(s) is a function containing the local extensibility
of the curve. Essentially, at any point sp, (1) may be
viewed as describing the frame at the end of a universal
joint (U-joint) with angles K(so) and T'(sp). The robot
“grows” from the origin by integrating to get z(s). At
each point, Q(s) contains the robot’s orientation, and the
robot’s shape is defined by the behavior of the functions
K(s) and T(s). In the plane, T(s) = 0 and 9—1%52 =
k(s), the classical curvature. (For ease of notation, we
say that the time-varying function g(s,t) has derivatives
i‘%gﬂ 2 4(s), and d—gidst—’tl will be denoted explicitly or as
9¢(s,t) hereafter.)

While this description provides a solid foundation for a
great deal of theoretical work, the specific frame Q(s) il-
lustrated in (1) still does not accurately describe the kine-
matics of any known physical continuum robot. Rather, it
provides an “imaginary” robot to which a real (sufficiently
high degree of freedom) rigid-link robot is matched or
“fitted” as closely as possible. Unfortunately the method
of curve fitting assumes that one can exactly control the
parameters of the real robot, and that its characteristics
are completely known, which is not the case in general. A
continuum tendon-driven robot is essentially an infinite-
degree-of-freedom device, controlled by applying forces or
torques at periodic locations along the robot’s backbone.
Generally, this means that a specific set of tendon lengths
does not imply a unique pose for the robot, so the kine-
matic model must reflect physical parameters such as the
backbone stiffness profile, friction between the cables and
the cable guides, and external forces due to gravity. These
are qualities which the kinematics of traditional rigid-link
robots need not reflect.

3 Kinematic Model

Although the Elephant’s Trunk [2] consists of many U-
joints for its backbone, their combined effect on the back-
bone orientation at any point does not cquate to the ori-
entation of a single U-joint, rendering the frame in (1) of

Figure 1: The Rice/Clemson Elephant’s Trunk is a 4-
section, 8-DOF manipulator. Its high number of links
allow it to approximate continuum robots.

limited use. The tendons cxert constraints on the move-
ment of the robot not reflected in the frame of (1) and
vice versa.

We begin by making some physical obscrvations on the
trunk (figure 1). It consists of 16 scgments periodically
spaced along the backbone, through which all the cables
run. Segments keep the cable shape close to the backbone
shape. Two pairs of cables attach to cvery 4" segment,
termed a “tic-down” or “termination” scgment. Four scg-
ments create a scction, which is the fundamental building
block of tendon-driven continuum robots. A 2-scction
planar robot is shown in figurc 2. Out of the planc, a
section is basically a 2-DOF manipulator, with two pairs
of opposing tendons orthogonal to cach other, and it is

Scction 2 -

o
§ | Pass-through segments !

j=———— Section 1

Figurc 2: A 2-scction planar backborne. In the plane, cach
scction is a “1-DOF manipulator”.
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Figurc 3: An illustration of how the angles o and 3 reflect
the robot’s shape.

nceessary to understand the behavior of a section before
we can comprehend the whole robot. Because cables do
not drive every scgment, these types of robots require the
backbone to cxhibit a restoring quality which will tend
to straighten the backbone out, cither with externally at-
tached springs or through the nature of the backbone ma-
terial.

We first ignorce external parameters such as gravity, and
assumc that the backbone consists of a homogenous, sym-
metric rod (or beam) which tends to spring back to a
straight linc. The rod is not allowed to twist or contract
or extend, and when bent, bends only in a plane perpen-
dicular to somc vector k. We align one end of the rod so it
lics on the e, axis of the elementary {e;, e,, €3} basis, and
attach it firmly to the origin. Thus we may create a frame
Q on the cnd of the rod using the axis/angle description
(18],

Q = [Rey o] [Re, gl Res,—o] (2)

where [R., o] rcpresents a rotation of o about e,.

In the absence of external disturbances and forces such
as gravity, o will in general remain constant with §(s)
varying, as in figure 3. In other words, a section always
operates in a plane containing es; angle « determines ex-
actly which plane. (There is, of course, an alternative
view in terms of Euler angles, as in [16]) Now we may
move the frame along the backbone by varying 8(s). Mul-

tiplying (2) gives

c2 +s2cg Sa88 —CaSafl — cg)
Q(s) = —Sasp cg —CaSp 3)
—CaSa(l —cg) casSp 82 +c2eg

(where ¢, = cosa, etc.) which is the fundamental orien-
tational description of a section. Later we will note that
gravity may pull the robot out of the plane, and thus we
must concern ourselves with a(s) also. By convention we
take B(0) = 0. Since g,(s) is the tangent vector to the
backbone, the robot position is

26) = [ 0o = [ [sass ca cass )Tdr (4

Cable pair “a”

Cable pair “b”

Figure 4: Figure (A) illustrates the ideal (but impractical)
cable arrangement. Figure (B) shows the reality where
the cables follow the backbone in straight-line segments.

which completes the basic kinematic description of the
robot backbone.

Again, if we wanted to “fit” a real robot to a continuous
model, we could use a simpler model than (3). However,
(3) more closely represents what actually occurs when a
continuum robot bends, and we will need this accuracy
when analyzing how the cables behave. (For instance, (1)
implies that one axis of the moving frame always exists
only in the {e1, ex} plane, while observations of an actual
backbone disagree with this implication.)

4 Issues Related to Cables

In order to understand how the robot moves, we must ad-
dress the issue of how the cables bend as a scction bends.
Each section has two orthogonal pairs of cables, which
pass through the cable guide segments and attach at the
termination segment (see figures 2 and 4). We start with
the (incorrect) assumption that the distance between the
cable and the backbone at any point is constant, say a
distance of a (figure 4A). For convenience we align the
base frame of the robot (Q(0) = I3x3) so that the ca-
bles start at £ag (0) = [ +a 0 0 ] for onc pair and
+ag,(0)=[ 0 0 =a ]T for the other. The choice of +
or — depends on which cable in the pair is under consid-
eration.

Thus, as the backbone bends, the cable pairs follow the
path

e = " 4,(0)do & ag, (s) (5)
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]
Ty = /ng(a)d(fiags(s).
Without loss of generality, we substitute g,(s) =

fo 44,(0)do, and similarly substitute for g,(s), so that
(dropping the similar expression for the second cable pair)

Lo = /08 {22(0) + ag'l(a')} do. (6)

The expression for ¢, (s) will contain &(s) and B(s), but

& = 0 for robots in the absence of external forces. With
this in mind, it is straightforward to see that

/OSQQ(U) {1 iaﬁsina} do
/8g2(0) {1 :baﬂcosa} do
0

3]
|

(7)

I8
&
|

Recalling the general form of a backbone curve, z(s) =
f;l(a)gz(o)do’, evidently I(o) = 1+ af(0)sina. From
this observation we can extract the cable lengths L., and
L.y at any point by integrating to obtain

1
L, = / 1+ afB(c)sinads =1+ af(1)sina (8)
0
1
Ly = / 1+ af(0) cosado =1+ af(1) cosa
0

and, noting that the cables have unit length when the
robot is not bending, the cables change length according
to

ALca =
Ach =

+af(1)sina
+afB(1)cosa.

)

Expression (9) illustrates an important quality of the
tendon-driven section: if there are sufficiently numerous
segments to allow the cable to approximately follow the
backbone shape, changing cable lengths directly affects
the orientation of the end of the section (which may be the
end-effector, or the beginning of another section). The
actual path of the backbone is determined by a number
of factors, most notably minimum potential energy, with
orientation as either a boundary condition or a system
constraint. Expression (8) also suggests (as is in fact the
case) that as long as the section does not bend signifi-
cantly out of plane, it will maintain its end-orientation
even in the presence of external disturbances (figurc 5).
This is manipulator self-motion on orientation: For cach
section we fix 3(0) and control 3(1) by changing appro-
priate cable lengths. In between, B(s) is cssentially free
to assume one of an infinite array of configurations, obey-
ing external physical system constraints. From this, we
see that these types of robots possess an interesting and
useful characteristic — inherent compliance. Since the con-
trollable quantities are orientations, actual backbone po-
sition may vary (through orientational self-motion and

Figure 5: An 11-segment 1-DOF planar section bends into
a semi-circle (top). Its end-orientation remains constant
even in the presence of an external force (bottom).

minimum energy principles) to conform around objects
in the environment, mitigating the need for complex force
or impedance control schemes. For completeness, we note
that, since the change in cable length is a mcasurable and
controllable quantity, the inverse of (9) is

a = tan™! ——ALCG
- ' Ach
B1) = +:VAL.2+ALL?

using the 4-quadrant arc-tangent.

Practically speaking, keeping the cables a constant dis-
tance from the backbone presents great difficulty; in re-
ality we must thread the cables through guide scgments
(pass-through segments) and allow the cable to approx-
imate the backbonc curve similar to the perimeter of a
polygon, as in fig 4B. This implics that a scction should
have as many pass-through scgments as possible. Never-

(10)
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Figurc 6: A closc-up of two segments to illustrate how
cable lengths rclate to bending.

theless, while (9) predicts that the amount of cable pulled
in cquals the amount let out, in practice this is not quite
true and it is necessary to reflect this in the mechanical
design.

In order to account for the discrepancy, assume for the
sake of illustration a continuum planar robot (say, o =
0), with pass-through segments which keep the cable a
distance a from the backbone. If the amount of bending
is not too large, the backbone assumes a nearly circular
arc between two scgments (we discuss this issue later).
Assuming not too much out-of-plane bending, the radius
of the circle with respect to the cable is [—13 With an
arc length of ¢ between segments, the arc angle is § =
Be (figure 6). From this we can deduce the following
rclationship,

2sin (-C-ﬂ) = —l—l'—:—-— (11)
2 +—a
B
where [. is the cable length between 2 segments. Solving
for I, and simplifying yields
lo=c(1- ,Ba) sinc (gﬂ) (12)
where we take sinc (t) £ -s’—"t@

To get an estimation of true cable length for a whole
section consisting of n segments, we divide the section by
attaching n segments of equal length at locations sg, s1,
2, ..., Sn and replacing arc length ¢ with ¢ = s;—s;_;. We
also “sample” 8 at the same locations, i.e. B(sg), B(s1),
etc. Summing over the entire section using (12) gives

=0 =0

(13)

>t = 3 smsin)1-ais)sine (L= ).

By noting that sp = 0 and s,, = 1, spacing the s;’s evenly
yiclds n ~ 1/As where As 2 s; — s;_;. Taking the limit
kid .
Jim_ Z As(1 — af(s;)) sinc

of (13) as n — oo, we obtain
1.
700
= (2n

1
/0 (1 —afB(s))ds = 1 — afB(1) (14)

Il

which is the ideal tendon length vs. bending relationship.
Recleasing the constraint to work in the plane, i.c. a #
0, transforms (14) exactly into the idcal tendon length
cxpression (8).

5 More on the Backbone

Given that the backbone in a section always attempts
to straighten out into a line, when the end-orientation
changes, the backbone will assume a minimum potential
cnergy configuration. The constraint for minimum cnergy
provides enough information to describe a(s) and B(s) in
a differential system. At a minimum, diffcrent types of
potential energy stored in the robot will be “spring” en-
ergy (the tendency of the backbone to return to a straight
line), inertial energy due to a load on the end of the ro-
bot, and inertial energy due to the robot’s own mass. By
observing how the frame Q(s) changes, we may quantify
the spring energy as

SE = /01 Su(s)

where w(s) weights the relative “bendability” of the back-
bone along its length, and ||-{| 7 is the Frobenius norm, or
‘F’ norm. For the frame chosen in (3),

2
ds
F

Q(s)7Q(s)
| |

(15)

SE = /01 w(s) [2&2(1 —cosf3) + 52J ds. (16)

In general we may model the potential energy from grav-
ity as

1
PE= /0 gh(als), B(s))ds

where ¢ is the gravitational acccleration, and
h(a(s), B(s)) contains quantities of mass times hcight.
For instance, assuming gravity acts in thc direction
of e;, a mass m; on the end of the backbonc gives

(17)

PE = gfol my sin(a) sin(B)ds. By summing the cnergics
in (16) and (17) we can obtain a cost function to be
minimized by utilizing the Lagragian,

L =w(s) [dz(l —cos fB) + %ﬁQ + gh(a(s), B(s)). (18)

According to the rules of variational calculus [17] we may
then set
oL doL

oL d oL aL d oL
da  dsd&

;ﬁ*@@- (19)

2548



which becomes the differential system

(1 - cosf) = 5—%% - gaa — cosB) — &3(sin B)
b= L2 -Zh+dsing) (20)

where w(s) is a nonzero, pre-determined function inde-
pendent of a and B. The initial and final conditions on
(20) are

50) = 0 B)=1VALZTALY (@)
a(0) = tan’ (2—%?:) &(0)=0

which is to say, we expect a(s) to remain constant, with
the final condition on B(s) determined by the desired
orientation of the backbone section. Upon close inspec-
tion, the system in (20) contains a singularity at 8 = n,
n = 0,1,2..., which cannot be avoided because 3(0) = 0.
Since the study of non-linear ODE’s with singularities is
a subject too lengthy to cover here, we will simply note
some of the qualitative features of (20).

First, we note that in the absence of gravity (g = 0),
the expression involving & contains no forcing or restor-
ing terms, i.e. terms independent of & and &. Thus, we
can probably expect a to remain constant over the given
backbone section because &(0) = 0. (This is borne out
by numerical computations and observation, but is by no
means analytically clear due to the singularity.) Similarly,
if & is relatively small (or zero), &*(sin8) will be negli-
gible, and the calculation for 8(s) decouples from terms
involving «. Further, in practical laboratory devices we
find that it is simpler to construct devices of constant
“bendability”, thus W = 0 for a section. Gathering these
observations together, we may qualitatively observe that,
if the ratio Z is small enough, then & will remain small,
rendering &° negligible. With w = 0, the calculation of
B(s) greatly simplifies, since

h .
o _ 0- B + (verysmall) - sin B

B = (small) - Y

(22)

so, in the plane or with total absence of gravity, B8=0
implying 8(s) = ps (where py; = 31/AL,Z+ ALG2%);
this is the expression for a circle of constant radius ;17, as
expected.

In general, we can state the following rather intuitive
design rules: a manipulator section should be stiff enough
so that the quantity ZVh(a(s), 8(s)) remains acceptably
small, and each section’s backbone should preferably be
constructed of a homogeneous material which does not
prefer to bend at any particular point.

6 Attaching Multiple Sections To-
gether

Having discussed the properties of a single 2-DOF sec-
tion of backbone, we naturally desire to progress to a
discussion of the entire robot, consisting of many such
sections attached in series. There are several questions
to consider when building the robot, including whether
to maintain the tendons for a distal section at a non-zero
distance from the backbone of a proximal section. Also,
the designer must consider how many segments cach sec-
tion should consist of in order to strike a balance between
minimizing friction on the cables and keeping their shape
close to that of the backbone. Essentially, we can see the
overall kinematic structurc by multiplying several section
frames together, from (2),

Q(S) = [Rez.m ][Re, B, ][Rezya2~ﬂ| ][Rel .ﬁz][Rez,an—az]
T [Rez y X, —Cyp ey ”Rel .ﬁ,,,”Rez y-aﬂ] (23)

where we have attached n sections together. The position
z(s) = fos g,(0)do as before, for a non-cxtensible back-
bone. Now the position and orientation arc functions of
a;(s) and B;(s) for i = 1..n, which must be computed for
each section. These functions have a special form illus-
trated in (24). Setting the robot’s total backbonc length
to unity, we may divide the robot into n scctions in a
similar fashion to dividing a section into segments. We
sample the total arc length at points sg, 51, S2, ..., Sn, nOte
that sp = 0, and define the “i**” scction as that where
s € [si_1,s;]. Then, functions a;(s) and B,(s) have the
general form

0 s < 81
a;(s) =S oafs) si-1<s<s; (24)
as;)) s>s;

and similarly for §,(s). Note that thesc functions vary
only on s € [s;—1,8;], and rcmain constant before and af-
ter that interval. The variable portions, a(s) and G(s),
obey the rules for a scction from (20); only a. slight mod-
ification must be made to the initial conditions so that

Bi(si—1) = Bi_1(si-1)- (25)

In general, the complete description in (23) is cumber-
some and unwicldy, though quitc similar in that respect
to traditional rigid-link robots. The simplest place to be-
gin analyzing the bchavior of multiple scction robots is
again in the planc. There we discuss such issucs how to
map the desired robot shape back to a finite number of
actuators [3]. We can employ physical, kincmatic prop-
crtics cxplored in this work to make intclligent choices
regarding modcs for modal shape decomposition; sce {9].

7 Conclusions and Further Work

In this paper we begin to cxplore the basics of cable-
driven continuum robots. We lay the mathematical foun-
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dations with the assignment of basic kincmatic nccessities
such as the coordinate frame, then proceed with a discus-
sion of how changing cable lengths varics the shape of
the robot backbone. We bricfly touch on the problem
of connccting multiple scctions together to form a higher
degree-of-freedom device.

While cable-driven backbone robots do posscs several
drawbacks, they appear to offer an overall viable (and
less expensive) alternative to simply building high-degree-
of-freedom rigid-link robots. Additionally, they cxhibit
propertics such as inhcrent compliance and a high de-
gree of scalability which may make them quite useful in
cluttered and crowded cnvironments. Current and future
work centers on characterizing and exploiting these prop-
crtics, obtaining better kinematic and dynamic models,
formulating appropriatc motion control laws, and con-
structing cxperimental prototypes. Also, because of in-
evitable unmodcled cffects and external forces, no kine-
matic description will be perfect and work must be done
to investigate dircct-sensing options (perhaps vision) for
fusing observations of where the robot is with where it is
cxpected to be.
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and NSF/EPSCoR grant EPS-9630167. Thanks to Brian
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