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Abstract: The authors’ research focuses generally on
the study of dynamical systems that evolve over time do-
mains (or “time scales”) that are not necessarily topo-
logically equivalent to R and Z. This paper examines
the stability of a certain class of dynamical systems, the
“switched linear system,” on an arbitrary discrete time
scale. Notably, a region of temporal stability is derived,
which constrains the graininess of the time scale.

1. Background: Recently, researchers have increas-
ingly turned their attention to the problems posed by dy-
namical systems that are modeled as mixtures of discrete-
event switching logic with standard differential or dif-
ference equations. These systems are often termed
“switched systems.” At their most basic, switched sys-
tems consist of differential/difference equations whose
parameters (e.g. system coefficients) change discontinu-
ously. Classic examples are the vehicle transmission sys-
tem, in which the engine/transmission dynamics change
essentially instantaneously through gear shifts; biological
systems in which cell regulatory dynamics change dras-
tically at various protein concentration thresholds; and
real-time distributed control networks, in which closed-
loop controllers share a congested communications link
connecting sensors, actuators, other controllers and other
communications clients, leading to highly variable tim-
ing characteristics. Two excellent overviews are given in
the references [4, 7].
The problems posed by distributed control networks have
been examined by several groups, and present a partic-
ularly interesting challenge because the underlying time
domain—the times at which communication packets are

sent/received, sensor samples are reported, etc.—is nei-
ther continuous nor discrete in the usual sense. In other
words, neither the continuous real line R nor the integers
Z appropriately capture the “temporal dynamics” of the
system.
Fortunately, recent developments in the mathematics
community seem well suited for problems of non-
uniform time domains. The study of dynamic equations
on time scales (DETS) has led to new understanding of
how to model and analyze dynamical systems on virtu-
ally any time domain that is a subset of R, through the
use of generalized differential equations [1]. Such do-
mains are termed “time scales”, and given the symbol
T. As expected, when T = R, DETS reduces to stan-
dard continuous differential equations; when T = Z (or
T = hZ with h a real number) DETS reduces to standard
difference equations. Between those two extremes are
many interesting time scales including mixtures of con-
tinuous closed intervals interspersed with discrete points.
A complete exegesis of the subject of DETS is beyond
the scope of this paper, but several introductory resources
exist, including a brief web-based tutorial. Table 1 high-
lights some differences and similarities betweenR, Z and
T.
The present work is concerned primarily with discrete
time scales (no continuous intervals) with non-uniform
step sizes. These are the time scales that naturally fit
the problems of real-time networked systems. But per-
haps even more compelling is the fact that time scales be-
sides R and Z are themselves a design parameter—to one
degree or another, the timing of digital communications
systems is under the influence of the designer. A natu-
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ral question, and one we seek to address in this work, is:
what constraints must be placed on the design of the sys-
tem’s time domain itself? We show that there is a “tem-
poral region of stability” that constrains the construction
of T, in addition to the well-known regions of stability
that constrain the eigenvalue placement for switched lin-
ear systems. We follow with numerical case studies that
illustrate the nature of the temporal region of stability,
and conclude with some open questions.

2. Problem Statement: Let A := {A1, A2} be a set
of matrices in Rn×n with non-repeated eigenvalues, and
s : T → {1, 2} be a switching signal, where T is a time
scale. The switched linear system

x∆(t) = As(t)x(t), t ≥ 0, x(0) = x0, t ∈ T, (1)

has unique solution x : T→ Rn. Throughout the ensuing
discussion, we make the following assumptions:

(A1) Switching signal s is arbitrary over T, ergo the “ar-
bitrary” or “unconstrained” switching problem.

(A2) All eigenvalues of Ai ∈ A lie strictly within the
Hilger circle for all t ∈ T. (Each Ai is “stable”,
meaning that x∆(t) = Aix(t) has ‖x(t)‖ < ∞ for
all t ≥ 0.)

(A3) All elements ofA commute, i.e. AiAj−AjAi = 0
for all Ai, Aj ∈ A.

(A4) T has the following properties: (i) 0 ∈ T, (ii)
T is unbounded above, and (iii) T has graininess
0 < µmin ≤ µ(t) ≤ µmax for all t ∈ T.

In this work, we constrain the number of switching sys-
tems to two for clarity and brevity; this constraint is not
generally necessary, however.
To prove the stability of (1), we construct the Lyapunov
candidate

V (t) = xT (t)P (t)x(t),

with P (t) = PT (t) > 0. (We henceforth assume that all
quantities are time-varying except for Ai, unless other-
wise indicated.) Thus, stability of the arbitrarily switched
system (1) requires

AT
i P +PAi +µAT

i PAi +(I+µAT
i )P∆(I+µAi) < 0, (2)

for i = 1, 2. The approach taken next involves two steps:

(a) Set

AT
i P + PAi + µAT

i PAi = −Mi, (3)

where Mi = MT
i > 0 and solve for P .

(b) Restrict (or design) the time scale T such that

(I + µAi)T P∆(I + µAi)−Mi < 0. (4)

We next comment on the feasibility of these two steps.

3. Switched System Stability: First, in step (a), it is
required to solve (3) for P . From the initial assumption
that Ai is stable, the work of DaCunha [2] gives

P (t) =
∫

S
ΦAi

(s, 0)T Mi(t)ΦAi
(s, 0)∆s, (5)

where ΦAi
(t, 0) is the transition matrix that solves

z∆(s) = Aiz(s) with s ∈ S and z(0) = z0, and
Mi = MT

i > 0. The region of integration is S = µ(t)N0,
i.e. S = {0, µ(t), 2µ(t), 3µ(t), . . . }. The transition ma-
trix is always full rank, and, because S is itself a uniform-
graininess time scale, we have ΦAi(s, 0) = eA(s, 0).
It is not obvious at the outset that solving (3) for i = 1
will necessarily give the same solution as for i = 2. To
arrive at a so-called “common solution” for P , we pro-
pose the following theorem.

Theorem 1 (Common Solution) P is a common solu-
tion of (3) for i = 1, 2 if

M1(t) =
∫

S
ΦA2(s, 0)T Q(t)ΦA2(s, 0)∆s, (6)

M2(t) =
∫

S
ΦA1(s, 0)T Q(t)ΦA1(s, 0)∆s, (7)

where Q(t) = QT (t) > 0 is arbitrary.

Proof: By direct substitution of either (6) or (7) into (5),
P is independent of i because

P (t) =
∫

S
ΦA1(s, 0)T M1(t)ΦA1(s, 0)∆s

=
∫

S

∫

S
ΦA1(s, 0)T ΦA2(ω, 0)T Q(t) · · ·

· · ·ΦA2(ω, 0)ΦA1(s, 0)∆ω∆s

=
∫

S

∫

S
ΦA2(ω, 0)T ΦA1(s, 0)T Q(t) · · ·

· · ·ΦA1(s, 0)ΦA2(ω, 0)∆s∆ω

=
∫

S
ΦA2(ω, 0)T M2(t)ΦA2(ω, 0)∆ω.
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Table 1: Mathematical expressions on R, Z, and T
R Z T Comments
ẋ(t) = f(x(t)) x(t + 1) = f(x(t)) x∆(t) = f(x(t)) The generalized (Hilger) dynamic derivative
x(t) = ea(t−t0) x(t) = at−t0 x(t) = ea(t, t0) Solutions of 1st-order linear differential equations
a ∈ {λ ∈ C :
Re λ < 0}

a ∈ {λ ∈ C :
|λ| < 1|}

a ∈ {λ ∈ C :
|1 + µλ| < 1} Left-half C plane; unit circle; Hilger circle

e(a+b)t (ab)t ea⊕b(t, 0) Multiplication of two exponential functions

The commutativity of the transition matrices in lines 2
and 3 above is made possible by the assumption A3. (The
stability of switched linear systems with a commuting
family of Ai is an established result from continuous-time
analysis too.) In line 1, it is seen that P solves (3) for
i = 1. On the other hand, in line 4 we see that P solves
(3) for i = 2. Thus P is a common solution. ¤
To justify that step (b) is possible, we observe that

P∆ =
P σ − P

µ
.

In view of the Common Solution Theorem, P is a func-
tion of time though the domain of integration and the ma-
trix Q(t). If Q is set constant, then P σ depends only on
µσ, through the domain of integration Sσ = µσ(t)N0.
Thus it is always possible to reduce the magnitude of P∆

(and therefore of (I +µAi)T P∆(I +µAi)) by setting µσ

“near” µ. In effect, we may design the time scale “on the
fly,” determining the next graininess as a function of the
current graininess in such a manner that (4) holds at all
times. The following analysis will make extensive use of
a lemma.

Lemma 2 (Quadratic Integral) Let A ∈ Cn×n be di-
agonal and stable on time scale S = hN0. Then

∫

S
ΦA(s, 0)T ΦA(s, 0)∆s =

[−2Re A− hAT A
]−1

,

(where transpose of a complex matrix implies complex
conjugation).

Proof: Since A is diagonal, it is sufficient to prove the
scalar case with a = A(1, 1). On constant-graininess
time scale S, the transition matrix equates to the time
scale exponential, Φa(s, 0) = ea(s, 0). Thus,
∫

S
ΦA(s, 0)T ΦA(s, 0)∆s =

∫

S
eā(s, 0)ea(s, 0)∆s

=
∫

S
eā⊕a(s, 0)∆s.

The exponent calculates to

ā⊕ a = 2Re(a) + h |a|2 =
|1 + ha|2 − 1

h
.

Since (by assumption) |1 + ha| < 1, it follows that ā⊕ a
is strictly within the Hilger circle on S, and therefore sta-
ble. Consequently, the integral is

∫

S
eā⊕a(s, 0)∆s =

1
−2Re(a)− h |a|2 .

The lemma claim follows immediately. ¤
To realize the benefit of the Quadratic Integral Lemma,
we first note an important theorem [3] which states that
real matrices commute if and only if they are simultane-
ously diagonalizable. Therefore, under assumption A3,
there exists a (possibly complex-valued) constant similar-
ity matrix S such that Ai = S−1JiS for i = 1, 2 with Ji

a diagonal matrix of eigenvalues. (S is guaranteed to be
invertible because all Ai were defined with non-repeating
eigenvalues.)
The central question addressed next is, at any time t with
graininess µ(t), what is the maximum allowable “next
graininess” µσ(t) such that (4) holds for all i? This ques-
tion suggests that there are stable pairs {µ, µσ} at every
point in time. The union of all such pairs forms a two-
dimensional “temporal region of stability”R in the µσ(t)
vs. µ(t) plane.

Theorem 3 (Region of Stability) Define

Ki := [2 Re Ji + µJ∗i Ji] , i = 1, 2,

with ∗ denoting complex-conjugate transposition. Define
region R ⊂ R2 consisting of pairs {µ, µσ} such that

K−1
1 K−1

2 Kσ
1 Kσ

2 > (I + µJ1)
∗ (I + µJ1) , (8)

with µmin ≤ µ(t) ≤ µmax for all t ∈ T, and Ai =
S−1JiS. Then (1) remains stable under arbitrary switch-
ing if {µσ(t), µ(t)} ∈ R for all t ∈ T.
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Proof: First we note that all K matrices are diagonal.
Next, stability of (1) requires that (4) must hold, and
therefore any {µ, µσ} pair that preserves (4) is a mem-
ber of R. We proceed to compute the left-hand side of
(4). To begin, we choose Q = S∗S. Thus,

P (t) =
∫

S

∫

S

(
S∗ΦJ1(s, 0)∗ΦJ2(ω, 0)∗S−∗

)
S∗ · · ·

· · ·S (
S−1ΦJ2(ω, 0)ΦJ1(s, 0)S

)
∆ω∆s

= S∗
[∫

S
ΦJ1(s, 0)∗ΦJ1(s, 0)∆s · · ·

· · ·
∫

S
ΦJ2(ω, 0)∗ΦJ2(ω, 0)∆ω

]
S

= S∗ [−2 Re J1 − µJ∗1 J1]
−1 · · ·

· · · [−2 Re J2 − µJ∗2 J2]
−1

S.

Similarly,

P σ = S∗ [−2Re J1 − µσJ∗1 J1]
−1 · · ·

· · · [−2Re J2 − µσJ∗2 J2]
−1

S.

After eliminating the S terms, (4) for i = 1 now reads

0 > [2Re J1 + µσJ∗1 J1]
−1

[2Re J2 + µσJ∗2 J2]
−1

− [2Re J1 + µJ∗1 J1]
−1

[2Re J2 + µJ∗2 J2]
−1

+[
1

µ
+ 2Re J1 + µJ∗1 J1]

−1 [2Re J2 + µJ∗2 J2]
−1

,

and similarly for i = 2. After some simplification, ex-
pression (8) arises, forming a set of 2n inequalities that
implicitly bound µσ in terms of µ. ¤
For any given choice of µ, it is the minimum of the 2n
inequalities that determines the bound on µσ. Note that
increasing the magnitude of the left-hand sides requires
decreasing µσ , implying that µσ is upper-bounded by
these inequalities. Furthermore, it is significant that the
switching sequence (i.e. switching from A2 to A1 or vice
versa) does not matter: J1 and J2 may be swapped with
no change in the inequalities above. We now come to an
interesting result.

Corollary 4 (Unit Slope) Under arbitrary switching,
the system of (1) will remain stable if µσ(t) ≤ µ(t) for
all t ∈ T.

Proof: The result follows from (8) by noting that the norm
of the right-hand sides must always be less than 1. By as-
sumption, all diagonals of Ji are strictly within all Hilger
circles defined by T. Thus, ‖I + µJi‖ < 1. On the other

hand, the norm of the left-hand side is greater than or
equal to 1 when µσ(t) ≤ µ(t). Thus, in a plot of µσ

vs. µ, the region including and below the unit-slope line
µσ = µ contains stable {µ, µσ} pairs. ¤

4. Case Studies: Armed with equation (8), we may
now view examples of the region of stability in Figures 1
and 2. Each region is contained within a bounding box
defined by 0 < µ(t) ≤ µmax and 0 < µσ(t) ≤ µmax.
In the figures, systems of dimension n = 2 are chosen,
and two features are computed: (a) the bounding curves
defined by (8) as if is was an equality, and (b) the shaded
region R of {µ, µσ} pairs that satisfy (4). It is immedi-
ately evident that R is, as expected, the area underneath
the minimum of the bounding curves.
As predicted by the Unit Slope Lemma, no bounding
curves dip below the line µσ = µ, but some enclose sig-
nificantly more area than others. In practical terms, then,
it is sometimes possible to design a time scale in which
µσ (the next time step or sample period) is significantly
larger than the current sample period. Sometimes, how-
ever, µσ can only be fractionally larger than µ. In effect,
then, the dynamics of each switched system dictate how
much variability, or volatility, is allowable in the grain-
iness of T. Equation (8) sheds some light here: cases
where a bounding curve lies very near to µσ = µ are
those for which ‖I + µJi‖ ∼= 1. These cases arise when
an eigenvalue of Ai is very near the Hilger circle. Since
there is a different Hilger Circle for each different µ, the
only eigenvalues that are always “near” the Hilger circle
are those near zero.

5. Conclusions and Further Work: There are sev-
eral intriguing avenues for further investigation. One un-
resolved question involves the necessity of the region R.
The preceding discussion demonstrates sufficiency—that
the system of (1) will be stable if {µ, µσ} ∈ R—but in
point of fact, upon simulating the dynamics of (1) with
random (stable) Ai, we have not found evidence of unsta-
ble behavior even when a majority of the {µ, µσ} pairs in
T reside outside of R.
At first glance, it might seem that solving (2) for P ,
rather than (3), would obviate the need to satisfy (4).
Equation (2) (or rather, the left-hand side of (2) when
equated to some symmetric, negative definite matrix) is
termed the time scale dynamic Lyapunov equation (TS-
DLE) whereas (3) is the time scale algebraic Lyapunov
equation (TSALE). A solution to the TSDLE does in fact
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Figure 1: Region R is shaded below for two systems
with eigenvalues {−0.78,−0.6} and {−0.5 ± 0.5j}.
Equation (8) is solved as a set of 4 quadratic equalities,
yielding a set of 8 curves that are functions of µ and µσ;
R must be the area below all of them. Four curves are
outside the plot axes and four can be seen below.
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Figure 2: Region R is shaded below for two systems
with eigenvalues {−1.2,−0.8} and {−1± 0.2j}.
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exist [6]; however, it has two important drawbacks. First,
to date there is no known method to construct (or even
prove the existence of) a TSDLE solution that is common
to two or more systems, i.e. a P that is independent of
i, unless the graininess is constant. Second, the (unique)
solution of the TSDLE demands complete knowledge of
the entire time scale, raising questions of causality for
systems that dictate, or “design,” the time scale step-by-
step.
Also of interest is the question of constrained switching,
in which the choice of each successive system matrix Ai

is not arbitrary but based upon knowledge of t, µ(t), the
state variable x, or some other factor. Switching con-
straints may alter the shape and size of the region of sta-
bility.
Lastly, two comments on extensions of this work. First,
it is possible to extend the results to m > 2 multiple
switched systems. The analysis is similar, and the results
appear in a nearly-completed Ph.D. dissertation [6]. Sec-
ond, it is possible to extend the results to systems which
are simultaneously triangularizable, but not diagonaliz-
able (i.e. systems with repeated eigenvalues and gener-

alized eigenvectors). The analysis of this case appears in
[5].
In summary, this paper presents the sufficient conditions
for stability of switched linear systems on non-uniform
discrete time domains. In addition to the previously
known requirement that all Ai are stable and commuta-
tive, we show that the time scale itself must be restricted
or designed to preserve stability. A sufficient condition
is {µ, µσ} ∈ R, the region of stability defined by (8).
Switched systems that operate on non-uniform discrete
time domains arise in distributed control systems, where
controllers, sensors, actuators and other systems compete
for bandwidth on a common communications link.
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