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Abstract

Switched linear systems are a class of dynamical systems in which linear, time-invariant (LTI)
dynamics closely model system behavior for a period of time, after which the system parameters
suddenly (discontinuously) change, or ”switch,” and the system continues to evolve under new LTI
parameters until another switching instant. Switched linear systems are often found wherever a
dynamical system is coupled with supervisory control logic that can abruptly change the operating
mode of the system, e.g. the transmission of a vehicle or the regulatory dynamics of a biological
cell3. Until now, it has always been assumed that the underlying dynamics evolve naturally on
R or hZ (h > 0). However, many systems constructed with complex layers of computers and
communication networks do not fit the standard choices for time domain, so recently, researchers1,2

have been investigating the use of dynamic equations on time scales to enable system modeling on
unusual time domains T, where T is any closed subset of R. In this paper, we examine the stability
of switched systems on discrete time scales, with arbitrary switching instances. We show that there
exists a temporal region of stability for switched systems with simultaneously triangularizable
system matrices, and that this region is identical to the region for simultaneously diagonalizable
system matrices. It is henceforth assumed that the reader has a working knowledge of the field of
time scale mathematics.

Introduction

Consider the set of matrices A1, A2, . . . , Am ∈ Rn×n with switching signal s : T → 1, 2, . . . ,m,
where

x∆(t) = As(t)x(t) where t ∈ T, t ≥ 0 and x(0) = x0 (1)

We make the following assumptions about this system and the underlying time scale

A1 The switching signal s is arbitrary over T.
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A2 The eigenvalues of all of theAi are strictly within the Hilger circle for all t ∈ T. (This means
each Ai is “stable,” or x∆(t) = Aix(t) has ‖x(t)‖ <∞ for all t ≥ 0.)

A3 All of the Ai’s are regressive. (Meaning that (I + µ(t)Ai)
−1 exists ∀ t ∈ T.)

A4 All of the Ai’s commute, i.e. AiAj = AjAi ∀ i 6= j.

A5 T has the following properties: (i) 0 ∈ T, (ii) T is unbounded above, (iii) T has graininess
0 < µmin ≤ µ(t) ≤ µmax for all t ∈ T.

Note that all quantities can be assumed to be time-varying except for the Ai, unless otherwise in-
dicated. Without loss of generality, we restrict the following analysis to m = 2.

To investigate stability of (1), we define a Lyapunov candidate

V = x∗Px (2)

where P = P ∗ > 0 and ∗ denotes conjugate transpose. To ensure stability, we need

V ∆ < 0

⇒ A∗iP + PAi + µA∗iPAi + (I + µA∗i )P
∆(I + µAi) < 0. (3)

We now set
A∗iP + PAi + µA∗iPAi = −Mi (4)

where Mi = M∗
i > 0 and solve for P . It can be shown4 that P solves (4) for all i if

P (t) =

∫
S

ΦAi(s, 0)∗Mi(t)ΦAi(s, 0)∆s (5)

and

M1(t) =

∫
S

ΦA2(s, 0)∗Q(t)ΦA2(s, 0)∆s (6a)

M2(t) =

∫
S

ΦA1(s, 0)∗Q(t)ΦA1(s, 0)∆s (6b)

where S = µ(t)N0, Q = Q∗ > 0 is an arbitrary ”seed” matrix, and ΦAi(s, 0) is the transition
matrix that solves y∆(s) = Aiy(s) with s ∈ S and an initial condition y(0) = y0. Because S is a
constant-graininess time scale,

ΦAi(s, 0) = eAi(s, 0) = (I + µ(t)Ai)
s
µ(t) . (7)

Substituting (4) into (3) yields

(I + µAi)
∗P∆(I + µAi)−Mi < 0 for t ∈ T (8)
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where P∆ = Pσ−P
µ

. Note that the only terms in (8) which depend on t are µ and µσ.

We can now pose the following question: given a time t ∈ T, what is the regionR ∈ R2 such that
{µ(t), µσ(t)} ∈ R satisfies (8) for all i?

Results have been derived2 for the diagonal and simultaneously diagonalizable cases, and we make
note of them here. For simplicity, let

Ki := [2 Re Ji + µJ∗i Ji] (9a)
Kσ
i := [2 Re Ji + µσJ∗i Ji] (9b)

ThenR is defined as the set of all {µ(t), µσ(t)} such that

Kσ
1K

σ
2K

−1
1 K−1

2 > (I + µJi)
∗(I + µJi) for i = 1, 2 (10)

with 0 < µmin ≤ µ(t) ≤ µmax for all t ∈ T and Ai = S−1JiS, where Ji is diagonal. Note that
K−1
i always exists because Ki is diagonal and has non-zero eigenvalues as a result of A2.

Our objective is to investigate the simultaneously ”triangularizable” case.

Jordan Epsilon Form

We next explore the case where the Ai’s are no longer simply diagonalizable. Thus, we need a
more general form of the similarity transformation, A = S−1JS. Therefore, let A = S−1

ε JεSε with

Jε =


λ ε

λ ε
λ ε

. . .


where ε is arbitrary and 0 < ε < 1. Jε comes from the generalized eigenvector equations

Ax̄1 = λx̄1, Ax̄2 = λx̄2 + εx̄1, Ax̄3 = λx̄3 + εx̄2, . . .

⇒(A− λI)x̄1 = 0,
(A− λI)

ε
x̄2 = x̄1,

(A− λI)

ε
x̄3 = x̄2, . . .

⇒(A− λI)x̄1 = 0,
(A− λI)2

ε
x̄2 = 0,

(A− λI)3

ε2
x̄3 = 0, . . .

Thus, let Sε = [x̄1 εx̄2 ε
2x̄3 . . .] where the x̄i are the eigenvectors of A. This is a valid similarity

transform (as multiplication by a scalar doesn’t change the fact that the x̄i are eigenvectors). We
term Jε the “Jordan-epsilon form.” From here on, let S = Sε and J = Jε.
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It will be useful to look at J as the sum of two matrices, J = L+N , where

L =


λ 0

λ 0
λ 0

. . .

 , N =


0 ε

0 ε
0 ε

. . .

 .
N is a nilpotent matrix with ε on the superdiagonal, and L is a diagonal matrix of the eigenvalues.
Note that N being nilpotent of order n means that Nn = [0], where N (and A, L, and J) is n× n.

Triangular Transition Matrix

Remembering that s ∈ S := µ(t)N0, we may now rewrite (7) with h = µ(t) and z = s
h
∈ N0 to

obtain
ΦA(s, 0) = eA(s, 0) = (I + hA)

s
h = (I + hA)z. (11)

Applying the Jordan-epsilon similarity transform to A then gives

ΦA(s, 0) = (I + hA)z

= (I + hS−1JS)z

= S−1(SS−1 + hJ)zS

= S−1(I + hJ)zS

= S−1ΦJ(s, 0)S. (12)

Expanding ΦJ as a binomial series we get

ΦJ(s, 0) = (I + hJ)z

= (I + h(L+N))z

= ((1 + hλ)I + hN)z

=
z∑

k=0

(
z

k

)
(1 + hλ)z−k(hN)k. (13)

If z < n− 1, then this is the final form of the binomial series, and the series is finite. If z ≥ n− 1,
then the series is truncated at n− 1 because N is nilpotent, and we get

= (1 + hλ)zI +

(
z

1

)
(1 + hλ)z−1(hN) + . . .

+

(
z

n− 1

)
(1 + hλ)z−n+1(hN)n−1 + [0] + [0] + . . .

= (I + hL)z +
n−1∑
k=1

(
z

k

)
(1 + hλ)z−k(hN)k (14)
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which is still finite for any z. Now, let

ΦJ(s, 0) = (I + hL)z + E(s) = eL(s, 0) + E(s) (15)

where

E(s) :=
z∑

k=1

(
z

k

)
(1 + hλ)z−k(hN)k

(
recall z =

s

h

)
. (16)

In other words, E is an error matrix that depends on ε, is upper-triangular with zeros on the diago-
nal, and is at most of order εn−1. Note that ‖E‖ → 0 as ε→ 0.

Error Terms

In the following discussion, many such error terms will appear, so we list them here for the sake of
clarity:

Ei(s) :=
z∑

k=1

(
z

k

)
[1 + µλi]

z−k[µN ]k (17a)

E1i :=

∫
S

[
eL̄i(s, 0)Ei(s) + E∗i (s)eLi(s, 0) + E∗i (s)Ei(s)

]
∆s (17b)

E2 := −E11[2 Re L2 + µL∗2L2]−1 − E12[2 Re L1 + µL∗1L1]−1 + E11E12 (17c)
E3i := µ(I + µJi)

−∗E1j(I + µJi)
−1 − E2σ + E2 (17d)

E4i := µ(1 + µλi)N
∗ + µ(1 + µλ̄i)N + µ2NN∗ (17e)

E5i := E4i[(I + µJi)(I + µJ∗i )]−1 +K1E3iK2 (17f)

where j = 2, 1. Note: E2 is the same for i = 1, 2.

Generalizing the Region of Stability

Substituting (6a) into (5) for i = 1, we get

P =

∫
S

ΦA1(s, 0)∗M1ΦA1(s, 0)∆s

=

∫
S

ΦA1(s, 0)∗
(∫

S
ΦA2(r, 0)∗QΦA2(r, 0)∆r

)
ΦA1(s, 0)∆s

=

∫
S

∫
S

ΦA1(s, 0)∗ΦA2(r, 0)∗QΦA2(r, 0)ΦA1(s, 0)∆r∆s. (18)

Since Q in (6) may be any arbitrary, positive definite matrix, we choose Q = S∗S. Substituting
this and applying the Jordan-epsilon similarity transform Ai = S−1JiS to (18) gives

P =

∫
S

∫
S

(
S∗ΦJ1(s, 0)∗ΦJ2(r, 0)∗S−T

)
S∗S

(
S−1ΦJ2(r, 0)ΦJ1(s, 0)S

)
∆r∆s

= S∗
[∫

S
ΦJ1(s, 0)∗ΦJ1(s, 0)∆s

∫
S

ΦJ2(r, 0)∗ΦJ2(r, 0)∆r

]
S. (19)

We now need to investigate the integrals in this equation.
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Transition Matrix Quadratic Integral

Lemma 1 (Quadratic Integral). Let Ai = S−1JiS, where Ji ∈ Cn×n is a Jordan Epsilon Form
matrix, and be stable on time scale S = hN0. Then∫

S
ΦJi(s, 0)∗ΦJi(s, 0)∆s = −[2 Re Li + hL∗iLi]

−1 + E1i (20)

where Ji = Li +N , with Li diagonal and N nilpotent, and E1i is defined as in (17b).

Proof. Using the definition of ΦJ from (15) gives∫
S

ΦJi(s, 0)∗ΦJi(s, 0)∆s =

∫
S
[e∗Li(s, 0) + E∗i (s)][eLi(s, 0) + Ei(s)]∆s. (21a)

By assumption A2, the left hand side of (21a) converges. We can expand it to see

=

∫
S

[
eL̄i(s, 0)eLi(s, 0) + eL̄i(s, 0)Ei(s) + E∗i (s)eLi(s, 0) + E∗i (s)Ei(s)

]
∆s

=

∫
S
eL̄i(s, 0)eLi(s, 0)∆s+ E1i (21b)

where E1i is defined as in (17b). E1i must be finite because the integral on the left side of (21a)
converges and the first term of (21b) is positive definite.

The first term of (21b) is an integral of a diagonal matrix. We can use the diagonal Quadratic
Integral Lemma2 to say that∫

S
eL̄i(s, 0)eLi(s, 0)∆s = −[2 Re Li + hL∗iLi]

−1. (22)

Substituting this into (21), we have∫
S

ΦJi(s, 0)∗ΦJi(s, 0)∆s = −[2 Re Li + hL∗iLi]
−1 + E1i (23)

which is the lemma statement.

The result of Lemma 1 closely parallels the result for the diagonalizable systems. In other words,

lim
ε→0

∫
S

ΦJi(s, 0)∗ΦJi(s, 0)∆s = −[2 Re Li + hL∗iLi]
−1. (24)

The Region of Stability

Motivated by (9), we generalize Ki by redefining it as

Ki := [2 Re Li + µL∗iLi] (25a)
Kσ
i := [2 Re Li + µσL∗iLi] (25b)

(recall that, in (9), the Ji were diagonal, while now, the Li are the diagonal of Ji; also, K−1
i still

exists because of the same reasoning as before).
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Theorem 2 (Region of Stability). Given Ai = S−1JiS where the Ji are Jordan-epsilon form
matrices with Ji = Li + N and the Ai are stable on time scale T, there exists a region R ∈ R2

consisting of pairs {µσ, µ} such that

K−1
1 K−1

2 Kσ
1K

σ
2 > (I + µL∗i )(I + µLi) for i = 1, 2 (26)

with 0 < µmin ≤ µ(t) ≤ µmax for all t ∈ T.

Proof. Beginning with (19), we use Lemma 1 and (25) to say

P = S∗
[∫

S
ΦJ1(s, 0)∗ΦJ1(s, 0)∆s

∫
S

ΦJ2(r, 0)∗ΦJ2(r, 0)∆r

]
S

= S∗
[(
−[2 Re L1 + µL∗1L1]−1 + E11

) (
−[2 Re L2 + µL∗2L2]−1 + E12

)]
S

= S∗
[(
−K−1

1 + E11

) (
−K−1

2 + E12

)]
S

= S∗
[
K−1

1 K−1
2 + E2

]
S (27)

where E2 is defined as in (17c). Similarly

P σ = S∗
[
Kσ−1

1 Kσ−1

2 + E2σ
]
S (28)

Inserting P and P σ from (27) and (28) into (8) for i = 1 and eliminating S gives

1

µ
(I + µJ1)∗

[
Kσ−1

1 Kσ−1

2 + E2σ −K−1
1 K−1

2 − E2
]

(I + µJ1) +K−1
2 − E12 < 0 (29)

1

µ
(I + µJ1)∗

[
Kσ−1

1 Kσ−1

2 −K−1
1 K−1

2 + E2σ − E2
]

(I + µJ1) < −K−1
2 + E12

Kσ−1

1 Kσ−1

2 −K−1
1 K−1

2 + E2σ − E2 < µ(I + µJ1)−∗
(
−K−1

2 + E12

)
(I + µJ1)−1

Kσ−1

1 Kσ−1

2 −K−1
1 K−1

2 < −µ(I + µJ1)−∗(I + µJ1)−1K−1
2 + E31 (30)

where E3 is defined as in (17d). Continuing,

Kσ−1

1 Kσ−1

2 −K−1
1 K−1

2 < −µ[(I + µJ1)(I + µJ∗1 )]−1K−1
2 + E31

K1K2K
σ−1

1 Kσ−1

2 − I < −µ[(I + µJ1)(I + µJ∗1 )]−1K1 +K1E31K2

K1K2K
σ−1

1 Kσ−1

2 < I − µ[(I + µJ1)(I + µJ∗1 )]−1K1 +K1E31K2

K1K2K
σ−1

1 Kσ−1

2 < [(I + µJ1)(I + µJ∗1 )− µK1][(I + µJ1)(I + µJ∗1 )]−1 +K1E31K2

(31)

Multiplying (I + µJ1)(I + µJ∗1 ) out gives

(I + µJ1)(I + µJ∗1 ) = I + 2µ Re L1 + µ2L1L
∗
1 + µ(1 + µλ1)N∗ + µ(1 + µλ̄1)N + µ2NN∗

= I + µK1 + E41 (32)
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where we define E4 as in (17e). Thus we have

K1K2K
σ−1

1 Kσ−1

2 < [I + µK1 + E41 − µK1][(I + µJ1)(I + µJ∗1 )]−1 +K1E31K2

K1K2K
σ−1

1 Kσ−1

2 < [I + E41][(I + µJ1)(I + µJ∗1 )]−1 +K1E31K2

K1K2K
σ−1

1 Kσ−1

2 < [(I + µJ1)(I + µJ∗1 )]−1 + E41[(I + µJ1)(I + µJ∗1 )]−1 +K1E31K2 (33)

Let E5 be defined as in (17f). Then

K1K2K
σ−1

1 Kσ−1

2 < [(I + µJ1)(I + µJ∗1 )]−1 + E51

K−1
1 K−1

2 Kσ
1K

σ
2 >

(
[(I + µJ1)(I + µJ∗1 )]−1 + E51

)−1

K−1
1 K−1

2 Kσ
1K

σ
2 >

(
[I + µK1 + E41]−1 + E51

)−1

K−1
1 K−1

2 Kσ
1K

σ
2 >

(
[(I + µL∗1)(I + µL1) + E41]−1 + E51

)−1 (34)

i = 2 follows similarly.

We define a regionRε given by (34) for i = 1, 2. Then we note that

lim
ε→0
Rε = R (35)

because

lim
ε→0

(
[(I + µL∗i )(I + µLi) + E4i]

−1 + E5i
)−1

= (I + µL∗i )(I + µLi). (36)

Applying this to (34) yields the set of equations in Theorem 2:

K−1
1 K−1

2 Kσ
1K

σ
2 > (I + µL∗i )(I + µLi) for i = 1, 2. (37)

Thus, to guarantee stability of the switched linear system (1), it is sufficient to show that {µ(t), µσ(t)} ∈
R, regardless of whether the system is simultaneously diagonalizable or only simultaneously tri-
angularizable, which is the theorem statement.

This is a favorable result, becauseR is significantly easier to compute thanRε.

Examples

Example 1

Let

A1 =

[
−1.2 0.2

0 −1.2

]
, A2 =

[
−0.6 0.2

0 −0.6

]
,

which are already in irreducible, Jordan-epsilon form. Solving equation (37) for all {µ(t), µσ(t)}
pairs yields the regionR in Figure 1, where it can be seen that the region is under the minimum of
the four boundary curves (two curves exist outside the plot axes limits).
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Figure 1: The temporal region of stability for Example 1. The two curves are the solution of (37) as if it
were an equality, and the red area is under the minimum of the two curves. The upper limits on the axes are
µmax, which is the maximum graininess allowed by assumption A2.

Example 2

Let

A1 =

[
−0.78 0.8

0 −0.78

]
, A2 =

[
−0.1 0.8

0 −0.1

]
.

Similarly to Example 1, solving (37) yields Figure 2.
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Figure 2: The temporal region of stability for Example 2. The two curves are the solution of (37) as if it
were an equality, and the red area is under the minimum of the two curves. The upper limits on the axes are
µmax, which is the maximum graininess allowed by assumption A2.
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4. Ramos, Alice. Stability of Hybrid Dynamical Systems: Analysis and Design. Ph.D. Thesis. Baylor

University, Aug 2009.

JOHN MILLER
John is a first year graduate student in Electrical and Computer Engineering at Baylor University. His re-
search is focused on switched linear systems in time scales.

IAN GRAVAGNE
Dr. Gravagne is an Associate Professor in Baylor’s Electrical and Computer Engineering Department. His
research interests include solar energy, dynamic equations on time scales, and energy literacy education.

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright 2009, American Society for Engineering Education


