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Abstract 

Requently in the practice of mechatronics, we see 
systems driven by multiple actuators where those actu- 
ators must  work an a highly coupled fashion t o  achieve 
the desired results. In some cases, it m a y  be desir- 
able to  provide more actuators than are strictly nec- 
essary, in which case the system becomes underdeter- 
mined, or redundant. Such underdetermined systems 
require the use of optimization schemes to  resolve the 
redundancy in a manner consistent with a secondary 
task, such as the minimization of applied torques or 
expended energy. In a previous paper, we explored the 
rami.fications of using a local optimization algorithm 
based o n  the least infinity norm.  While a bene,ficial al- 
gorithm in m a n y  respects, it sometimes provides solu- 
tions which exhibit non-unique and discontinuous char- 
acteristics over t ime. In  this paper, we propose one 
possible remedy fo r  these problems, and continue t o  re- 
veal more structure behind the least infinity n o r m  and 
the infinity inverse, applying our results to  redundancy 
resolution of a robot manipulator. 

1 Introduction 

The study of kincmatic rcdundancy rcsolution is 
fundamcntally a study in optimization techniqucs. Sit- 
uations requiring the adjustment of a finite set of vari- 
ablcs in accordancc with a scalar constraint function 
abound, as do methods of sensibly combining the vari- 
ablcs into a scalar constraint. Howevcr, simply choos- 
ing an optimization critcria does not nccessarily pro- 
vide insight into an obvious optimization procedure, 
and some side cffects of using a givcn proccdurc may 
render it all but useless. In mcchatronic systems, this 
finitc sct of variables often rcpresent quantatics such as 
applied torques and forccs, positions or velocities, in- 
put currents, etc. In thc majority of these systems, 
thcse variables work in a coupled fashion, be it se- 
rially or in a closed chain. Here, an innocent ques- 
tion arises. Assume there are more variablcs than the 

minimum number strictly necessary to accomplish cer- 
tain tasks (the system is redundant). If each variable 
exhibits upper limits (i.e. maximum speeds or maxi- 
mum torques), can they “share” the work load for a 
given task in such a manner that the redundant sys- 
tem achieves the task, while the non-redundant system 
cannot without exceeding at least one actuator limit? 
The answer is often yes, though the solution procedure 
may be non-trivial, and for this question the tool which 
will provide our optimization constraint is the infinity 
norm. From the point of view of the joint variables, the 
infinity norm pays strict attention to the magnitude of 
the individual variables, rather than “lumping” them 
into an arbitrary optimization constraint. 

Least infinity norm solutions are not yet widely used 
in mechatronics and robotics because of certain numer- 
ical difficulties. Previously, we demonstrated that such 
solutions may in fact exhibit discontinuities and points 
of non-uniqucness in time-varying systems [l]. This pa- 
per proceeds to suggest one possible modification which 
fixes this problem, introducing a predictive parameter 
which indicates how “close” an infinity norm solution 
is to a discontinuous point. Using this parameter, the 
algorithm is able to smoothly transition over the dis- 
continuity, as shown by several computer simulations. 

, 

Without loss of generality in the results, we will 
choosc a basic testbed for this paper, the rigid-link, 
redundant, serial robot. This choice also allows the 
work in this paper to dovetail nicely with key results in 
a previous paper [l]. A rigid-link robot is classified as 
rcdundant if the number of joints exceeds the minimum 
rcquircd by the dimension of the task space. For exam- 
plc, an industrial six-axis robot may be redundant if it 
only scrves to position its end-effector in space, with 
disrcgard for the orientation, requiring only 3 degrees 
of freedom (DOF). Similarly, a 7 or greater DOF robot 
will be redundant performing any 6-DOF tasks. If the 
robot has n joints and the task requires m degrees of 
freedom, we may relate the robot end-effector location 
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and orientation to the joint variables e by' 

with 3: E !Xm, and E !TIn. Redundancy implies m < n, 
or f : !Xn 4 !Xm. Typically, f will be a non-linear 
function (often trigonometric) azd impossible to invert 
in a redundant case. Therefore, rather than specifying 
desired positions, we may differentiate (1) to get 

and specify desired velocities. Note in (2) the matrix J 
is, in an underdetermined case, not square but rather 
J E X m X n  with m < n as mentioned above. Much lit- 
erature exists on thc subject of redundant robots [2][3], 
and some of their benefits include increased capability 
for avoiding obstacles and singularities. 

2 The Least Infinity Norm and the In- 
finity Inverse 

What is required to solve non-square, underdeter- 
mined system like (2) is a "generalized inverse". There 
are an infinite number of such inverses, with the most 
well-known being the pseudoinverse, such that the in- 
verse of (2) would be 

(3) 

where J f  = JT(JJ*) - l  and &(2) is the optimal two- 
norm solution. (This type of solution is used cxtcn- 
sivcly in robotics and comprises thc heart of the con- 
ventional approach to rcdundancy resolution). Morc 
prccisely, equation (3) solvcs 

min l/&l12 subjcct to 2 = J& 
e (4) 

Notc that cvaluating a pscudoinversc at some updatc 
ratc along a given trajcctory yiclds the joint vclocity 
vcctor which has minimum two-norm at evcry point 
of cvaluation. Expression (4) may bc wcightcd with 
the robot's inertia matrix (for instancc) to yield a tra- 
jectory which attcmpts to minimize its instantaneous 
kinctic cnergy [2] [3]. Howcvcr, while a pscudoinversc 
solution rninimizcs thc total joint "cnergy", it docs not 
guarantee that cach individual joint spccd is as small as 
possiblc. (Thc problcm may be rcformulatcd to mini- 
mize not just velocities, but torqucs, currcnts, or other 

'A  not,c 011 iiot.at~ion: vect.or quatitics aid fuiictions will bc 
deuoted with underscores (for exairiplc, g), niat,riccs will be cap- 
italized ( J ) ,  and all other qriant~it~ies (m,n)  arc scalar unlcss de- 
rioted otherwise. Sets aid sul,sct,s are bold (A, K).  

parameters [8].) As such, the pseudoinverse can pro- 
vide solutions where individual elements exceed the ca- 
pabilities of the associated actuator. 

In order to confront this problem, Deo employed 
the infinity norm as a minimization criterion [4]. The 
infinity norm of an arbitrary vector g is defined as 

to minimize the maximum joint speed. Denoting the 
optimal solution as a'"', another way to think of 
the solution vector is to note that, if any maximum- 
magnitude element of &(m) exceeds the associated joint 
limit, then it is not  possible t o  achieve the desired task 
given the current joint  variable limits. In other words, 
least infinity norm solutions attempt to distribute the 
work between all available resources, minimizing each 
individual joint contribution as far as possible. 

Unfortunately, while minimum infinity norm solu- 
tions serve as valuable tools, they are non-trivial to 
compute. Cadzow presented the first algorithm to find 
a minimum infinity norm solution to an underdeter- 
mined problem [5], and several alternative algorithms 
have subsequently appeared, offering varying degrees 
of stability and computational load [6] [7]. Although 
the complexity of these numerical algorithms tends to 
thwart analysis efforts which concentrate on the struc- 
ture of a problem, we have found that the solution to 
(6) can be formulated as 

(7) 

where J# = Q ( J Q ) - l .  This is the "infinity inverse", 
and its structure is very close to that of a pseudoin- 
verse. Thc matrix Q may take many different forms, 
but onc form proving particularly useful fills Q with 
only elcments of the set (1, -1) [I]. We now mention 
a vcry important property of minimum infinity norm 
solutions [5], used extensively in the algorithms which 
compute such solutions. 

Equal Magnitude Property: The minimum infin- 
ity norm solution vector to an underdetermined 
systcm must have n - m + 1 elements equal to the 
m a i m u r n  magnitude llall . Only m- 1 elements 
may be uniquely assigned with lesser magnitudes. 

00 

Though the infinity inverse does not lend itself to 
direct computation [l], the structure has well-defined 
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Figure 1: Joint velocities from the robot circle trajec- 
tory shown in figure (2). Note how the Equal Magni- 
tude Property is always preserved. 

- 

- 
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geometric and algebraic meaning, and for any algo- 
rithmic solution b(CO), there are a set of trivial rules to 
create the corrcsponding Q which computes that solu- 
tion. With these tools in hand, it has been shown [l] 
that somc situations cxist whcrc 4‘”’ is not a uniquc 
solution (whereas the pscudoinversc always guarantces 
unique solutions). Furthcrmore, as the robotic systcm 
evolves and changcs over time, if it movcs “over” a 
point of non-uniqueness this can cause a discontinuity 
in thc computcd solutions. With a redundant robot, 
we can see an extreme case of this if we revicw an ex- 
ample of a 4-link planar robot. Wc take x-y positioning 
of the cnd-cffcctor as thc taskspace, so thc robot has a 
2-dimcnsional nullspace (2 degrees of redundancy). In 
figure 2, it attempts to executc a clockwisc circlc. Nat- 
urally, thc algorithm attempts to reducc the maximum 
joint spced as far as possible, which soon leads to joint 
1 (the center joint) doing all of the work. A pseudoin- 
verse hcre would simply drop the spceds of joints 2,3 
and 4 to zero, but the least infinity norm solutions must 
obey thc “Equal Magnitudc Property”, and thercforc 
at lcast two joints always oscillate betwccn - @ 

+ llfill , as sccn in figure 1. Again, this rcpresents an 
extreme casc of discontinuity using lcast infinity-norm 
solutions. 

1 1 .  I/m and 

CO 
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Figure 2: A picture of the four-link planar robot tra- 
versing a circle. The inital configuration is [135, -90, 
45, 01 in CCW degrees from the horizontal. The robot 
end-effector travels CW. 

3 Tackling the Discontinuity Problem 

To repair the discontinuity problem, we are inter- 
csted in a predictive method which “senses” when a 
discontinuity is near, and gradually takes corrective 
action. Though not the only possible remedy, this 
method preserves those features of just-in-time local 
optimization which are most desirable, for instance, 
fast response to dynamically changing environments. 

We now present our predictive method, which we 
have dubbed “rate mixing”. It has the following form: 

. *  .(CO) - e + ( I -  

A quick substitution of &* into (2) demonstrates that 
- e* is a valid solution. Conceptually, we now want to 
vary this parameter T ,  called the “mixing factor”, so 
that it stays near 1 most of the time, moving to 0 at  
points of discontinuity. Under these constraints, if T 

varies continuously, e will vary continuously because 
.(a . 
- 8 is always unique and continuous. (The pseudoin- 
verse solution need not be the only choice here, any 
sub-optimal continuous solution will work.) The choice 
of a good mixing factor depends on several conditions 
which we explore next. 

To proceed with the discussion on how to deal with 
discontinuities, one should understand the geometry of 
least infinity norm problems. As mentioned earlier, we 

’ *  
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typically start in n-space (P) with a set of n joint vari- 
able constraints. Call this constraint set CO, defined 
in our case as 

and note that CO 2 SRn, and takes the shape of a 
polytope aligned with the elementary basis vectors 
[1,0,0 ,... 01, [0,1,0 ,... 01, ..., [O,O ,..., 11. (Ifsomeactua- 
tor constraints are dependent, then the polytope may 
not align with certain basis directions.) If we make a 

variable substitution, 8 = D& in the vast majority of 
cases, there exists a non-singular weighting matrix D 
such that we may normalize polytope CO into a hyper- 
cube C1 with 

- 

- - 
c1 = { e ; :  -IC 5 e, 5 k }  i = 1,2, . . . ,n  (10) 

Letting j = JD-’, the optimization problem can be 
solved in normalized space, and the solution then de- 

dw) 
normalized at the end, h(w) = D-l@ . Henceforth 
in our discussion we assume the problem has already 
been normalized, and the actuator constraint set looks 
likc C1, a hypercube in n dimensions. 

From a geometric point of view, finding b(w) in- 
volves “growing” the hypercube (i.e. increasing k from 
0) until one edge of it touches the solution space S 181, 
where S = (8 : J e  = k )  and S is always parallel to 
thc nullspace of J ,  denoted N. Note N E W-”, and 
we will represent the nullspace with a matrix N such 
that the orthogonal columns of N span the nullspace. 
In other words, let 

As thc hypcrcubc expands, just whcrc it first intersccts 
the solution space is the point &‘(w). In the case of thc 
two norm, wc start not with a hypercubc, but a hy- 
pcrsphcrc, and 4‘’) is thc point whcrc thc sphcrc first 
touches S. At this point, there can only be onc so- 
lution bccausc the hypersphcrc is “round”, but in thc 
casc of a hypercubc, if the nullspacc is cxactly aligned 
with a sidc or an cdgc of the hypcrcube, then C1 n S 
contains an infinity of solutions. This reprcsents the 
case of a non-unique optimal solution 8‘”). Furthcr- 
morc, if a time-varying systcm encountcrs this point 
in its trajectory, the solution could “hop” across thc 
sidc of the hypcrcubc, resulting in a discontinuity. It 
is important to notc that this condition, which wc will 
call the “Zero Subspace Angle” condition, is necessary 
but not sufficzent for a discontinuity. Wc now procecd 
to define this condition morc rigorously. 

40 1 

The subspace angle is defined geometically as 
the angle between two hyperplanes (subspaces 
SI and Sp) embedded in a higher dimensional 
space. For instance, if span{[O,l,O]T} = SI 
and span{[O, &, & I T ,  [l, 0 ,  0IT} = S a ,  then 
angle(S1,Sa) = 45’. More precisely, let S1 be a 
matrix with orthogonal columns which span SI, and 
5’2 be a matrix with orthogonal columns which span 
S z .  Then, 

(12) 
angle(&, S2) = cos - l (~ ) ,  

(T = min(diag(C)} with UCVT = $5’2 ~ 

The subspace angle is the inverse cosine of the mini- 
mum singular value of STS2 [9]. 

This is relatively unwieldy, but its use will be simpli- 
fied shortly. We begin by assigning SI = N .  (Because 
S and N are parallel linear spaces, the subspace angle 
will be the same whether the columns of SI span the so- 
lution space or the nullspace). Since we are concerned 
with the solution space intersecting edges and faces of 
the hypercube (which are always aligned with the el- 
ementary basis vectors), we must choose m of these 
basis vectors to be the columns of S2, so that, if N 
and S2 are independent spaces, N U  S 2  C Rn. That is, 
if the spaces are independent, then their union should 
be the complete space SR”. Now the question is, which 
m basis vectors should form S2? There will be (z) 
possible arrangements and, from the above discussion, 
we want to know if the nullspace has a zero subspace 
angle with any one of those choices. Now we note the 
following result: 

Zero Subspace Angle Condition For an underde- 
termined system employing least infinity norm op- 
timization with an optimum solution 
non-unique + 3 some S2 spanned by elementary 
basis vectors such that C O S - ~ ( I T ~ )  = 0 . 

.(..I. e‘”’ . - 

Finding thc subspace angle for (:) subspaces could 
takc a long time using the singular value decomposi- 
tion method, and yields little intuition. Since we do 
not nced the actual angle, only a number representa- 
tive of the angle (in a one-to-one correspondence) we 
may note that, by filling a n x n matrix with columns 
which span thc two subspaces, a zero determinant indi- 
cates that the column space is not complete. Since we 
know that, by construction, S2 consists of m columns of 
0’s and 1’s (no column repeating), it will always span 
SR”. Therefore, to find the minimum subspace angle 
ovcr all possible faces and edges of the hypercube (all 
possible Sz),  we may concatenate N and S2 into a n x n 
matrix and find its determinant. A zero determinant 
corresponds to a zero minimum subspace angle; larger 



absolute value determinants indicate larger subspace 
angles. Note that we may also swap rows in this con- 
catenation matrix in the following manner: 

7 

1 -  

0 -  

-2 
with the result that 

(det [N  I ,9211 = Idet[N~] * det[l]l = Idet[Nl]I (14) 

Now (;) subspace angle calculations have been dis- 
tilled down to (;) determinants of size (n  - m) x (n - 
m). Define 

a 0 5  1 1 5  2 2 5  3 3 5  4 

delldl - 

dmin = min{ldet[Nl]I} 
sz 

1 -  dQ2/dt 

In an evolving trajectory, if dmin approaches zero, the 
solution $m)gets closer and closer to a point of non- 
uniqueness, and possible ’discontinuity. Note dmin is 
continuous (although not smooth) if the elements of 
N vary continuously; this implies the elements of J 
varying continuously - a reasonable expectation if the 
input trajectory contains no discontinuities. 

Only one step remains to refine dmin into the mixing 
factor r from (8). We must limit &in to exist only 
bctween 0 and 1, which can be accomplished as 

1 

Recall that dmin > 0. The parameter a adjusts how 
quickly the algorithm switches from one solution to the 
othcr, tending to “round out” the sharp edges of the 
hypercube. 

df14/dl 

4 Results Using Rate Mixing 

The rate mixing method has proven quite cffcctive 
in a number of cxamplcs. Figurc 3 shows a revised 
version of the circle example. The first plot shows how 
r varies with time, hcavily favoring the pseudoinverse 
solution to avoid the oscillations present from figure 1. 
The picturc of the actual robot looks to the naked cye 
identical to figurc 2, and is not reproduccd herc. Figure 
4 shows a linear trajectory, spccifying 2 = [-0.8, -031 
for about 4 seconds. Thc robot picture does yicld 
much insight, and is not included; notc that this trajcc- 
tory contains an isolatcd discontinuity which the robot 
smoothly avoids, favoring the infinity norm solution 
most of thc time. Also notc that thc mixing factor 
hits zero once wherc therc is no discontinuity. This 
represents a point of non-uniqucncss, however the ro- 
bot’s trajectory did not take it “across” the non-unique 
point to create a discontinuity. This instance reflects 
the neccssary, but not sufficient, quality of thc mixing 
factor. 

I I 
70 1 5  2 2 5  3 3 5  4 

Figure 3: The “corrected” circle example. In the four 
velocity plots, the thick line represents the mixed solu- 
tion, the thin line is what the infinity inverse provides 
on its own; mixing factor r is shown ‘at the top. 

5 Remarks on Computation and Spe- 
cial Cases 

The computational load involved in producing j *  at 
any reasonable sampling rate could grow quite large. 
However, careful construction of the algorithm can 
help reduce this load. One notably stable algorithm 
for finding b(m) involves computing &(2) as the first 
step [7]. Additionally, a modified computation of the 
pseudoinverse J+ in this algorithm using singular value 
decomposition yields the nullspace N with little addi- 
tional effort. For rigid-link robots, the typical degree of 
redundancy will be only one or two; in the most com- 
mon case - one degree redundant - the determinants in 
(15) boil down to a simple search for the smallest mag- 
nitude element of the nullspace vector. In addition, 
modcrn computcrs executing these types of algorithms 
typically provide time to spare even on very complex 
computations. The initial step in the rate-mixing al- 
gorithm is the computation of the pseudoinverse. In 
the case of 7-DOF robot with a 6-DOF taskspace, an 
iterative singular value decomposition (calculating U,  
C and V) takes an average of only 19Ops on a Pentium 
I1 450Mhz CPU, with the maximum time-to-converge 
around 210ps. (This experiment was performed in a 
real-time operating system and averaged over 10 000 
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Figure 4: A linear trajectory. The four link planar 
robot of figure (2) starts with initial position [135,- 
45,45,0] in CCW degrees from the horizontal. The 
thick line is the final result, the thin line is the least 
o3-norm solution alone. 

randomly generated 6x7 matriccs.) 
Of mathcrnatical interest is the following observa- 

tion. In a one-degrec redundant casc, the nullspacc is 
one dimcnsional and it is easy to show that any arbi- 
trary minimum pnorm solution to (2) ( p  > 1) must 
be a lincar combination of b‘”’ and 8‘’). Since the 
ratc mixing expression docs in fact provide a convex 
combination of the two solutions, it is likely that the 
resulting &* closcly follows a minimum pnorm solution, 
with 2 < p .  

6 Conclusions 

In  this work, wc have rcvicwcd thc bcncfits of min- 
imizing the infinity norm of a solution to an under- 
determined system. We notcd that the prcscnce of 
discontinuitics presents onc of the current challcngcs 
while using infinity norm solutions in time-varying sys- 
tcms. In ordcr to smooth out thc solutions, while still 
prescrving the esscncc of a lcast infinity norm answcr, 
wc suggcsted the ratc mixing solution, bascd on thc 
geomctry of the problem. This allows for a varying 
mixing-factor r to switch from infinity norm solutions 
to sub-optimal continuous solutions near discontinu- 
ities, with thc mixing factor being a relative indication 

of the minimum subspace angle. The simulator results 
demonstrate success at  avoiding discontinuities in typ- 
ical trajectories. Though we chose a simple test case to 
frame our results, they represent a general method for 
solving dicontinuity problems with infinity norm opti- 
mization and could be used in any number of different 
situations, including robot redundancy resolution at  
the joint velocity and torque levels2. 
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