

EGR 1301
 Introduction to Static Analysis

Presentation adapted from
Distance Learning / Online Instructional Presentation
Originally created by Mr. Dick Campbell

Presented by:
Departments of Engineering Baylor University

Outline

- Understand the definition of Mechanics
- Learn the difference between static and dynamic analysis
- Understand the concept of force as a vector
- Separate vector into x and y components.
- Apply this concept to analyzing sums of forces $(\Sigma \mathrm{F}=0)$, as well as sum of moments ($\Sigma \mathrm{M}=0$).
- Understand the importance of engineering analysis design.
- Apply these concepts to a foot bridge, wall hanging, and even biomechanics

Mechanics

- Mechanics - the study of objects at rest or in motion, the effects of forces on a body, and the prediction motion.
- The fundamentals of Mechanics were formulated by Isaac Newton, using his three Laws:

1. A body at rest or in constant motion remains in that state until acted upon by an external unopposed force.
2. An unopposed force causes a mass to accelerate.
3. Every force action has an equal and opposite reaction.

Slide 4

Mechanics

- Mechanics is divided into the study of Statics and Dynamics.
- Newton's 2nd Law is expressed as:

$$
\sum F=m a
$$

Slide 5

Statics vs. Dynamics

Static analysis $\quad \sum F=0$

- Therefore...a = 0
- In Statics, nothing is accelerating! -Newton's 1st Law
- Statics is the study of forces acting on a non-accelerating body, and the reaction of that body

Dynamic Analysis

- If an unopposed force acts:

$\sum F \neq 0$

- Acceleration is proportional to the mass of the body
- Dynamics is the study of the motion of a body, both in translation and rotation.

Engineeving Computer Science $\substack{\text { Bar } \\ \text { The }}$ Example of Engineering Analysis

- Baylor Engineers in Africa, May 2005
- 3 professors, 6 students
- Kenya, Africa
- Engineering services to Kenya’s poor population
- Foot Bridge Project
- 40-m wide river
- Analyze for safety and possible design improvements

Need For Bridge

- Village was divided, far side had trouble:
- Taking their farm produce to market
- Attending school
- Getting medical care
- Situation
- 5 miles to nearest bridge (20 mile round trip)

- Several drownings per year

Need For Bridge

- Estimates of approximately 400 crossings per day
- Saving 1,460,000 miles of walking per year
- Approximate cost: $\$ 5000$
- $1 / 3 \phi$ per mile per year
- Great impact at minimal cost

Slide 9

Baylor University
 Enampering

- Cable used is rated to withstand a maximum load in tension of $16,000 \mathrm{lbs}$.
- How much can the bridge support?
- How is cable failure considered in the design?
- If six people (est. 1000 lbs .) stand in the center, what is the cable tension?
- What is the "safety factor" (SF)?

$$
\text { S.F. }=\frac{\text { Rating }}{\text { Load }}
$$

Types of Loading

- Tension - pull apart
- Compression - push together
- Moment - rotation
- Shear - distort shape

Force as a Vector

- Scalar
- Has magnitude only (i.e. it's "just a number")
- Vector
- Has magnitude and direction
- In an x - y coordinate system, force may be broken down into "components"
- X-component parallel to x -axis
- Y-component parallel to y-axis

Force as a Vector

- Use Trigonometry to:
- Calculate the magnitude and angle of the vector from the magnitude of its components (Pythagorean theorem \& inverse tangent)
- Calculate the magnitude of the components from the magnitude and angle of the vector (sine and cosine)

$$
\begin{aligned}
\Theta & =\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right) \\
|\vec{F}| & =\sqrt{F_{x}^{2}+F_{y}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& F_{y}=F * \sin (\Theta) \\
& F_{x}=F * \cos (\Theta)
\end{aligned}
$$

Adding Vectors

- Addition can be interpreted:
- Graphically: move the "start" of b to the "tail" of a
- Mathematically: add the components that lie in the same direction

$$
\begin{aligned}
\vec{c} & =\vec{a}+\vec{b} \\
c_{x} & =a_{x}+b_{x} \\
c_{y} & =a_{y}+b_{y}
\end{aligned}
$$

Figure 2.6

Figure 2.18

Multiplying a Vector by a Scalar

- Multiplying by a scalar means:
- Changing the magnitude of the vector
- But not changing direction
- Except for negative numbers

$$
\vec{b}=c \cdot \vec{a}
$$

where c is a scalar (i.e. "just a number")

$$
|\vec{b}|=c \cdot|\bar{a}|
$$

$$
\begin{aligned}
& b_{x}=c \cdot|a| \cdot \cos (\theta) \\
& b_{y}=c \cdot|a| \cdot \sin (\theta)
\end{aligned}
$$

Unit Vectors

- \hat{i} and $\hat{\jmath}$ indicate direction of vector components
- î has magnitude of 1 unit in the x-direction
- $\hat{\jmath}$ has magnitude of 1 unit in the y-direction
- When a vector component is multiplied by \hat{i} or $\hat{\jmath}$
- Magnitude of the vector component remains unchanged
- The direction of the vector component is defined as parallel to the x - or y -axis

Can now write a vector as:

$$
\bar{F}=F_{x} \hat{i}+F_{y} \hat{j}
$$

Force Vectors \& Static Analysis of Foot Bridge

- Simplifying assumptions
- Loaded with six persons (approx. 1000 lbs) at the center
- Cables are straight
- Neglect the weight of the bridge

Slide 19

Setting Up the Analysis

- Draw a sketch of the forces as vectors
- Write each force vector in terms of i and j components
- Components perpendicular to each other can be treated separately
- Invoke Newton's $1^{\text {st }}$ Law
- Sum of i components=zero (x direction)
- Sum of j components $=$ zero (y direction)
- Solve the two equations with two unknowns

$$
\vec{F}_{1}=F_{1 x} \hat{i}+F_{1 y} \hat{j} \quad \text { Slide } 20
$$

Static Analysis of the Foot Bridge's Cable

- Resolve the three forces into $\hat{1}, \hat{\jmath}$ components
- Identify our unknowns (i.e., F_{1} and F_{2})
- Set up summation equations in $\hat{1}, \hat{\jmath}$ directions
- Solve these two equations for the unknowns

$$
\left|\stackrel{\rightharpoonup}{3}_{3}\right|=1000 \mathrm{lbs}
$$

$$
\theta=\left(\tan ^{-1} \frac{5}{65}\right)=4.4^{\circ}
$$

Static Analysis of the Foot Bridge's Cable

$$
\begin{aligned}
& \Sigma F \hat{i}=-F_{1} \cos \theta \hat{i}+F_{2} \cos \theta \hat{i}+0 \cdot l b s \cdot \hat{i}=0 \\
& \Sigma F \hat{j}=F_{1} \sin \theta \hat{j}+F_{2} \sin \theta \hat{j}-1000 \cdot l b s \cdot \hat{j}=0
\end{aligned}
$$

Static Analysis of the Foot Bridge's Cable

$$
\begin{aligned}
& \Sigma F \hat{i}=-F_{1} \cos \theta \hat{i}+F_{2} \cos \theta \hat{i}+0 \cdot l b s \cdot \hat{i}=0 \\
& \Sigma F \hat{j}=F_{1} \sin \theta \hat{j}+F_{2} \sin \theta \hat{j}-1000 \cdot l b s \cdot \hat{j}=0
\end{aligned}
$$

Rearranging and substituting in angles:

$$
\begin{aligned}
& F_{1} \cos (4.4)=F_{2} \cos (4.4), \quad F_{1}=F_{2} \\
& F_{1} \sin (4.4)+F_{2} \sin (4.4)=1000 \cdot \mathrm{lbs} \\
& F_{1}=F_{2}=6527 \cdot \mathrm{lbs}
\end{aligned}
$$

Safety Factor (Cable Strength = 16,000 lbs):

$$
S . F .=\frac{16000 \cdot \mathrm{lbs}}{6527 \cdot \mathrm{lbs}}=2.45
$$

Engineering is an Exercise in Trade-Offs!

- If we allow the bridge to have larger sag, what will happen to the tension in the cables?
- What will happen to the required anchors for the cables at the two ends of the bridge?
- What is the disadvantage of having larger sag in the bridge?

Static Analysis of the Foot Bridge's Cable

What happens to the Safety Factor if we increase the sag? Let : $\theta=10^{\circ}$

Then: $2 F_{1} \sin (10)=1000 \mathrm{lbs}$

$$
\begin{aligned}
& F_{1}=F_{2}=2879 \mathrm{lbs} \\
& \text { S.F. }=\frac{16000 \mathrm{lbs}}{2879 \mathrm{lbs}}=5.56
\end{aligned}
$$

Engineering is an Estimate

- What did our model (sketch) not take into account?
- How will that affect our calculations, in particular, the safety factor?
- Does our safety factor (2.45) now seem too low, too high, or about right?
- How do you determine what constitutes a "good" safety factor?

Slide 26

Engor unversing computer Science What About the Weight of the Bridge?

- The wood decking was built using 3-1"x 6 " planks laid side by side.
- The bridge span is 130 feet.
- The wood's density is $30 \mathrm{lbs} / \mathrm{ft}^{3}$.
- The weight of the cable and hangers is approx. 112 lbs .
- Can you calculate the weight of the decking?
- What does this do to our safety factor?

$$
\begin{aligned}
V= & (3)(1 \cdot i n)(6 \cdot i n)\left(\frac{1 \cdot f t}{12 \cdot i n}\right)^{2}(130 \cdot f t)=16.25 \cdot f t^{3} \\
m= & \rho V=\left(\frac{30 \cdot l b s}{f t^{3}}\right)\left(16.25 \cdot f t^{3}\right)=488 \cdot l b s \\
& 488 \cdot l b s+112 \cdot l b s=600 \cdot l b s
\end{aligned}
$$

Static Analysis of the Foot Bridge's Cable

What happens to the Safety Factor if we include the weight of the bridge? Let: $\quad \theta=10^{\circ}$ and $W=1000+600 \mathrm{lbs}$

Then:

$$
\begin{gathered}
2 F_{1} \sin (10)=1600 \cdot \mathrm{lbs} \\
F_{1}=F_{2}=4607 \cdot \mathrm{lbs} \\
S . F .=\frac{16000 \cdot \mathrm{lbs}}{4607 \cdot \mathrm{lbs}}=3.47
\end{gathered}
$$

Slide 28

Suspension Bridges

- How does a suspension bridge like the Golden Gate provide a way to achieve the goals of lower cost and convenience of use?

- What are the disadvantages in the suspension bridge design?

Engineering Disasters: Tacoma Narrows Bridge

Picture Frame Sample Problem

What is the best way to hang a 40 lb mirror on a wall? How much tension is in the hanger wire in each case?

Option 1: One Hanger in Wall

Option 2: Two Hangers in Wall

Picture Frame Sample Problem

$$
\begin{aligned}
& \text { Option 1: One Hanger in Wall } \\
& \sum F_{\hat{i}}=0-F_{2} \cdot \cos \beta+F_{3} \cdot \cos \beta=0 \\
& \vec{F}_{1}=0 \cdot \mathrm{lbs} \cdot \hat{i}+40 \cdot \mathrm{lbs} \cdot \hat{j} \\
& \beta=\tan ^{-1}\left(\frac{12}{24}\right)=26.6^{\circ} \\
& \vec{F}_{2}=-F_{2} \cdot \cos \beta \cdot \hat{i}-F_{2} \cdot \sin \beta \cdot \hat{j} \\
& \vec{F}_{3}=F_{3} \cdot \cos \beta \cdot \hat{i}-F_{3} \cdot \sin \beta \cdot \hat{j} \\
& F_{2}=F_{3} \\
& \sum F_{\hat{j}}=40 \cdot l b s-F_{2} \cdot \sin \beta-F_{3} \cdot \sin \beta=0 \\
& 40 \cdot l b s=2 F_{2} \cdot \sin \beta \\
& F_{2}=F_{3}=\frac{40 \cdot l \mathrm{lbs}}{2 \cdot \sin (26.6)}=44.7 \cdot \mathrm{lbs}
\end{aligned}
$$

Picture Frame Sample Problem

Moments

- Moments occur at a given point and are caused by a force that causes rotation about a point or an axis.
- A moment is equal to the Force times the perpendicular distance from the force to the point that is being evaluated.
- Force \mathbf{F} causes a clockwise rotation if unopposed about point A in the picture below.
- 4 in is the perpendicular distance and 100 lb is the force in the picture, so the Moment M caused by this force is: $\mathbf{M}=-(1001 b \times 4 i n)=-400 \mathrm{lb}-\mathrm{in}$
- The moment is negative because it is clockwise.
- Be careful with units, Moments can be measured in $\mathrm{lb}-\mathrm{in}, \mathrm{lb}-\mathrm{ft}, \mathrm{N}-\mathrm{m}$, or other units.

Moments Example 1

Calculate the moment at point "A".

$$
\begin{aligned}
& M_{1}=-(8 \mathrm{ft})(125 \mathrm{lbs})=-1000 \mathrm{lb}-\mathrm{ft} \\
& M_{2}=+(10 \mathrm{ft})(500 \mathrm{lbs})=5000 \mathrm{lb}-\mathrm{ft} \\
& M_{A}=M_{1}+M_{2}=4000 \mathrm{lb}-\mathrm{ft}
\end{aligned}
$$

Remember the sign convention for moments:
$+$

Moments Example 2

Calculate the moment at point "A".

Remember the sign convention for moments:
$+$

$$
\begin{aligned}
F_{x} & =200 \cdot l b s \cdot \cos (60)=100 \cdot l b s \\
F_{y} & =200 \cdot l b s \cdot \sin (60)=173.2 \cdot l b s \\
M_{F x} & =+(100 \cdot l b s)(0 \cdot f t)=0 \cdot l b s \cdot f t \\
M_{F y} & =-(173.2 \cdot l b s)(10 \cdot f t)=-1732 \cdot l b s \cdot f t \\
M_{A} & =-(173.2 \cdot l b s)(10 \cdot f t)+(100 \cdot l b s)(0 \cdot f t)=-1732 \cdot l b s \cdot f t
\end{aligned}
$$

Encineming Moment of a Force About a Point

Product of a Force and the Perpendicular Distance to the Point

Example Problem

- The moment exerted about point E by the weight is $300 \mathbf{l b}$ in. What moment does the weight exert about point S ?

Eamene Equilibrium of A Particle

$$
\sum \vec{F}=0
$$

$$
\sum \vec{x}_{x}=0
$$

$$
\sum \overrightarrow{F_{y}}=0
$$

$\sum M_{o}=0$

