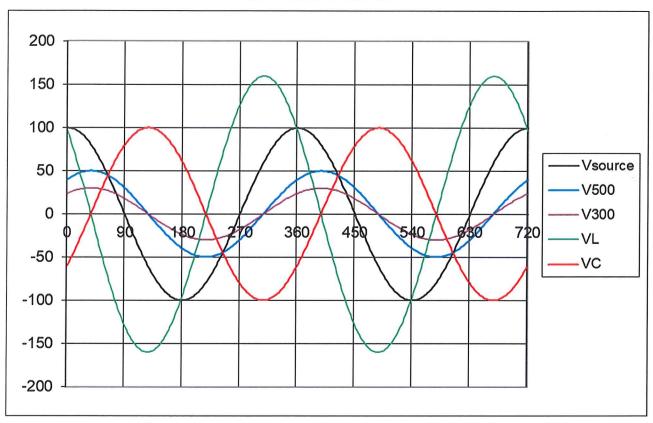
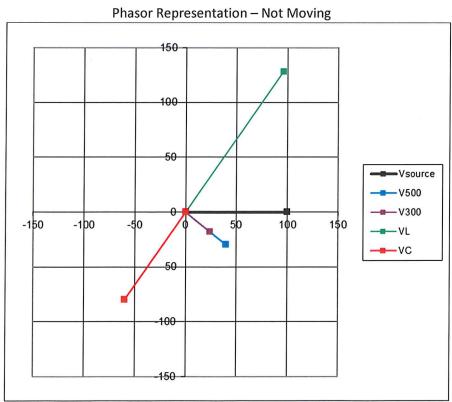
		Variable=	Vsource	V500	V300	VL	VC	KVL
wt	wt	Mag=	100	50	30	160	100	Sum
degrees	radians	Ang=	0	-36.9	-36.9	53.1	-126.9	Check

Time-Domain Waveforms





ELC_2320_Steinmetz_Phasor_Development.doc

0.30 8.

- 1. Consider KCL and KVL equations. For example, for three branch currents leaving a node, $i_1 + i_2 + i_3 = 0$.
- 2. For a linear circuit with sinusoidal excitation, with all sources having radian frequency ω radians per second, all voltages and currents in the circuit will also be sinusoidal with ω . The above KCL equation becomes $I_1 \cos(\omega t + \theta_1) + I_2 \cos(\omega t + \theta_2) + I_3 \cos(\omega t + \theta_3) = 0$.
- 3. Using trig identity $\cos(A + B) = \cos(A)\cos(B) \sin(A)\sin(B)$, the above KCL equation becomes $I_1[\cos(\omega t)\cos(\theta_1) \sin(\omega t)\sin(\theta_1)] + I_2[\cos(\omega t)\cos(\theta_2) \sin(\omega t)\sin(\theta_2)] + I_3[\cos(\omega t)\cos(\theta_3) \sin(\omega t)\sin(\theta_3)] = 0.$
- 4. Factoring out the time varying terms $\cos(\omega t) \big[I_1 \cos(\theta_1) + I_2 \cos(\theta_2) + I_3 \cos(\theta_3) \big] + \sin(\omega t) \big[I_1 \sin(\theta_1) + I_2 \sin(\theta_2) + I_3 \sin(\theta_3) \big] = 0.$
- 5. The only way that the above expression can be zero for any arbitrary time t is if both bracketed terms are zero. Thus, $I_1\cos(\theta_1) + I_2\cos(\theta_2) + I_3\cos(\theta_3) = 0,$ $I_1\sin(\theta_1) + I_2\sin(\theta_2) + I_3\sin(\theta_3) = 0.$
- 6. Multiplying the sin terms by complex $j = \sqrt{-1}$ and then adding the two equations yields $[I_1\cos(\theta_1) + I_2\cos(\theta_2) + I_3\cos(\theta_3)] + j[I_1\sin(\theta_1) + I_2\sin\theta_2) + I_3\sin(\theta_3)] = 0$. The above complex equation is actually two equations (i.e., real and imaginary).
- 7. Grouping by branch currents, $I_1[\cos(\theta_1) + j\sin(\theta_1)] + I_2[\cos(\theta_2) + j\sin(\theta_2)] + I_3[\cos(\theta_3) + j\sin(\theta_3)] = 0$
- 8. Invoking Euler's Rule $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ and substituting into the above, $I_1e^{j\theta_1} + I_2e^{j\theta_2} + I_3e^{j\theta_3} = 0$.
- 9. Define phasors $\widetilde{I}_1 = I_1 e^{j\theta_1}$, etc., the above equation becomes $\widetilde{I}_1 + \widetilde{I}_2 + \widetilde{I}_3 = 0$. Phasors are complex numbers. Phasors are not time-varying.
- 10. Pre-multiplying (8) by $e^{j\omega t}$ yields $e^{j\omega t} \left[I_1 e^{j\theta_1} + I_2 e^{j\theta_2} + I_3 e^{j\theta_3} \right] = 0$. which can also be written as $I_1 e^{j(\omega t + \theta_1)} + I_2 e^{j(\omega t + \theta_2)} + I_3 e^{j(\omega t + \theta_3)} = 0$.

- 11. If the above equation is true, then the following is also true, $Real\left\{I_1e^{j(\omega t+\theta_1)}+I_2e^{j(\omega t+\theta_2)}+I_3e^{j(\omega t+\theta_3)}\right\}=0.$
- 12. which from Euler's rule is the same as the original KCL equation $I_1 \cos(\omega t + \theta_1) + I_2 \cos(\omega t + \theta_2) + I_3 \cos(\omega t + \theta_3) = 0$.
- 13. So if we solve complex equation $\widetilde{I}_1 + \widetilde{I}_2 + \widetilde{I}_3 = 0$ in the phasor domain, we automatically satisfy KCL.

How do resistors, inductors, and capacitors fit into phasor analysis?

For R. Given $i(t) = I\cos(\omega t)$, then $v(t) = R \bullet i(t) = RI\cos(\omega t) = V\cos(\omega t)$. Thus voltage and current are in phase.

C 3 1 F

For L. Given
$$i(t) = I\cos(\omega t)$$
, then
$$v(t) = L \bullet \frac{di(t)}{dt} = -\omega LI\sin(\omega t) = -\omega LI\cos(\omega t - 90^{\circ}) = \omega LI\cos(\omega t + 90^{\circ}) = V\cos(\omega t + 90^{\circ}).$$

Voltage leads by 90°

Current leads by 90°

Thus voltage leads current by 90°, so for an inductor, current lags voltage by 90°.

For C. Given
$$v(t) = V \cos(\omega t)$$
, then
$$i(t) = C \bullet \frac{dv(t)}{dt} = -\omega CV \sin(\omega t) = -\omega CV \cos(\omega t - 90^{\circ}) = \omega CV \cos(\omega t + 90^{\circ}) = I \cos(\omega t + 90^{\circ}).$$
 Thus for a capacitor, current leads voltage by 90°.

Useful slogan: ELI the ICE man.

For inductor L, voltage E leads current I by 90° degrees. For capacitor C, current I leads voltage E by 90° degrees.

So, in phasor notation,

For
$$\mathbb{R}$$
, $\widetilde{V} = R \bullet \widetilde{I}$, define $Z = R \Omega$.

For L,
$$\widetilde{V} = j\omega L \bullet \widetilde{I}$$
, define $Z = j\omega L \Omega$.

For C,
$$\widetilde{I} = j\omega C \bullet \widetilde{V}$$
, so $\widetilde{V} = \frac{\widetilde{I}}{j\omega C}$, define $Z = \frac{1}{j\omega C} \Omega$.

Summarizing, with phasor analysis, all the rules you used for DC circuits now apply for steadystate, single-frequency AC circuits. Voltages, currents, and impedances are complex numbers. Once phasor voltages and currents are computed, then conversion to the time domain is done using

• Phasor $\widetilde{I}_1 = I_1 e^{j\theta_1}$ is shorthand notation for time domain $i_1 = I_1 \cos(\omega t + \theta_1)$.