The Procedure for Coding the Gaussian Elimination Method for Solving a Set of Equations, Consider two equations:

\[\begin{align*}
Ax + By + C &= 0 \\
Dx + Ey + F &= 0
\end{align*} \]

Gaussian Elimination says to subtract multiples of the equations, without affecting the final solutions for \(x \) and \(y \). Thus, we set

\[\begin{align*}
(1) \quad &Ax + By + C = 0 \\
(2) \quad &Dx + Ey + F = 0
\end{align*} \]

If we multiply \(\begin{align*}
(1) \quad &Ax + By + C = 0 \\
(2) \quad &Dx + Ey + F = 0
\end{align*} \) by \(\frac{A}{E} \), we get

\[\begin{align*}
(1') \quad &A'x + B'y + C' = 0 \\
(2') \quad &D'x + E'y + F' = 0
\end{align*} \]

Now subtract \(\begin{align*}
(2') \quad &D'x + E'y + F' = 0
(2) \quad &Dx + Ey + F = 0
\end{align*} \) yielding

\[\begin{align*}
(1'') \quad &A''x + B''y + C'' = 0
\end{align*} \]

Thus, \(x = \frac{C}{A'} \) and \(y = \frac{C'}{B'} \).
For 3x3,

\[Ax + By + Cz + J = 0 \]
\[Dy + Ey + Fz + K = 0 \leftarrow \text{mult. by} \frac{A}{D} \text{ to eliminate} D \]
\[Gy + Hy + Iz + L = 0 \leftarrow \text{mult. by} \frac{A}{G} \text{ to eliminate} G \]

Creating modified equations:

#1 \[Ax + By + Cz + J = 0 \]
#2 \[Ey + Fz + K = 0 \]
#3 \[Hy + Iz + L = 0 \]

Now, repeat the process for the two equations

#2' \[Ey' + Fz' + K' = 0 \]
#3' \[Hy' + Iz' + L' = 0 \]

And eliminate Hy', so

#2'' \[Ey'' + Fz'' + K'' = 0 \]
#3'' \[Iz'' + L'' = 0 \]

Now, \[I_2'' = -L'' \]

So, from (\#3'')

\[\beta = -\frac{L''}{I''} \]

Now, use backward substitution

Insert known \(z \) into (#2) to compute \(y \).

The insert known \(z \) and \(y \) into (#2)

to compute \(x \).
Your Problem

1. \(4x_1 - 2x_2 - 3x_3 - 4 = 0 \)
2. \(5x_1 + 6x_2 + 7x_3 - 8 = 0 \)
3. \(9x_1 + 10x_2 + 11x_3 - 12 = 0 \)

\[\text{Check} \]

\[5x_1 + 6x_2 + 7x_3 - 8 = 0 \]

\[9x_1 + 10x_2 + 11x_3 - 12 = 0 \]

\[x_1 = \frac{-5 + 6 - 7}{2} = -1 \]

\[x_2 = \frac{5 + 7 - 8}{6} = \frac{1}{3} \]

\[x_3 = \frac{9 + 10 + 11}{7} = 3 \]

\[x_1 = -1, \quad x_2 = \frac{1}{3}, \quad x_3 = 3 \]

\[x_1 = \frac{5x_1 + 6x_2 + 7x_3 - 8}{2} = 0 \]

\[x_2 = \frac{10x_1 + 11x_2 + 12}{6} = 2 \]

\[x_3 = \frac{9x_1 + 11x_2 + 12}{7} = 3 \]

\[x_1 = -1, \quad x_2 = 2, \quad x_3 = 3 \]

Now, put all this together.