Capacitors & Inductors

\[Q = CV, \text{ capacitance } C, \text{ in Farads } F \]

\[Q = \frac{C}{d} \]

\[C = \frac{F}{\text{permittivity}} \]

\[\text{permittivity} = \varepsilon_0 \]

\[\text{Relative permittivity} = \varepsilon \]

\[\text{Free space} \]

\[\text{or air} \]

Two parallel plates, \(C = \frac{\varepsilon A}{d} \)

\(E_r = 1 \) for air, free space.

Area \(A \) (each plate), separated by distance \(d \)

\[C = \frac{2\pi \varepsilon_0}{\ln \frac{b}{a}} \frac{F}{\text{m}} \]

\[\lambda = C \frac{dV}{dt}, \quad V = \frac{1}{C} \int i \, dt \]

\(\lambda \) in \(\text{Coulombs} \)

Start with an uncharged cap, charge up,

\[P(t) = V(t)I(t) = (V)(C \frac{dV}{dt}) \]

\[W = \int_{0}^{t} P \, dt = \int_{0}^{t} CV \frac{dV}{dt} \, dt = C \int_{0}^{V} \frac{dV}{\lambda} = \frac{1}{2} C \lambda^2 \]

Compute \(Q, W \) for 50 V, 1600 \(\mu \)F cap and 250 V, 1600 \(\mu \)F cap

Caps in parallel, more area, so more net \(C \)

\[\lambda = \lambda_1 + \lambda_2 + \lambda_3 = \lambda \]

Same \(V \), \(\lambda_1 + \lambda_2 + \lambda_3 = \lambda \)
\[
\dot{V} = \frac{\text{d}V}{\text{d}t} = \frac{1}{C_{\text{tot}}} \left(V_1 + V_2 + V_3 \right) = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) \frac{\text{d}V}{\text{d}t}
\]

\[
C_{\text{tot}} = C_1 + C_2 + C_3 \quad \text{(Add in parallel)}
\]

\[
\text{(Parallel caps add like series resistors)}
\]

Series caps, net gap increases \(\rightarrow\) smaller \(C\)

\[
\begin{align*}
\dot{I} &= \frac{\text{d}I}{\text{d}t} = \frac{1}{C_1} \frac{\text{d}V_1}{\text{d}t} = \frac{1}{C_2} \frac{\text{d}V_2}{\text{d}t} = \frac{1}{C_3} \frac{\text{d}V_3}{\text{d}t} \\
V_1 &= \frac{1}{C_1} \int \text{d}t \\
V_2 &= \frac{1}{C_2} \int \text{d}t \\
V_3 &= \frac{1}{C_3} \int \text{d}t
\end{align*}
\]

\[
V_{\text{tot}} = V_1 + V_2 + V_3 = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) \int \text{d}t
\]

From \(\dot{I} = \frac{\text{d}V_{\text{tot}}}{\text{d}t}\), we have \(V_{\text{tot}} = \frac{I}{C_{\text{tot}}} \int \text{d}t\)

So \(\frac{I}{C_{\text{tot}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}\) (Series caps combine like parallel \(R\)'s)

Inductors \(\dot{I} = \frac{\text{d}I}{\text{d}t}\)

\[
V_L = L \frac{\text{d}I}{\text{d}t}
\]

\(L = \frac{\mu N^2 A}{d}\)

\[
\dot{I} = \frac{1}{L} \int \text{d}V_L
\]

Start with \(\dot{I}_L = 0\), \(P = V_L I_L = I_L \frac{\text{d}V_L}{\text{d}t}\), \(W = \int_0^T \frac{\text{d}W}{\text{d}t} \text{d}t\)

\[
W = L \int_0^T \text{d}V_L = \frac{1}{2} L I^2 \quad \text{Joules}
\]

Work out \(W\) for \(10A, 10\mu H\)
Series Inductors

\[V_{\text{Tot}} = U_1 + U_2 + U_3 = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt} \]

\[V_{\text{Tot}} = L_{\text{Tot}} \frac{di}{dt} \quad \Rightarrow \quad U_{\text{Tot}} = (L_1 + L_2 + L_3) \frac{di}{dt} \]

Add like series R's

Parallel Inductors

\[i_{\text{Tot}} = \frac{1}{L_1} \int U_{\text{TD}} + \frac{1}{L_2} \int U_{\text{TD}} + \frac{1}{L_3} \int U_{\text{TD}} \]

\[= \frac{1}{L_{\text{Tot}}} \int U_{\text{TD}} \quad \text{see that} \]

\[\frac{1}{L_{\text{Tot}}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} \]

Parallel L's combine like parallel R's

Summary

Capacitors

\[i = C \frac{dV}{dt}, \quad \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \quad \text{Parallel} \]

\[\frac{1}{C_{\text{Series}}} = \frac{1}{C_1} + \frac{1}{C_2} \quad \text{Series} \]

\[W = \frac{1}{2} CV^2 \]

Voltage cannot change instantly (that would require \(\infty \) power) and \(\infty \) current spike

Inductors

\[V = L \frac{di}{dt}, \quad i = \frac{1}{L} \int U_{\text{TD}} \]

\[L_{\text{Series}} = L_1 + L_2 + \ldots \]

\[L_{\text{Parallel}} = \frac{1}{L_1} + \frac{1}{L_2} + \ldots \]

\[W = \frac{1}{2} L I^2 \]

Current cannot change instantly (would require \(\infty \) power), \(\infty \) voltage spike
100 \mu F, \quad \frac{1}{2} C V^2 = \frac{1}{2} (1800 \times 10^{-3})(50)^2 = 22.5 J

33 \mu F, \quad \frac{1}{2} (33 \times 10^{-6})(50)^2 = 0.0413 J

1 \text{ kWh} = 1000(60)(60) = 3,600,000 = 3.6 \text{ MJ}
= 3412 \text{ BTU}

1 \text{ gal gasoline} = 127,576 \text{ BTU} = 36.3 \text{ kWh} = 130.88 \text{ MJ}

1 \text{ gal} = 768 \text{ teaspoons}
1 \text{ teaspoon of gas} = \frac{130.88 \text{ MJ}}{768} = 0.1704 \text{ MJ}

1 \text{ drop of gas} = 170408 \text{ J}

(1000 \text{ mAh}) (1.2 \text{ V}) = 1.2 \text{ Wh} = (1.2)(3600) = 4320 \text{ J}
ENERGIZER E92

Specifications

Classification: Alkaline
Chemical System: Zinc-Manganese Dioxide (Zn/MnO₂)
No added mercury or cadmium
Designation: ANSI-24A, IEC-LR03
Nominal Voltage: 1.5 volts
Nominal IR: 150 to 300 milliohms (fresh)*
Operating Temp: -18°C to 55°C (0°F to 130°F)
Typical Weight: 11.5 grams (0.4 oz.)
Typical Volume: 3.8 cubic centimeters (0.2 cubic inch)
Jacket: Plastic Label
Shelf Life: 7 years at 21°C (80% of initial capacity)
Terminal: Flat Contact

* For additional information, please reference the IR technical white paper.

Millamp-Hours Capacity
Continuous discharge to 0.8 volts at 21°C

Device Selection Guide:

Battery Selection Indicator

Photoflash
Games, Digital Audio
Lighting
Remote Control
Radio

High Drain Devices
Moderate Drain Devices
Low Drain Devices

Important Notice
This data sheet contains typical information specific to products manufactured at the time of its publication.
©Energizer Holdings, Inc. - Contents herein do not constitute a warranty.
Enegizer E92

Constant Power Performance
Typical Characteristics (21°C)

- Graph showing service hours vs. discharge in milliwatts for voltages 0.9 and 1.2 volts.

Constant Current Performance
Typical Characteristics (21°C)

- Graph showing service hours vs. discharge in milliamperes for voltages 0.8, 1.0, and 1.2 volts.

Constant Power Performance
Discharge Characteristics (21°C)

- Graph showing voltage (CCV) vs. service hours for a 100 mW and 250 mW discharge.

Constant Current Performance
250 mA Discharge (-20°C / 0°C / 21°C)

- Graph showing voltage (CCV) vs. service hours for different temperatures.

Industry Standard Tests (21°C)

LIGHTING
5.1 ohm LIF

- Graph showing voltage (CCV) vs. service hours for a 5.1 ohm load.

REMOTE
24 ohm 15 sec/min 8 hrs/day

- Graph showing voltage (CCV) vs. service hours for a remote device.

TAPE-GAME-DIGITAL AUDIO
100 mA 1 hr/day

- Graph showing voltage (CCV) vs. service hours for a tape-game-digital audio application.

PHOTOFLASH
600 mA 10 sec/min 1 hr/day

- Graph showing voltage (CCV) vs. service hours for a photoflash application.

Important Notice
This data sheet contains typical information specific to products manufactured at the time of its publication. ©Energizer Holdings, Inc. - Contents herein do not constitute a warranty.
First Order Circuit, an ordinary first order differential equation
No mix of L's & C's. If multiple L's, they are combinable into one L_{tot}. Ditto for C's.

Consider \[V = \frac{R}{t=0} \]

KVL, \[-V + Ri + \frac{1}{C} \int i dt = 0\]
\[
\frac{d}{dt} \Rightarrow R \frac{di}{dt} + \frac{i}{C} = 0
\]
\[
\frac{di}{dt} = -\frac{i}{RC}, \text{ try } i = i_0 e^{-t/RC}
\]

Sub in, \[-\frac{i_0}{RC} e^{-t/RC} = -\frac{i_0}{RC} e^{-t/RC} \quad \text{(OK)}\]

What is \(i_0 \)? \(t = 0 \)

\[V \]

Let \(\tau \) seconds = \(RC \), the time constant \((\text{Big } C, \text{ long } \tau) \)

\[
\begin{align*}
\tau &= RC, e^{-1} = 0.368 \\
2 \tau &= e^{-2} = 0.1353 \\
3 \tau &= e^{-3} = 0.0498 \quad \text{(About 5\% of starting value)} \\
5 \tau &= e^{-5} = 0.0067 \quad \text{(Close to 1\% of starting value)} \\
10 \tau &= e^{-10} = 0.000045 \quad \text{(Practically zero)}
\end{align*}
\]

What about \(V_c \)? Use \(V_c = \frac{1}{C} \int i dt = \frac{1}{C} \int i_0 e^{-t/RC} dt \)

\[
V_c = -\frac{i_0}{RC} e^{-t/RC} + V_{co} = -\frac{i_0}{RC} (e^{-t/RC} - 1) + V_{co}
\]

\[
V_c(t) = V - (V - V_{co}) e^{-t/RC} = V_F + (V_I - V_F) e^{-t/RC}
\]

Here, \(V_F = V \), \(V_I = V_{co} \)}

\[v_c(t) = V_F + (V_I - V_F) e^{-t/\tau} \]

\(t = 0, \quad v_c(0) = V_F + (V_I - V_F) e^{-0} = V_F + V_I - V_F = V_I \quad \text{(OK)} \)

\(t \to \infty, \quad v_c(\infty) = V_F \quad \text{(OK)} \)

You'll use this form many times. And, for a circuit with \(V' \)'s and \(R' \)'s, use

\[\frac{V_{TH}}{C} \quad \tau = \frac{R_{TH}}{C} \quad V_F = V_{TH} \]

All voltages and currents in the circuit will have the form

\[V_F + (V_I - V_F) e^{-t/\tau} \quad \text{same } \tau, \text{ different } V_F, V_I \]

\[I_F + (i_I - I_F) e^{-t/\tau} \quad \text{ same } \tau, \text{ different } I_F, i_I \]

So, the procedure is find \(V_{TH}, R_{TH}, V_F, V_I \).

For \(L' \)'s, same procedure, different \(\tau \)

\[\frac{R_{TH}}{L} \quad \text{(of course, in this picture, } \bar{i}(0^-) = 0) \]

\[-V_{TH} + R_{TH} \bar{i} + L \frac{d\bar{i}}{dt} = 0. \quad \text{Lets try to get an } S \text{ instead} \]

\[\frac{-V_{TH}}{R_{TH}} + \bar{i} + \frac{L}{R_{TH}} \frac{di}{dt} = 0 \]

\[\frac{d}{dt} \int V_L dt + \frac{V_L - V_{TH}}{R_{TH}} = 0 \]

\[\frac{d}{dt} \int V_L dt + \frac{V_L - V_{TH}}{R_{TH}} = 0 \]

\[\frac{dV_L}{dt} = -V_L \frac{R_{TH}}{L} \]

(Guess \(V_L = V_{LO} e^{-t/\tau_1} \))

\[-V_{LO} \frac{R_{TH}}{L} e^{-t/\tau_1} = -V_{LO} \frac{R_{TH}}{L} e^{-t/\tau_1} \]

\[\text{so } \tau = \frac{R_{TH}}{L} \]
What about \(i(t) \)?

\[
i(t) = \frac{V_{TH} - V_L(t)}{R_{TH}} = \frac{V_{TH}}{R_{TH}} - \frac{V_{TH}}{R_{TH}} e^{-t/\tau} = \frac{V_{TH}}{R_{TH}} (1 - e^{-t/\tau})
\]

So if no initial current, \(L \) starts as open ckt, and ends as a short ckt.

The process ends up with the same form,

\[
V_F + (V_I - V_F) e^{-t/\tau} \quad \Rightarrow \quad \frac{V_F + (V_I - V_F)}{R_{TH}} e^{-t/\tau}
\]

\[
\tau = \frac{L}{R_{TH}}
\]

Big \(L \), long \(\tau \), small \(R \), long \(\tau \).

The slope of \(V_F + (V_I - V_F) e^{-t/\tau} \)

\[
\frac{dV}{dt} = \frac{-1}{\tau} (V_I - V_F) e^{-t/\tau}
\]

\[
\frac{dV}{dt} \bigg|_{t=0} = \frac{-(V_I - V_F)}{\tau} \quad \text{volts/sec}
\]

0. The slope at \(t=0 \) can tell you the \(\tau \).
Things to remember about time constants

\[e^{-2} = e^{-1} \cdot e^{-1} = 0.135 \]
\[0.368 \cdot 0.368 \]
\[e^{-3} = e^{-1} \cdot e^{-1} \cdot e^{-1} = 0.0498 \]

So each additional time constant, the function drops down to 0.368 of the distance between where it started, and the asymptote for \(t \to \infty \)

What is a half-life? \(e^{-t} = 0.5 \), \(-t = \ln(0.5) \)
\[t = 0.693 \pi \]

Energy in cap

\[\frac{1}{2} CV^2, \frac{1}{2} C \left(V_0 e^{-t/\tau} \right)^2 = \frac{1}{2} CV_0^2 e^{-2t/\tau} \]

So, for \(t = \tau \), the energy is down to \(e^{-2} = 0.1353 \)
\[t = \frac{\tau}{2}, \quad \frac{\tau}{4}, \quad \frac{\tau}{8} \quad \text{to} \quad e^{-4} = 0.018 \]

And so on

You'll always need to know the \(V_C(0^-) \) and \(i_L(0^-) \) because \(\frac{1}{2} CV^2 \) and \(\frac{1}{2} LI^2 \) can't change instantly unless the cap gets an \(\infty \) impulse of current, or the inductors gets an \(\infty \) impulse of voltage.

Get some initial \& final conditions for

Probs 7.5, 7.12, 7.9, 7.39, 7.45, 7.54