ELC 5396: Digital Communications

Liang Dong
Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu

September 8, 2016

Central Limit Theorem

Random variables $x_{1}(\zeta), x_{2}(\zeta), \ldots, x_{M}(\zeta)$

- (a) are mutually independent and
- (b) have the same distribution, and
- (c) the mean and variance of each random variable exist and are finite Then, the distribution of the normalized sum

$$
y_{M}(\zeta)=\frac{\sum_{k=1}^{M} x_{k}(\zeta)-\mu_{y_{M}}}{\sigma_{y_{M}}}
$$

approaches that of a normal random variable with zero mean and unit standard deviation as $M \rightarrow \infty$.

Discrete-time Stochastic Processes

- The sample space S, the probabilities $\operatorname{Pr}\left\{\zeta_{k}\right\}$, and the sequences $x\left(n, \zeta_{k}\right),-\infty<n<\infty$, constitute a discrete-time stochastic process or random sequence.

Discrete-time Stochastic Processes

- The sample space S, the probabilities $\operatorname{Pr}\left\{\zeta_{k}\right\}$, and the sequences $x\left(n, \zeta_{k}\right),-\infty<n<\infty$, constitute a discrete-time stochastic process or random sequence.
- The set of all possible sequences $\{x(n, \zeta)\}$ is called an ensemble, and each individual sequence $x\left(n, \zeta_{k}\right)$, corresponding to a specific value of $\zeta=\zeta_{k}$, is called a realization or a sample sequence of the ensemble.

Random Process

Abstract space
Real space

Random Process

- $x(n, \zeta)$ is a random variable if n is fixed and ζ is a variable.
- $x(n, \zeta)$ is a sample sequence if ζ is fixed and n is a variable.
- $x(n, \zeta)$ is a number if both n and ζ are fixed.
- $x(n, \zeta)$ is a stochastic process if both n and ζ are variables.

Features of Random Signals

(1) The frequency of occurrence of various signal amplitudes, described by the probability distribution of samples. (histogram)

Features of Random Signals

(1) The frequency of occurrence of various signal amplitudes, described by the probability distribution of samples. (histogram)
(2) The degree of dependence between two signal samples, described by the correlation between them.

Features of Random Signals

(1) The frequency of occurrence of various signal amplitudes, described by the probability distribution of samples. (histogram)
(2) The degree of dependence between two signal samples, described by the correlation between them.
(3) The existence of "cycles" or quasi-periodic patterns, obtained from the signal power spectrum.

Features of Random Signals

(1) The frequency of occurrence of various signal amplitudes, described by the probability distribution of samples. (histogram)
(2) The degree of dependence between two signal samples, described by the correlation between them.
(3) The existence of "cycles" or quasi-periodic patterns, obtained from the signal power spectrum.
(9) Indications of variability in the mean, variance, probability density, or spectral content.

Description Using Probability Functions

The k th-order cdf:

$$
F_{x}\left(x_{1}, \ldots, x_{k} ; n_{1}, \ldots, n_{k}\right)=\operatorname{Pr}\left\{x\left(n_{1}\right) \leq x_{1}, \ldots, x\left(n_{k}\right) \leq x_{k}\right\}
$$

or the k th-order pdf:

$$
f_{x}\left(x_{1}, \ldots, x_{k} ; n_{1}, \ldots, n_{k}\right)=\frac{\partial^{2 k} F_{x}\left(x_{1}, \ldots, x_{k} ; n_{1}, \ldots, n_{k}\right)}{\partial x_{R 1} \partial x_{I 1} \cdots \partial x_{R k} \partial x_{l k}}
$$

needs to be known for every value of $k \geq 1$ and for all instances $n_{1}, n_{2}, \ldots, n_{k}$.

Second-Order Statistical Description

The second-order statistic of $x(n)$ at time n is specified by its mean value $\mu_{x}(n)$ and its variance $\sigma_{x}^{2}(n)$, defined by

- $\mu_{x}(n)=E\{x(n)\}=E\left\{x_{R}(n)+j x_{l}(n)\right\}$
- $\sigma_{x}^{2}(n)=E\left\{\left|x(n)-\mu_{x}(n)\right|^{2}\right\}=E\left\{|x(n)|^{2}\right\}-\left|\mu_{x}(n)\right|^{2}$
respectively.
In general, both $\mu_{x}(n)$ and $\sigma_{x}(n)$ are deterministic sequences.

Autocorrelation and Autocovariance

The second-order statistics of $x(n)$ at two different times n_{1} and n_{2} are given by the two-dimensional autocorrelation (or autocovariance) sequences.

- $r_{x x}\left(n_{1}, n_{2}\right)=E\left\{x\left(n_{1}\right) x^{*}\left(n_{2}\right)\right\}$
- $\gamma_{x x}\left(n_{1}, n_{2}\right)=r_{x x}\left(n_{1}, n_{2}\right)-\mu_{x}\left(n_{1}\right) \mu_{x}^{*}\left(n_{2}\right)$

Cross-correlation and Cross-covariance

- $r_{x y}\left(n_{1}, n_{2}\right)=E\left\{x\left(n_{1}\right) y^{*}\left(n_{2}\right)\right\}$
- $\gamma_{x y}\left(n_{1}, n_{2}\right)=r_{x y}\left(n_{1}, n_{2}\right)-\mu_{x}\left(n_{1}\right) \mu_{y}^{*}\left(n_{2}\right)$

IID Random Sequence and Uncorrelated Processes

- A sequence of independent random variables. If all random variables have the same pdf $f(x)$ for all n_{k}, then $x(n)$ is called an IID (independent and identically distributed) random sequence.
- An uncorrelated process

$$
\gamma_{x}\left(n_{1}, n_{2}\right)=0 \text { if } n_{1} \neq n_{2}
$$

Orthogonal Process and WSS Process

- An orthogonal process

$$
r_{x}\left(n_{1}, n_{2}\right)=0 \text { if } n_{1} \neq n_{2}
$$

- A wise-sense cyclostationary process

$$
\begin{gathered}
\mu_{x}(n)=\mu_{x}(n+N), \forall n \\
r_{x}\left(n_{1}, n_{2}\right)=r_{x}\left(n_{1}+N, n_{2}+N\right), \forall n_{1}, n_{2}
\end{gathered}
$$

Stationarity

A stochastic process $x(n)$ is called stationary of order N if

$$
f_{x}\left(x_{1}, \ldots, x_{N} ; n_{1}, \ldots, n_{N}\right)=f_{x}\left(x_{1}, \ldots, x_{N} ; n_{1}+k, \ldots, n_{N}+k\right)
$$

for any value of k.
If $x(n)$ is stationary for all orders $N=1,2, \ldots$, it is said to be strict-sense stationary (SSS).

- An IID sequence is SSS.
- If a stochastic process $x(n)$ is stationary up to order 2 , it is said to be wide-sense stationary (WSS).

Wide-Sense Stationary

A random signal $x(n)$ is called wide-sense stationary (WSS) if
(1) Its mean is a constant independent of n,
(2) Its variance is also a constant independent of n,
(3) Its autocorrelation depends only on the distance $I=n_{1}-n_{2}$, called lag.

Wide-Sense Stationary

A random signal $x(n)$ is called wide-sense stationary (WSS) if
(1) $E\{x(n)\}=\mu_{x}$
(2) $\operatorname{Var}[x(n)]=\sigma_{x}^{2}$
(3) $r_{x}\left(n_{1}, n_{2}\right)=r_{x}\left(n_{1}-n_{2}\right)=r_{x}(I)=E\left\{x(n+l) x^{*}(n)\right\}=$ $E\left\{x(n) x^{*}(n-l)\right\}$

Ergodicity

Can we infer the statistical characteristics of the process from a single realization?

Ergodicity implies that all the statistical information can be obtained from any single representative member of the ensemble.

Time average

Time average:

$$
\langle(\cdot)\rangle=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}(\cdot)
$$

- Mean value $=\langle x(n)\rangle$
- Mean square $\left.=\left.\langle | x(n)\right|^{2}\right\rangle$
- Variance $\left.=\langle | x(n)-\left.\langle x(n)\rangle\right|^{2}\right\rangle$
- Autocorrelation $=\left\langle x(n) x^{*}(n-l)\right\rangle$
- Autocovariance $=\left\langle[x(n)-\langle x(n)\rangle][x(n-I)-\langle x(n)\rangle]^{*}\right\rangle$
- Cross-correlation $=\left\langle x(n) y^{*}(n-l)\right\rangle$
- Cross-covariance $=\left\langle[x(n)-\langle x(n)\rangle][y(n-I)-\langle y(n)\rangle]^{*}\right\rangle$

Ergodic Random Processes

A random signal $x(n)$ is called ergodic if its ensemble averages equal appropriate time averages.

If the process is stationary and ergodic, then all statistical information can be derived from only one typical realization of the process.

Ergodic Random Processes

A random process $x(n)$ is ergodic in the mean if

$$
\langle x(n)\rangle=E\{x(n)\}
$$

A random process $x(n)$ is ergodic in correlation if

$$
\left\langle x(n) x^{*}(n-I)\right\rangle=E\left\{x(n) x^{*}(n-I)\right\}
$$

- That is, $\langle x(n)\rangle$ is a constant and $\left\langle x(n) x^{*}(n-I)\right\rangle$ is a function of I. If $x(n)$ is ergodic in both mean and variance, it is WSS. Only stationary signals can be ergodic.
- On the other hand, WSS does not imply ergodicity of any kind.

Frequency-Domain Description of Stationary Processes

- Power spectral density
- White noise

A random sequence $w(n)$ is called a (second-order) white noise process with mean μ_{w} and variance σ_{w}^{2}, if and only if

$$
E\{w(n)\}=\mu_{w}
$$

and

$$
\begin{gathered}
r_{w}(I)=E\left\{w(n) w^{*}(n-I)\right\}=\sigma_{w}^{2} \delta(I) \\
R_{w}\left(e^{j \omega}\right)=\sigma_{w}^{2}
\end{gathered}
$$

Random Vectors

An M-dimensional real-valued random vector

$$
\mathbf{x}(\zeta)=\left[x_{1}(\zeta), x_{2}(\zeta), \ldots, x_{M}(\zeta)\right]^{T}
$$

is completely characterized by its joint cdf:

$$
F_{\mathbf{x}}\left(x_{1}, \ldots, x_{M}\right)=\operatorname{Pr}\left\{x_{1}(\zeta) \leq x_{1}, \ldots, x_{M}(\zeta) \leq x_{M}\right\}=\operatorname{Pr}\{\mathbf{x}(\zeta) \leq \mathbf{x}\}
$$

or by its joint pdf:

$$
f_{\mathbf{x}}(\mathbf{x})=\frac{\partial}{\partial x_{1}} \cdots \frac{\partial}{\partial x_{M}} F_{\mathbf{x}}(\mathbf{x})
$$

Complex-valued Random Vectors

An M-dimensional complex-valued random vector

$$
\mathbf{x}(\zeta)=\mathbf{x}_{R}(\zeta)+j \mathbf{x}_{I}(\zeta)
$$

is completely characterized by its joint cdf:

$$
F_{\mathbf{x}}(\mathbf{x})=\operatorname{Pr}\{\mathbf{x}(\zeta) \leq \mathbf{x}\}=\operatorname{Pr}\left\{\mathbf{x}_{R}(\zeta) \leq \mathbf{x}_{R}, \mathbf{x}_{l}(\zeta) \leq \mathbf{x}_{l}\right\}
$$

or by its joint pdf:

$$
f_{\mathbf{x}}(\mathbf{x})=\frac{\partial}{\partial x_{R 1}} \frac{\partial}{\partial x_{l 1}} \cdots \frac{\partial}{\partial x_{R M}} \frac{\partial}{\partial x_{I M}} F_{\mathbf{x}}(\mathbf{x})
$$

Statistical Description

- Mean vector: $\mu_{\mathbf{x}}=E\{\mathbf{x}\}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{M}\right]^{T}$

Statistical Description

- Mean vector: $\mu_{\mathbf{x}}=E\{\mathbf{x}\}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{M}\right]^{T}$
- Auto-correlation matrix:

$$
\mathbf{R}_{\mathbf{x}}=E\left\{\mathbf{x x}^{H}\right\}=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 M} \\
\vdots & \ddots & \vdots \\
r_{M 1} & \cdots & r_{M M}
\end{array}\right]
$$

where $r_{i j}=E\left\{x_{i} x_{j}^{*}\right\}=r_{j i}^{*}$.

Statistical Description

- Mean vector: $\mu_{\mathbf{x}}=E\{\mathbf{x}\}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{M}\right]^{T}$
- Auto-correlation matrix:

$$
\mathbf{R}_{\mathbf{x}}=E\left\{\mathbf{x x}^{H}\right\}=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 M} \\
\vdots & \ddots & \vdots \\
r_{M 1} & \cdots & r_{M M}
\end{array}\right]
$$

where $r_{i j}=E\left\{x_{i} x_{j}^{*}\right\}=r_{j i}^{*}$.

- Auto-covariance matrix:

$$
\boldsymbol{\Gamma}_{\mathbf{x}}=E\left\{\left(\mathbf{x}-\mu_{\mathbf{x}}\right)\left(\mathbf{x}-\mu_{\mathbf{x}}\right)^{H}\right\}
$$

Statistical Description

- Mean vector: $\mu_{\mathbf{x}}=E\{\mathbf{x}\}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{M}\right]^{T}$
- Auto-correlation matrix:

$$
\mathbf{R}_{\mathbf{x}}=E\left\{\mathbf{x x}^{H}\right\}=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 M} \\
\vdots & \ddots & \vdots \\
r_{M 1} & \cdots & r_{M M}
\end{array}\right]
$$

where $r_{i j}=E\left\{x_{i} x_{j}^{*}\right\}=r_{j i}^{*}$.

- Auto-covariance matrix:

$$
\boldsymbol{\Gamma}_{\mathbf{x}}=E\left\{\left(\mathbf{x}-\mu_{\mathbf{x}}\right)\left(\mathbf{x}-\mu_{\mathbf{x}}\right)^{H}\right\}
$$

$$
\boldsymbol{\Gamma}_{\mathbf{x}}=\mathbf{R}_{\mathbf{x}}-\mu_{\mathbf{x}} \mu_{\mathbf{x}}^{H}
$$

Statistical Description

- Cross-correlation matrix:

$$
\mathbf{R}_{\mathbf{x y}}=E\left\{\mathbf{x y}^{H}\right\}=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 L} \\
\vdots & \ddots & \vdots \\
r_{M 1} & \cdots & r_{M L}
\end{array}\right]
$$

where $r_{i j}=E\left\{x_{i} y_{j}^{*}\right\}$.

Statistical Description

- Cross-correlation matrix:

$$
\mathbf{R}_{\mathbf{x y}}=E\left\{\mathbf{x y}^{H}\right\}=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 L} \\
\vdots & \ddots & \vdots \\
r_{M 1} & \cdots & r_{M L}
\end{array}\right]
$$

where $r_{i j}=E\left\{x_{i} y_{j}^{*}\right\}$.

- Cross-covariance matrix:

$$
\boldsymbol{\Gamma}_{\mathbf{x} \mathbf{y}}=E\left\{\left(\mathbf{x}-\mu_{\mathbf{x}}\right)\left(\mathbf{y}-\mu_{\mathbf{y}}\right)^{H}\right\}
$$

Statistical Description

- Cross-correlation matrix:

$$
\mathbf{R}_{\mathbf{x y}}=E\left\{\mathbf{x y}^{H}\right\}=\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 L} \\
\vdots & \ddots & \vdots \\
r_{M 1} & \cdots & r_{M L}
\end{array}\right]
$$

where $r_{i j}=E\left\{x_{i} y_{j}^{*}\right\}$.

- Cross-covariance matrix:

$$
\boldsymbol{\Gamma}_{\mathbf{x y}}=E\left\{\left(\mathbf{x}-\mu_{\mathbf{x}}\right)\left(\mathbf{y}-\mu_{\mathbf{y}}\right)^{H}\right\}
$$

$$
\boldsymbol{\Gamma}_{\mathbf{x y}}=\mathbf{R}_{\mathbf{x y}}-\mu_{\mathbf{x}} \mu_{\mathbf{y}}^{H}
$$

Statistical Description

- If two random vectors \mathbf{x} and \mathbf{y} are uncorrelated

$$
\boldsymbol{\Gamma}_{\mathbf{x y}}=\mathbf{0} \Rightarrow \mathbf{R}_{\mathbf{x y}}=\mu_{\mathbf{x}} \mu_{\mathbf{y}}^{H}
$$

Statistical Description

- If two random vectors \mathbf{x} and \mathbf{y} are uncorrelated

$$
\boldsymbol{\Gamma}_{\mathbf{x y}}=\mathbf{0} \Rightarrow \mathbf{R}_{\mathbf{x y}}=\mu_{\mathbf{x}} \mu_{\mathbf{y}}^{H}
$$

- If two random vectors \mathbf{x} and \mathbf{y} are orthogonal

$$
\mathbf{R}_{\mathrm{xy}}=\mathbf{0}
$$

General Correlation Matrices

- The correlation matrix of a random vector \mathbf{x} is conjugate symmetric or Hermitian

$$
\mathbf{R}_{x}=\mathbf{R}_{x}^{H}
$$

General Correlation Matrices

- The correlation matrix of a random vector \mathbf{x} is conjugate symmetric or Hermitian

$$
\mathbf{R}_{x}=\mathbf{R}_{x}^{H}
$$

- The correlation matrix of a random vector \mathbf{x} is nonnegative definite

$$
\mathbf{w}^{H} \mathbf{R}_{x} \mathbf{w} \geq 0
$$

General Correlation Matrices

- The correlation matrix of a random vector \mathbf{x} is conjugate symmetric or Hermitian

$$
\mathbf{R}_{x}=\mathbf{R}_{x}^{H}
$$

- The correlation matrix of a random vector \mathbf{x} is nonnegative definite

$$
\mathbf{w}^{H} \mathbf{R}_{x} \mathbf{w} \geq 0
$$

- The eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{M}$ of correlation matrix \mathbf{R}_{x} are real and nonnegative

General Correlation Matrices

- The correlation matrix of a random vector \mathbf{x} is conjugate symmetric or Hermitian

$$
\mathbf{R}_{x}=\mathbf{R}_{x}^{H}
$$

- The correlation matrix of a random vector \mathbf{x} is nonnegative definite

$$
\mathbf{w}^{H} \mathbf{R}_{x} \mathbf{w} \geq 0
$$

- The eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{M}$ of correlation matrix \mathbf{R}_{x} are real and nonnegative
- If \mathbf{R} is positive definite, then $\lambda_{i}>0$ for all $1 \leq i \leq M$.

General Correlation Matrices

- The correlation matrix of a random vector \mathbf{x} is conjugate symmetric or Hermitian

$$
\mathbf{R}_{x}=\mathbf{R}_{x}^{H}
$$

- The correlation matrix of a random vector \mathbf{x} is nonnegative definite

$$
\mathbf{w}^{H} \mathbf{R}_{x} \mathbf{w} \geq 0
$$

- The eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{M}$ of correlation matrix \mathbf{R}_{x} are real and nonnegative
- If \mathbf{R} is positive definite, then $\lambda_{i}>0$ for all $1 \leq i \leq M$.
- If the eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{M}$ are distinct, then the corresponding eigenvectors are orthogonal to one another, that is,

$$
\lambda_{i} \neq \lambda_{j} \Rightarrow \mathbf{q}_{i}^{H} \mathbf{q}_{j}=0, \text { for } i \neq j
$$

Spectral Decomposition

Let $\left\{\mathbf{q}_{i}\right\}_{i=1}^{M}$ be an orthonormal set of eigenvectors corresponding to the distinct eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{M}$ of an $M \times M$ correlation matrix \mathbf{R}.

Then \mathbf{R} can be diagonalized as

$$
\mathbf{\Lambda}=\mathbf{Q}^{H} \mathbf{R} \mathbf{Q}
$$

where the orthonormal matrix $\mathbf{Q}=\left[\mathbf{q}_{1} \cdots \mathbf{q}_{M}\right]$ is known as an eigen-matrix and $\boldsymbol{\Lambda}$ is an $\boldsymbol{M} \times M$ diagonal eigenvalue matrix, that is,

$$
\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{M}\right)
$$

The trace of \mathbf{R} is the summation of all eigenvalues

$$
\operatorname{tr}(\mathbf{R})=\sum_{i=1}^{M} \lambda_{i}
$$

Correlation Matrices from Random Processes

- A stochastic process can be represented as a random vector

$$
\mathbf{x}(n)=[x(n), x(n-1), \cdots, x(n-M+1)]^{T}
$$

Correlation Matrices from Random Processes

- A stochastic process can be represented as a random vector

$$
\mathbf{x}(n)=[x(n), x(n-1), \cdots, x(n-M+1)]^{T}
$$

- Mean: $\mu_{x}(n)=\left[\mu_{x}(n), \mu_{x}(n-1), \cdots, \mu_{x}(n-M+1)\right]^{T}$

Correlation Matrices from Random Processes

- A stochastic process can be represented as a random vector

$$
\mathbf{x}(n)=[x(n), x(n-1), \cdots, x(n-M+1)]^{T}
$$

- Mean: $\mu_{x}(n)=\left[\mu_{x}(n), \mu_{x}(n-1), \cdots, \mu_{x}(n-M+1)\right]^{T}$
- Correlation:

$$
\mathbf{R}_{x}(n)=\left[\begin{array}{ccc}
r_{x}(n, n) & \cdots & r_{x}(n, n-M+1) \\
\vdots & \ddots & \vdots \\
r_{x}(n-M+1, n) & \cdots & r_{x}(n-M+1, n-M+1)
\end{array}\right]
$$

Correlation Matrices from Random Processes

- Correlation matrices of stationary processes \mathbf{R}_{x}

$$
\mathbf{R}_{x}(n)=\left[\begin{array}{cccc}
r_{x}(0) & r_{x}(1) & \cdots & r_{x}(M-1) \\
r_{x}^{*}(1) & r_{x}(0) & \cdots & r_{x}(M-2) \\
\vdots & \vdots & \ddots & \vdots \\
r_{x}^{*}(M-1) & r_{x}^{*}(M-2) & \cdots & r_{x}(0)
\end{array}\right]
$$

- \mathbf{R}_{X} is Hermitian and Toeplitz.

Whitening and Innovations Representation

- Whitening - To represent a random vector (or sequence) \mathbf{x} with a linearly equivalent vector (or sequence) consisting of uncorrelated components w.

Whitening and Innovations Representation

- Whitening - To represent a random vector (or sequence) \mathbf{x} with a linearly equivalent vector (or sequence) consisting of uncorrelated components \mathbf{w}.
- If \mathbf{x} is a correlated random vector and if \mathbf{A} is a nonsingular matrix, then the linear transformation $\mathbf{w}=\mathbf{A x}$ results in a random vector \mathbf{w} that contains the same "information" as \mathbf{x}, and hence random vectors \mathbf{x} and \mathbf{w} are said to be linearly equivalent.

Whitening and Innovations Representation

- Whitening - To represent a random vector (or sequence) \mathbf{x} with a linearly equivalent vector (or sequence) consisting of uncorrelated components \mathbf{w}.
- If \mathbf{x} is a correlated random vector and if \mathbf{A} is a nonsingular matrix, then the linear transformation $\mathbf{w}=\mathbf{A x}$ results in a random vector \mathbf{w} that contains the same "information" as \mathbf{x}, and hence random vectors \mathbf{x} and \mathbf{w} are said to be linearly equivalent.
- Furthermore, if \mathbf{w} has uncorrelated components and \mathbf{A} is lower-triangular, then each component w_{i} of \mathbf{w} can be thought of as adding "new" information (or innovation) to w.

Transformations Using Eigen-decomposition

- Let \mathbf{Q}_{x} be the eigenmatrix of \mathbf{x}. Then \mathbf{Q}_{x}^{H} is the linear transformation matrix \mathbf{A}.
- The variances of random variables $w_{i}, i=1, \ldots, M$, are equal to the eigenvalues of \mathbf{x}.
- Since the transformation matrix $\mathbf{A}=\mathbf{Q}_{x}^{H}$ is orthonormal, the transformation is called an orthonormal transformation.

Orthogonal Transformation

Isotropic Transformation

$$
\mathbf{y}=\mathbf{\Lambda}_{x}^{-1 / 2} \mathbf{w} \quad \mathbf{R}_{y}=\mathbf{I}
$$

