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Central Limit Theorem

Random variables x1(ζ), x2(ζ), . . . , xM(ζ)

(a) are mutually independent and

(b) have the same distribution, and

(c) the mean and variance of each random variable exist and are finite

Then, the distribution of the normalized sum

yM(ζ) =

∑M
k=1 xk(ζ)− µyM

σyM

approaches that of a normal random variable with zero mean and unit
standard deviation as M →∞.
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Discrete-time Stochastic Processes

The sample space S , the probabilities Pr{ζk}, and the sequences
x(n, ζk),−∞ < n <∞, constitute a discrete-time stochastic process
or random sequence.

The set of all possible sequences {x(n, ζ)} is called an ensemble, and
each individual sequence x(n, ζk), corresponding to a specific value of
ζ = ζk , is called a realization or a sample sequence of the ensemble.
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Random Process
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Random Process

x(n, ζ) is a random variable if n is fixed and ζ is a variable.

x(n, ζ) is a sample sequence if ζ is fixed and n is a variable.

x(n, ζ) is a number if both n and ζ are fixed.

x(n, ζ) is a stochastic process if both n and ζ are variables.
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Features of Random Signals

1 The frequency of occurrence of various signal amplitudes, described
by the probability distribution of samples. (histogram)

2 The degree of dependence between two signal samples, described by
the correlation between them.

3 The existence of “cycles” or quasi-periodic patterns, obtained from
the signal power spectrum.

4 Indications of variability in the mean, variance, probability density, or
spectral content.
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Description Using Probability Functions

The kth-order cdf:

Fx(x1, . . . , xk ; n1, . . . , nk) = Pr{x(n1) ≤ x1, . . . , x(nk) ≤ xk}

or the kth-order pdf:

fx(x1, . . . , xk ; n1, . . . , nk) =
∂2kFx(x1, . . . , xk ; n1, . . . , nk)

∂xR1∂xI1 · · · ∂xRk∂xIk

needs to be known for every value of k ≥ 1 and for all instances
n1, n2, . . . , nk .
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Second-Order Statistical Description

The second-order statistic of x(n) at time n is specified by its mean value
µx(n) and its variance σ2x(n), defined by

µx(n) = E{x(n)} = E{xR(n) + jxI (n)}
σ2x(n) = E{|x(n)− µx(n)|2} = E{|x(n)|2} − |µx(n)|2

respectively.

In general, both µx(n) and σx(n) are deterministic sequences.
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Autocorrelation and Autocovariance

The second-order statistics of x(n) at two different times n1 and n2 are
given by the two-dimensional autocorrelation (or autocovariance)
sequences.

rxx(n1, n2) = E{x(n1)x∗(n2)}
γxx(n1, n2) = rxx(n1, n2)− µx(n1)µ∗x(n2)
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Cross-correlation and Cross-covariance

rxy (n1, n2) = E{x(n1)y∗(n2)}
γxy (n1, n2) = rxy (n1, n2)− µx(n1)µ∗y (n2)
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IID Random Sequence and Uncorrelated Processes

A sequence of independent random variables. If all random variables
have the same pdf f (x) for all nk , then x(n) is called an IID
(independent and identically distributed) random sequence.

An uncorrelated process

γx(n1, n2) = 0 if n1 6= n2
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Orthogonal Process and WSS Process

An orthogonal process

rx(n1, n2) = 0 if n1 6= n2

A wise-sense cyclostationary process

µx(n) = µx(n + N), ∀n

rx(n1, n2) = rx(n1 + N, n2 + N), ∀n1, n2
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Stationarity

A stochastic process x(n) is called stationary of order N if

fx(x1, . . . , xN ; n1, . . . , nN) = fx(x1, . . . , xN ; n1 + k, . . . , nN + k)

for any value of k .

If x(n) is stationary for all orders N = 1, 2, . . ., it is said to be strict-sense
stationary (SSS).

An IID sequence is SSS.

If a stochastic process x(n) is stationary up to order 2, it is said to be
wide-sense stationary (WSS).
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Wide-Sense Stationary

A random signal x(n) is called wide-sense stationary (WSS) if

1 Its mean is a constant independent of n,

2 Its variance is also a constant independent of n,

3 Its autocorrelation depends only on the distance l = n1 − n2, called
lag.
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Wide-Sense Stationary

A random signal x(n) is called wide-sense stationary (WSS) if

1 E{x(n)} = µx
2 Var [x(n)] = σ2x
3 rx(n1, n2) = rx(n1 − n2) = rx(l) = E{x(n + l)x∗(n)} =

E{x(n)x∗(n − l)}
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Ergodicity

Can we infer the statistical characteristics of the process from a single
realization?

Ergodicity implies that all the statistical information can be obtained from
any single representative member of the ensemble.
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Time average

Time average:

〈(·)〉 = lim
N→∞

1

2N + 1

N∑
n=−N

(·)

Mean value = 〈x(n)〉
Mean square = 〈|x(n)|2〉
Variance = 〈|x(n)− 〈x(n)〉|2〉
Autocorrelation = 〈x(n)x∗(n − l)〉
Autocovariance = 〈[x(n)− 〈x(n)〉][x(n − l)− 〈x(n)〉]∗〉
Cross-correlation = 〈x(n)y∗(n − l)〉
Cross-covariance = 〈[x(n)− 〈x(n)〉][y(n − l)− 〈y(n)〉]∗〉
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Ergodic Random Processes

A random signal x(n) is called ergodic if its ensemble averages equal
appropriate time averages.

If the process is stationary and ergodic, then all statistical information can
be derived from only one typical realization of the process.
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Ergodic Random Processes

A random process x(n) is ergodic in the mean if

〈x(n)〉 = E{x(n)}

A random process x(n) is ergodic in correlation if

〈x(n)x∗(n − l)〉 = E{x(n)x∗(n − l)}

That is, 〈x(n)〉 is a constant and 〈x(n)x∗(n − l)〉 is a function of l . If
x(n) is ergodic in both mean and variance, it is WSS. Only stationary
signals can be ergodic.

On the other hand, WSS does not imply ergodicity of any kind.
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Frequency-Domain Description of Stationary Processes

Power spectral density

White noise
A random sequence w(n) is called a (second-order) white noise
process with mean µw and variance σ2w , if and only if

E{w(n)} = µw

and
rw (l) = E{w(n)w∗(n − l)} = σ2wδ(l)

Rw (e jω) = σ2w
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Random Vectors

An M-dimensional real-valued random vector

x(ζ) = [x1(ζ), x2(ζ), . . . , xM(ζ)]T

is completely characterized by its joint cdf:

Fx(x1, . . . , xM) = Pr{x1(ζ) ≤ x1, . . . , xM(ζ) ≤ xM} = Pr{x(ζ) ≤ x}

or by its joint pdf:

fx(x) =
∂

∂x1
· · · ∂

∂xM
Fx(x)
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Complex-valued Random Vectors

An M-dimensional complex-valued random vector

x(ζ) = xR(ζ) + jxI (ζ)

is completely characterized by its joint cdf:

Fx(x) = Pr{x(ζ) ≤ x} = Pr{xR(ζ) ≤ xR , xI (ζ) ≤ xI}

or by its joint pdf:

fx(x) =
∂

∂xR1

∂

∂xI1
· · · ∂

∂xRM

∂

∂xIM
Fx(x)
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Statistical Description

Mean vector: µx = E{x} = [µ1, µ2, . . . , µM ]T

Auto-correlation matrix:

Rx = E{xxH} =

 r11 · · · r1M
...

. . .
...

rM1 · · · rMM


where rij = E{xix∗j } = r∗ji .

Auto-covariance matrix:

Γx = E{(x− µx)(x− µx)H}

Γx = Rx − µxµ
H
x
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Statistical Description

Cross-correlation matrix:

Rxy = E{xyH} =

 r11 · · · r1L
...

. . .
...

rM1 · · · rML


where rij = E{xiy∗j }.

Cross-covariance matrix:

Γxy = E{(x− µx)(y − µy)H}

Γxy = Rxy − µxµ
H
y
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Statistical Description

If two random vectors x and y are uncorrelated

Γxy = 0⇒ Rxy = µxµ
H
y

If two random vectors x and y are orthogonal

Rxy = 0
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General Correlation Matrices

The correlation matrix of a random vector x is conjugate symmetric
or Hermitian

Rx = RH
x

The correlation matrix of a random vector x is nonnegative definite

wHRxw ≥ 0

The eigenvalues {λi}Mi=1 of correlation matrix Rx are real and
nonnegative

If R is positive definite, then λi > 0 for all 1 ≤ i ≤ M.

If the eigenvalues {λi}Mi=1 are distinct, then the corresponding
eigenvectors are orthogonal to one another, that is,

λi 6= λj ⇒ qH
i qj = 0, for i 6= j
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Spectral Decomposition

Let {qi}Mi=1 be an orthonormal set of eigenvectors corresponding to the
distinct eigenvalues {λi}Mi=1 of an M ×M correlation matrix R.

Then R can be diagonalized as

Λ = QHRQ

where the orthonormal matrix Q = [q1 · · ·qM ] is known as an eigen-matrix
and Λ is an M ×M diagonal eigenvalue matrix, that is,

Λ = diag(λ1, . . . , λM).

The trace of R is the summation of all eigenvalues

tr(R) =
M∑
i=1

λi

Liang Dong (Baylor University) Probability Theory and Stochastic Processes September 8, 2016 27 / 33



Correlation Matrices from Random Processes

A stochastic process can be represented as a random vector

x(n) = [x(n), x(n − 1), · · · , x(n −M + 1)]T

Mean: µx(n) = [µx(n), µx(n − 1), · · · , µx(n −M + 1)]T

Correlation:

Rx(n) =

 rx(n, n) · · · rx(n, n −M + 1)
...

. . .
...

rx(n −M + 1, n) · · · rx(n −M + 1, n −M + 1)
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Correlation Matrices from Random Processes

Correlation matrices of stationary processes Rx

Rx(n) =


rx(0) rx(1) · · · rx(M − 1)
r∗x (1) rx(0) · · · rx(M − 2)

...
...

. . .
...

r∗x (M − 1) r∗x (M − 2) · · · rx(0)


Rx is Hermitian and Toeplitz.
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Whitening and Innovations Representation

Whitening – To represent a random vector (or sequence) x with a
linearly equivalent vector (or sequence) consisting of uncorrelated
components w.

If x is a correlated random vector and if A is a nonsingular matrix,
then the linear transformation w = Ax results in a random vector w
that contains the same “information” as x, and hence random vectors
x and w are said to be linearly equivalent.

Furthermore, if w has uncorrelated components and A is
lower-triangular, then each component wi of w can be thought of as
adding “new” information (or innovation) to w.

Liang Dong (Baylor University) Probability Theory and Stochastic Processes September 8, 2016 30 / 33



Whitening and Innovations Representation

Whitening – To represent a random vector (or sequence) x with a
linearly equivalent vector (or sequence) consisting of uncorrelated
components w.

If x is a correlated random vector and if A is a nonsingular matrix,
then the linear transformation w = Ax results in a random vector w
that contains the same “information” as x, and hence random vectors
x and w are said to be linearly equivalent.

Furthermore, if w has uncorrelated components and A is
lower-triangular, then each component wi of w can be thought of as
adding “new” information (or innovation) to w.

Liang Dong (Baylor University) Probability Theory and Stochastic Processes September 8, 2016 30 / 33



Whitening and Innovations Representation

Whitening – To represent a random vector (or sequence) x with a
linearly equivalent vector (or sequence) consisting of uncorrelated
components w.

If x is a correlated random vector and if A is a nonsingular matrix,
then the linear transformation w = Ax results in a random vector w
that contains the same “information” as x, and hence random vectors
x and w are said to be linearly equivalent.

Furthermore, if w has uncorrelated components and A is
lower-triangular, then each component wi of w can be thought of as
adding “new” information (or innovation) to w.

Liang Dong (Baylor University) Probability Theory and Stochastic Processes September 8, 2016 30 / 33



Transformations Using Eigen-decomposition

Let Qx be the eigenmatrix of x. Then QH
x is the linear transformation

matrix A .

The variances of random variables wi , i = 1, . . . ,M, are equal to the
eigenvalues of x.

Since the transformation matrix A = QH
x is orthonormal, the

transformation is called an orthonormal transformation.
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Orthogonal Transformation
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Isotropic Transformation

y = Λ
−1/2
x w Ry = I
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