ELC 5396: Digital Communications

Liang Dong
Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu

September 22, 2016

Signaling over AWGN Channels

The 1 s and 0 s emitted by the communication source are encoded into distinct signals denoted by $s_{1}(t)$ and $s_{2}(t)$, respectively, which are suitable for transmission over the analog channel.

Symbols $s_{1}(t)$ and $s_{2}(t)$ are real-valued energy signals.

$$
E_{i}=\int_{0}^{T_{b}} s_{i}^{2}(t) d t, \quad i=1,2
$$

AWGN Channel

$$
x(t)=s_{i}(t)+w(t), \quad i=1,2
$$

where, $w(t)$ is the channel noise.

Signaling over AWGN Channels

Average probability of symbol error

$$
P_{e}=\pi_{1} \mathbb{P}(\hat{m}=0 \mid 1 \text { sent })+\pi_{2} \mathbb{P}(\hat{m}=1 \mid 0 \text { sent })
$$

where π_{1} and π_{2} are the prior probabilities of transmitting symbols 1 and 0 , respectively.

Geometric Representation of Signals

The essence of geometric representation of signals is to represent any set of M energy signals $\left\{s_{i}(t)\right\}$ as linear combinations of N orthonormal basis functions, where $N \leq M$.

$$
s_{i}(t)=\sum_{j=1}^{N} s_{i j} \phi_{j}(t), \quad i=1,2, \ldots, M
$$

where,

$$
s_{i j}=\int_{0}^{T} s_{i}(t) \phi_{j}(t) d t, \quad i=1,2, \ldots, M, \quad j=1,2, \ldots, N
$$

Geometric Representation of Signals

The real-valued basis functions $\phi_{i}(t)$ form an orthonormal set

$$
\int_{0}^{T} \phi_{i}(t) \phi_{j}(t) d t=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Geometric Representation of Signals

A synthesizer and an analyzer:

Geometric Representation of Signals

Accordingly, we may state that each signal in the set $\left\{s_{i}(t)\right\}$ is completely determined by the signal vector

$$
\mathbf{s}_{i}=\left[s_{i 1}, s_{i 2}, \cdots, s_{i N}\right]^{T}, \quad i=1,2 \ldots, M
$$

\mathbf{s}_{i} is a point in an N-dimensional Euclidean space which is called the signal space.

Geometric Representation of Signals

Length of a signal vector - norm: $\left\|\mathbf{s}_{i}\right\|$

$$
\left\|\mathbf{s}_{i}\right\|^{2}=\mathbf{s}_{i}^{H} \mathbf{s}_{i}=\sum_{j=1}^{N}\left|s_{i j}\right|^{2}
$$

The energy of a signal:

$$
E_{i}=\int_{0}^{T}\left|s_{i}\right|^{2} d t=\sum_{j=1}^{N}\left|s_{i j}\right|^{2}=\left\|\mathbf{s}_{i}\right\|^{2}
$$

The inner product of the energy signals $s_{i}(t)$ and $s_{k}(t)$ over the interval $[0, T]$ is equal to the inner product of their respective vector representations \mathbf{s}_{i} and \mathbf{s}_{k} :

$$
\int_{0}^{T} s_{i}^{*}(t) s_{k}(t) d t=\mathbf{s}_{i}^{H} \mathbf{s}_{k}
$$

Geometric Representation of Signals

Euclidean distance between two signal vectors:

$$
\left\|\mathbf{s}_{i}-\mathbf{s}_{k}\right\|^{2}=\sum_{j=1}^{N}\left(s_{i j}-s_{k j}\right)^{2}
$$

The angle between two signal vectors:

$$
\cos \left(\theta_{i k}\right)=\frac{\mathbf{s}_{i}^{H} \mathbf{s}_{k}}{\left\|\mathbf{s}_{i}\right\|\left\|\mathbf{s}_{k}\right\|}
$$

Examples to read: (1) The Schwarz Inequality, (2) Gram-Schmidt Orthogonalization Procedure

Conversion of the Continuous AWGN Channel into a Vector Channel

The received signal over AWGN channel:

$$
x(t)=s_{i}(t)+w(t), \quad i=1,2, \ldots, M
$$

Using the "analyzer", the output of the j th correlater:

$$
x_{j}=\int_{0}^{T} x(t) \phi_{j}(t) d t=s_{i j}+w_{j}, j=1,2, \ldots, N
$$

where $w_{j}=\int_{0}^{T} w(t) \phi_{j}(t) d t$.
The received signal can be expressed as

$$
x(t)=\sum_{j=1}^{N} x_{j} \phi_{j}(t)+w^{\prime}(t)
$$

where $w^{\prime}(t)=w(t)-\sum_{j=1}^{N} w_{j} \phi_{j}(t)$.

Statistical Characterization of the Correlator Outputs

The output of the j th correlator is a Gaussian random variable X_{j}. $(j=1,2, \ldots, N)$

$$
\begin{gathered}
\mu_{X_{j}}=\mathbb{E}\left[s_{i j}+W_{j}\right]=s_{i j}+\mathbb{E}\left[W_{j}\right]=s_{i j} \\
\sigma_{X_{j}}^{2}=\operatorname{var}\left[X_{j}\right]=\mathbb{E}\left[W_{j}^{2}\right]=\frac{N_{0}}{2}, \forall j
\end{gathered}
$$

where

$$
\begin{aligned}
& W_{j}=\int_{0}^{T} W(t) \phi_{j}(t) d t \\
& \operatorname{cov}\left[X_{j} X_{k}\right]=0, \quad j \neq k
\end{aligned}
$$

Statistical Characterization of the Correlator Outputs

Define the vector of N random variables

$$
\mathbf{X}=\left[X_{1}, X_{2}, \cdots, X_{N}\right]^{T}
$$

whose elements are independent Gaussian random variables with mean values equal to $s_{i j}$ and variances equal to $N_{0} / 2$.

Conditional pdf of the vector \mathbf{X}

$$
f_{\mathbf{X}}\left(\mathbf{x} \mid m_{i}\right)=\prod_{j=1}^{N} f_{X_{j}}\left(x_{j} \mid m_{i}\right), \quad i=1,2, \ldots, M
$$

where \mathbf{x} is the observation vector and x_{j} is an element of the observation vector.

Statistical Characterization of the Correlator Outputs

Since each X_{j} is a Gaussian random variable with mean $s_{i j}$ and variance $N_{0} / 2$, we have

$$
f_{X_{j}}\left(x_{j} \mid m_{i}\right)=\frac{1}{\sqrt{\pi N_{0}}} \exp \left(-\frac{1}{N_{0}}\left(x_{j}-s_{i j}\right)^{2}\right)
$$

Therefore,

$$
f_{\mathbf{X}}\left(\mathbf{x} \mid m_{i}\right)=\left(\pi N_{0}\right)^{-N / 2} \exp \left(-\frac{1}{N_{0}} \sum_{j=1}^{N}\left(x_{j}-s_{i j}\right)^{2}\right)
$$

Statistical Characterization of the Correlator Outputs

The remainder of the noise is irrelevant.

$$
\mathbb{E}\left[X_{j} W^{\prime}\right]=0, j=1,2, \ldots, N
$$

Statistical Characterization of the Correlator Outputs

The AWGN channel model is an N-dimensional vector channel

$$
\mathbf{x}=\mathbf{s}_{i}+\mathbf{w}, \quad i=1,2, \ldots, M
$$

where the dimension N is the number of basis functions involved in formulating the signal vector \mathbf{s}_{i} for all i.

Likelihood Function

Likelihood function:

$$
I\left(m_{i} \mid \mathbf{x}\right)=f_{\mathbf{X}}\left(\mathbf{x} \mid m_{i}\right)
$$

The likelihood $I\left(m_{i} \mid \mathbf{x}\right)$ is not a distribution; rather, it is a function of the parameter m_{i}, given \mathbf{x}.

The log-likelihood function for an AWGN channel is

$$
L\left(m_{i}\right)=\ln I\left(m_{i}\right)=-\frac{1}{N_{0}} \sum_{j=1}^{N}\left(x_{j}-s_{i j}\right)^{2}, \quad i=1,2, \ldots, M
$$

where we have ignored the constant term $-(N / 2) \ln \left(\pi N_{0}\right)$ since it bears no relation to the message symbol m_{i}.
Recall that $s_{i j}, j=1,2, \ldots, N$, are the elements of the signal vector \mathbf{s}_{i} representing the message symbol m_{i}.

Optimum Receivers Using Coherent Detection

Maximum Likelihood Decoding

A bank of correlators:

Optimum Receivers Using Coherent Detection

Optimum Receivers Using Coherent Detection

Observation vector x lies in region Z_{i} if $\left(\sum_{j=1}^{N} x_{j} s_{k j}-\frac{1}{2} E_{k}\right)$ is maximum for $k=i$, where E_{k} is transmitted energy.

Correlation Receiver

(a) Detector

Correlation Receiver

(b) Maximum-likelihood Decoder

Matched Filter Receiver

Probability of Error

$$
P_{e}=1-\frac{1}{M} \sum_{i=1}^{M} \int_{Z_{i}} f_{\mathbf{X}}\left(\mathbf{x} \mid m_{i}\right) d \mathbf{x}
$$

Probability of Error

- Invariance of the Probability of Error to Rotation

If a message constellation is rotated by the transformation

$$
\mathbf{s}_{i, \text { rotate }}=\mathbf{Q} \mathbf{s}_{i}, \quad i=1,2, \ldots, M
$$

where \mathbf{Q} is an orthonormal matrix, then the probability of symbol error P_{e} incurred in maximum likelihood signal-detection over an AWGN channel is completely unchanged.

Illustration of Rotational Invariance

Probability of Error

- Invariance of the Probability to Translation

If a signal constellation is translated by a constant vector amount,

$$
\mathbf{s}_{i, \text { translate }}=\mathbf{s}_{i}-\mathbf{a}, \quad i=1,2, \ldots, M
$$

then the probability of symbol error P_{e} incurred in maximum likelihood signal detection over an AWGN channel is completely unchanged.

Illustration of Translation Invariance

Union Bound on the Probability of Error

Union Bound

$$
P_{e}\left(m_{i}\right) \leq \sum_{k=1, k \neq i}^{M} \mathbb{P}\left(A_{i k}\right), \quad i=1,2, \ldots, M
$$

Pairwise Error Probability

$$
P_{e}\left(m_{i}\right) \leq \sum_{k=1, k \neq i}^{M} p_{i k}, \quad i=1,2, \ldots, M
$$

where $p_{i k}$ is the pairwise error probability.

