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CHAPTER 3

Random Variables, Vectors,
and Sequences

So far we have dealt with deterministic signals, that is, signals whose amplitude is uniquely
specified by a mathematical formula or rule. However, there are many important examples
of signals whose precise description (i.e., as deterministic signals) is extremely difficult,
if not impossible. As mentioned in Section 2.1, such signals are called random signals.
Although random signals are evolving in time in an unpredictable manner, their average
properties can be often assumed to be deterministic; that is, they can be specified by explicit
mathematical formulas. This is the key for the modeling of a random signal as a stochastic
process.

Our aim in the subsequent discussions is to present some basic results from the theory
of random variables, random vectors, and discrete-time stochastic processes that will be
useful in the chapters that follow. We assume that most readers have some basic knowledge
of these topics, and so parts of this chapter may be treated as a review exercise. However,
some specific topics are developed in greater depth with a viewpoint that will serve as a
foundation for the rest of the book. A more complete treatment can be found in Papoulis
(1991), Helstrom (1992), and Stark and Woods (1994).

3.1 RANDOM VARIABLES

The concept of random variables begins with the definition of probability. Consider an
experiment with a finite or infinite number of unpredictable outcomes from a universal set,
denoted by S = {ζ 1, ζ 2, . . .}. A collection of subsets of S containing S itself and that is
closed under countable set operations is called a σ field and denoted by F . Elements of
F are called events. The unpredictability of these events is measured by a nonnegative set
function Pr{ζ k}, k = 1, 2, . . . , called the probability of event ζ k . This set function satisfies
three well-known and intuitive axioms (Papoulis 1991) such that the probability of any event
produced by set-theoretic operations on the events of S can be uniquely determined. Thus,
any situation of random nature, abstract or otherwise, can be studied using the axiomatic
definition of probability by defining an appropriate probability space (S,F, Pr).

In practice it is often difficult, if not impossible, to work with this probability space for
two reasons. First, the basic space contains abstract events and outcomes that are difficult to
manipulate. In engineering applications, we want random outcomes that can be measured
and manipulated in a meaningful way by using numerical operations. Second, the probability
function Pr{·} is a set function that again is difficult, if not impossible, to manipulate by using
calculus. These two problems are addressed through the concept of the random variable.
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DEFINITION 3.1 (RANDOM VARIABLE) . A random variable x(ζ ) is a mapping that assigns
a real number x to every outcome ζ from an abstract probability space. This mapping should
satisfy the following two conditions: (1) the interval {x(ζ ) ≤ x} is an event in the abstract
probability space for every x; (2) Pr{x(ζ ) = ∞} = 0 and Pr{x(ζ ) = −∞} = 0.

A complex-valued random variable is defined by x(ζ ) = xR(ζ )+ jxI(ζ ) where xR(ζ )

and xI(ζ ) are real-valued random variables. We will discuss complex-valued random vari-
ables in Section 3.2. Strictly speaking, a random variable is neither random nor a variable
but is a function or a mapping. As shown in Figure 3.1, the domain of a random variable
is the universal set S, and its range is the real line R. Since random variables are numbers,
they can be added, subtracted, or manipulated otherwise.
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x( )zk

x( )z2

x( )z3

x( )z1

FIGURE 3.1
Graphical illustration of random variable
mapping.

An important comment on notation. We will use x(ζ ), y(ζ ), . . . , to denote random
variables and the corresponding lowercase alphabet without parentheses to denote their
values; for example, x(ζ ) = x means that the random variable x(ζ ) takes value equal to
x. We believe that this notation will not cause any confusion because the meaning of the
lowercase variable will be clear from the context.

†
A specific value of the random variable

realization will be denoted by x(ζ 0) = x0 (corresponding to a particular event ζ 0 in the
original space).

A random variable is called discrete-valued if x takes a discrete set of values {xk};
otherwise, it is termed a continuous-valued random variable. A mixed random variable
takes both discrete and continuous values.

3.1.1 Distribution and Density Functions

The probability set function Pr{x(ζ ) ≤ x} is a function of the set {x(ζ ) ≤ x}, but it is also
a number that varies with x. Hence it is also a function of a point x on the real line R. This
point function is the well-known cumulative distribution function (cdf ) Fx(x) of a random
variable x(ζ ) and is defined by

Fx(x) � Pr{x(ζ ) ≤ x} (3.1.1)

The second important probability function is the probability density function (pdf ) fx(x),

†
Traditionally, the uppercase alphabet is used to denote random variables. We have reserved the use of uppercase

alphabet for transform-domain quantities.
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which is defined as a formal derivative

fx(x) � dFx(x)

dx
(3.1.2)

Note that the pdf fx(x) is not the probability, but must be multiplied by a certain interval
x to obtain a probability, that is,

fx(x)x ≈ Fx(x) � Fx(x + x) − Fx(x) = Pr{x < x(ζ ) ≤ x + x} (3.1.3)

Integrating both sides of (3.1.2), we obtain

Fx(x) =
∫ x

−∞
fx(ν) dν (3.1.4)

For discrete-valued random variables, we use the probability mass function (pmf ) pk ,
defined as the probability that random variable x(ζ ) takes a value equal to xk , or

pk � Pr{x(ζ ) = xk} (3.1.5)

These probability functions satisfy several important properties (Papoulis 1991), such
as

0 ≤ Fx(x) ≤ 1 Fx(−∞) = 0 Fx(∞) = 1 (3.1.6)

fx(x) ≥ 0
∫ ∞

−∞
fx(x) dx = 1 (3.1.7)

Using these functions and their properties, we can compute the probabilities of any event
(or interval) on R. For example,

Pr{x1 < x(ζ ) ≤ x2} = Fx(x2) − Fx(x1) =
∫ x2

x1

fx(x) dx (3.1.8)

3.1.2 Statistical Averages

To completely characterize a random variable, we have to know its probability density
function. In practice, it is desirable to summarize some of the key aspects of a density
function by using a few numbers rather than to specify the entire density function. These
numbers, which are called statistical averages or moments, are evaluated by using the
mathematical expectation operation. Although density functions are needed to theoretically
compute moments, in practice, moments are easily estimated without the explicit knowledge
of density functions.

Mathematical expectation

This is one of the most important operations in the theory of random variables. It is
generally used to describe various statistical averages, and it is also needed in estimation
theory. The expected or mean value of a random variable x(ζ ) is given by

E{x(ζ )} � µx =





∑

k

xkpk x(ζ ) discrete

∫ ∞

−∞
xfx(x) dx x(ζ ) continuous

(3.1.9)

Although, strictly speaking, to compute E{x(ζ )}we need the definitions for both the discrete
and continuous random variables, we will follow the engineering practice of using the
expression for the continuous random variable (which can also describe a discrete random
variable if we allow impulse functions in its pdf). The expectation operation computes a
statistical average by using the density fx(x) as a weighting function. Hence, the mean µx

can be regarded as the “location” (or the “center of gravity”) of the density fx(x), as shown
in Figure 3.2(a). If fx(x) is symmetric about x = a, then µx = a and, in particular, if fx(x)
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(a) Mean (b) Variance

(c) Skewness (d ) Kurtosis

fx1
(x)

fx1
(x)

fx1
(x)

fx2
(x)

fx2
(x)

fx1
(x)

fx2
(x)

fx2
(x)

m1 m2 m

s1

s2

x x

x x

Positive
Positive

Negative Negative

FIGURE 3.2
Illustration of mean, standard deviation, skewness, and kurtosis.

is an even function, then µx = 0. One important property of expectation is that it is a linear
operation, that is,

E{αx(ζ ) + β} = αµx + β (3.1.10)

Let y(ζ ) = g[x(ζ )] be a random variable obtained by transforming x(ζ ) through a suitable
function.

†
Then the expectation of y(ζ ) is given by

E{y(ζ )} � E{g[x(ζ )]} =
∫ ∞

−∞
g(x)fx(x) dx (3.1.11)

Moments

Using the expectation operations (3.1.9) and (3.1.11), we can define various moments
of the random variable x(ζ ) that describe certain useful aspects of the density function. Let
g[x(ζ )] = xm(ζ ). Then

r(m)
x � E{xm(ζ )} =

∫ ∞

−∞
xmfx(x) dx (3.1.12)

is called the mth-order moment of x(ζ ). In particular, r(0)
x = 1, and the first-order moment

r
(1)
x = µx . The second-order moment r

(2)
x = E{x2(ζ )} is called the mean-squared value,

and it plays an important role in estimation theory. Note that

E{x2(ζ )} = E2{x(ζ )} (3.1.13)

Corresponding to these moments we also have central moments. Let g[x(ζ )] = [x(ζ )−
µx]m, then

γ (m)
x � E{[x(ζ ) − µx]m} =

∫ ∞

−∞
(x − µx)

mfx(x) dx (3.1.14)

is called the mth-order central moment of x(ζ ). In particular, γ (0)
x = 1 and γ

(1)
x = 0, which

is obvious. Clearly, a random variable’s moments and central moments are identical if its

†
Such a function g(·) is called a Baire function (Papoulis 1991).



March 9, 2005 11:42 e56-ch3 Sheet number 5 Page number 79 black

79

section 3.1
Random Variables

mean value is zero. The second central moment is of considerable importance and is called
the variance of x(ζ ), denoted by σ 2

x . Thus

var[x(ζ )] � σ 2
x � γ (2)

x = E{[x(ζ ) − µx]2} (3.1.15)

The quantity σx =
√

γ
(2)
x is called the standard deviation of x(ζ ) and is a measure of

the spread (or dispersion) of the observed values of x(ζ ) around its mean µx [see Figure
3.2(b)]. The relation between a random variable’s moments and central moments is given
by (see Problem 3.3)

γ (m)
x =

m∑

k=0

(
m

k

)
(−1)kµk

xr
(m−k)
x (3.1.16)

In particular, and also from (3.1.15), we have

σ 2
x = r(2)

x − µ2
x = E{x2(ζ )} − E2{x(ζ )} (3.1.17)

The quantity skewness is related to the third-order central moment and characterizes
the degree of asymmetry of a distribution around its mean, as shown in Figure 3.2(c). It is
defined as a normalized third-order central moment, that is,

Skew � κ̃ (3)
x � E

{[
x(ζ ) − µx

σx

]3
}
= 1

σ 3
x

γ (3)
x (3.1.18)

and is a dimensionless quantity. It is a pure number that attempts to describe leaning of the
shape of the distribution. The skewness is zero if the density function is symmetric about its
mean value, is positive if the shape leans towards the right, or is negative if it leans towards
the left.

The quantity related to the fourth-order central moment is called kurtosis, which is also
a dimensionless quantity. It measures the relative flatness or peakedness of a distribution
about its mean as shown in Figure 3.2(d ). This relative measure is with respect to a normal
distribution, which will be introduced in the next section. The kurtosis is defined as

Kurtosis � κ̃ (4)
x � E

{[
x(ζ ) − µx

σx

]4
}
− 3 = 1

σ 4
x

γ (4)
x − 3 (3.1.19)

where the term −3 makes the kurtosis κ̃ (4)
x = 0 for the normal distribution [see (3.1.40) for

explanation].

Chebyshev’s inequality. A useful result in the interpretation and use of the mean µ and
the variance σ 2 of a random variable is given by Chebyshev’s inequality. Given a random
variable x(ζ ) with its mean µx and variance σ 2

x , we have the inequality

Pr{|x(ζ ) − µx | ≥ kσx} ≤ 1

k2
k > 0 (3.1.20)

The interpretation of the above inequality is that regardless of the shape of fx(x), the random
variable x(ζ ) deviates from its mean by k times its standard deviation with probability less
than or equal to 1/k2.

Characteristic functions

The Fourier and Laplace transforms find many uses in probability theory through the
concepts of characteristic and moment generating functions. The characteristic function of
a random variable x(ζ ) is defined by the integral

�x(ξ) � E{ejξx(ζ )} =
∫ ∞

−∞
fx(x)e

jξx dx (3.1.21)
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which can be interpreted as the Fourier transform of fx(x) with sign reversal in the complex
exponential. To avoid confusion with the cdf, we do not use Fx(ξ) to denote this Fourier
transform. Furthermore, the variable ξ in �x(ξ) is not and should not be interpreted as
frequency. When jξ in (3.1.21) is replaced by a complex variable s, we obtain the moment
generating function defined by

�̄x(s) � E{esx(ζ )} =
∫ ∞

−∞
fx(x)e

sx dx (3.1.22)

which again can be interpreted as the Laplace transform of fx(x) with sign reversal. Ex-
panding esx in (3.1.22) in a Taylor series at s = 0, we obtain

�̄x(s) = E{esx(ζ )} = E

{
1 + sx(ζ ) + [sx(ζ )]2

2! + · · · + [sx(ζ )]m
m! + · · ·

}

= 1 + sµx + s2

2! r
(2)
x + · · · + sm

m! r
(m)
x + · · ·

(3.1.23)

provided every moment r(m)
x exists. Thus from (3.1.23) we infer that if all moments of x(ζ )

are known (and exist), then we can assemble �̄x(s) and upon inverse Laplace transforma-
tion, we can determine the density function fx(x). If we differentiate �̄x(s) with respect to
s, we obtain

r(m)
x = dm[�̄x(s)]

dsm

∣∣∣∣
s=0

= (−j)m
dm[�x(ξ)]

dξm

∣∣∣∣
ξ=0

m = 1, 2, . . . (3.1.24)

which provides the mth-order moment of the random variable x(ζ ).
The functions �x(ξ) and �̄x(s) possess all the properties associated with the Fourier

and Laplace transforms, respectively. Thus, since fx(x) is always a real-valued function,
�x(ξ) is conjugate symmetric; and if fx(x) is also an even function, then �x(ξ) is a real-
valued even function. In addition, they possess several properties due to the basic nature of
the pdf. Therefore, the characteristic function �x(ξ) always exists

†
since

∫
|fx(x)| dx =

∫
fx(x) dx = 1

and �x(ξ) is maximum at the origin, that is,

|�x(ξ)| ≤ �x(0) = 1 (3.1.25)

since fx(x) ≥ 0.

Cumulants

These statistical descriptors are similar to the moments, but provide better information
for higher-order moment analysis, which we will consider in detail in Chapter 12. The
cumulants are derived by considering the moment generating function’s natural logarithm.
This logarithm is commonly referred to as the cumulant generating function and is given
by

!̄x(s) � ln �̄x(s) = ln E{esx(ζ )} (3.1.26)

When s is replaced by jξ in (3.1.26), the resulting function is known as the second char-
acteristic function and is denoted by !x(ξ).

The cumulants κ
(m)
x of a random variable x(ζ ) are defined as the derivatives of the

cumulant generating function, that is,

κ(m)
x � dm[!̄x(s)]

dsm

∣∣∣∣
s=0

= (−j)m
dm[!x(ξ)]

dξm

∣∣∣∣
ξ=0

m = 1, 2, . . . (3.1.27)

†
We will generally choose the characteristic function over the moment generating function.
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Clearly, κ(0)
x = 0. It can be shown that (see Problem 3.4) for a zero-mean random variable,

the first five cumulants as functions of the central moments are given by

κ(1)
x = r

(1)
(x) = µx = 0 (3.1.28)

κ(2)
x = γ (2)

x = σ 2
x (3.1.29)

κ(3)
x = γ (3)

x (3.1.30)

κ(4)
x = γ (4)

x − 3σ 4
x (3.1.31)

κ(5)
x = γ (5)

x − 10γ (3)
x σ 2

x (3.1.32)

which show that the first two cumulants are identical to the first two central moments.
Clearly due to the logarithmic function in (3.1.26), cumulants are useful for dealing with
products of characteristic functions (see Section 3.2.4).

3.1.3 Some Useful Random Variables

Random variable models are needed to describe (or approximate) complex physical phe-
nomena using simple parameters. For example, the random phase of a sinusoidal carrier can
be described by a uniformly distributed random variable so that we can study its statistical
properties. This approximation allows us to investigate random signals in a sound mathe-
matical way. We will describe three continuous random variable models although there are
several other known continuous as well as discrete models available in the literature.

Uniformly distributed random variable. This is an appropriate model in situations in
which random outcomes are “equally likely.” Here x(ζ ) assumes values on R according to
the pdf

fx(x) =




1

b − a
a ≤ x ≤ b

0 elsewhere
(3.1.33)

where a < b are specified parameters. This pdf is shown in Figure 3.3. The corresponding

−2 0 1−1 2

0.5

x

Uniform

Normal

Cauchy

fx(x)

FIGURE 3.3
Probability density functions of useful random variables.
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cdf is given by

Fx(x) =
∫ x

−∞
fx(ν) dν =





0 x < a

x − a

b − a
a ≤ x ≤ b

1 x > a

(3.1.34)

and the characteristic function is given by

�x(ξ) = ejξb − ejξa

jξ(b − a)
(3.1.35)

The mean and the variance of this random variable are given by, respectively,

µx = a + b

2
and σ 2

x = (b − a)2

12
(3.1.36)

Normal random variable. This is the most useful and convenient model in many ap-
plications, as we shall see later. It is also known as a Gaussian random variable, and we will
use both terms interchangeably. The pdf of a normally distributed random variable x(ζ )

with mean µx and standard deviation σx is given by

fx(x) = 1√
2πσ 2

x

exp

[
−1

2

(
x − µx

σx

)2
]

(3.1.37)

where −∞ < µ < ∞ and σ ≥ 0 (see Figure 3.3). The characteristic function of the normal
random variable is given by

�x(ξ) = exp(jµxξ − 1
2σ

2
xξ

2) (3.1.38)

Clearly, the pdf of a normal random variable is completely described by its mean µx and
standard deviation σx and is denoted by N (µx, σ

2
x). We note that all higher-order moments

of a normal random variable can be determined in terms of the first two moments, that is,

γ (m)
x = E{[x(ζ ) − µx]m} =

{
1 · 3 · 5 · · · (m − 1)σm

x if m even
0 if m odd

(3.1.39)

In particular, we obtain the fourth moment as

γ (4)
x = 3σ 4

x (3.1.40)

or from (3.1.19), kurtosis = 0, which explains the term −3 in (3.1.19).
From (3.1.37), we observe that the Gaussian random variable is completely determined

by its first two moments (mean µx and variance σ 2
x), which means that the higher moments

do not provide any additional information about the Gaussian density function. In fact, all
higher-order moments can be obtained in terms of the first two moments [see Equation
(3.1.39)]. Thus for a non-Gaussian random variable, we would like to know how different
that random variable is from a Gaussian random variable (this is also known as a departure
from the Gaussian-ness). This measurement of the deviation from being Gaussian is given by
the cumulants that were defined in (3.1.27). Roughly speaking, the cumulants are like central
moments (which measure deviations from the mean) of non-Gaussian random variables for
Gaussian departure. Also from (3.1.30) and (3.1.31), we see that all higher-order (that
is, m > 2) cumulants of a Gaussian random variable are zero. This fact is used in the
analysis and estimation of non-Gaussian random variables (and later for non-Gaussian
random processes).

Cauchy random variable. This is an appropriate model in which a random variable
takes large values with significant probability (heavy-tailed distribution). The Cauchy pdf
with parameters µ and β is given by

fx(x) = β

π

1

(x − µ)2 + β2
(3.1.41)
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and is shown in Figure 3.3. The corresponding cdf is given by

Fx(x) = 0.5 + 1

π
arctan

x − µ

β
(3.1.42)

and the characteristic function is given by

�x(ξ) = exp(jµξ − β|ξ |) (3.1.43)

The Cauchy random variable has mean µx = µ. However, its variance does not exist
because E{x2} fails to exist in any sense, and hence the moment generating function does
not exist, in general. It has the property that the sum of M independent Cauchy random
variables is also Cauchy (see Example 3.2.3). Thus a Cauchy random variable is an example
of an infinite-variance random variable.

Random number generators. Random numbers, by definition, are truly unpredictable,
and hence it is not possible to generate them by using a well-defined algorithm on a computer.
However, in many simulation studies, we need to use sequences of numbers that appear to
be random and that possess required properties, for example, Gaussian random numbers
in a Monte Carlo analysis. These numbers are called pseudo random numbers, and many
excellent algorithms are available to generate them on a computer (Park and Miller 1988).
In Matlab, the function rand generates numbers that are uniformly distributed over (0, 1)
while the function randn generates N (0, 1) pseudo random numbers.

3.2 RANDOM VECTORS

In many applications, a group of signal observations can be modeled as a collection of
random variables that can be grouped to form a random vector. This is an extension of the
concept of random variable and generalizes many scalar quantities to vectors and matrices.
One example of a random vector is the case of a complex-valued random variable x(ζ ) =
xR(ζ )+ jxI(ζ ), which can be considered as a group of xR(ζ ) and xI(ζ ). In this section, we
provide a review of the basic properties of random vectors and related results from linear
algebra. We first begin with real-valued random vectors and then extend their concepts to
complex-valued random vectors.

3.2.1 Definitions and Second-Order Moments

A real-valued vector containing M random variables

x(ζ ) = [x1(ζ ), x2(ζ ), . . . , xM(ζ )]T (3.2.1)

is called a random M vector or a random vector when dimensionality is unimportant. As
usual, superscript T denotes the transpose of the vector. We can think of a real-valued
random vector as a mapping from an abstract probability space to a vector-valued, real
space R

M . Thus the range of this mapping is an M-dimensional space.

Distribution and density functions

A random vector is completely characterized by its joint cumulative distribution func-
tion, which is defined by

Fx(x1, . . . , xM) � Pr{x1(ζ ) ≤ x1, . . . , xM(ζ ) ≤ xM} (3.2.2)

and is often written as

Fx(x) = Pr{x(ζ ) ≤ x} (3.2.3)
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for convenience. A random vector can be also characterized by its joint probability density
function, which is defined by

fx(x) = lim
x1→0

...

xM→0

Pr{x1 < x1(ζ ) ≤ x1 + x1, . . . , xM < xM(ζ ) ≤ xM + xM}
x1 · · ·xM

� ∂

∂x1
· · · ∂

∂xM

Fx(x)

(3.2.4)
The function

fxj
(xj ) =

∫
· · ·
∫

(M−1)

fx(x) dx1 · · · dxj−1 dxj+1 · · · dxM (3.2.5)

is known as a marginal density function and describes individual random variables. Thus
the probability functions defined for a random variable in the previous section are more
appropriately called marginal functions. The joint pdf fx(x) must be multiplied by a certain
M-dimensional region x to obtain a probability. From (3.2.4) we obtain

Fx(x) =
∫ x1

−∞
· · ·
∫ xM

−∞
fx(ν) dν1 · · · dνM =

∫ x

−∞
fx(ν) dν (3.2.6)

These joint probability functions also satisfy several important properties that are similar to
(3.1.6) through (3.1.8) for random variables. In particular, note that both fx(x) and Fx(x)
are positive multidimensional functions.

The joint [and conditional probability (see Papoulis 1991)] functions can also be used
to define the concept of independent random variables. Two random variables x1(ζ ) and
x2(ζ ) are independent if the events {x1(ζ ) ≤ x1} and {x2(ζ ) ≤ x2} are jointly independent,
that is, if

Pr{x1(ζ ) ≤ x1, x2(ζ ) ≤ x2} = Pr{x1(ζ ) ≤ x1}Pr{x2(ζ ) ≤ x2}
which implies that

Fx1,x2(x1, x2) = Fx1(x1)Fx2(x2) and fx1,x2(x1, x2) = fx1(x1)fx2(x2) (3.2.7)

Complex-valued random variables and vectors

As we shall see in later chapters, in applications such as channel equalization, array
processing, etc., we encounter complex signal and noise models. To formulate these models,
we need to describe complex random variables and vectors, and then extend our standard
definitions and results to the complex case. A complex random variable is defined as

†

x(ζ ) = xR(ζ )+ jxI(ζ ), where xR(ζ ) and xI(ζ ) are real-valued random variables. Thus we
can think of x(ζ ) as a mapping from an abstract probability space S to a complex space C.
Alternatively, x(ζ ) can be thought of as a real-valued random vector [xR(ζ ), xI(ζ )]T with a
joint cdf FxR,xI(xR, xI) or a joint pdf fx1,x2(x1, x2) that will allow us to define its statistical
averages. The mean of x(ζ ) is defined as

E{x(ζ )} = µx = E{xR(ζ ) + jxI(ζ )} = µxR
+ jµxI

(3.2.8)

and the variance is defined as

σ 2
x = E{|x(ζ ) − µx |2} (3.2.9)

which can be shown to be equal to

σ 2
x = E{|x(ζ )|2} − |µx |2 (3.2.10)

†
We will not make any distinction in notation between a real-valued and a complex-valued random variable. The

actual type should be evident from the context.
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A complex-valued random vector is given by

x(ζ ) = xR(ζ ) + jxI(ζ ) =


xR1(ζ )
...

xRM(ζ )


+ j



xI1(ζ )
...

xIM(ζ )


 (3.2.11)

and we can think of a complex-valued random vector as a mapping from an abstract proba-
bility space to a vector-valued, complex space C

M . The cdf for the complex-valued random
vector x(ζ ) is then defined as

Fx(x) � Pr{x(ζ ) ≤ x} � Pr{xR(ζ ) ≤ xR, xI(ζ ) ≤ xI} (3.2.12)

while its joint pdf is defined as

fx(x) = lim
xR1→0

...

xIM→0

Pr{xR < xR(ζ ) ≤ xR + xR, xI < xI(ζ ) ≤ xI + xI}
xR1xI1 · · ·xRMxIM

� ∂

∂xR1

∂

∂xI1
· · · ∂

∂xRM

∂

∂xIM
Fx(x)

(3.2.13)

From (3.2.13), the cdf is obtained by integrating the pdf over all real and imaginary parts,
that is

Fx(x) =
∫ xR1

−∞
· · ·
∫ xIM

−∞
fx(ν) dνR1 · · · dνIM =

∫ x

−∞
fx(ν) dν (3.2.14)

where the single integral in the last expression is used as a compact notation for multidi-
mensional integrals and should not be confused with a complex-contour integral. These
probability functions for a complex-valued random vector possess properties similar to
those of the real-valued random vectors. In particular,

∫ ∞

−∞
fx(x) dx = 1 (3.2.15)

Statistical description

Clearly the above probability functions require an enormous amount of information
that is not easy to obtain or is too complex mathematically for practical use. In practical
applications, random vectors are described by less complete but more manageable statistical
averages.

Mean vector. As we have seen before, the most important statistical operation is the
expectation operation. The marginal expectation of a random vector x(ζ ) is called the mean
vector and is defined by

µx = E{x(ζ )} =


E{x1(ζ )}
...

E{xM(ζ )}


 =



µ1
...

µM


 (3.2.16)

where the integral is taken over the entire C
M space. The components of µ are the means

of the individual random variables.

Correlation and covariance matrices. The second-order moments of a random vector
x(ζ ) are given as matrices and describe the spread of its distribution. The autocorrelation
matrix is defined by

Rx � E{x(ζ )xH (ζ )} =


r11 · · · r1M
...

. . .
...

rM1 · · · rMM


 (3.2.17)
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where superscript H denotes the conjugate transpose operation, the diagonal terms

rii � E{|xi(ζ )|2} i = 1, . . . ,M (3.2.18)

are the second-order moments, denoted earlier as r
(2)
xi

, of random variables xi(ζ ), and the
off-diagonal terms

rij � E{xi(ζ )x
∗
j (ζ )} = r∗ji i = j (3.2.19)

measure the correlation, that is, the statistical similarity between the random variables xi(ζ )

and xj (ζ ). From (3.2.19) we note that the correlation matrix Rx is conjugate symmetric or
Hermitian, that is, Rx = RH

x .

The autocovariance matrix is defined by

�x � E{[x(ζ ) − µx][x(ζ ) − µx]H } �



γ 11 · · · γ 1M
...

. . .
...

γM1 · · · γMM


 (3.2.20)

where the diagonal terms

γ ii = E{|xi(ζ ) − µi |2} i = 1, . . . ,M (3.2.21)

are the (self-)variances of xi(ζ ) denoted earlier as σ 2
xi

while the off-diagonal terms

γ ij = E{[xi(ζ )−µi][xj (ζ )−µj ]∗} = E{xi(ζ )x
∗
j (ζ )}−µiµ

∗
j = γ ∗

ji i = j (3.2.22)

are the values of the covariance between xi(ζ ) and xj (ζ ). The covariance matrix �x is
also a Hermitian matrix. The covariance γ ij can also be expressed in terms of standard
deviations of xi(ζ ) and xj (ζ ) as γ ij = ρijσ iσ j , where

ρij �
γ ij

σ iσ j

= ρji (3.2.23)

is called the correlation coefficient between xi(ζ ) and xj (ζ ). Note that

|ρij | ≤ 1 i = j ρii = 1 (3.2.24)

The correlation coefficient measures the degree of statistical similarity between two random
variables. If |ρij | = 1, then random variables are said to be perfectly correlated ; but if
ρij = 0 (that is, when the covariance γ ij = 0), then xi(ζ ) and xj (ζ ) are said to uncorrelated.

The autocorrelation and autocovariance matrices are related. Indeed, we can easily see
that

�x � E{[x(ζ ) − µx][x(ζ ) − µx]H } = Rx − µxµ
H
x (3.2.25)

which shows that these two moments have essentially the same amount of information. In
fact, if µx = 0, then �x = Rx. The autocovariance measures a weaker form of interaction
between random variables called correlatedness that should be contrasted with the stronger
form of independence that we described in (3.2.7). If random variables xi(ζ ) and xj (ζ ) are
independent, then they are also uncorrelated since (3.2.7) implies that

E{xi(ζ )x
∗
j (ζ )} = E{xi(ζ )}E{x∗j (ζ )} or γ ij = 0 (3.2.26)

but uncorrelatedness does not imply independence unless random variables are jointly
Gaussian (see Problem 3.15). The autocorrelation also measures another weaker form of
interaction called orthogonality. Random variables xi(ζ ) and xj (ζ ) are orthogonal if their
correlation

rij = E{xi(ζ )x
∗
j (ζ )} = 0 i = j (3.2.27)

Clearly, from (3.2.26) if one or both random variables have zero means, then uncorrelated-
ness also implies orthogonality.
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We can also define correlation and covariance functions between two random vectors.
Let x(ζ ) and y(ζ ) be random M- and L-vectors, respectively. Then the M × L matrix

Rxy � E{xyH } =



E{x1(ζ )y
∗
1 (ζ )} · · · E{x1(ζ )y

∗
L(ζ )}

...
. . .

...

E{xM(ζ )y∗1 (ζ )} · · · E{xM(ζ )y∗L(ζ )}


 (3.2.28)

is called a cross-correlation matrix whose elements rij are the correlations between random
variables xi(ζ ) and yj (ζ ). Similarly the M × L matrix

�xy � E{[x(ζ )−µx][y(ζ )−µy]H } = Rxy − µxµ
H
y (3.2.29)

is called a cross-covariance matrix whose elements cij are the covariances between xi(ζ )

and yj (ζ ). In general the cross-matrices are not square matrices, and even if M = L, they
are not necessarily symmetric. Two random vectors x(ζ ) and y(ζ ) are said to be

• Uncorrelated if

�xy = 0 ⇒ Rxy = µxµ
H
y (3.2.30)

• Orthogonal if

Rxy = 0 (3.2.31)

Again, if µx or µy or both are zero vectors, then (3.2.30) implies (3.2.31).

3.2.2 Linear Transformations of Random Vectors

Many signal processing applications involve linear operations on random vectors. Linear
transformations are relatively simple mappings and are given by the matrix operation

y(ζ ) = g[x(ζ )] = Ax(ζ ) (3.2.32)

where A is an L×M (not necessarily square) matrix. The random vector y(ζ ) is completely
described by the density function fy(y). If L > M , then only M yi(ζ ) random variables can
be independently determined from x(ζ ). The remaining (L − M)yi(ζ ) random variables
can be obtained from the first yi(ζ ) random variables. Thus we need to determine fy(y)
for M random variables from which we can determine fy(y) for all L random variables. If
M > L, then we can augment y into an M-vector by introducing auxiliary random variables

yL+1(ζ ) = xL+1(ζ ), . . . , yM(ζ ) = xM(ζ ) (3.2.33)

to determine fy(y) for M random variables from which we can determine fy(y) for the
original L random variables. Therefore, for the determination of the pdf fy(y), we will
assume that L = M and that A is nonsingular.

Furthermore, we will first consider the case in which both x(ζ ) and y(ζ ) are real-
valued random vectors, which also implies that A is a real-valued matrix. This approach is
necessary because the complex case leads to a slightly different result. Then the pdf fy(y)
is given by

fy(y) = fx(g
−1(y))
|J| (3.2.34)

where J is called the Jacobian of the transformation (3.2.32), given by

J = det




∂y1

∂x1
· · · ∂yM

∂x1
...

. . .
...

∂y1

∂xM

· · · ∂yM

∂xM




= det A (3.2.35)



March 9, 2005 11:42 e56-ch3 Sheet number 14 Page number 88 black

88

chapter 3
Random Variables,
Vectors, and Sequences

From (3.2.34) and (3.2.35), the pdf of y(ζ ) is given by

fy(y) = fx(A−1y)
| det A| real-valued random vector (3.2.36)

from which moment computations of any order of y(ζ ) can be performed. Now we consider
the case of the complex-valued random vectors. Then by applying the above approach to
both real and imaginary parts, the result (3.2.36) becomes

fy(y) = fx(A−1y)
| det A|2 complex-valued random vector (3.2.37)

This shows that sometimes we can get different results depending upon whether we assume
real- or complex-valued random vectors in our analysis.

Determining fy(y) is, in general, tedious except in the case of Gaussian random vectors,
as we shall see later. In practice, the knowledge of µy, �y, �xy, or �yx is sufficient in many
applications. If we take the expectation of both sides of (3.2.32), we find that the mean
vector is given by

µy = E{y(ζ )} = E{Ax(ζ )} = AE{x(ζ )} = Aµx (3.2.38)

The autocorrelation matrix of y(ζ ) is given by

Ry = E{yyH } = E{AxxH AH } = AE{xxH }AH = ARxAH (3.2.39)

Similarly, the autocovariance matrix of y(ζ ) is given by

�y = A�xAH (3.2.40)

Consider the cross-correlation matrix

Rxy = E{x(ζ )yH (ζ )} = E{x(ζ )xH (ζ )AH } (3.2.41)

= E{x(ζ )xH (ζ )}AH = RxAH (3.2.42)

and hence Ryx = ARx. Similarly, the cross-covariance matrices are

�xy = �xAH and �yx = A�x (3.2.43)

3.2.3 Normal Random Vectors

If the components of the random vector x(ζ ) are jointly normal, then x(ζ ) is a normal
random M-vector. Again, the pdf expressions for the real- and complex-valued cases are
slightly different, and hence we consider these cases separately. The real-valued normal
random vector has the pdf

fx(x) = 1

(2π)M/2|�x|1/2
exp

[
−1

2
(x − µx)

T�−1
x (x − µx)

]
real (3.2.44)

with meanµx and covariance�x. It will be denoted by N (µx,�x). The term in the exponent
(x − µx)

T�−1
x (x − µx) is a positive definite quadratic function of xi and is also given by

(x − µx)
T�−1

x (x − µx) =
M∑

i=1

M∑

j=1

〈�−1
x 〉ij (xi − µi)(xj − µj ) (3.2.45)

where 〈�−1
x 〉ij denotes the (i, j)th element of�−1

x . The characteristic function of the normal
random vector is given by

�x(ξ) = exp(jξTµx− 1
2ξ

T�xξ) (3.2.46)

where ξT = [ξ1, . . . , ξM ].
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The complex-valued normal random vector has the pdf

fx(x) = 1

πM |�x| exp[−(x − µx)
H�−1

x (x − µx)] complex (3.2.47)

with mean µx and covariance �x. This pdf will be denoted by CN (µx,�x). If x(ζ ) is a
scalar complex-valued random variable x(ζ ) with mean µx and variance σ 2

x , then (3.2.47)
reduces to

fx(x) = 1

πσ 2
x

exp

(
−|x − µ|2

σ 2
x

)
(3.2.48)

which should be compared with the pdf given in (3.1.37). Note that the pdf in (3.1.37)
is not obtained by setting the imaginary part of x(ζ ) in (3.2.48) equal to zero. For a
more detailed discussion on this aspect, see Therrien (1992) or Kay (1993). The term
(x − µx)

H�−1
x (x − µx) in the exponent of (3.2.47) is also a positive definite quadratic

function and is given by

(x − µx)
H�−1

x (x − µx) =
M∑

i=1

M∑

j=1

〈�−1
x 〉ij (xi − µi)

∗(xj − µj ) (3.2.49)

The characteristic function for the complex-valued normal random vector is given by

�x(ξ) = exp[jRe(ξHµx)− 1
4ξ

H�xξ ] (3.2.50)

The normal distribution is a useful model of a random vector because of its many
important properties:

1. The pdf is completely specified by the mean vector and the covariance matrix, which are
relatively easy to estimate in practice. All other higher-order moments can be obtained
from these parameters.

2. If the components of x(ζ ) are mutually uncorrelated, then they are also independent.
(See Problem 3.15.) This is useful in many derivations.

3. A linear transformation of a normal random vector is also normal. This can be easily
seen by using (3.2.38), (3.2.40), and (3.2.44) in (3.2.36); that is, for the real-valued case
we obtain

fy(y) = 1

(2π)M/2|�y|1/2
exp

[
−1

2
(y − µy)

T�−1
y (y − µy)

]
real (3.2.51)

This result can also be proved by using the moment generating function in (3.2.46) (see
Problem 3.6). Similarly for the complex-valued case, from (3.2.37) and (3.2.47) we
obtain

fy(y) = 1

πM |�y| exp[−(y − µy)
H (A−1)H�−1

x A−1(y − µy)] complex (3.2.52)

4. The fourth-order moment of a normal random vector

x(ζ ) = [x1(ζ ) x2(ζ ) x3(ζ ) x4(ζ )]T

can be expressed in terms of its second-order moments. For the real case, that is, when
x(ζ ) ∼ N (0,�x), we have

E{x1(ζ )x2(ζ )x3(ζ )x4(ζ )} = E{x1(ζ )x2(ζ )}E{x3(ζ )x4(ζ )}
+E{x1(ζ )x3(ζ )}E{x2(ζ )x4(ζ )}
+E{x1(ζ )x4(ζ )}E{x2(ζ )x3(ζ )}

(3.2.53)
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For the complex case, that is, when x(ζ ) ∼ CN (0,�x), we have

E{x∗1 (ζ )x2(ζ )x
∗
3 (ζ )x4(ζ )} = E{x∗1 (ζ )x2(ζ )}E{x∗3 (ζ )x4(ζ )}

+E{x∗1 (ζ )x4(ζ )}E{x2(ζ )x
∗
3 (ζ )}

(3.2.54)

The proof of (3.2.53) is tedious but straightforward. However, the proof of (3.2.54) is
complicated and is discussed in Kay (1993).

3.2.4 Sums of Independent Random Variables

In many applications, a random variable y(ζ ) can be expressed as a linear combination of
M statistically independent random variables {xk(ζ )}M1 , that is,

y(ζ ) = c1x1(ζ ) + c2x2(ζ ) + · · · + cMxM(ζ ) =
M∑

k=1

ckxk(ζ ) (3.2.55)

where {ck}M1 is a set of fixed coefficients. In these situations, we would like to compute
the first two moments and the pdf of y(ζ ). The moment computation is straightforward,
but the pdf computation requires the use of characteristic functions. When these results are
extended to the sum of an infinite number of statistically independent random variables,
we obtain a powerful theorem called the central limit theorem (CLT). Another interesting
concept develops when the sum of IID random variables preserves their distribution, which
results in stable distributions.

Mean. Using the linearity of the expectation operator and taking the expectation of
both sides of (3.2.55), we obtain

µy =
M∑

k=1

ckµxk
(3.2.56)

Variance. Again by using independence, the variance of y(ζ ) is given by

σ 2
y = E





∣∣∣∣∣

M∑

k=1

ck[xk(ζ ) − µxk
]
∣∣∣∣∣

2


 =

M∑

k=1

|ck|2σ 2
xk

(3.2.57)

where we have used the statistical independence between random variables.

Probability density function. Before we derive the pdf of y(ζ ) in (3.2.55), we consider
two special cases. First, let

y(ζ ) = x1(ζ ) + x2(ζ ) (3.2.58)

where x1(ζ ) and x2(ζ ) are statistically independent. Then its characteristic function is given
by

�y(ξ) = E{ejξy(ζ )} = E{ejξ [x1(ζ )+x2(ζ )]} = E{ejξx1(ζ )}E{ejξx2(ζ )} (3.2.59)

where the last equality follows from the independence. Hence

�y(ξ) = �x1(ξ)�x2(ξ) (3.2.60)

or from the convolution property of the Fourier transform

fy(y) = fx1(y) ∗ fx2(y) (3.2.61)

From (3.2.60) the second characteristic function of y(ζ ) is given by

!y(ξ) = !x1(ξ) + !x2(ξ) (3.2.62)
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or the mth-order cumulant of y(ζ ) is given by

κ(m)
y = κ(m)

x1
+ κ(m)

x2
(3.2.63)

These results can be easily generalized to the sum of M independent random variables.

E XAM PLE 3.2.1. Let {xk(ζ )}4k=1 be four IID random variables uniformly distributed over

[−0.5, 0.5]. Compute and plot the pdfs of yM(ζ ) � ∑M
k=1 xk for M = 2, 3, and 4. Compare

these pdfs with that of a zero-mean Gaussian random variable.

Solution. Let f (x) be the pdf of a uniform random variable over [−0.5, 0.5], that is,

f (x) =
{

1 −0.5 ≤ x ≤ 0.5

0 otherwise
(3.2.64)

Then from (3.2.61)

fy2(y) = f (y) ∗ f (y) =





1 + y −1 ≤ y ≤ 0

1 − y 0 ≤ y ≤ 1

0 otherwise

(3.2.65)

Similarly, we have

fy3(y) = fy2(y) ∗ f (y) =





1
2
(y + 3

2
)2 − 3

2
≤ y ≤ − 1

2
3
4
− y2 − 1

2
≤ y ≤ 1

2
1
2
(y − 3

2
)2 1

2
≤ y ≤ 3

2

0 otherwise

(3.2.66)

fy4(y) = fy3(y) ∗ f (y) =





1
6
(y + 2)3 −2 ≤ y ≤ −1

− 1
2
y3 − y2 + 2

3
−1 ≤ y ≤ 0

2
3
+ 1

2
y3 − y2 0 ≤ y ≤ 1

− 1
6
(−2 + y)3 1 ≤ y ≤ 2

0 otherwise

(3.2.67)and

The plots of fy2(y), fy3(y), and fy4(y) are shown in Figure 3.4 along with the zero-mean
Gaussian pdf. The variance of the Gaussian random variable is chosen so that 99.92 percent of
the pdf area is over [−2, 2]. We observe that as M increases, the pdf plots appear to get closer
to the shape of the Gaussian pdf. This observation will be explored in detail in the CLT.

Next, let y(ζ ) = ax(ζ ) + b; then the characteristic function of y(ζ ) is

�y(ξ) = E{ej [ax(ζ )+b]ξ } = E{ejaξx(ζ )ejbξ } = �x(aξ)e
jbξ (3.2.68)

and by using the properties of the Fourier transform, the pdf of y(ζ ) is given by

fy(y) = 1

|a|fx

(
y − b

a

)
(3.2.69)

From (3.2.68), the second characteristic function is given by

!y(ξ) = !x(aξ) + jbξ (3.2.70)

and the cumulants are given by

κ(m)
y = (−j)m

dm!y(ξ)

dξm

∣∣∣∣
ξ=0

= am(−j)m
dm!x(aξ)

dξm

∣∣∣∣
ξ=0

= amκ(m)
x m > 1

(3.2.71)
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−1 0 1
0

1

M = 2

(a)

−1.5 0 1.5
0

0.75

M = 3

(b )

−2 0 2
0

0.67

M = 4

(c )

−2 0 2
0

0.67

N (0, 0.6)

(d )

FIGURE 3.4
The pdf plots of (a) sum of two, (b) sum of three, (c) sum of four, and (d ) Gaussian random
variables in Example 3.2.1.

Finally, consider y(ζ ) in (3.2.55). Using the results in (3.2.60) and (3.2.68), we have

�y(ξ) =
M∏

k=1

�xk
(ckξ) (3.2.72)

from which the pdf of y(ζ ) is given by

fy(y) = 1

|c1|fx1

(
y

c1

)
∗ 1

|c2|fx2

(
y

c2

)
∗ · · · ∗ 1

|cM |fxM

(
y

cM

)
(3.2.73)

From (3.2.62) and (3.2.70), the second characteristic function is given by

!y(ξ) =
M∑

k=1

!xk
(ckξ) (3.2.74)

and hence from (3.2.63) and (3.2.71), the cumulants of y(ζ ) are

κ(m)
y =

M∑

k=1

cmk κ(m)
xk

(3.2.75)

where cmk is the mth power of ck .
In the following two examples, we consider two interesting cases in which the sum of

IID random variables retains their original distribution. The first case concerns Gaussian
random variables that have finite variances while the second case involves Cauchy random
variables that possess infinite variance.
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E XAM PLE 3.2.2. Let xk(ζ ) ∼ N (µk, σ
2
k
), k = 1, . . . ,M and let y(k) = ∑M

1 xk(ζ ). The
characteristic function of xk(ζ ) is

�xk (ξ) = exp

(
jµkξ − ξ2σ 2

k

2

)

and hence from (3.2.72), we have

�y(ξ) = exp




jξ

M∑

k=1

µk −
ξ2

M∑

k=1

σ 2
k

2




which means that y(ζ ) is also a Gaussian random variable with mean
∑M

k=1 µk and variance∑M
k=1 σ 2

k
, that is, y(ζ ) ∼ N (

∑M
k=1 µk,

∑M
k=1 σ 2

k
). In particular, if the xk(ζ ) are IID with a pdf

N (µ, σ 2), then

�y(ξ) = exp

(
jMµξ − ξ2Mσ 2

2

)
= exp

[
M

(
jξµ − ξ2σ 2

2

)]
(3.2.76)

This behavior of y(ζ ) is in contrast with that of the sum of the IID random variables in Exam-
ple 3.2.1 in which the uniform pdf changed its form after M-fold convolutions.

EXAMPLE 3.2.3. As a second case, consider M IID random variables {xk(ζ )}Mk=1 with Cauchy
distribution

fxk (x) =
β

π

1

(x − α)2 + β2

and let y(k) =∑M
1 xk(ζ ). Then from (3.1.43), we have

�x(ξ) = exp(jαξ − β|ξ |)
and hence

�y(ξ) = exp(jMαξ − Mβ|ξ |) = exp[M(jαξ − β|ξ |)] (3.2.77)

This once again shows that the sum random variable has the same distribution (up to a scale
factor) as that of the individual random variables, which in this case is the Cauchy distribution.

From these examples, we note that the Gaussian and the Cauchy random variables
are invariant, or that they have a “self-reproducing” property under linear transformations.
These two examples also raise some interesting questions. Are there any other random vari-
ables that possess this invariance property? If such random variables exist, what is the form
of their pdfs or, alternatively, of their characteristic functions, and what can we say about
their means and variances? From (3.2.76) and (3.2.77), observe that if the characteristic
function has a general form

�xk
(ξ) = aθ(ξ) (3.2.78)

where a is some constant and θ(ξ) is some function of ξ , then we have

�y(s) = aMθ(s) (3.2.79)

that is, the characteristic function of the sum has the same functional form except for a
change in scale. Are Gaussian and Cauchy both special cases of some general situation?
These questions are answered by the concept of stable (more appropriately, linearly invariant
or self-reproducing) distributions.

Stable distributions. These distributions satisfy the “stability” property, which in sim-
ple terms means that the distributions are preserved (or that they self-reproduce) under
convolution. The only stable distribution that has finite variance is the Gaussian distri-
bution, which has been well understood and is used extensively in the literature and in
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practice. The remaining stable distributions have infinite variances (and in some cases,
infinite means) which means that the corresponding random variables exhibit large fluctua-
tions. These distributions can then be used to model signals with large variability and hence
are finding increasing use in many diverse applications such as the gravitational fields of
stars, temperature distributions in a nuclear reaction, or stock market fluctuations (Lamperti
1996; Samorodnitsky and Taqqu 1994; Feller 1966).

Before we formally define stable distributions, we introduce the following notation for
convenience

y(ζ )
d= x(ζ ) (3.2.80)

to indicate that the random variables x(ζ ) and y(ζ ) have the same distribution. For example,
if y(ζ ) = ax(ζ ) + b, we have

Fy(y) = Fx

(
y − b

a

)
(3.2.81)

and therefore x(ζ )
d= ax(ζ ) + b.

DEFINITION 3.2. Let x1(ζ ), x2(ζ ), . . . , xM(ζ ) be IID random variables with a common distri-
bution Fx(x) and let sM(ζ ) = x1(ζ )+ · · ·+ xM(ζ ) be their sum. The distribution Fx(x) is said
to be stable if for each M there exist constants aM > 0 and bM such that

sM(ζ )
d= aMx(ζ ) + bM (3.2.82)

and that Fx(x) is not concentrated at one point.

If (3.2.82) holds for bM = 0, we say thatFx(x) is stable in the strict sense. The condition
that Fx(x) is not concentrated at one point is necessary because such a distribution is always
stable. Thus it is a degenerate case that is of no practical interest. A stable distribution is
called symmetric stable if the distribution is symmetric, which also implies that it is strictly
stable.

It can be shown that for any stable random variable x(ζ ) there is a numberα, 0 < α ≤ 2,
such that the constant aM in (3.2.82) is aM = M1/α . The number α is known as the index
of stability or characteristic exponent. A stable random variable x(ζ ) with index α is called
α stable.

Since there is no closed-form expression for the probability density function of stable
random variables, except in special cases, they are specified by their characteristic function
�(ξ). This characteristic function is given by

�(ξ) =





exp{jµξ − |σξ |α · [1 − jβ sign(ξ) tan
(πα

2

)
]} α = 1

exp{jµξ − |σξ |α · [1 − jβ

(
2

π

)
sign(ξ) ln |ξ |]} α = 1

(3.2.83)

where sign(ξ) = ξ/|ξ | if ξ = 0 and zero otherwise. We shall use the notation Sα(σ , β, µ)

to denote the stable random variable defined by (3.2.83). The parameters in (3.2.83) have
the following meaning:

1. The characteristic exponent α, 0 < α ≤ 2, determines the shape of the distribution and
hence the flatness of the tails.

2. The skewness (or alternatively, symmetry) parameter β,−1 < β < 1, determines the
symmetry of the distribution: β = 0 specifies a symmetric distribution, β < 0 a left-
skewed distribution, and β > 0 a right-skewed distribution.

3. The scale parameter σ , 0 ≤ σ < ∞, determines the range or dispersion of the stable
distribution.

4. The location parameter µ, −∞ < µ < ∞, determines the center of the distribution.
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We next list some useful properties of stable random variables.

1. For 0 < α < 2, the tails of a stable distribution decay as a power law, that is,

Pr[|x(ζ ) − µ| ≥ x] � C

xα
as x → ∞ (3.2.84)

where C is a constant that depends on the scale parameter σ . As a result of this behavior,
α-stable random variables have infinite second-order moments. In particular,

E{|x(ζ )|p} < ∞ for any 0 < p ≤ α

E{|x(ζ )|p} = ∞ for any p > α
(3.2.85)

Also var[x(ζ )] = ∞ for 0 < α < 2, and E{|x(ζ )|} = ∞ if 0 < α < 1.
2. A stable distribution is symmetric about µ iff β = 0. A symmetric α-stable distribution

is denoted as SαS, and its characteristic function is given by

�(ξ) = exp(jµξ − |σξ |α) (3.2.86)

3. If x(ζ ) is SαS with α = 2 in (3.2.83), we have a Gaussian distribution with variance
equal to 2σ 2, that is, N (µ, 2σ 2), whose tails decay exponentially and not as a power
law. Thus, the Gaussian is the only stable distribution with finite variance.

4. If x(ζ ) is SαS with α = 1, we have a Cauchy distribution with density

fx(x) = σ/π

(x − µ)2 + σ 2
(3.2.87)

A standard (µ = 0, σ = 1) Cauchy random variable x(ζ ) can be generated from a [0, 1]
uniform random variable u(ζ ), by using the transformation x = tan[π(u − 1

2 )].
5. If x(ζ ) is SαS with α = 1

2 , we have a Levy distribution, which has both infinite variance
and infinite mean. The pdf of this distribution does not have a functional form and hence
must be computed numerically.

In Figure 3.5, we display characteristic and density functions of Gaussian, Cauchy, and
Levy random variables. The density plots were computed numerically using the Matlab
function stablepdf.

Infinitely divisible distributions. A distribution Fx(x) is infinitely divisible if and only
if for each M there exists a distribution FM(x) such that

fx(x) = fM(x) ∗ fM(x) ∗ · · · ∗ fM(x) (3.2.88)

or by using the convolution theorem,

�x(ξ) = �M(ξ) �M(ξ) · · · �M(ξ) = �M
M(ξ) (3.2.89)

that is, for each M the random variable x(ζ ) can be represented as the sum x(ζ ) = x1(ζ )+
· · · + xM(ζ ) of M IID random variables with a common distribution FM(x). Clearly, all
stable distributions are infinitely divisible.An example of an infinitely divisible pdf is shown
in Figure 3.6 for M = 4, α = 1.5, µ = 0, and β = 0.

Central limit theorem. Consider the random variable y(ζ ) defined in (3.2.55). We
would like to know about the convergence of its distribution as M → ∞. If y(ζ ) is a sum
of IID random variables with a stable distribution, the distribution of y(ζ ) also converges
to a stable distribution. What result should we expect if the individual distributions are not
stable and, in particular, are of finite variance? As we observed in Example 3.2.1, the sum
of uniformly distributed independent random variables appears to converge to a Gaussian
distribution. Is this result valid for any other distribution? The following version of the CLT
answers these questions.
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FIGURE 3.5
The characteristic and density function plots of Gaussian, Cauchy, and Levy random variables.

TH E O R E M 3.1 ( C E NTRAL LI M IT TH E O R E M ) . Let {xk(ζ )}Mk=1 be a collection of random
variables such that x1(ζ ), x2(ζ ), . . . , xM(ζ ) (a) are mutually independent and (b) have the same
distribution, and (c) the mean and variance of each random variable exist and are finite, that is,
µxk

< ∞ and σ 2
xk

< ∞ for all k = 1, 2, . . . ,M . Then, the distribution of the normalized sum

yM(ζ ) =

M∑

k=1

xk(ζ ) − µyM

σyM

approaches that of a normal random variable with zero mean and unit standard deviation as
M → ∞.

Proof. See Borkar (1995).

Comments. The following important comments are in order regarding the CLT.

1. Since we are assuming IID components in the normalized sum, the above theorem is
known as the equal-component case of the CLT.

2. It should be emphasized that the convergence in the above theorem is in distribution
(cdf ) and not necessarily in density (pdf ). Suppose we have M discrete and IID random
variables. Then their normalized sum will always remain discrete no matter how large
M is, but the distribution of the sum will converge to the the integral of the Gaussian pdf.
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FIGURE 3.6
The characteristic and density function plots of an infinitely divisible distribution.

3. The word central in the CLT is a reminder that the distribution converges to the Gaussian
distribution around the center, that is, around the mean. Note that while the limit distri-
bution is found to be Gaussian, frequently the Gaussian limit gives a poor approximation
for the tails of the actual distribution function of the sum when M is finite, even though
the actual value under consideration might seem to be quite large.

4. As a final point, we note that in the above theorem the assumption of finite variance is
critical to obtain a Gaussian limit. This implies that all distributions with finite variance
will converge to the Gaussian when independent copies of their random variables are
added. What happens if the variance is infinite? Then in this case the sum converges
to one of the stable distributions. For example, as shown in Example 3.2.3, the sum of
Cauchy random variables converges to a Cauchy distribution.

3.3 DISCRETE-TIME STOCHASTIC PROCESSES

After studying random variables and vectors, we can now extend these concepts to discrete-
time signals (or sequences). Many natural sequences can be characterized as random signals
because we cannot determine their values precisely, that is, they are unpredictable. A nat-
ural mathematical framework for the description of these discrete-time random signals is
provided by discrete-time stochastic processes.

To obtain a formal definition, consider an experiment with a finite or infinite number
of unpredictable outcomes from a sample space S = {ζ 1, ζ 2, . . .}, each occurring with
a probability Pr{ζ k}, k = 1, 2, . . . . By some rule we assign to each element ζ k of S a
deterministic sequence x(n, ζ k),−∞ < n < ∞. The sample space S, the probabilities
Pr{ζ k}, and the sequences x(n, ζ k),−∞ < n < ∞, constitute a discrete-time stochastic
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process or random sequence. Formally,

x(n, ζ ),−∞ < n < ∞, is a random sequence if for a fixed value n0 of n, x(n0, ζ )

is a random variable.

The set of all possible sequences {x(n, ζ )} is called an ensemble, and each individual
sequence x(n, ζ k), corresponding to a specific value of ζ = ζ k , is called a realization or a
sample sequence of the ensemble.

There are four possible interpretations of x(n, ζ ), depending on the character of n and
ζ , as illustrated in Figure 3.7:

• x(n, ζ ) is a random variable if n is fixed and ζ is a variable.
• x(n, ζ ) is a sample sequence if ζ is fixed and n is a variable.
• x(n, ζ ) is a number if both n and ζ are fixed.
• x(n, ζ ) is a stochastic process if both n and ζ are variables.
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FIGURE 3.7
Graphical description of random sequences.

A random sequence is also called a time series in the statistics literature. It is a sequence
of random variables, or it can be thought of as an infinite-dimensional random vector.
As with any collection of infinite objects, one has to be careful with the asymptotic (or
convergence) properties of a random sequence. If n is a continuous variable taking values
in R, then x(n, ζ ) is an uncountable collection of random variables or an ensemble of
waveforms. This ensemble is called a continuous-time stochastic process or a random
process. Although these processes can be handled similarly to sequences, they are more
difficult to deal with in a rigorous mathematical manner than sequences are. Furthermore,
practical signal processing requires discrete-time signals. Hence in this book we consider
random sequences rather than random waveforms.

Finally, in passing we note that the word stochastic is derived from the Greek word
stochasticos, which means skillful in aiming or guessing. Hence, the terms random process
and stochastic process will be used interchangeably throughout this book.
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As mentioned before, a deterministic signal is by definition exactly predictable. This
assumes that there exists a certain functional relationship that completely describes the
signal, even if this relationship is not available. The unpredictability of a random process
is, in general, the combined result of two things. First, the selection of a single realization is
based on the outcome of a random experiment. Second, no functional description is available
for all realizations of the ensemble. However, in some special cases, such a functional
relationship is available. This means that after the occurrence of a specific realization, its
future values can be predicted exactly from its past ones. If the future samples of any
realization of a stochastic process can be predicted from the past ones, the process is called
predictable or deterministic; otherwise, it is said to be a regular process. For example,
the process x(n, ζ ) = c, where c is a random variable, is a predictable stochastic process
because every realization is a discrete-time signal with constant amplitude. In practice, we
most often deal with regular stochastic processes.

The simplest description of any random signal is provided by an amplitude-versus-time
plot. Inspection of this plot provides qualitative information about some significant features
of the signal that are useful in many applications. These features include, among others, the
following:

1. The frequency of occurrence of various signal amplitudes, described by the probability
distribution of samples.

2. The degree of dependence between two signal samples, described by the correlation
between them.

3. The existence of “cycles” or quasi-periodic patterns, obtained from the signal power
spectrum (which will be described in Section 3.3.6).

4. Indications of variability in the mean, variance, probability density, or spectral content.

The first feature above, the amplitude distribution, is obtained by plotting the histogram,
which is an estimate of the first-order probability density of the underlying stochastic pro-
cess. The probability density indicates waveform features such as “spikiness” and bounded-
ness. Its form is crucial in the design of reliable estimators, quantizers, and event detectors.

The dependence between two signal samples (which are random variables) is given
theoretically by the autocorrelation sequence and is quantified in practice by the empirical
correlation (see Chapter 1), which is an estimate of the autocorrelation sequence of the
underlying process. It affects the rate of amplitude change from sample to sample.

Cycles in the data are related to sharp peaks in the power spectrum or periodicity in
the autocorrelation. Although the power spectrum and the autocorrelation contain the same
information, they present it in different fashions.

Variability in a given quantity (e.g., variance) can be studied by evaluating this quantity
for segments that can be assumed locally stationary and then analyzing the segment-to-
segment variation. Such short-term descriptions should be distinguished from long-term
ones, where the whole signal is analyzed as a single segment.

All the above features, to a lesser or greater extent, are interrelated. Therefore, it is
impossible to point out exactly the effect of each one upon the visual appearance of the signal.
However, a lot of insight can be gained by introducing the concepts of signal variability
and signal memory, which are discussed in Sections 3.3.5 and 3.4.3 respectively.

3.3.1 Description Using Probability Functions

From Figure 3.7, it is clear that at n = n0, x(n0, ζ ) is a random variable that requires a
first-order probability function, say cdf Fx(x; n0), for its description. Similarly, x(n1, ζ )

and x(n2, ζ ) are joint random variables at instances n1 and n2, respectively, requiring a joint
cdf Fx(x1, x2; n1, n2). Stochastic processes contain infinitely many such random variables.
Hence they are completely described, in a statistical sense, if their kth-order distribution
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function

Fx(x1, . . . , xk; n1, . . . , nk) = Pr{x(n1) ≤ x1, . . . , x(nk) ≤ xk} (3.3.1)

is known for every value of k ≥ 1 and for all instances n1, n2, . . . , nk . The kth-order pdf is
given by

fx(x1, . . . , xk; n1, . . . , nk) � ∂2kFx(x1, . . . , xk; n1, . . . , nk)

∂xR1 · · · ∂xIk
k ≥ 1 (3.3.2)

Clearly, the probabilistic description requires a lot of information that is difficult to
obtain in practice except for simple stochastic processes. However, many (but not all)
properties of a stochastic process can be described in terms of averages associated with its
first- and second-order densities.

For simplicity, in the rest of the book, we will use a compact notation x(n) to represent
either a random process x(n, ζ ) or a single realization x(n), which is a member of the
ensemble. Thus we will drop the variable ζ from all notations involving random variables,
vectors, or processes. We believe that this will not cause any confusion and that the exact
meaning will be clear from the context. Also the random process x(n) is assumed to be
complex-valued unless explicitly specified as real-valued.

3.3.2 Second-Order Statistical Description

The second-order statistic of x(n) at time n is specified by its mean value µx(n) and its
variance σ 2

x(n), defined by

µx(n) = E{x(n)} = E{xR(n) + jxI(n)} (3.3.3)

σ 2
x(n) = E{|x(n) − µx(n)|2} = E{|x(n)|2} − |µx(n)|2 (3.3.4)and

respectively. Note that both µx(n) and σx(n) are, in general, deterministic sequences.
The second-order statistics of x(n) at two different times n1 and n2 are given by the two-

dimensional autocorrelation (or autocovariance) sequences. The autocorrelation sequence
of a discrete-time random process is defined as the joint moment of the random variables
x(n1) and x(n2), that is,

rxx(n1, n2) = E{x(n1)x
∗(n2)} (3.3.5)

It provides a measure of the dependence between values of the process at two different
times. In this sense, it also provides information about the time variation of the process.
The autocovariance sequence of x(n) is defined by

γ xx(n1, n2) = E{[x(n1) − µx(n1)][x(n2) − µx(n2)]∗}
= rxx(n1, n2) − µx(n1)µ

∗
x(n2)

(3.3.6)

We will use notations such as γ x(n1, n2), rx(n1, n2), γ (n1, n2), or r(n1, n2) when there is
no confusion as to which signal we are referring. Note that, in general, the second-order
statistics are defined on a two-dimensional grid of integers.

The statistical relation between two stochastic processes x(n) and y(n) that are jointly
distributed (i.e., they are defined on the same sample space S) can be described by their
cross-correlation and cross-covariance functions, defined by

rxy(n1, n2) = E{x(n1)y
∗(n2)} (3.3.7)

γ xy(n1, n2) = E{[x(n1) − µx(n1)][y(n2) − µy(n2)]∗}
= rxy(n1, n2) − µx(n1)µ

∗
y(n2)

(3.3.8)
and

The normalized cross-correlation of two random processes x(n) and y(n) is defined by

ρxy(n1, n2) =
γ xy(n1, n2)

σ x(n1)σ y(n2)
(3.3.9)
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Some definitions

We now describe some useful types of stochastic processes based on their statistical
properties. A random process is said to be

• An independent process if

fx(x1, . . . , xk; n1, . . . , nk) = f1(x1; n1) · · · fk(xk; nk) ∀k, ni, i = 1, . . . , k (3.3.10)

that is, x(n) is a sequence of independent random variables. If all random variables have
the same pdf f (x) for all k, then x(n) is called an IID (independent and identically
distributed) random sequence.

• An uncorrelated process if x(n) is a sequence of uncorrelated random variables, that is,

γ x(n1, n2) =
{
σ 2

x(n1) n1 = n2

0 n1 = n2

}
= σ 2

x(n1)δ(n1 − n2) (3.3.11)

Alternatively, we have

rx(n1, n2) =
{
σ 2

x(n1) + |µx(n1)|2 n1 = n2

µx(n1)µ
∗
x(n2) n1 = n2

(3.3.12)

• An orthogonal process if it is a sequence of orthogonal random variables, that is,

rx(n1, n2) =
{
σ 2

x(n1) + |µx(n1)|2 n1 = n2

0 n1 = n2

}
= E{|x(n1)|2}δ(n1 − n2) (3.3.13)

• An independent increment process if ∀k > 1 and ∀n1 < n2 < · · · < nk , the increments

{x(n1)}, {x(n2) − x(n1)}, . . . , {x(nk) − x(nk−1)}
are jointly independent. For such sequences, the kth-order probability function can be
constructed as products of the probability functions of its increments.

• A wide-sense periodic (WSP) process with period N if

µx(n) = µx(n + N) ∀n (3.3.14)

rx(n1, n2) = rx(n1 + N, n2) = rx(n1, n2 + N) = rx(n1 + N, n2 + N) (3.3.15)and

Note that in the above definition, µx(n) is periodic in one dimension while rx(n1, n2) is
periodic in two dimensions.

• A wise-sense cyclostationary process if there exists an integer N such that

µx(n) = µx(n + N) ∀n (3.3.16)

rx(n1, n2) = rx(n1 + N, n2 + N) (3.3.17)and

Note that in the above definition, rx(n1, n2) is not periodic in a two-dimensional sense.
The correlation sequence is invariant to shift by N in both of its arguments.

• If all kth-order distributions of a stochastic process are jointly Gaussian, then it is called
a Gaussian random sequence.

We can also extend some of these definitions to the case of two joint stochastic processes.
The random processes x(n) and y(n) are said to be

• Statistically independent if for all values of n1 and n2

fxy(x, y; n1, n2) = fx(x; n1)fy(y; n2) (3.3.18)

• Uncorrelated if for every n1 and n2

γ xy(n1, n2) = 0 or rxy(n1, n2) = µx(n1)µ
∗
y(n2) (3.3.19)

• Orthogonal if for every n1 and n2

rxy(n1, n2) = 0 (3.3.20)
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3.3.3 Stationarity

A random process x(n) is called stationary if statistics determined for x(n) are equal to
those for x(n + k), for every k. More specifically, we have the following definition.

DEFINITION 3.3 (STATIONARY OF ORDER N ) . A stochastic process x(n) is called stationary
of order N if

fx(x1, . . . , xN ; n1, . . . , nN ) = fx(x1, . . . , xN ; n1 + k, . . . , nN + k) (3.3.21)

for any value of k. If x(n) is stationary for all orders N = 1, 2, . . . , it is said to be strict-sense
stationary (SSS).

An IID sequence is SSS. However, SSS is more restrictive than necessary for most
practical applications. A more relaxed form of stationarity, which is sufficient for practical
problems, occurs when a random process is stationary up to order 2, and it is also known
as wide-sense stationarity.

DEFINITION 3.4 (WIDE-SENSE STATIONARITY). A random signal x(n) is called wide-sense
stationary (WSS) if

1. Its mean is a constant independent of n, that is,

E{x(n)} = µx (3.3.22)

2. Its variance is also a constant independent of n, that is,

var[x(n)] = σ 2
x (3.3.23)

and
3. Its autocorrelation depends only on the distance l = n1 − n2, called lag, that is,

rx(n1, n2) = rx(n1 − n2) = rx(l) = E{x(n + l)x∗(n)} = E{x(n)x∗(n − l)} (3.3.24)

From (3.3.22), (3.3.24), and (3.3.6) it follows that the autocovariance of a WSS signal
also depends only on l = n1 − n2, that is,

γ x(l) = rx(l) − |µx |2 (3.3.25)

EXAMPLE 3.3.1. Letw(n)be a zero-mean, uncorrelated Gaussian random sequence with variance
σ 2(n) = 1.

a. Characterize the random sequence w(n).
b. Define x(n) = w(n) + w(n − 1),−∞ < n < ∞. Determine the mean and autocorrelation

of x(n). Also characterize x(n).

Solution. Note that the variance of w(n) is a constant.

a. Since uncorrelatedness implies independence for Gaussian random variables, w(n) is an in-
dependent random sequence. Since its mean and variance are constants, it is at least stationary
in the first order. Furthermore, from (3.3.12) or (3.3.13) we have

rw(n1, n2) = σ 2δ(n1 − n2) = δ(n1 − n2)

Hence w(n) is also a WSS random process.
b. The mean of x(n) is zero for all n since w(n) is a zero-mean process. Consider

rx(n1, n2) = E{x(n1)x(n2)}
= E{[w(n1) + w(n1 − 1)][w(n2) + w(n2 − 1)]}
= rw(n1, n2) + rw(n1, n2 − 1) + rw(n1 − 1, n2)

+ rw(n1 − 1, n2 − 1)

= σ 2δ(n1 − n2) + σ 2δ(n1 − n2 + 1)

+ σ 2δ(n1 − 1 − n2) + σ 2δ(n1 − 1 − n2 + 1)

= 2δ(n1 − n2) + δ(n1 − n2 + 1) + δ(n1 − n2 − 1)
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Clearly, rx(n1, n2) is a function of n1 − n2. Hence

rx(l) = 2δ(l) + δ(l + 1) + δ(l − 1)

Therefore, x(n) is a WSS sequence. However, it is not an independent random sequence since
both x(n) and x(n + 1) depend on w(n).

EXAMPLE 3.3.2 (WIENER PROCESS) . Toss a fair coin at each n,−∞ < n < ∞. Let

w(n) =
{+S if heads is outcome Pr(H) = 0.5

−S if tails is outcome Pr(T) = 0.5

where S is a step size. Clearly, w(n) is an independent random process with

E{w(n)} = 0

E{w2(n)} = σ 2
w = S2

(
1
2

)
+ S2

(
1
2

)
= S2and

Define a new random process x(n), n ≥ 1, as

x(1) = w(1)

x(2) = x(1) + w(2) = w(1) + w(2)
...

x(n) = x(n − 1) + w(n) =
n∑

i=1

w(i)

Note that x(n) is a running sum of independent steps or increments; thus it is an independent
increment process. Such a sequence is called a discrete Wiener process or random walk. We can
easily see that

E{x(n)} = E





n∑

i=1

w(i)



 = 0

E{x2(n)} = E





n∑

i=1

w(i)

n∑

k=1

w(k)



 = E





n∑

i=1

n∑

k=1

w(i)w(k)





=
n∑

i=1

n∑

k=1

E{w(i)w(k)} =
n∑

i=1

E{w2(i)} = nS2

and

Therefore, random walk is a nonstationary (or evolutionary) process with zero mean and variance
that grows with n, the number of steps taken.

It should be stressed at this point that although any strict-sense stationary signal is wide-
sense stationary, the inverse is not always true, except if the signal is Gaussian. However
in practice, it is very rare to encounter a signal that is stationary in the wide sense but not
stationary in the strict sense (Papoulis 1991).

Two random signals x(n) and y(n) are called jointly wide-sense stationary if each is
wide-sense stationary and their cross-correlation depends only on l = n1 − n2

rxy(l) = E{x(n)y∗(n − l)}; γ x,y(l) = rxy(l) − µxµ
∗
y (3.3.26)

Note that as a consequence of wide-sense stationarity the two-dimensional correlation and
covariance sequences become one-dimensional sequences. This is a very important result
that ultimately allows for a nice spectral description of stationary random processes.

Properties of autocorrelation sequences

The autocorrelation sequence of a stationary process has many important properties
(which also apply to autocovariance sequences, but we will discuss mostly correlation
sequences). Vector versions of these properties are discussed extensively in Section 3.4.4,
and their proofs are explored in the problems.
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PROPERTY 3.3.1. The average power of a WSS process x(n) satisfies

rx(0) = σ 2
x + |µx |2 ≥ 0 (3.3.27)

rx(0) ≥ |rx(l)| for all l (3.3.28)and

Proof. See Problem 3.21 and Property 3.3.6.

This property implies that the correlation attains its maximum value at zero lag and
this value is nonnegative. The quantity |µx |2 is referred to as the average dc power, and the
quantity σ 2

x = γ x(0) is referred to as the average ac power of the random sequence. The
quantity rx(0) then is the total average power of x(n).

PROPERTY 3.3.2. The autocorrelation sequence rx(l) is a conjugate symmetric function of lag
l, that is,

r∗x (−l) = rx(l) (3.3.29)

Proof. It follows from Definition 3.4 and from (3.3.24).

PROPERTY 3.3.3. The autocorrelation sequence rx(l) is nonnegative definite; that is, for any
M > 0 and any vector α ∈ R

M

M∑

k=1

M∑

m=1

αkrx(k − m)α∗m ≥ 0 (3.3.30)

This is a necessary and sufficient condition for a sequence rx(l) to be the autocorrelation sequence
of a random sequence.

Proof. See Problem 3.22.

Since in this book we exclusively deal with wide-sense stationary processes, we will
use the term stationary to mean wide-sense stationary. The properties of autocorrelation and
cross-correlation sequences of jointly stationary processes, x(n) and y(n), are summarized
in Table 3.1.

Although SSS and WSS forms are widely used in practice, there are processes with
different forms of stationarity. Consider the following example.

EXAMPLE 3.3.3. Let x(n) be a real-valued random process generated by the system

x(n) = αx(n − 1) + w(n) n ≥ 0 x(−1) = 0 (3.3.31)

where w(n) is a stationary random process with mean µw and rw(l) = σ 2
wδ(l). The process

x(n) generated using (3.3.31) is known as a first-order autoregressive, or AR(1), process,
†

and
the process w(n) is known as a white noise process (defined in Section 3.3.6). Determine the
mean µx(n) of x(n) and comment on its stationarity.

Solution. To compute the mean ofx(n), we express it as a function of {w(n),w(n−1), . . . , w(0)}
as follows

x(0) = αx(−1) + w(0) = w(0)

x(1) = αx(0) + w(1) = αw(0) + w(1)
...

x(n) = αnw(0) + αn−1w(1) + · · · + w(n) =
n∑

k=0

αkw(n − k)

†
Note that from (3.3.31), x(n−1) completely determines the distribution for x(n), and x(n) completely determines

the distribution for x(n + 1), and so on. If

fx(n)|x(n−1)...(xn|xn−1 . . .) = fx(n)|x(n−1)(xn|xn−1)

then the process is termed a Markov process.
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Hence the mean of x(n) is given by

µx(n) = E





n∑

k=0

αkw(n − k)



 = µw




n∑

k=0

αk


 =





1 − αn+1

1 − α
µw α = 1

(n + 1)µw α = 1

Clearly, the mean of x(n) depends on n, and hence it is nonstationary. However, if we assume
that |α| < 1 (which implies that the system is BIBO stable), then as n → ∞, we obtain

µx(n) = µw
1 − αn+1

1 − α
−→
n→∞

µw

1 − α

Thus x(n) approaches first-order stationarity for large n. Similar analysis for the autocorrelation
of x(n) shows that x(n) approaches wide-sense stationarity for large n (see Problem 3.23).

The above example illustrates a form of stationarity called asymptotic stationarity. A
stochastic process x(n) is asymptotically stationary if the statistics of random variables
x(n) and x(n + k) become stationary as k → ∞. When LTI systems are driven by zero-
mean uncorrelated-component random processes, the output process becomes asymptoti-
cally stationary in the steady state. Another useful form of stationarity is given by stationary
increments. If the increments {x(n)−x(n− k)} of a process x(n) form a stationary process
for every k, we say that x(n) is a process with stationary increments. Such processes can
be used to model data in various practical applications (see Chapter 12).

The simplest way, to examine in practice if a real-world signal is stationary, is to inves-
tigate the physical mechanism that produces the signal. If this mechanism is time-invariant,
then the signal is stationary. In case it is impossible to draw a conclusion based on physical
considerations, we should rely on statistical methods (Bendat and Piersol 1986; Priestley
1981). Note that stationarity in practice means that a random signal has statistical properties
that do not change over the time interval we observe the signal. For evolutionary signals the
statistical properties change continuously with time. An example of a highly nonstationary
random signal is the signals associated with the vibrations induced in space vehicles during
launch and reentry. However, there is a kind of random signal whose statistical properties
change slowly with time. Such signals, which are stationary over short periods, are called
locally stationary signals. Many signals of great practical interest, such as speech, EEG,
and ECG, belong to this family of signals.

Finally, we note that general techniques for the analysis of nonstationary signals do
not exist. Thus only special methods that apply to specific types of nonstationary signals
can be developed. Many such methods remove the nonstationary component of the signal,
leaving behind another component that can be analyzed as stationary (Bendat and Piersol
1986; Priestley 1981).

3.3.4 Ergodicity

A stochastic process consists of the ensemble and a probability law. If this information is
available, the statistical properties of the process can be determined in a quite straightforward
manner. However, in the real world, we have access to only a limited number (usually one)
of realizations of the process. The question that arises then is, Can we infer the statistical
characteristics of the process from a single realization?

This is possible for the class of random processes that are called ergodic processes.
Roughly speaking, ergodicity implies that all the statistical information can be obtained
from any single representative member of the ensemble.

Time averages

All the statistical averages that we have defined up to this point are known as ensemble
averages because they are obtained by “freezing” the time variable and averaging over the
ensemble (see Fig. 3.7). Averages of this type are formally defined by using the expectation
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operator E{ }. Ensemble averaging is not used frequently in practice, because it is imprac-
tical to obtain the number of realizations needed for an accurate estimate. Thus the need for
a different kind of average, based on only one realization, naturally arises. Obviously such
an average can be obtained only by time averaging.

The time average of a quantity, related to a discrete-time random signal, is defined as

〈(·)〉 � lim
N→∞

1

2N + 1

N∑

n=−N

(·) (3.3.32)

Note that, owing to its dependence on a single realization, any time average is itself a random
variable. The time average is taken over all time because all realizations of a stationary
random process exist for all time; that is, they are power signals.

For every ensemble average we can define a corresponding time average. The following
time averages are of special interest:

Mean value = 〈x(n)〉
Mean square = 〈|x(n)|2〉

Variance = 〈|x(n) − 〈x(n)〉|2〉
Autocorrelation = 〈x(n)x∗(n − l)〉
Autocovariance = 〈[x(n) − 〈x(n)〉][x(n − l) − 〈x(n)〉]∗〉

Cross-correlation = 〈x(n)y∗(n − l)〉
Cross-covariance = 〈[x(n) − 〈x(n)〉][y(n − l) − 〈y(n)〉]∗〉

(3.3.33)

It is necessary to mention at this point the remarkable similarity between time averages
and the correlation sequences for deterministic power signals. Although this is just a formal
similarity, due to the fact that random signals are power signals, both quantities have the
same properties. However, we should always keep in mind that although time averages
are random variables (because they are functions of ζ ), the corresponding quantities for
deterministic power signals are fixed numbers or deterministic sequences.

Ergodic random processes

As we have already mentioned, in many practical applications only one realization of
a random signal is available instead of the entire ensemble. In general, a single member of
the ensemble does not provide information about the statistics of the process. However, if
the process is stationary and ergodic, then all statistical information can be derived from
only one typical realization of the process.

A random signal x(n) is called ergodic
†

if its ensemble averages equal appropriate time
averages. There are several degrees of ergodicity (Papoulis 1991). We will discuss two of
them: ergodicity in the mean and ergodicity in correlation.

DEFINITION 3.5 (ERGODIC IN THE MEAN). A random process x(n) is ergodic in the mean
if

〈x(n)〉 = E{x(n)} (3.3.34)

D E FI N ITI O N 3.6 ( E R GO D I C I N C O R R E LATI O N ) . A random process x(n) is ergodic in
correlation if

〈x(n)x∗(n − l)〉 = E{x(n)x∗(n − l)} (3.3.35)

Note that since 〈x(n)〉 is constant and 〈x(n)x∗(n − l)〉 is a function of l, if x(n) is
ergodic in both the mean and correlation, then it is also WSS. Thus only stationary signals
can be ergodic. On the other hand, WSS does not imply ergodicity of any kind. Fortunately,

†
Strictly speaking, the form of ergodicity that we will use is called mean-square ergodicity since the underlying

convergence of random variables is in the mean-square sense (Stark and Woods 1994). Therefore, equalities in
the definitions are in the mean-square sense.
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in practice almost all stationary processes are also ergodic, which is very useful for the
estimation of their statistical properties. From now on we will use the term ergodic to mean
both ergodicity in the mean and ergodicity in correlation.

D E FI N ITI O N 3.7 ( J O I NT E R GO D I C ITY) . Two random signals are called jointly ergodic if
they are individually ergodic and in addition

〈x(n)y∗(n − l)〉 = E{x(n)y∗(n − l)} (3.3.36)

A physical interpretation of ergodicity is that one realization of the random signal x(n),
as time n tends to infinity, takes on values with the same statistics as the value x(n1),
corresponding to all samples of the ensemble members at a given time n = n1.

In practice, it is of course impossible to use the time-average formulas introduced
above, because only finite records of data are available. In this case, it is common practice
to replace the operator (3.3.32) by the operator

〈(·)〉N = 1

2N + 1

N∑

n=−N

(·) (3.3.37)

to obtain estimates of the true quantities. Our desire in such problems is to find estimates
that become increasingly accurate (in a sense to be defined in Section 3.6) as the length
2N + 1 of the record of used data becomes larger.

Finally, to summarize, we note that whereas stationarity ensures the time invariance
of the statistics of a random signal, ergodicity implies that any statistics can be calculated
either by averaging over all members of the ensemble at a fixed time or by time-averaging
over any single representative member of the ensemble.

3.3.5 Random Signal Variability

If we consider a stationary random sequence w(n) that is IID with zero mean, its key charac-
teristics depend on its first-order density. Figure 3.8 shows the probability density functions
and sample realizations for IID processes with uniform, Gaussian, and Cauchy probability
distributions. In the case of the uniform distribution, the amplitude of the random variable is
limited to a range, with values occurring outside this interval with zero probability. On the
other hand, the Gaussian distribution does not have a finite interval of support, allowing for
the possibility of any value. The same is true of the Cauchy distribution, but its characteris-
tics are dramatically different from those of the Gaussian distribution. The center lobe of the
density is much narrower while the tails that extend out to infinity are significantly higher.
As a result, the realization of the Cauchy random process contains numerous spikes or ex-
treme values while the remainder of the process is more compact about the mean. Although
the Gaussian random process allows for the possibility of large values, the probability of
their occurrence is so small that they are not found in realizations of the process.

The major difference between the Gaussian and Cauchy distributions lies in the area
found under the tails of the density as it extends out to infinity. This characteristic is related
to the variability of the process. The heavy tails, as found in the Cauchy distribution, result
in an abundance of spikes in the process, a characteristic referred to as high variability. On
the other hand, a distribution such as the Gaussian does not allow for extreme values and
indicates low variability. The extent of the variability of a given distribution is determined by
the heaviness of the tails. Distributions with heavy tails are called long-tailed distributions
and have been used extensively as models of impulsive random processes.

DEFINITION 3.8. A distribution is called long-tailed if its tails decay hyperbolically or alge-
braically as

Pr{|x(n)| ≥ x} ∼ Cx−α as x → ∞ (3.3.38)

where C is a constant and the variable α determines the rate of decay of the distribution.
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FIGURE 3.8
Probability density functions and sample realizations of an IID process with
uniform, Gaussian, and Cauchy distributions.

By means of comparison, the Gaussian distribution has an exponential rate of decay.
The implication of the algebraically decaying tail is that the process has infinite variance,
that is,

σ 2
x = E{|x(n)|2} = ∞

and therefore lacks second-order moments. The lack of second-order moments means that, in
addition to the variance, the correlation functions of these processes do not exist. Since most
signal processing algorithms are based on second-order moment theory, infinite variance
has some extreme implications for the way in which such processes are treated.

In this book, we shall model high variability, and hence infinite variance, using the
family of symmetric stable distributions. The reason is twofold: First, a linear combination of
stable random variables is stable. Second, stable distributions appear as limits in central limit
theorems (see stable distributions in Section 3.2.4). Stable distributions are characterized
by a parameter α, 0 < α ≤ 2. They are Cauchy when α = 1 and Gaussian when α = 2.
However, they have finite variance only when α = 2.

In practice, the type of data under consideration governs the variability of the modeling
distribution. Random signals restricted to a certain interval, such as the phase of complex
random signals, are well suited for uniform distributions. On the other hand, signals allowing
for any possible value but generally confined to a region are better suited for Gaussian
models. However, if a process contains spikes and therefore has high variability, it is best
characterized by a long-tailed distribution such as the Cauchy distribution. Impulsive signals
have been found in a variety of applications, such as communication channels, radar signals,
and electronic circuit noise. In all cases, the variability of the process dictates the appropriate
model.
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3.3.6 Frequency-Domain Description of Stationary Processes

Discrete-time stationary random processes have correlation sequences that are functions of
a single index. This leads to nice and powerful representations in both the frequency and
the z-transform domains.

Power spectral density

The power spectral density (PSD, or more appropriately autoPSD) of a stationary
stochastic process x(n) is a Fourier transformation of its autocorrelation sequence rx(l).
If rx(l) is periodic (which corresponds to a wide-sense periodic stochastic process) in l,
then the DTFS discussed in Section 2.2.1 can be used to obtain the PSD, which has the
form of a line spectrum. If rx(l) is nonperiodic, the DTFT discussed in Section 2.2.1 can
be used provided that rx(l) is absolutely summable. This means that the process x(n) must
be a zero-mean process. In general, a stochastic process can be a mixture of periodic and
nonperiodic components.

†

If we allow impulse functions in the DTFT to represent periodic (or almost periodic)
sequences and non-zero-mean processes (see Section 2.2.1), then we can define the PSD as

Rx(e
jω) =

∞∑

l=−∞
rx(l)e

−jωl (3.3.39)

where ω is the frequency in radians per sample. If the process x(n) is a zero-mean nonpe-
riodic process, then (3.3.39) is enough to determine the PSD. If x(n) is periodic (including
nonzero mean) or almost periodic, then the PSD is given by

Rx(e
jω) =

∑

i

2πAiδ(ω − ωi) (3.3.40)

where the Ai are amplitudes of rx(l) at frequencies ωi . For discussion purposes we will
assume that x(n) is a zero-mean nonperiodic process. The autocorrelation rx(l) can be
recovered from the PSD by using the inverse DTFT as

rx(l) = 1

2π

∫ π

−π

Rx(e
jω)ejωl dω (3.3.41)

EXAMPLE 3.3.4. Determine the PSD of a zero-mean WSS process x(n) with rx(l) = a|l|,−1 <

a < 1.

Solution. From (3.3.39) we have

Rx(e
jω) =

∞∑

l=−∞
a|l|e−jωl − 1 < a < 1

= 1

1 − aejω
+ 1

1 − ae−jω
− 1

= 1 − a2

1 + a2 − 2a cos ω
− 1 < a < 1

(3.3.42)

which is a real-valued, even, and nonnegative function of ω.

Properties of the autoPSD. The power spectral density Rx(e
jω) has three key prop-

erties that follow from corresponding properties of the autocorrelation sequence and the
DTFT.

†
Periodic components are predictable processes as discussed before. However, some nonperiodic components can

also be predictable. Hence nonperiodic components are not always regular processes.
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PROPERTY 3.3.4. The autoPSD Rx(e
jω) is a real-valued periodic function of frequency with

period 2π for any (real- or complex-valued) process x(n). If x(n) is real-valued, then Rx(e
jω)

is also an even function of ω, that is,

Rx(e
jω) = Rx(e

−jω) (3.3.43)

Proof. It follows from autocorrelation and DTFT properties.

PROPERTY 3.3.5. The autoPSD is nonnegative definite, that is,

Rx(e
jω) ≥ 0 (3.3.44)

Proof. This follows from the nonnegative definiteness of the autocorrelation sequence [see also
discussions leading to (3.4.27)].

PROPERTY 3.3.6. The area under Rx(e
jω) is nonnegative and it equals the average power of

x(n). Indeed, from (3.3.41) it follows with l = 0 that

1

2π

∫ π

−π
Rx(e

jω) dω = rx(0) = E{|x(n)|2} ≥ 0 (3.3.45)

Proof. It follows from Property 3.3.5.

White noise. A random sequence w(n) is called a (second-order) white noise process
with mean µw and variance σ 2

w, denoted by

w(n) ∼ WN(µw, σ 2
w) (3.3.46)

if and only if E{w(n)} = µw and

rw(l) = E{w(n)w∗(n − l)} = σ 2
wδ(l) (3.3.47)

Rw(ejω) = σ 2
w − π ≤ ω ≤ π (3.3.48)which implies that

The term white noise is used to emphasize that all frequencies contribute the same amount
of power, as in the case of white light, which is obtained by mixing all possible colors by
the same amount. If, in addition, the pdf of x(n) is Gaussian, then the process is called a
(second-order) white Gaussian noise process, and it will be denoted by WGN(µw, σ 2

w).
If the random variables w(n) are independently and identically distributed with mean

µw and variance σ 2
w, then we shall write

w(n) ∼ IID(µw, σ 2
w) (3.3.49)

This is sometimes referred to as a strict white noise.
We emphasize that the conditions of uncorrelatedness or independence do not put any

restriction on the form of the probability density function of w(n). Thus we can have an
IID process with any type of probability distribution. Clearly, white noise is the simplest
random process because it does not have any structure. However, we will see that it can be
used as the basic building block for the construction of processes with more complicated
dependence or correlation structures.

Harmonic processes. A harmonic process is defined by

x(n) =
M∑

k=1

Ak cos(ωkn + φk) ωk = 0 (3.3.50)

where M, {Ak}M1 , and {ωk}M1 are constants and {φk}M1 are pairwise independent random
variables uniformly distributed in the interval [0, 2π ]. It can be shown (see Problem 3.9)
that x(n) is a stationary process with mean

E{x(n)} = 0 for all n (3.3.51)
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and autocorrelation

rx(l) = 1

2

M∑

k=1

A2
k cos ωkl −∞ < l < ∞ (3.3.52)

We note that rx(l) consists of a sum of “in-phase” cosines with the same frequencies as in
x(n).

If ωk/(2π) are rational numbers, rx(l) is periodic and can be expanded as a Fourier se-
ries. These series coefficients provide the power spectrum Rx(k) of x(n). However, because
rx(l) is a linear superposition of cosines, it always has a line spectrum with 2M lines of
strength A2

k/4 at frequencies ±ωk in the interval [−π, π]. If rx(l) is periodic, then the lines
are equidistant (i.e., harmonically related), hence the name harmonic process. If ω/(2π)

is irrational, then rx(l) is almost periodic and can be treated in the frequency domain in
almost the same fashion. Hence the power spectrum of a harmonic process is given by

Rx(e
jω) =

M∑

k=−M

2π

(
A2

k

4

)
δ(ω − ωk) =

M∑

k=−M

π

2
A2

kδ(ω − ωk),−π < ω ≤ π (3.3.53)

EXAMPLE 3.3.5. Consider the following harmonic process

x(n) = cos (0.1πn + φ1) + 2 sin (1.5n + φ2)

where φ1 and φ2 are IID random variables uniformly distributed in the interval [0, 2π ]. The
first component of x(n) is periodic with ω1 = 0.1π and period equal to 20 while the second
component is almost periodic with ω2 = 1.5. Thus the sequence x(n) is almost periodic. A
sample function realization of x(n) is shown in Figure 3.9(a). The mean of x(n) is

µx(n) = E{x(n)} = E{cos (0.1πn + φ1) + 2 sin (1.5n + φ2)} = 0

and the autocorrelation sequence (using mutual independence between φ1 and φ2) is

rx(n1, n2) = E{x(n1)x
∗
2 (n2)}

= E{cos (0.1πn1 + φ1) cos (0.1πn2 + φ1)}
+E{2 sin (1.5n1 + φ2)2 sin (1.5n2 + φ2)}

= 1
2 cos [0.1π(n1 − n2)] + 2 cos [1.5(n1 − n2)]

rx(l) = 1
2 cos 0.1πl + 2 cos 1.5l l = n1 − n2or

Thus the line spectrum R
(x)
ωk

is given by

R
(x)
ωk

=





1 ω1 = −1.5
1
4

ω2 = −0.1π

1
4

ω3 = 0.1π

1 ω4 = 1.5

and the power spectrum Rx(e
jω) is given by

Rx(e
jω) = 2πδ(ω + 1.5) + π

2
δ(ω + 0.1π) + π

2
δ(ω − 0.1π) + 2πδ(ω − 1.5)

The line spectrum of x(n) is shown in Figure 3.9(b) and the corresponding power spectrum in
Figure 3.9(c).

The harmonic process is predictable because any given realization is a sinusoidal se-
quence with fixed amplitude, frequency, and phase. We stress that the independence of the
phases is required to guarantee the stationarity of x(n) in (3.3.50). The uniform distribution
of the phases is necessary to make x(n) a stationary process (see Problem 3.9). The har-
monic process (3.3.50), in general, is non-Gaussian; however, it becomes Gaussian if the
amplitudes Ak are random variables with a Rayleigh distribution (Porat 1994).
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FIGURE 3.9
The time and frequency-domain description of the harmonic process in Example 3.3.5.

EXAMPLE 3.3.6. Consider a complex-valued process given by

x(n) = Aejω0n = |A|ej (ω0n+φ)

where A is a complex-valued random variable and ω0 is constant. The mean of x(n)

E{x(n)} = E{A}ejω0n

can be constant only if E{A} = 0. If |A| is constant and φ is uniformly distributed on [0, 2π ],
then we have E{A} = |A|E{ejφ} = 0. In this case the autocorrelation is

rx(n1, n2) = E{Aej(ω0n1+φ)A∗e−j (ω0n2+φ)} = |A|2ej (n1−n2)ω0

Since the mean is constant and the autocorrelation depends on the difference l � n1 − n2, the
process is wide-sense stationary.

The above example can be generalized to harmonic processes of the form

x(n) =
M∑

k=1

Ake
j (ωkn+φk) (3.3.54)

where M, {Ak}M1 , and {ωk}M1 are constants and {φk}M1 are pairwise independent random
variables uniformly distributed in the interval [0, 2π ]. The autocorrelation sequence is

rx(l) =
M∑

k=1

|Ak|2ejωkl (3.3.55)

and the power spectrum consists of M impulses with amplitudes 2π |Ak|2 at frequencies
ωk . If the amplitudes {Ak}Mk=1 are random variables, mutually independent of the random
phases, the quantity |Ak|2 is replaced by E{|Ak|2}.



March 9, 2005 11:42 e56-ch3 Sheet number 39 Page number 113 black

113

section 3.3
Discrete-Time Stochastic
Processes

Cross-power spectral density

The cross-power spectral density of two zero-mean and jointly stationary stochastic
processes provides a description of their statistical relations in the frequency domain and is
defined as the DTFT of their cross-correlation, that is,

Rxy(e
jω) =

∞∑

l=−∞
rxy(l)e

−jωl (3.3.56)

The cross-correlation rxy(l) can be recovered by the inverse DTFT

rxy(l) = 1

2π

∫ π

−π

Rxy(e
jω)ejωl dω (3.3.57)

The cross-spectrumRxy(e
jω) is, in general, a complex function ofω. From rxy(l) = r∗yx(−l)

it follows that

Rxy(e
jω) = R∗

yx(e
jω) (3.3.58)

This implies that Rxy(e
jω) and Ryx(e

jω) have the same magnitude but opposite phase.
The normalized cross-spectrum

Gxy(e
jω) � Rxy(e

jω)√
Rx(e

jω)

√
Ry(ejω)

(3.3.59)

is called the coherence function. Its squared magnitude

|Gxy(e
jω)|2 = |Rxy(e

jω)|2
Rx(ejω)Ry(ejω)

(3.3.60)

is known as the magnitude square coherence (MSC) and can be thought of as a sort of
correlation coefficient in the frequency domain. If x(n) = y(n), then Gxy(e

jω) = 1 (max-
imum correlation) whereas if x(n) and y(n) are uncorrelated, then Rxy(l) = 0 and hence
Gxy(e

jω) = 0. In other words, 0 ≤ |Gxy(e
jω)| ≤ 1.

Complex spectral density functions

If the sequences rx(l) and rxy(l) are absolutely summable within a certain ring of the
complex z plane, we can obtain their z-transforms

Rx(z) =
∞∑

l=−∞
rx(l)z

−l (3.3.61)

Rxy(z) =
∞∑

l=−∞
rxy(l)z

−l (3.3.62)

which are known as the complex spectral density and complex cross-spectral density func-
tions, respectively. If the unit circle, defined by z = ejω, is within the region of convergence
of the above summations, then

Rx(e
jω) = Rx(z)|z=ejω (3.3.63)

Rxy(e
jω) = Rxy(z)|z=ejω (3.3.64)

The correlation and power spectral density properties of random sequences are summarized
in Table 3.1.

EXAMPLE 3.3.7. Consider the random sequence given in Example 3.3.4 with autoPSD in (3.3.42)

Rx(e
jω) = 1 − a2

1 + a2 − 2a cos ω
|a| < 1

Determine the complex autoPSD Rx(z).
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Solution. The complex autoPSD is given by Rx(z) = Rx(e
jω)|ejω=z. Since

cos ω = ejω + e−jω

2
= z + z−1

2

∣∣∣∣∣
z=ejω

we obtain

Rx(z) = 1 − a2

1 + a2 − 2a

(
z + z−1

2

) = (a − a−1)z−1

1 − (a + a−1)z−1 + z−2
|a| < |z| < 1

|a|

Now the inverse z-transform of Rx(z) determines the autocorrelation sequence rx(l), that is,

Rx(z) = (a − a−1)z−1

1 − (a + a−1)z−1 + z−2
= (a − a−1)z−1

(1 − az−1)(1 − a−1z−1)

= 1

(1 − az−1)
− 1

(1 − a−1z−1)
|a| < |z| < |a|−1

rx(l) = alu(l) + (a−1)lu(−l − 1) = a|l| (3.3.65)or

This approach can be used to determine autocorrelation sequences from autoPSD functions.

Table 3.1 provides a summary of correlation and spectral properties of stationary ran-
dom sequences.

TABLE 3.1

Summary of correlation and spectral properties of stationary
random sequences.

Definitions

Mean value µx = E{x(n)}
Autocorrelation rx(l) = E{[x(n)x∗(n − l)}
Autocovariance γ x(l) = E{[x(n) − µx ][x(n − l) − µx ]∗}
Cross-correlation rxy(l) = E{x(n)y∗(n − l)}
Cross-covariance γ xy(l) = E{[x(n) − µx ][y(n − l) − µy ]∗}
Power spectral density Rx(e

jω) =∑∞
l=−∞rx(l)e

−jωl

Cross-power spectral density Rxy(e
jω) =∑∞

l=−∞rxy(l)e
−jωl

Magnitude square coherence |Gxy(e
jω)|2 = |Rxy(e

jω)|2/[Rx(e
jω)Ry(e

jω)]

Interrelations

γ x(l) = rx(l) − |µx |2
γ xy(l) = rxy(l) − µxµ

∗
y

Properties

Autocorrelation Auto-PSD

rx(l) is nonnegative definite Rx(e
jω) ≥ 0 and real

rx(l) = r∗x (−l) Rx(e
jω) = Rx(e

−jω) [real x(n)]

|rx(l)| ≤ rx(0) Rx(z) = R∗
x (1/z

∗)
|ρx(l)| ≤ 1 Rx(z) = Rx(z

−1) [real x(n)]

Cross-correlation Cross-PSD

rxy(l) = r∗yx(−l)

|rxy(l)| ≤ [rx(0)ry(0)]1/2 ≤ Rxy(z) = R∗
yx(1/z

∗)
1
2 [rx(0) + ry(0)] 0 ≤ |Gxy(e

jω)| ≤ 1

|ρxy(l)| ≤ 1
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3.4 LINEAR SYSTEMS WITH STATIONARY RANDOM INPUTS

This section deals with the processing of stationary random sequences using linear, time-
invariant (LTI) systems. We focus on expressing the second-order statistical properties of
the output in terms of the corresponding properties of the input and the characteristics of
the system.

3.4.1 Time-Domain Analysis

The first question to ask when we apply a random signal to a system is, Just what is the
meaning of such an operation? We ask this because a random process is not just a single
sequence but an ensemble of sequences (see Section 3.3). However, since each realization
of the stochastic process is a deterministic signal, it is an acceptable input producing an
output that is clearly a single realization of the output stochastic process. For an LTI system,
each pair of input-output realizations is described by the convolution summation

y(n, ζ ) =
∞∑

k=−∞
h(k)x(n − k, ζ ) (3.4.1)

If the sum in the right side of (3.4.1) exists for all ζ such that Pr{ζ } = 1, then we say that we
have almost-everywhere convergence or convergence with probability 1 (Papoulis 1991).
The existence of such convergence is ruled by the following theorem (Brockwell and Davis
1991).

TH E O R E M 3.2. If the process x(n, ζ ) is stationary with E{|x(n, ζ )|} < ∞ and if the system
is BIBO-stable, that is,

∑∞−∞ |h(k)| < ∞, then the output y(n, ζ ) of the system in (3.4.1)
converges absolutely with probability 1, or

y(n, ζ ) =
∞∑

k=−∞
h(k)x(n − k, ζ ) for all ζ ∈ A, Pr{A} = 1 (3.4.2)

and is stationary. Furthermore, if E{|x(n, ζ )|2} < ∞, then E{|y(n, ζ )|2} < ∞ and y(n, ζ )

converges in the mean square to the same limit and is stationary.

A less restrictive condition of finite energy on the system impulse response h(n) also
guarantees the mean square existence of the output process, as stated in the following
theorem.

THEOREM 3.3. If the process x(n, ζ ) is zero-mean and stationary with
∑∞

l=−∞ |rx(l)| < ∞,
and if the system (3.4.1) satisfies the condition

∞∑

n=−∞
|h(n)|2 = 1

2π

∫ π

−π
|H(ejω)|2 dω < ∞ (3.4.3)

then the output y(n, ζ ) converges in the mean square sense and is stationary.

The above two theorems are applicable when input processes have finite variances.
However, IID sequences with α-stable distributions have infinite variances. If the impulse
response of the system in (3.4.1) decays fast enough, then the following theorem (Brockwell
and Davis 1991) guarantees the absolute convergence of y(n, ζ ) with probability 1. These
issues are of particular importance for inputs with high variability and are discussed in
Section 3.3.5.

THEOREM 3.4. Let x(n, ζ ) be an IID sequence of random variables with α-stable distribution,
0 < α < 2. If the impulse response h(n) satisfies

∞∑

n=−∞
|h(n)|δ < ∞ for some δ ∈ (0, α)

then the output y(n, ζ ) in (3.4.1) converges absolutely with probability 1.
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Clearly, a complete description of the output stochastic process y(n) requires the com-
putation of an infinite number of convolutions. Thus, a better alternative would be to de-
termine the statistical properties of y(n) in terms of the statistical properties of the input
and the characteristics of the system. For Gaussian signals, which are used very often in
practice, first- and second-order statistics are sufficient.

Output mean value. If x(n) is stationary, its first-order statistic is determined by its
mean value µx . To determine the mean value of the output, we take the expected value of
both sides of (3.4.1):

µy =
∞∑

k=−∞
h(k)E{x(n − k)} = µx

∞∑

k=−∞
h(k) = µxH(ej0) (3.4.4)

Since µx and H(ej0) are constant, µy is also constant. Note that H(ej0) is the dc gain of
the spectrum.

Input-output cross-correlation. If we take complex conjugate of (3.4.1), premultiply
it by x(n + l), and take the expectation of both sides, we have

E{x(n + l)y∗(l)} =
∞∑

k=−∞
h∗(k)E{x(n + l)x∗(n − k)}

rxy(l) =
∞∑

k=−∞
h∗(k)rxx(l + k) =

∞∑

m=−∞
h∗(−m)rxx(l − m)or

rxy(l) = h∗(−l) ∗ rxx(l) (3.4.5)Hence,

ryx(l) = h(l) ∗ rxx(l) (3.4.6)Similarly,

Output autocorrelation. Postmultiplying both sides of (3.4.1) by y∗(n− l) and taking
the expectation, we obtain

E{y(n)y∗(n − l)} =
∞∑

k=−∞
h(k)E{x(n − k)y∗(n − l)} (3.4.7)

ryy(l) =
∞∑

k=−∞
h(k)rxy(l − k) = h(l) ∗ rxy(l) (3.4.8)or

From (3.4.5) and (3.4.8) we get

ry(l) = h(l) ∗ h∗(−l) ∗ rx(l) (3.4.9)

ry(l) = rh(l) ∗ rx(l) (3.4.10)or

rh(l) � h(l) ∗ h∗(−l) =
∞∑

n=−∞
h(n)h∗(n − l) (3.4.11)where

is the autocorrelation of the impulse response and is called the system correlation sequence.
Since µy is constant and ry(l) depends only on the lag l, the response of a stable

system to a stationary input is also a stationary process. A careful examination of (3.4.10)
shows that when a signal x(n) is filtered by an LTI system with impulse response h(n) its
autocorrelation is “filtered” by a system with impulse response equal to the autocorrelation
of its impulse response, as shown in Figure 3.10.
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rh (l )

h (l ) h*(−l )rx (l ) ry(l )

FIGURE 3.10
An equivalent LTI system for autocorrelation filtration.

Output power. The power E{|y(n)|2} of the output process y(n) is equal to ry(0),
which from (3.4.9) and (3.4.10) and the symmetry property of rx(l) is

Py = ry(0) = rh(l) ∗ rx(l)|l=0

=
∞∑

k=−∞
rh(k)rx(−k) =

∞∑

k=−∞
[h(k) ∗ h∗(−k)]rx(k)

=
∞∑

k=−∞

∞∑

m=−∞
h(m)h∗(m − k)rx(k) (3.4.12)

=
∞∑

k=−∞
rh(k)rx(k) (3.4.13)

or for FIR filters with h = [h(0) h(1) · · · h(M − 1)]T , (3.4.12) can be written as

Py = hH Rxh (3.4.14)

Finally, we note that when µx = 0, we have µy = 0 and σ 2
y = Py .

Output probability density function. Finding the probability density of the output of
an LTI system is very difficult, except in some special cases. Thus, if x(n) is a Gaussian
process, then the output is also a Gaussian process with mean and autocorrelation given by
(3.4.4) and (3.4.10). Also if x(n) is IID, the probability density of the output is obtained by
noting that y(n) is a weighted sum of independent random variables. Indeed, the probability
density of the sum of independent random variables is the convolution of their probability
densities or the products of their characteristic functions. Thus if the input process is an
IID stable process then the output process is also stable whose probability density can be
computed by using characteristic functions.

3.4.2 Frequency-Domain Analysis

To obtain the output autoPSD and complex autoPSD, we recall that if H(z) = Z{h(n)},
then, for real h(n),

Z{h∗(−n)} = H ∗
(

1

z∗

)
(3.4.15)

From (3.4.5), (3.4.6), and (3.4.9) we obtain

Rxy(z) = H ∗
(

1

z∗

)
Rx(z) (3.4.16)

Ryx(z) = H(z)Rx(z) (3.4.17)

Ry(z) = H(z)H ∗
(

1

z∗

)
Rx(z) (3.4.18)and



March 9, 2005 11:42 e56-ch3 Sheet number 44 Page number 118 black

118

chapter 3
Random Variables,
Vectors, and Sequences

For a stable system, the unit circle z = ejω lies within the ROCs of H(z) and H(z−1).
Thus,

Rxy(e
jω) = H ∗(ejω)Rx(e

jω) (3.4.19)

Ryx(e
jω) = H(ejω)Rx(e

jω) (3.4.20)

Ry(e
jω) = H(ejω)H ∗(ejω)Rx(e

jω) (3.4.21)and

Ry(e
jω) = |H(ejω)|2Rx(e

jω) (3.4.22)or

Thus, if we know the input and output autocorrelations or autospectral densities, we can
determine the magnitude response of a system, but not its phase response. Only cross-
correlation or cross-spectral densities can provide phase information [see (3.4.19) and
(3.4.20)].

It can easily be shown that the power of the output is

E{|y(n)|2} = ryy(0) = 1

2π

∫ π

−π

|H(ejω)|2Rx(e
jω) dω (3.4.23)

=
∞∑

l=−∞
rx(l)rh(l) (3.4.24)

which is equivalent to (3.4.13).
Consider now a narrowband filter with frequency response

H(ejω) =




1 ωc − �ω

2
≤ ω ≤ ωc + �ω

2

0 elsewhere
(3.4.25)

The power of the filter output is

E{|y(n)|2} = 1

2π

∫ ωc+�ω/2

ωc−�ω/2
Rx(e

jω) dω � ω

π
Rx(e

jωc ) (3.4.26)

assuming that �ω is sufficiently small and that Rx(e
jω) is continuous at ω = ωc. Since

E{|y(n)|2} ≥ 0, Rx(e
jωc ) is also nonnegative for all ωc and �ω, hence

Rx(e
jω) ≥ 0 − π ≤ ω ≤ π (3.4.27)

Hence, the PSD Rx(e
jω) is nonnegative definite for any random sequence x(n) real (or

complex). Furthermore, Rx(e
jω) dω/(2π), has the interpretation of power, or Rx(e

jω) is a
power density as a function of frequency (in radians per sample). Table 3.2 shows various
input-output relationships in both the time and frequency domains.

TABLE 3.2

Second-order moments of stationary random sequences processed by linear,
time-invariant systems.

Time domain Frequency domain z Domain

y(n) = h(n) ∗ x(n) Not available Not available

ryx(l) = h(l) ∗ rx(l) Ryx(e
jω) = H(ejω)Rx(e

jω) Ryx(z) = H(z)Rx(z)

rxy(l) = h∗(−l) ∗ rx(l) Rxy(e
jω) = H∗(ejω)Rx(e

jω) Rxy(z) = H∗(1/z∗)Rx(z)

ry(l) = h(l) ∗ rxy(l) Ry(e
jω) = H(ejω)Rxy(e

jω) Ry(z) = H(z)Rxy(z)

ry(l) = h(l) ∗ h∗(−l) ∗ rx(l) Ry(e
jω) = |H(ejω)|2Rx(e

jω) Ry(z) = H(z)H∗(1/z∗)Rx(z)

3.4.3 Random Signal Memory

Given the “zero-memory” process w(n) ∼ IID(0, σ 2
w), we can introduce dependence by

passing it though an LTI system. The extent and degree of the imposed dependence are
dictated by the shape of the system’s impulse response. The probability density of w(n) is
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not explicitly involved. Suppose now that we are given the resulting linear process x(n),
and we want to quantify its memory. For processes with finite variance we can use the
correlation length

Lc = 1

rx(0)

∞∑

l=0

rx(l) =
∞∑

l=0

ρx(l)

which equals the area under the normalized autocorrelation sequence curve and shows the
maximum distance at which two samples are significantly correlated.

An IID process has no memory and is completely described by its first-order density.
A linear process has memory introduced by the impulse response of the generating system.
If w(n) has finite variance, the memory of the process is determined by the autocorrelation
of the impulse response because rx(l) = σ 2

wrh(l). Also, the higher-order densities of the
process are nonzero. Thus, the variability of the output—that is, what amplitudes the sig-
nal takes, how often, and how fast the amplitude changes from sample to sample—is the
combined effect of the input probability density and the system memory.

DEFINITION 3.9. A stationary process x(n) with finite variance is said to have long memory if
there exist constants α, 0 < α < 1, and Cr > 0 such that

lim
l→∞

1

Crσ
2
x

rx(l)l
α = 1

This implies that the autocorrelation has fat or heavy tails, that is, asymptotically decays as
a power law

ρx(l) � Cr |l|−α as l → ∞
and slowly enough that

∞∑

l=−∞
ρx(l) = ∞

that is, a long-memory process has infinite correlation length. If
∞∑

l=−∞
ρx(l) < ∞

we say that that the process has short memory. This is the case for autocorrelations that
decay exponentially, for example, ρx(l) = a|l|,−1 < a < 1.

An equivalent definition of long memory can be formulated in terms of the power
spectrum (Beran 1994; Samorodnitsky and Taqqu 1994).

DEFINITION 3.10. A stationary process x(n) with finite variance is said to have long memory if
there exist constants β, 0 < β < 1, and CR > 0 such that

lim
ω→0

1

CRσ 2
x

Rx(e
jω)|ω|β = 1

This asymptotic definition implies that

Rx(e
jω) � CRσ 2

x

|ω|β as ω → 0

Rx(0) =
∞∑

l=−∞
rx(l) = ∞and

The first-order density determines the mean value and the variance of a process, whereas
the second-order density determines the autocorrelation and power spectrum. There is a
coupling between the probability density and the autocorrelation or power spectrum of a
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process. However, this coupling is not extremely strong because there are processes that
have different densities and the same autocorrelation. Thus, we can have random signal
models with short or long memory and low or high variability. Random signal models are
discussed in Chapters 4 and 12.

3.4.4 General Correlation Matrices

We first begin with the properties of general correlation matrices. Similar properties apply
to covariance matrices.

PROPERTY 3.4.1. The correlation matrix of a random vector x is conjugate symmetric or Her-
mitian, that is,

Rx = RH
x (3.4.28)

Proof. This follows easily from (3.2.19).

PROPERTY 3.4.2. The correlation matrix of a random vector x is nonnegative definite (n.n.d.);
or for every nonzero complex vector w = [w1 w2 · · · wM ]T , the quadratic form wH Rxw is
nonnegative, that is,

wH Rxw ≥ 0 (3.4.29)

Proof. To prove (3.4.29), we define the dot product

α = wH x = xT w∗ =
M∑

k=1

w∗
kxk (3.4.30)

The mean square value of the random variable α is

E{|α|2} = E{wH xxH w} = wHE{xxH }w = wH Rxw (3.4.31)

Since E{|α|2} ≥ 0, if follows that wH Rxw ≥ 0. We also note that a matrix is called positive
definite (p.d.) if wH Rxw > 0.

Eigenvalues and eigenvectors of R

For a Hermitian matrix R we wish to find an M×1 vector q that satisfies the condition

Rq = λq (3.4.32)

where λ is a constant. This condition implies that the linear transformation performed
by matrix R does not change the direction of vector q. Thus Rq is a direction-invariant
mapping. To determine the vector q, we write (3.4.32) as

(R − λI)q = 0 (3.4.33)

where I is the M×M identity matrix and 0 is an M×1 vector of zeros. Since q is arbitrary,
the only way (3.4.33) is satisfied is if the determinant of R − λI equals zero, that is,

det(R − λI) = 0 (3.4.34)

This equation is an Mth-order polynomial in λ and is called the characteristic equation of
R. It has M roots {λi}Mi=1, called eigenvalues, which, in general, are distinct. If (3.4.34) has
repeated roots, then R is said to have degenerate eigenvalues. For each eigenvalue λi we
can satisfy (3.4.32)

Rqi = λiqi i = 1, . . . ,M (3.4.35)

where the qi are called eigenvectors of R. Therefore, the M × M matrix R has M eigen-
vectors. To uniquely determine qi , we use (3.4.35) along with the normality condition that
‖qi‖ = 1. A Matlab function [Lambda,Q] = eig(R) is available to compute eigenvalues
and eigenvectors of R.
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There are further properties of the autocorrelation matrix R based on its eigenanalysis,
which we describe below. Consider a matrix R that is Hermitian and nonnegative definite
(wH Rw ≥ 0) with eigenvalues {λi}Mi=1 and eigenvectors {qi}Mi=1.

PROPERTY 3.4.3. The matrix Rk(k = 1, 2, . . .) has eigenvalues λk
1, λ

k
2, . . . , λ

k
M

.

Proof. See Problem 3.16.

PROPERTY 3.4.4. If the eigenvalues λ1, λ2, . . . , λM are distinct, the corresponding eigenvectors
{qi}Mi=1 are linearly independent.

Proof. This property can be proved by using Property 3.4.3. If there exists M not-all-zero
scalars {αi}Mi=1, such that

M∑

i=1

αiqi = 0 (3.4.36)

then the eigenvectors {qi}Mi=1 are said to be linearly dependent. Assume that (3.4.36) is true for

some not-all-zero scalars {αi}Mi=1 and that the eigenvalues {λi}Mi=1 are distinct. Now multiply

(3.4.36) repeatedly by Rk , k = 0, . . . ,M − 1 and use Property 3.4.3 to obtain

M∑

i=1

αiR
kqi =

M∑

i=1

αiλ
k
i qi = 0 k = 0, . . . ,M − 1 (3.4.37)

which can be arranged in a matrix format for i = 1, . . . ,M as

[
α1q1 α2q2 α3q3 . . . αMqM

]




1 λ1 λ2
1 . . . λM−1

1

1 λ2 λ2
2 . . . λM−1

2
...

...
...

. . .
...

1 λM λ2
M

. . . λM−1
M




= 0 (3.4.38)

Since all the λi are distinct, the matrix containing the λi in (3.4.38) above is nonsingular. This
matrix is called a Vandermonde matrix. Therefore, premultiplying both sides of (3.4.38) by the
inverse of the Vandermonde matrix, we obtain

[α1q1 α2q2 α3q3 . . . αMqM ] = 0 (3.4.39)

Since eigenvectors {qi}Mi=1 are not zero vectors, the only way (3.4.39) can be satisfied is if all

{αi}Mi=1 are zero. This implies that (3.4.36) cannot be satisfied for any set of not-all-zero scalars

{αi}Mi=1, which further implies that {qi}Mi=1 are linearly independent.

PROPERTY 3.4.5. The eigenvalues {λi}Mi=1 are real and nonnegative.

Proof. From (3.4.35), we have

qH
i Rqi = λiq

H
i qi i = 1, 2, . . . ,M (3.4.40)

Since R is positive semidefinite, the quadratic form qH
i

Rqi ≥ 0. Also since qH
i

qi is an inner

product, qH
i

qi > 0. Hence

λi =
qH
i

Rqi

qH
i

qi

≥ 0 i = 1, 2, . . . ,M (3.4.41)

Furthermore, if R is positive definite, then λi > 0 for all 1 ≤ i ≤ M . The quotient in (3.4.41) is
a useful quantity and is known as the Raleigh quotient of vector qi .

PROPERTY 3.4.6. If the eigenvalues {λi}Mi=1 are distinct, then the corresponding eigenvectors
are orthogonal to one another, that is,

λi = λj ⇒ qH
i qj = 0 for i = j (3.4.42)
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Proof. Consider (3.4.35). We have

Rqi = λiqi (3.4.43)

Rqj = λj qj (3.4.44)and

for some i = j . Premultiplying both sides of (3.4.43) by qH
j

, we obtain

qH
j Rqi = qH

j λiqi = λiq
H
j qi (3.4.45)

Taking the conjugate transpose of (3.4.44), using the Hermitian property (3.4.28) of R, and using
the realness Property 3.4.5 of eigenvalues, we get

qH
j R = λj qH

j (3.4.46)

Now postmultiplying (3.4.46) by qi and comparing with (3.4.45), we conclude that

λiq
H
j qi = λj qH

j qi or (λi − λj )q
H
j qi = 0 (3.4.47)

Since the eigenvalues are assumed to be distinct, the only way (3.4.47) can be satisfied is if
qH
j

qi = 0 for i = j , which further proves that the corresponding eigenvectors are orthogonal
to one another.

PROPERTY 3.4.7. Let {qi}Mi=1 be an orthonormal set of eigenvectors corresponding to the distinct

eigenvalues {λi}Mi=1 of an M ×M correlation matrix R. Then R can be diagonalized as follows:

� = QH RQ (3.4.48)

where the orthonormal matrix Q � [q1 · · · qM ] is known as an eigenmatrix and� is an M×M

diagonal eigenvalue matrix, that is,

� ��� diag(λ1, . . . , λM) (3.4.49)

Proof. Arranging the vectors in (3.4.35) in a matrix format, we obtain

[Rq1 Rq2 · · · RqM ] = [λ1q1 λ2q2 · · · λMqM ]
which, by using the definitions of Q and �, can be further expressed as

RQ = Q� (3.4.50)

Since qi , i = 1, . . . ,M , is an orthonormal set of vectors, the eigenmatrix Q is unitary, that is,
Q−1 = QH . Now premultiplying both sides of (3.4.50) by QH , we obtain the desired result.

This diagonalization of the autocorrelation matrix plays an important role in filtering
and estimation theory, as we shall see later. From (3.4.48) the correlation matrix R can also
be written as

R = Q�QH = λ1q1qH
1 + · · · + λMqMqH

M =
M∑

m=1

λmqmqH
m (3.4.51)

which is known as the spectral theorem, or Mercer’s theorem. If R is positive definite (and
hence invertible), its inverse is given by

R−1 = (Q�QH )−1 = Q�−1QH =
M∑

m=1

1

λm

qmqH
m (3.4.52)

because � is a diagonal matrix.

PROPERTY 3.4.8. The trace of R is the summation of all eigenvalues, that is,

tr(R) =
M∑

i=1

λi (3.4.53)

Proof. See Problem 3.17.
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PROPERTY 3.4.9. The determinant of R is equal to the product of all eigenvalues, that is,

det R = |R| =
M∏

i=1

λi = |�| (3.4.54)

Proof. See Problem 3.18.

PROPERTY 3.4.10. Determinants of R and � are related by

|R| = |�|(1 + µH
x �µx) (3.4.55)

Proof. See Problem 3.19.

3.4.5 Correlation Matrices from Random Processes

A stochastic process can also be represented as a random vector, and its second-order
statistics given by the mean vector and the correlation matrix. Obviously, these quantities
are functions of the index n. Let an M × 1 random vector x(n) be derived from the random
process x(n) as follows:

x(n) � [x(n) x(n − 1) · · · x(n − M + 1)]T (3.4.56)

Then its mean is given by an M × 1 vector

µx(n) = [µx(n) µx(n − 1) · · · µx(n − M + 1)]T (3.4.57)

and the correlation by an M × M matrix

Rx(n) =


rx(n, n) · · · rx(n, n − M + 1)
...

. . .
...

rx(n − M + 1, n) · · · rx(n − M + 1, n − M + 1)


 (3.4.58)

Clearly, Rx(n) is Hermitian since rx(n − i, n − j) = r∗x (n − j, n − i), 0 ≤ i, j ≤ M − 1.
This vector representation will be useful when we discuss optimum filters.

Correlation matrices of stationary processes

The correlation matrix Rx(n) of a general stochastic process x(n) is a Hermitian M×M

matrix defined in (3.4.58) with elements rx(n − i, n − j) = E{x(n − i)x∗(n − j)}. For
stationary processes this matrix has an interesting additional structure. First, Rx(n) is a
constant matrix Rx ; then using (3.3.24), we have

rx(n − i, n − j) = rx(j − i) = rx(l � j − i) (3.4.59)

Finally, by using conjugate symmetry rx(l) = r∗x (−l), the matrix Rx is given by

Rx =




rx(0) rx(1) rx(2) · · · rx(M − 1)

r∗x (1) rx(0) rx(1) · · · rx(M − 2)

r∗x (2) r∗x (1) rx(0) · · · rx(M − 3)
...

...
...

. . .
...

r∗x (M − 1) r∗x (M − 2) r∗x (M − 3) · · · rx(0)




(3.4.60)

It can be easily seen that Rx is Hermitian and Toeplitz.
†

Thus, the autocorrelation matrix
of a stationary process is Hermitian, nonnegative definite, and Toeplitz. Note that Rx is not
persymmetric because elements along the main antidiagonal are not equal, in general.

†
A matrix is called Toeplitz if the elements along each diagonal, parallel to the main diagonal, are equal.
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Eigenvalue spread and spectral dynamic range

The ill conditioning of a matrix Rx increases with its condition number X (Rx) =
λmax/λmin. When Rx is a correlation matrix of a stationary process, then X (Rx) is bounded
from above by the dynamic range of the PSD Rx(e

jω) of the process x(n). The larger the
spread in eigenvalues, the wider (or less flat) the variation of the PSD function. This is also
related to the dynamic range or to the data spread in x(n) and is a useful measure in practice.
This result is given by the following theorem, in which we have dropped the subscript of
Rx(e

jω) for clarity.

THEOREM 3.5. Consider a zero-mean stationary random process with autoPSD

R(ejω) =
∞∑

l=−∞
r(l)e−jωl

min
ω

R(ejω) ≤ λi ≤ max
ω

R(ejω) for all i = 1, 2, . . . ,M (3.4.61)then

Proof. From (3.4.41) we have

λi =
qH
i

Rqi

qH
i

qi

(3.4.62)

Consider the quadratic form

qH
i Rqi =

M∑

k=1

M∑

l=1

qi(k)r(l − k)qi(l)

where qi = [qi(1) qi(2) · · · qi(M)]T . Using (3.3.41) and the stationarity of the process, we
obtain

qH
i Rqi =

1

2π

∑

k

∑

l

q∗i (k)qi(l)
∫ π

−π
R(ejω)ejω(l−k) dω

= 1

2π

∫ π

−π
R(ejω)




M∑

k=1

q∗i (k)e−jωk






M∑

l=1

qi(l)e
jωl


 dω

(3.4.63)

qH
i Rqi =

1

2π

∫ π

−π
R(ejω)|Q(ejω)|2dω (3.4.64)or

Similarly, we have

qH
i qi = 1

2π

∫ π

−π
|Q(ejω)|2 dω (3.4.65)

Substituting (3.4.64) and (3.4.65) in (3.4.62), we obtain

λi =

∫ π

−π
|Q(ejω)|2R(ejω) dω
∫ π

−π
|Q(ejω)|2 dω

(3.4.66)

However, since R(ejω) ≥ 0, we have the following inequality:

min
ω

R(ejω)

∫ π

−π
|Q(ejω)|2dω ≤

∫ π

−π
|Q(ejω)|2R(ejω) dω

≤ max
ω

R(ejω)

∫ π

−π
|Q(ejω)|2dω

from which we easily obtain the desired result. The above result also implies that

X (R) � λmax

λmin
≤

max
ω

R(ejω)

min
ω

R(ejω)
(3.4.67)

which becomes equality as M → ∞.
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3.5 WHITENING AND INNOVATIONS REPRESENTATION

In many practical and theoretical applications, it is desirable to represent a random vector
(or sequence) with a linearly equivalent vector (or sequence) consisting of uncorrelated
components. If x is a correlated random vector and if A is a nonsingular matrix, then the
linear transformation

w = Ax (3.5.1)

results in a random vector w that contains the same “information” as x, and hence random
vectors x and w are said to be linearly equivalent. Furthermore, if w has uncorrelated com-
ponents and A is lower-triangular, then each component wi of w can be thought of as adding
“new” information (or innovation) to w that is not present in the remaining components.
Such a representation is called an innovations representation and provides additional in-
sight into the understanding of random vectors and sequences. Additionally, it can simplify
many theoretical derivations and can result in computationally efficient implementations.

Since �w must be a diagonal matrix, we need to diagonalize the Hermitian, positive
definite matrix �x through the transformation matrix A. There are two approaches to this
diagonalization. One approach is to use the eigenanalysis presented in Section 3.4.4, which
results in the well-known Karhunen-Loève (KL) transform. The other approach is to use
triangularization methods from linear algebra, which leads to the LDU (UDL) and LU (UL)
decompositions. These vector techniques can be further extended to random sequences that
give us the KL expansion and the spectral factorizations, respectively.

3.5.1 Transformations Using Eigendecomposition

Let x be a random vector with mean vector µx and covariance matrix �x. The linear
transformation

x0 = x − µx (3.5.2)

results in a zero-mean vector x0 with correlation (and covariance) matrix equal to �x. This
transformation shifts the origin of the M-dimensional coordinate system to the mean vector.
We will now consider the zero-mean random vector x0 for further transformations.

Orthonormal transformation

Let Qx be the eigenmatrix of �x, and let us choose QH
x as our linear transformation

matrix A in (3.2.32). Consider

w = QH
x x0 = QH

x (x − µx) (3.5.3)

µw = QH
x (E{x0}) = 0 (3.5.4)Then

and from (3.2.39) and (3.4.48)

�w = Rw = E{QH
x x0xH

0 Qx} = QH
x �xQx = �x (3.5.5)

Since�x is diagonal,�w is also diagonal, and hence this transformation has some interesting
properties:

1. The random vector w has zero mean, and its components are mutually uncorrelated (and
hence orthogonal). Furthermore, if x is N (µx,�x), then w is N (0,�x) with independent
components.

2. The variances of random variables wi, i = 1, . . . ,M , are equal to the eigenvalues of
�x.

3. Since the transformation matrix A = QH
x is orthonormal, the transformation is called

an orthonormal transformation and the distance measure

d2(x0) � xH
0 �

−1
x x0 (3.5.6)
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is preserved under the transformation. This distance measure is also known as the
Mahalanobis distance; and in the case of normal random vectors, it is related to the
log-likelihood function.

4. Since w = QH
x (x − µx), we have

wi = qH
i (x − µx) = ‖x − µx‖ cos[�(x − µx, qi )] i = 1, . . . ,M (3.5.7)

which is the projection of x − µx onto the unit vector qi . Thus w represents x in a new
coordinate system that is shifted to µx and spanned by qi , i = 1, . . . ,M . A geometric
interpretation of this transformation for a two-dimensional case is shown in Figure 3.11,
which shows a contour of d2(x0) = xH�−1

x x = wH�−1
x w in the x and w coordinate

systems (w = QH
x x).

w 1
w 2

0

mx2

mx1

x2

x1

l2

l1

FIGURE 3.11
Orthogonal transformation in two dimensions.

Isotropic transformation

In the above orthonormal transformation, the autocorrelation matrix Rw is diagonal
but not an identity matrix I. This can be achieved by an additional linear mapping of�−1/2

x .
Let

y = �
−1/2
x w = �

−1/2
x QH

x x0 = �
−1/2
x QH

x (x − µx) (3.5.8)

Ry = �
−1/2
x QH

x �xQx�
−1/2
x = �

−1/2
x �x�

−1/2
x = I (3.5.9)Then

This is called an isotropic transformation because all components of y are zero-mean,
uncorrelated random variables with unit variance.

†
The geometric interpretation of this

transformation for a two-dimensional case is shown in Figure 3.12. It clearly shows that there
is not only a shift and rotation but also a scaling of the coordinate axis so that the distribution
is equal in all directions, that is, it is direction-invariant. Because the transformation A =
�

−1/2
x QH

x is orthogonal but not orthonormal, the distance measure d2(x0) is not preserved
under this mapping. Since the correlation matrix after this transformation is an identity
matrix I, it is invariant under any orthonormal mapping, that is,

QH IQ = QH Q = I (3.5.10)

This fact can be used for simultaneous diagonalization of two Hermitian matrices.

EXAMPLE 3.5.1. Consider a stationary sequence with correlation matrix

Rx =
[

1 a

a 1

]

where −1 < a < 1. The eigenvalues

λ1 = 1 + a λ2 = 1 − a

†
In the literature, an isotropic transformation is also known as a whitening transformation. We believe that this

terminology is not accurate because both vectors QH
x x0 and �−1/2

x QH
x x0 have uncorrelated coefficients.
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x2

x1

y 1
y 2

0

Original
distribution

Isotropic
distribution

mx2

mx1

FIGURE 3.12
Isotropic transformation in two
dimensions.

are obtained from the characteristic equation

det(Rx − λI) = det

[
1 − λ a

a 1 − λ

]
= (1 − λ)2 − a2 = 0

To find the eigenvector q1, we solve the linear system
[

1 a

a 1

]

q
(1)
1

q
(1)
2


 = (1 + a)



q
(1)
1

q
(1)
2




which gives q
(1)
1 = q

(1)
2 . Similarly, we find that q(2)

1 = −q
(2)
2 . If we normalize both vectors to

unit length, we obtain the eigenvectors

q1 = 1√
2

[
1

1

]
q2 = 1√

2

[
1

−1

]

From the above results we see that det Rx = 1−a2 = λ1λ2 and QH Q = I, where Q = [q1 q2].

3.5.2 Transformations Using Triangular Decomposition

The linear transformations discussed above were based on diagonalization of hermitian
matrices through eigenvalue-eigenvector decomposition. These are useful in many detection
and estimation problems. Triangular matrix decomposition leads to transformations that
result in causal or anticausal linear filtering of associated sequences. Hence these mappings
play an important role in linear filtering. There are two such decompositions: the lower-
diagonal-upper (LDU ) one leads to causal filtering while the upper-diagonal-lower (UDL)
one results in anticausal filtering.

Lower-diagonal-upper decomposition

Any Hermitian, positive definite matrix R can be factored as (Goulob and Van Loan
1989)

R = LDLLH (3.5.11)

L−1RL−H = DL (3.5.12)or equivalently

where L is a unit lower triangular matrix, DL is a diagonal matrix with positive elements,
and LH is a unit upper triangular matrix. The Matlab function [L,D]=ldlt(R), given in
Section 5.2, computes the LDU decomposition.

Since L is unit lower triangular, we have det R = ∏M
i=1 ξ l

i , where ξ l
1, . . . , ξ

l
M are the

diagonal elements of DL. If we define the linear transformation

w = L−1x � Bx (3.5.13)
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we find that

Rw = E{wwH } = L−1E{xxH }L−H = L−1RL−H = DL (3.5.14)

Clearly, the components of w are orthogonal, and the elements ξ l
1, . . . , ξ

l
M are their second

moments. Therefore, this transformation appears to be similar to the orthogonal one. How-
ever, the vector w is not obtained as a simple rotation of x. To understand this mapping, we
first note that B = L−1 is also a unit lower triangular matrix (Goulob and Van Loan 1989).
Then we can write (3.5.13) as




w1
...

wi

...

wM




=




1 · · · 0 · · · 0
...

. . .
...

bi1 · · · 1 · · · 0
...

. . .
...

bM1 · · · bMi · · · 1







x1
...

xi

...

xM




(3.5.15)

where bik are elements of B. From (3.5.15) we conclude that wi is a linear combination of
xk, k ≤ i, that is,

wi =
i∑

k=1

bikxk 1 ≤ i ≤ M (3.5.16)

If the signal vector x consists of consecutive samples of a discrete-time stochastic process
x(n), that is,

x = [x(n) x(n − 1) · · · x(n − M + 1)]T (3.5.17)

then (3.5.16) can be interpreted as a causal linear filtering of the random sequence (see
Chapter 2). This transformation will be used extensively in optimum linear filtering and
prediction problems.

A similar LDU decomposition of autocovariance matrices can be performed by follow-
ing the identical steps above. In this case, the components of the transformed vector w are
uncorrelated, and the elements ξ l

i , 1 ≤ i ≤ M , of DL are variances.

Upper-diagonal-lower decomposition

This diagonalization is almost identical to the previous one and involves factorization
of a Hermitian, positive definite matrix into an upper-diagonal-lower form. It is given by

R = UDUUH (3.5.18)

U−1RU−H = DU = diag(ξu
1, . . . , ξ

u
M) (3.5.19)or equivalently

in which the matrix U is unit upper triangular, the matrix UH is unit lower triangular, and the
matrix DU is diagonal with positive elements. Note that UH = L and DU = DL. Following
the same analysis as above, we have det R = det DU = ∏M

i=1 ξu
i . Since A = U−1 is unit

upper triangular in the transformation w = U−1x, the components of w are orthogonal and
are obtained by linear combinations of xk, k ≥ i, that is,

wi =
M∑

k=i

likxk 1 ≤ i ≤ M (3.5.20)

This represents an anticausal filtering of a random sequence if x is a signal vector. Table 3.3
compares and contrasts orthogonal and triangular decompositions. We note that the LDU
decomposition does not have the nice geometric interpretation (rotation of the coordinate
system) of the eigendecomposition transformation.

Generation of real-valued random vectors with given second-order moments. Sup-
pose that we want to generate M samples, say, x1, x2, . . . , xM, of a real-valued random
vector x with mean 0 and a given symmetric and positive definite autocorrelation matrix Rx.
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TABLE 3.3

Comparison of orthogonal and triangular decompositions
for zero-mean random vectors.

Orthogonal decomposition Triangular decomposition

R = E{xxH } R = E{xxH }
Rqi = λiqi

Q = [q1, q2, . . . , qM ] L = unit lower triangular

� = diag{λ1,λ2, . . . , λM } D = diag{ξ1,ξ2, . . . , ξM }
R = Q�QH =∑M

i=1 λiqiqH
i

R = LDLH

� = QH RQ D = L−1RL−H

R−1 = Q�−1QH =∑M
i=1

1
λi

qiqH
i

R−1 = L−H D−1L−1

�−1 = QH R−1Q D−1 = L−H R−1L−1

det R = det� =∏M
i=1 λi det R = det D =∏M

i=1 ξ i

tr R = tr� =∑M
i=1 λi

Whitening (noncausal) Whitening (causal)

w = QH x w = L−1x
E{wwH } = � E{wwH } = D

The innovations representation given in this section suggests three approaches to generate
samples of such a random vector. The general approach is to factor Rx, using either the
orthonormal or the triangularization transformation, to obtain the diagonal matrix (�x or
D(x)

L or D(x)
U ), generate M samples of an IID sequence with the obtained diagonal variances,

and then transform these samples by using the inverse transformation matrix (Qx or Lx or
Ux). We hasten to add that, in general, the original distribution of the IID samples will not be
preserved unless the samples are jointly normal. Therefore, in the following discussion, we
assume that a normal pseudorandom number generator is used to generate M independent
samples of w. The three methods are as follows.

Eigendecomposition approach. First factor Rx as Rx = Qx�xQH
x . Then generate

w, using the distribution N (0,�x). Finally, compute the desired vector x, using
x = Qxw.

LDU triangularization approach. First factor Rx as Rx = LxD(x)
L LH

x . Then generate

w, using the distribution N (0, D(x)
L ). Finally, compute the desired vector x, using

x = Lxw.
†

UDL triangularization approach. First factor Rx as Rx = UxD(x)
U UH

x . Then generate

w, using the distribution N (0, D(x)
U ). Finally, compute the desired vector x, using

x = Uxw.

Additional discussion and more complete treatment on the generation of random vectors
are given in Johnson (1994).

3.5.3 The Discrete Karhunen-Loève Transform

In many signal processing applications, it is convenient to represent the samples of a random
signal in another set of numbers (or coefficients) so that this new representation possesses
some useful properties. For example, for coding purposes we want to transform a signal

†
If we use the Cholesky decomposition Rx = L̃xL̃H

x , where L̃x = {D(x)
L }1/2Lx, then w = N (0, I) will generate

x with the given correlation Rx , using x = L̃xw.
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so that its energy is concentrated in only a few coefficients (which are then transmitted);
or for optimal filtering purposes we may want uncorrelated samples so that the filtering
complexity is reduced or the signal-to-noise ratio is enhanced. A general approach is to
expand a signal as a linear combination of orthogonal basis functions so that components
of the signal with respect to basis functions do not interfere with one another. There are
several such basis functions; the most widely known is the set of complex exponentials
used in DTFT (or DFT) that are used in linear filtering, as we discussed in Section 3.4.
Other examples are functions used in discrete cosine transform, discrete sine transform,
Haar transform, etc., which are useful in coding applications (Jain 1989).

As discussed in this section, a set of orthogonal basis functions for which the signal
components are statistically uncorrelated to one another is based on the second-order prop-
erties of the random process and, in particular, on the diagonalization of its covariance
matrix. It is also an optimal representation of the signal in the sense that it provides a repre-
sentation with the smallest mean square error among all other orthogonal transforms. This
has applications in the analysis of random signals as well as in coding. This transform was
first suggested by Karhunen and Loève for continuous random processes. It was extended to
discrete random signals by Hotelling and is also known as the Hotelling transform. In keep-
ing with the current nomenclature, we will call it the discrete Karhunen-Loève transform
(DKLT) (Fukunaga 1990).

Development of the DKLT

Let x = [x1 x2 · · · xM ]T be a zero-mean
†

random vector with autocorrelation matrix
Rx. We want to represent x using the linear transformation

w = AH x A−1 = AH (3.5.21)

where A is a unitary matrix. Then

x = Aw =
M∑

i=1

wiai aH
i aj = 0 i = j (3.5.22)

Let us represent x using the first m, 1 ≤ m ≤ M , components of w, that is,

x̂ �
m∑

i=1

wiai 1 ≤ m ≤ M (3.5.23)

Then from (3.5.22) and (3.5.23), the error between x and x̂ is given by

em � x − x̂ =
M∑

i=1

wiai −
m∑

i=1

wiai =
M∑

i=m+1

wiai (3.5.24)

and hence the mean-squared error (MSE) is

Em � E{eH
m em} =

M∑

i=m+1

aH
i E{|wi |2}ai =

M∑

i=m+1

E{|wi |2}aH
i ai (3.5.25)

Since from (3.5.21) wi = aH
i x, we have E{|wi |2} = aH

i Rxai . Now we want to determine
the matrix A that will minimize the MSE Em subject to aH

i ai = 1, i = m + 1, . . . ,M so
that from (3.5.25)

Em =
M∑

i=m+1

E{|wi |2} =
M∑

i=m+1

aH
i Rxai aH

i ai = 1 i = m + 1, . . . ,M (3.5.26)

†
If the mean is not zero, then we perform the transformation on the mean-subtracted vector, using the covariance

matrix.
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This optimization can be done by using the Lagrange multiplier approach (Appendix B);
that is, we minimize

M∑

i=m+1

aH
i Rxai +

M∑

i=m+1

λi(1 − aH
i ai ) i = m + 1, . . . ,M

Hence after setting the gradient equal to zero,

∇ai




M∑

i=m+1

aH
i Rxai +

M∑

i=m+1

λi(1 − aH
i ai )


 = (Rxai )

∗ − (λiai )
∗ = 0 (3.5.27)

Rxai = λiai i = m + 1, . . . ,Mwe obtain

which is equivalent to (3.4.35) in the eigenanalysis of Section 3.4.4. Hence λi is the eigen-
value, and the corresponding ai is the eigenvector of Rx. Clearly, since 1 ≤ m ≤ M , the
transformation matrix A should be chosen as the eigenmatrix Q. Hence



↑
w

↓


 =




←− qH
1 −→

←− qH
2 −→

...
...

...

←− qH
M −→






↑
x

↓




w = QH x (3.5.28)or more concisely

provides an orthonormal transformation so that the transformed vector w is a zero-mean,
uncorrelated random vector with autocorrelation�. This transformation is called the DKLT,
and its inverse relationship (or synthesis) is given by



↑
x

↓


 =



↑ ↑ · · · ↑
q1 q2 · · · qM

↓ ↓ · · · ↓






↑
w

↓


 (3.5.29)

x = Qw = q1w1 + q2w2 + · · · + qMwM (3.5.30)or

From Section 3.5.1, the geometric interpretation of this transformation is that {wk}M1 are

projections of the vector x with respect to the rotated coordinate system of {qk}M1 . The
eigenvalues λi also have an interesting interpretation, as we shall see in the following
representation.

Optimal reduced-basis representation

Generally we would expect any transformation to provide only few meaningful com-
ponents so that we can use only those basis vectors resulting in a smaller representation
error. To determine this reduced-basis representation property of the DKLT, let us use first
K < M eigenvectors (instead of all qi). Then from (3.5.26), we have

EK =
M∑

i=K+1

λi (3.5.31)

In other words, the MSE in the reduced-basis representation, when the first K basis vectors
are used, is the sum of the remaining eigenvalues (which are never negative). Therefore, to
obtain a minimum MSE (that is, an optimum) representation, the procedure is to choose K

eigenvectors corresponding to the K largest eigenvalues.

Application in data compression. The DKLT is a transformation on a random vector
that produces a zero-mean, uncorrelated vector and that can minimize the mean square
representation error. One of its popular applications is data compression in communications
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and, in particular, in speech and image coding. Suppose we want to send a sample function
of a speech process xc(t). If we sample this waveform and obtain M samples {x(n)}M−1

0 ,
then we need to send M data values. Instead, if we analyze the correlation of {x(n)}M−1

0
and determine that M values can be approximated by a smaller K numbers of wi and
the corresponding qi , then we can compute these K data values {wi}K1 at the transmitter
and send them to the receiver through the communication channel. At the receiver, we
can reconstruct {x(n)}M−1

0 by using (3.5.23), as shown in Figure 3.13. Obviously, both
the transmitter and receiver must have the information about the eigenvectors {qi}M1 . A
considerable amount of compression is achieved if K is much smaller than M .

DKLT
Inverse
DKLT

Uncoded
signal

Coded
signal

Reconstructed
signal

x(n) w (n) w (n) x(n)ˆ ˆReduced-basis
selection
scheme

FIGURE 3.13
Signal coding scheme using the DKLT.

Periodic random sequences

As we noted in the previous section, the correlation matrix of a stationary process is
Toeplitz. If the autocorrelation sequence of a random process is periodic with fundamental
period M , its correlation matrix becomes circulant. All rows (columns) of a circulant matrix
are obtained by circular rotation of its first row (column). Using (3.4.60) and the periodicity
relation rx(l) = rx(l − M), we obtain

Rx =




rx(0) rx(1) rx(2) · · · rx(M − 1)

rx(M − 1) rx(0) rx(1) · · · rx(M − 2)

rx(M − 2) rx(M − 1) rx(0) · · · rx(M − 3)
...

...
...

. . .
...

rx(1) rx(2) rx(3) · · · rx(0)




(3.5.32)

which is a circulant matrix. We note that a circulant matrix is Toeplitz but not vice versa.
If we define the M-point DFT of the periodic sequence rx(l)

R̃x(k) =
M−1∑

l=0

rx(l)W
kl
M (3.5.33)

where WM � e−j2π/M , and the vector

wk � 1√
M

[1 Wk
M W 2k

M · · · W
(M−1)k
M ]T 0 ≤ k ≤ M − 1 (3.5.34)

we can easily see that multiplying the first row of Rx by the vector wk results in R̃x(k)/
√

M .
Using W−k

M = W
(M−1)k
M , we find that the product of the second row by wk is equal to

R̃x(k)W
k
M/

√
M . In general, the ith row by wk gives R̃x(k)W

(i−1)k
M /

√
M . Therefore, we

have

Rxwk = R̃x(k)wk 0 ≤ k ≤ M − 1 (3.5.35)

which shows that the normalized DFT vectors wk are the eigenvectors of the circulant
matrix Rx with as corresponding eigenvalues the DFT coefficients R̃x(k). Therefore, the
DFT provides the DKLT of periodic random sequences. We recall that R̃x(k) are samples
of the DTFT Rx(e

j2πk/M) of the finite-length sequence rx(l), 0 ≤ l ≤ M − 1.
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If we define the M × M matrix

W � [w0 w1 · · · wM−1] (3.5.36)

we can show that

WH W = WWH = I (3.5.37)

that is, the matrix W is unitary. The set of equations (3.5.35) can be written as

WH RxW = diag{R̃x(0), R̃x(1), . . . , R̃x(M − 1)} (3.5.38)

which shows that the DFT performs the diagonalization of circulant matrices. Although
there is no fast algorithm for the diagonalization of general Toeplitz matrices, in many
cases we can use the DFT to approximate the DKLT of stationary random sequences. The
approximation is adequate if the correlation becomes negligible for |l| > M , which is
the case for many stationary processes. This explains the fact that the eigenvectors of a
Toeplitz matrix resemble complex exponentials for large values of M . The DKLT also can
be extended to handle the representation of random sequences. These issues are further
explored in Therrien (1992), Gray (1972), and Fukunaga (1990).

3.6 PRINCIPLES OF ESTIMATION THEORY

The key assumption underlying our discussion up to this point was that the probability
distributions associated with the problem under consideration were known. As a result,
all required probabilities, autocorrelation sequences, and PSD functions either could be
derived from a set of assumptions about the involved random processes or were given a
priori. However, in most practical applications, this is the exception rather than the rule.
Therefore, the properties and parameters of random variables and random processes should
be obtained by collecting and analyzing finite sets of measurements. In this section, we
introduce some basic concepts of estimation theory that will be used repeatedly in the rest
of the book. Complete treatments of estimation theory can be found in Kay (1993), Helstrom
(1995), Van Trees (1968), and Papoulis (1991).

3.6.1 Properties of Estimators

Suppose that we collect N observations {x(n)}N−1
0 from a stationary stochastic process and

use them to estimate a parameter θ (which we assume to be real-valued) of the process
using some function θ̂ [{x(n)}N−1

0 ]. The same results can be used for a set of measurements
{xk(n)}N1 obtained from N sensors sampling stochastic processes with the same distribu-
tions. The function θ̂ [{x(n)}N−1

0 ] is known as an estimator whereas the value taken by the
estimator, using a particular set of observations, is called a point estimate or simply an
estimate. The intention of the estimator design is that the estimate should be as close to the
true value of the parameter as possible. However, if we use another set of observations or a
different number of observations from the same set, it is highly unlikely that we will obtain
the same estimate. As an example of an estimator, consider estimating the mean µx of a
stationary process x(n) from its N observations {x(n)}N−1

0 . Then the natural estimator is a
simple arithmetic average of these observations, given by

µ̂x = θ̂ [{x(n)}N−1
0 ] = 1

N

N−1∑

n=0

x(n) (3.6.1)
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Similarly, a natural estimator of the variance σ 2
x of the process x(n) would be

σ̂
2
x = θ̂ [{x(n)}N−1

0 ] = 1

N

N−1∑

n=0

[x(n) − µ̂x]2 (3.6.2)

If we repeat this procedure a large number of times, we will obtain a large number of es-
timates, which can be used to generate a histogram showing the distribution of the estimates.
Before the collection of observations, we would like to describe all sets of data that can be
obtained by using the random variables {x(n, ζ )}N−1

0 . The obtained set of N observations
{x(n)}N−1

0 can thus be regarded as one realization of the random variables {x(n, ζ )}N−1
0

defined on an N -dimensional sample space. In this sense, the estimator θ̂ [{x(n, ζ )}N−1
0 ]

becomes a random variable whose distribution can be obtained from the joint distribution
of the random variables {x(n, ζ )}N−1

0 . This distribution is called the sampling distribution
of the estimator and is a fundamental concept in estimation theory because it provides all
the information we need to evaluate the quality of an estimator.

The sampling distribution of a “good” estimator should be concentrated as closely as
possible about the parameter that it estimates. To determine how “good” an estimator is
and how different estimators of the same parameter compare with one another, we need to
determine their sampling distributions. Since it is not always possible to derive the exact
sampling distributions, we have to resort to properties that use the lower-order moments
(mean, variance, mean square error) of the estimator.

Bias of estimator. The bias of an estimator θ̂ of a parameter θ is defined as

B(θ̂) � E[θ̂ ] − θ (3.6.3)

while the normalized bias is defined as

εb � B(θ̂)

θ
θ = 0 (3.6.4)

When B(θ̂) = 0, the estimator is said to be unbiased and the pdf of the estimator is centered
exactly at the true value θ . Generally, one should select estimators that are unbiased such
as the mean estimator in (3.6.1) or very nearly unbiased such as the variance estimator in
(3.6.2). However, it is not always wise to select an unbiased estimator, as we will see below
and in Section 5.2 on the estimation of autocorrelation sequences.

Variance of estimator. The variance of the estimator θ̂ is defined by

var(θ̂) = σ 2
θ̂

� E{|θ̂ − E{θ̂}|2} (3.6.5)

which measures the spread of the pdf of θ̂ around its average value. Therefore, one would
select an estimator with the smallest variance. However, this selection is not always com-
patible with the small bias requirement. As we will see below, reducing variance may result
in an increase in bias. Therefore, a balance between these two conflicting requirements is
required, which is provided by the mean square error property. The normalized standard
deviation (also called the coefficient of variation) is defined by

εr �
σ

θ̂

θ
θ = 0 (3.6.6)

Mean square error. The mean square error (MSE) of the estimator is given by

MSE(θ) = E{|θ̂ − θ |2} = σ 2
θ̂
+ |B

θ̂
|2 (3.6.7)

Indeed, we have

MSE(θ) = E{|θ − E{θ̂} − (θ̂ − E{θ̂})|2}
= E{|θ − E{θ̂}|2} + E{|θ̂ − E{θ̂}|2} (3.6.8)

−(θ − E{θ̂})E{(θ̂ − E{θ̂})∗} − (θ − E{θ̂})∗E{θ̂ − E{θ̂}}
= |θ − E{θ̂}|2 + E{|θ̂ − E{θ̂}|2} (3.6.9)
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which leads to (3.6.7) by using (3.6.3) and (3.6.5). Ideally, we would like to minimize the
MSE, but this minimum is not always zero. Hence minimizing variance can increase the
bias. The normalized MSE is defined as

ε � MSE(θ)

θ
θ = 0 (3.6.10)

Cramér-Rao lower bound. If it is possible to minimize the MSE when the bias is zero,
then clearly the variance is also minimized. Such estimators are called minimum variance
unbiased estimators, and they attain an important minimum bound on the variance of the
estimator, called the Cramér-Rao lower bound (CRLB), or minimum variance bound. If θ̂

is unbiased, then it follows that E{θ̂ − θ} = 0, which may be expressed as
∞∫
· · ·
∫

−∞
(θ̂ − θ)fx;θ (x; θ) dx = 0 (3.6.11)

where x(ζ ) = [x1(ζ ), x2(ζ ), . . . , xN(ζ )]T and fx;θ (x; θ) is the joint density of x(ζ ), which
depends on a fixed but unknown parameter θ . If we differentiate (3.6.11) with respect to θ ,
assuming real-valued θ̂ , we obtain

0 =
∞∫
· · ·
∫

−∞

∂

∂θ
[(θ̂ − θ)fx;θ (x; θ)] dx =

∞∫
· · ·
∫

−∞
(θ̂ − θ)

∂fx;θ (x; θ)
∂θ

dx − 1 (3.6.12)

Using the fact

∂ ln[fx;θ (x; θ)]
∂θ

= 1

fx;θ (x; θ)
∂fx;θ (x; θ)

∂θ

∂fx;θ (x; θ)
∂θ

= ∂ ln[fx;θ (x; θ)]
∂θ

fx;θ (x; θ) (3.6.13)or

and substituting (3.6.13) in (3.6.12), we get
∞∫
· · ·
∫

−∞

{
(θ̂ − θ)

∂ ln[fx;θ (x; θ)]
∂θ

}
fx;θ (x; θ) dx = 1 (3.6.14)

Clearly, the left side of (3.6.14) is simply the expectation of the expression inside the
brackets, that is,

E

{
(θ̂ − θ)

∂ ln[fx;θ (x; θ)]
∂θ

}
= 1 (3.6.15)

Using the Cauchy-Schwarz inequality (Papoulis 1991; Stark and Woods 1994)
|E{x(ζ )y(ζ )}|2 ≤ E{|x(ζ )|2}E{|y(ζ )|2}, we obtain

E{(θ̂ − θ)2}E
{(

∂ ln[fx;θ (x; θ)]
∂θ

)2
}
≥ E2

{
(θ̂ − θ)

∂ ln[fx;θ (x; θ)]
∂θ

}
= 1 (3.6.16)

The first term on the left-hand side is the variance of the estimator θ̂ since it is unbiased.
Hence

var(θ̂) ≥ 1

E{[∂ ln fx;θ (x; θ)/∂θ ]2} (3.6.17)

which is one form of the CRLB and can also be expressed as

var(θ̂) ≥ − 1

E{∂2 ln fx;θ (x; θ)/∂θ2} (3.6.18)

The function ln fx;θ (x; θ) is called the log likelihood function of θ . The CRLB expresses
the minimum error variance of any estimator θ̂ of θ in terms of the joint density fx;θ (x; θ)
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of observations. Hence every unbiased estimator must have a variance greater than a certain
number. An unbiased estimate that satisfies the CRLB (3.6.18) with equality is called an
efficient estimate. If such an estimate exists, then it can be obtained as a unique solution to
the likelihood equation

∂ ln fx;θ (x; θ)
∂θ

= 0 (3.6.19)

The solution of (3.6.19) is called the maximum likelihood (ML) estimate. Note that if the
efficient estimate does not exist, then the ML estimate will not achieve the lower bound
and hence it is difficult to ascertain how closely the variance of any estimate will approach
the bound. The CRLB can be generalized to handle the estimation of vector parameters
(Therrien 1992).

Consistency of estimator. If the MSE of the estimator can be made to approach zero
as the sample size N becomes large, then from (3.6.7) both the bias and the variance will
tend to zero. Then the sampling distribution will tend to concentrate about θ , and eventually
as N → ∞, the sampling distribution will become an impulse at θ . This is an important
and desirable property, and the estimator that possesses it is called a consistent estimator.

Confidence interval. If we know the sampling distribution of an estimator, we can
use the observations to compute an interval that has a specified probability of covering
the unknown true parameter value. This interval is called a confidence interval, and the
coverage probability is called the confidence level. When we interpret the meaning of
confidence intervals, it is important to remember that it is the interval that is the random
variable, and not the parameter. This concept will be explained in the sequel by means of
specific examples.

3.6.2 Estimation of Mean

The natural estimator of the mean µx of a stationary sequence x(n) from the observations
{x(n)}N−1

0 is the sample mean, given by

µ̂x = 1

N

N−1∑

n=0

x(n) (3.6.20)

The estimate µ̂x is a random variable that depends on the number and values of the obser-
vations. Changing N or the set of observations will lead to another value for µ̂x . Since the
mean of the estimator is given by

E{µ̂x} = µx (3.6.21)

the estimator µ̂x is unbiased. If x(n) ∼ WN(µx, σ
2
x), we have

var(µ̂x) =
σ 2

x

N
(3.6.22)

because the samples of the process are uncorrelated random variables. This variance, which
is a measure of the estimator’s quality, increases if x(n) is nonwhite.

Indeed, for a correlated random sequence, the variance of µ̂x is given by (see Prob-
lem 3.30)

var(µ̂x) = N−1
N∑

l=−N

(
1 − |l|

N

)
γ x(l) ≤ N−1

N∑

l=−N

|γ x(l)| (3.6.23)

where γ x(l) is the covariance sequence of x(n). If γ x(l) → 0 as l → ∞, then var(µ̂x) → 0
as N → ∞ and hence µ̂x is a consistent estimator of µx . If

∑∞
l=−∞ |γ x(l)| < ∞, then
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from (3.6.23)

lim
N→∞N var(µ̂x) = lim

N→∞

N∑

l=−N

(
1 − |l|

N

)
γ x(l) =

∞∑

l=−∞
γ x(l) (3.6.24)

The expression for var(µ̂x) in (3.6.23) can also be put in the form (see Problem 3.30)

var(µ̂x) =
σ 2

x

N
[1 + N(ρx)] (3.6.25)

N(ρx) = 2
N∑

l=1

(
1 − l

N

)
ρx(l) ρx(l) =

γ x(l)

σ 2
x

(3.6.26)where

When N(ρx) ≥ 0, the variance of the estimator increases as the amount of correlation
among the samples of x(n) increases. This implies that as the correlation increases, we need
more samples to retain the quality of the estimate because each additional sample carries
“less information.” For this reason the estimation of long-memory processes and processes
with infinite variance is extremely difficult.

Sampling distribution. If we know the joint pdf of the random variables {x(n)}N−1
0 ,

we can determine, at least in principle, the pdf of µ̂x . For example, if it is assumed that the
observations are IID as N (µx, σ

2
x) then from (3.6.21) and (3.6.22), it can be seen that µ̂x

is normal with mean µx and variance σ 2
x/N , that is,

fµ̂x
(µ̂x) =

1√
2π(σx/

√
N)

exp

[
−1

2

(
µ̂x − µx

σx/
√

N

)2
]

(3.6.27)

which is the sampling distribution of the mean. If N is large, then from the central limit
theorem, the sampling distribution of the sample mean (3.6.27) is usually very close to the
normal distribution, even if the individual distributions are not normal.

If we know the standard deviation σx , we can compute the probability

Pr

{
µx − k

σx√
N

< µ̂x < µx + k
σx√
N

}
(3.6.28)

that the random variable µ̂x is within a certain interval specified by two fixed quantities. A
simple rearrangement of the above inequality leads to

Pr

{
µ̂x − k

σx√
N

< µx < µ̂x + k
σx√
N

}
(3.6.29)

which gives the probability that the fixed quantity µx lies between the two random variables
µ̂x −kσx/

√
N and µ̂x +kσx/

√
N . Hence (3.6.29) provides the probability that an interval

with fixed length 2kσx/
√

N and randomly centered at the estimated mean includes the
true mean. If we choose k so that the probability defined by (3.6.29) is equal to 0.95, the
interval is known as the 95 percent confidence interval. To understand the meaning of this
reasoning, we stress that for each set of measurements we compute a confidence interval
that either contains or does not contain the true mean. However, if we repeat this process for
a large number of observation sets, about 95 percent of the obtained confidence intervals
will include the true mean. We stress that by no means does this imply that a confidence
interval includes the true mean with probability 0.95.

If the variance σ 2
x is unknown, then it has to be determined from the observations. This

results in two modifications of (3.6.29). First, σx is replaced by

σ̂
2
x = 1

N − 1

N−1∑

n=0

[x(n) − µ̂x]2 (3.6.30)



March 9, 2005 11:42 e56-ch3 Sheet number 64 Page number 138 black

138

chapter 3
Random Variables,
Vectors, and Sequences

which implies that the center and the length of the confidence interval are different for
each set of observations. Second, the random variable (µ̂x − µx)/(σ̂ x/

√
N) is distributed

according to Student’s t distribution with v = N − 1 degrees of freedom (Parzen 1960),
which tends to a Gaussian for large values of N . In these cases, the factor k in (3.6.29)
is replaced by the appropriate value t of Student’s distribution, using N − 1 degrees of
freedom, for the desired level of confidence.

If the observations are normal but not IID, then from (3.6.25), the mean estimator µ̂x

is normal with mean µ and variance (σ 2
x/N)[1 + N(ρx)]. It is now easy to construct

exact confidence intervals for µ̂x if ρx(l) is known, and approximate confidence intervals
if ρx(l) is to be estimated from the observations. For large N , the variance var(µ̂x) can be
approximated by

var(µ̂x) =
σ 2

x

N
[1 + N(ρx)]

� σ 2
x

N

[
1 + 2

N∑

1

ρx(l)

]

� v

N
v = σ 2

x

{
1 + 2

N∑

1

ρx(l)

}
(3.6.31)

and hence an approximate 95 percent confidence interval for µ̂x is given by
(
µ̂x − 1.96

√
v

N
, µ̂x + 1.96

√
v/N

)
(3.6.32)

This means that, on average, the above interval will enclose the true value µx on 95 percent
of occasions. For many practical random processes (especially those modeled as ARMA
processes), the result in (3.6.32) is a good approximation.

EXAMPLE 3.6.1. Consider the AR(1) process

x(n) = ax(n − 1) + w(n) − 1 < a < 1

where w(n) ∼ WN(0, σ 2
w). We wish to compute the variance of the mean estimator µ̂x of the

process x(n). Using straightforward calculations, we obtain

µx = 0 σ 2
x = σ 2

w

1 − a2
and ρx(l) = a|l|

From (3.6.26) we evaluate the term

N(ρ) = 2a

1 − a

[
1 − 1

N(1 − a)
+ aN

N(1 − a)

]
� 2a

1 − a
for N ' 1

When a → 1, that is, when the dependence between the signal samples increases, then the factor
N(ρ) takes large values and the quality of estimator decreases drastically. Similar conclusions
can be drawn using the approximation (3.6.31)

v =
(

1 + 2
∞∑

1

al

)
σ 2

w

1 − a2
= σ 2

w

(1 − a)2

We will next verify these results using two Monte Carlo simulations: one for a = 0.9, which
represents high correlations among samples, and the other for a = 0.1. Using a Gaussian
pseudorandom number generator with mean 0 and variance σ 2

w = 1, we generated N = 100
samples of the AR(1) process x(n). Using v in (3.6.31) and (3.6.32), we next computed the
confidence intervals. For a = 0.9, we obtain

v = 100 and confidence interval: (µ̂x − 1.96, µ̂x + 1.96)

and for a = 0.1, we obtain

v = 1.2345 and confidence interval: (µ̂x − 0.2178, µ̂x + 0.2178)
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Clearly, when the dependence between signal samples increases, the quality of the estimator
decreases drastically and hence the confidence interval is wider. To have the same confidence
interval, we should increase the number of samples N .

We next estimate the mean, using (3.6.20), and we repeat the experiment 10,000 times.
Figure 3.14 shows histograms of the computed means for a = 0.9 and a = 0.1. The confidence
intervals are also shown as dotted lines around the true mean. The histograms are approximately
Gaussian in shape. The histogram for the high-correlation case is wider than that for the low-
correlation case, which is to be expected. The 95 percent confidence intervals also indicate that
very few estimates are outside the interval.
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FIGURE 3.14
Histograms of mean estimates in Example 3.6.1.

3.6.3 Estimation of Variance

The natural estimator of the variance σx of a stationary sequence x(n) from the observations
{x(n)}N−1

0 is the sample variance, given by

σ̂
2
x � 1

N

N−1∑

n=0

{x(n) − µ̂x}2 (3.6.33)

By using the mean estimate µ̂x from (3.6.20), the mean of the variance estimator can be
shown to equal (see Problem 3.31)

E{σ̂ 2
x} = σ 2

x − var(µ̂x) = σ 2
x − 1

N

N∑

l=−N

(
1 − |l|

N

)
γ x(l) (3.6.34)

If the sequence x(n) is uncorrelated, then

E{σ̂ 2
x} = σ 2

x − σ 2
x

N
=
(

N − 1

N

)
σ 2

x (3.6.35)
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From (3.6.34) or (3.6.35), it is obvious that the estimator in (3.6.33) is biased. If γ x(l) → 0
as l → ∞, then var(µ̂x) → 0 as N → ∞ and hence σ̂

2
x is an asymptotically unbiased

estimator of σ 2
x . In practical applications, the variance estimate is nearly unbiased for large

N . Note that if we use the actual meanµx in (3.6.33), then the resulting estimator is unbiased.
The general expression for the variance of the variance estimator is fairly complicated

and requires higher-order moments. It can be shown that for either estimators

var(σ̂ 2
x) ≈

γ
(4)
x

N
for large N (3.6.36)

where γ
(4)
x is the fourth central moment of x(n) (Brockwell and Davis 1991). Thus the

estimator in (3.6.33) is also consistent.

Sampling distribution. In the case of the mean estimator, the sampling distribution
involved the distribution of sums of random variables. The variance estimator involves the
sum of the squares of random variables, for which the sampling distribution computation
is complicated. For example, if there are N independent measurements from an N (0, 1)
distribution, then the sampling distribution of the random variable

χ2
N = x2

1 + x2
2 + · · · + x2

N (3.6.37)

is given by the chi-squared distribution with N degrees of freedom. The general form of χ2
N

with ν degrees of freedom is

fχ2
ν
(x) = 1

2ν/2H(ν/2)
xν/2−1 exp

(
−x

2

)
0 ≤ x ≤ ∞ (3.6.38)

where H(ν/2) = ∫∞
0 e−t tν/2−1 dt is the gamma function with argument ν/2.

For the variance estimator in (3.6.33), it can be shown (Parzen 1960) that Nσ̂
2
x is

distributed as chi squared with ν = N − 1 degrees of freedom. This means that, for any set
of N observations, there will only be N −1 independent deviations {x(n)− µ̂x}, since their
sum is zero from the definition of the mean. Assuming that the observations are N (µ, σ 2),
the random variables x(n)/σ will be N (µ/σ , 1) and hence the random variable

Nσ̂
2
x

σ 2
= 1

σ 2

N−1∑

n=0

[x(n) − µ̂x]2 (3.6.39)

will be chi squared distributed with ν = N − 1. Therefore, using values of the chi-squared
distribution, confidence intervals for the variance estimator can be computed. In particular,
since Nσ̂

2
x/σ

2 is distributed as χ2
ν , the 95 percent limits of the form

Pr

{
χν

(
0.05

2

)
< Nσ̂

2
x/σ

2 ≤ χν

(
1 − 0.05

2

)}
= 0.95 (3.6.40)

can be obtained from chi-squared tables (Fisher and Yates 1938). By rearranging (3.6.40),
the random variable σ 2/σ̂

2
x satisfies

Pr

{
N

χν(0.975)
<

σ 2

σ̂
2
x

≤ N

χν(0.025)

}
= 0.95 (3.6.41)

Using l1 = N/χν(0.975) and l2 = N/χν(0.025), we see that (3.6.41) implies that

Pr{l2σ̂ 2
x ≥ σ 2 and l1σ̂

2
x < σ 2} = 0.95 (3.6.42)

Thus the 95 percent confidence interval based on the estimate σ̂
2
x is (l1σ̂

2
x, l2σ̂

2
x). Note

that this interval is sensitive to the validity of the normal assumption of random variables
leading to (3.6.39). This is not the case for the confidence intervals for the mean estimates
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because, thanks to the central limit theorem, the computation of the interval can be based
on the normal assumption.

EXAMPLE 3.6.2. Consider again the AR(1) process given in Example 3.6.1:

x(n) = ax(n − 1) + w(n) − 1 < a < 1 w(n) ∼ WN(0, 1)

µx = 0 σ 2
x = σ 2

w

1 − a2
and ρx(l) = a|l| (3.6.43)with

We wish to compute the mean of the variance estimator σ̂ 2
x of the process x(n). From (3.6.34),

we obtain

E[σ̂ 2
x ] = σ 2

x


1 − 1

N

N∑

l=−N

(
1 − |l|

N

)
a|l|

 (3.6.44)

When a → 1, that is, when the dependence between the signal samples increases, the mean
of the estimate deviates significantly from the true value σ 2

x and the quality of the estimator
decreases drastically. For small dependence, the mean is very close to σ 2

x . These conclusions
can be verified using two Monte Carlo simulations as before: one for a = 0.9, which represents
high correlations among samples, and the other for a = 0.1. Using a Gaussian pseudorandom
number generator with mean 0 and unit variance, we generated N = 100 samples of the AR(1)
process x(n). The computed parameters according to (3.6.43) and (3.6.44) are

a = 0.9: σ 2
x = 5.2632 E{σ̂ 2

x} = 4.3579

a = 0.1: σ 2
x = 1.0101 E{σ̂ 2

x} = 0.9978

We next estimate the variance by using (3.6.33) and repeat the experiment 10,000 times. Fig-
ure 3.15 shows histograms of computed variances for a = 0.9 and for a = 0.1. The computed
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FIGURE 3.15
Histograms of variance estimates in Example 3.6.2.
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means of the variance estimates are also shown as dotted lines. Clearly, the histogram is much
wider for the high-correlation case and much narrower (almost symmetric and Gaussian) for the
low-correlation case.

The 95 percent confidence intervals are given by (l1σ̂
2
x, l2σ̂

2
x), where l1 = N/χν(0.975)

and l2 = N/χν(0.025). The values of l1 and l2 are obtained from the chi-squared distribution
curves (Jenkins and Watts 1968). For N = 100, l1 = 0.77 and l2 = 1.35; hence the 95 percent
confidence intervals for σ 2

x are

(0.77σ̂ 2
x, 1.35σ̂ 2

x)

also shown as dashed lines around the mean value E{σ̂ 2
x}. The confidence interval for the

high-correlation case, a = 0.9, does not appear to be a good interval, which implies that the
approximation leading to (3.6.42) is not a good one for this case. Such is not the case for a = 0.1.

3.7 SUMMARY

In this chapter we provided an overview of the basic theory of discrete-time stochastic
processes. We began with the notion of a random variable as a mapping from the abstract
probability space to the real space, extended it to random vectors as a collection of random
variables, and introduced discrete-time stochastic processes as an indexed family (or time
series) of random variables. A complete probabilistic description of these random objects
requires the knowledge of joint distribution or density functions, which is difficult to acquire
except in simple cases. Therefore, the emphasis was placed on description using joint
moments of distributions, and, in particular, the emphasis was placed on the second-order
moments, which are relatively easy to estimate or compute in practice.

We defined the mean and the variance to describe random variables, and we provided
three useful models of random variables. For random vector description, we defined the
mean vector and the autocorrelation matrix. Linear transformations of random vectors were
discussed, using densities and correlation matrices. The normal random vector was then in-
troduced as a useful model of a random vector. A particularly simple linear transformation,
namely, the sum of independent random variables, was used to introduce random variables
with stable and infinitely divisible distributions. To describe stochastic processes, we pro-
ceeded to define mean and autocorrelation sequences. In many applications, the concept of
stationary of random processes is a useful one that reduces the computational complexity.
Assuming time invariance on the first two moments, we defined a wide-sense stationary
(WSS) process in which the mean is a constant and correlation between random variables
at two distinct times is a function of time difference or lag. The rest of the chapter was
devoted to the analysis of WSS processes.

A stochastic process is generally observed in practice as a single sample function (a
speech signal or a radar signal) from which it is necessary to estimate the first- and the
second-order moments. This requires the notion of ergodicity, which provides a framework
for the computation of statistical averages using time averages over a single realization.
Although this framework requires theoretical results using mean square convergence, we
provided a simple approach of using appropriate time averages.An important random signal
characteristic called variability was introduced. The WSS processes were then described
in the frequency domain using the power spectral density function, which is a physical
quantity that can be measured in practice. Some random processes exhibiting flat spectral
envelopes were analyzed including one of white noise. Since random processes are generally
processed using linear systems, we described linear system operations with random inputs
in both the time and frequency domains.

The properties of correlation matrices and sequences play an important role in filtering
and estimation theory and were discussed in detail, including eigenanalysis. Another im-
portant random signal characteristic called memory was also introduced. Stationary random
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signals were modeled using autocorrelation matrices, and the relationship between spectral
flatness and eigenvalue spread was explored. These properties were used in an alternate rep-
resentation of random vectors as well as processes using uncorrelated components which
were based on diagonalization and triangularization of correlation matrices. This resulted
in the discrete KL transform and KL expansion. These concepts will also be useful in later
chapters on optimal filtering and adaptive filtering.

Finally, we concluded this chapter with the introduction of elementary estimation the-
ory. After discussion of properties of estimators, two important estimators of mean and
variance were treated in detail along with their sampling distributions. These topics will be
useful in many subsequent chapters.

PROBLEMS

3.1 The exponential density function is given by

fx(x) = 1

a
e−x/au(x) (P.1)

where a is a parameter and u(x) is a unit step function.

(a) Plot the density function for a = 1.
(b) Determine the mean, variance, skewness,and kurtosis of the Rayleigh random variable with

a = 1. Comment on the significance of these moments in terms of the shape of the density
function.

(c) Determine the characteristic function of the exponential pdf.

3.2 The Rayleigh density function is given by

fx(x) = x

σ 2
e−x2/(2σ 2)u(x) (P.2)

where σ is a parameter and u(x) is a unit step function. Repeat Problem 3.1 for σ = 1.

3.3 Using the binomial expansion of {x(ζ )− µx}m, show that the mth central moment is given by

M
(x)
m =

m∑

k=0

(
m

k

)
(−1)kµk

xξ
(x)
m−k

ξ
(x)
m =

m∑

k=0

(
m

k

)
µk

xM
(x)
m−k

Similarly, show that

3.4 Consider a zero-mean random variable x(ζ ). Using (3.1.26), show that the first four cumulants
of x(ζ ) are given by (3.1.28) through (3.1.31).

3.5 A random vector x(ζ ) = [x1(ζ ) x2(ζ )]T has mean vector µx = [1 2]T and covariance matrix

�x =
[

4 0.8

0.8 1

]

This vector is transformed to another random vector y(ζ ) by the following linear transformation:


y1(ζ )

y2(ζ )

y3(ζ )


 =




1 3

−1 2

2 3



[
x1(ζ )

x2(ζ )

]

Determine (a) the mean vectorµy, (b) the autocovariance matrix�y, and (c) the cross-correlation
matrix Rxy.
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3.6 Using the moment generating function, show that the linear transformation of a Gaussian random
vector is also Gaussian.

3.7 Let {xk(ζ )}4k=1 be four IID random variables with exponential distribution (P.1) with a = 1.
Let

yk(ζ ) =
k∑

l=1

xl(ζ ) 1 ≤ k ≤ 4

(a) Determine and plot the pdf of y2(ζ ).
(b) Determine and plot the pdf of y3(ζ ).
(c) Determine and plot the pdf of y4(ζ ).
(d ) Compare the pdf of y4(ζ ) with that of the Gaussian density.

3.8 For each of the following, determine whether the random process is (1) WSS or (2) m.s. ergodic
in the mean.

(a) X(t) = A, where A is a random variable uniformly distributed between 0 and 1.
(b) Xn = A cos ω0n, where A is a Gaussian random variable with mean 0 and variance 1.
(c) A Bernoulli process with Pr[Xn = 1] = p and Pr[Xn = −1] = 1 − p.

3.9 Consider the harmonic process x(n) defined in (3.3.50).

(a) Determine the mean of x(n).
(b) Show that the autocorrelation sequence is given by

rx(l) = 1

2

M∑

k=1

|ck |2 cos ωkl −∞ < l < ∞

3.10 Suppose that the random variables φk in the real-valued harmonic process model are distributed
with a pdf fφk

(φk) = (1 + cos φk)/(2π),−π ≤ φk ≤ π . Is the resulting stochastic process
stationary?

3.11 A stationary random sequence x(n) with mean µx = 4 and autocovariance

γ x(n) =
{

4 − |n| |n| ≤ 3

0 otherwise

is applied as an input to a linear shift-invariant (LSI) system whose impulse response h(n) is

h(n) = u(n) − u(n − 4)

where u(n) is a unit step sequence. The output of this system is another random sequence y(n).
Determine (a) the mean sequence µy(n), (b) the cross-covariance γ xy(n1, n2) between x(n1)

and y(n2), and (c) the autocovariance γ y(n1, n2) of the output process y(n).

3.12 A causal LTI system, which is described by the difference equation

y(n) = 1
2
y(n − 1) + x(n) + 1

3
x(n − 1)

is driven by a zero-mean WSS process with autocorrelation rx(l) = 0.5|l|.
(a) Determine the PSD and the autocorrelation of the output sequence y(n).
(b) Determine the cross-correlation rxy(l) and cross-PSD Rxy(e

jω) between the input and
output signals.

3.13 A WSS process with PSD Rx(e
jω) = 1/(1.64 + 1.6 cos ω) is applied to a causal system

described by the following difference equation

y(n) = 0.6y(n − 1) + x(n) + 1.25x(n − 1)

Compute (a) the PSD of the output and (b) the cross-PSD Rxy(e
jω) between input and output.
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3.14 Determine whether the following matrices are valid correlation matrices:

(a) R1 =
[

1 1

1 1

]
(b) R2 =




1 1
2

1
4

1
2

1 1
2

1
4

1
2

1




(c) R3 =
[

1 1 − j

1 + j 1

]
(d) R4 =




1 1
2

1
1
2

2 1
2

1 1 1




3.15 Consider a normal random vector x(ζ ) with components that are mutually uncorrelated, that is,
ρij = 0. Show that (a) the covariance matrix Hx is diagonal and (b) the components of x(ζ )
are mutually independent.

3.16 Show that if a real, symmetric, and nonnegative definite matrix R has eigenvaluesλ1, λ2, . . . , λM ,
then the matrix Rk has eigenvalues λk

1, λ
k
2, . . . , λ

k
M

.

3.17 Prove that the trace of R is given by

tr R =
∑

λi

3.18 Prove that the determinant of R is given by

det R = |R| =
∏

λi = |�|

3.19 Show that the determinants of R and � are related by

det R = det �(1 + µH�µ)

3.20 Let Rx be the correlation matrix of the vector x = [x(0) x(2) x(3)]T , where x(n) is a zero-mean
WSS process.

(a) Check whether the matrix Rx is Hermitian, Toeplitz, and nonnegative definite.
(b) If we know the matrix Rx, can we determine the correlation matrix of the vector x̄ =

[x(0) x(1) x(2) x(3)]T ?

3.21 Using the nonnegativeness of E{[x(n + l) ± x(n)]2}, show that rx(0) ≥ |rx(l)| for all l.

3.22 Show that rx(l) is nonnegative definite, that is,

M∑

l=1

M∑

k=1

alrx(l − k)a∗k ≥ 0 ∀M, ∀a1, . . . , aM

3.23 Let x(n) be a random process generated by the AP(1) system

x(n) = αx(n − 1) + w(n) n ≥ 0 x(−1) = 0

where w(n) is an IID(0, σ 2
w) process.

(a) Determine the autocorrelation rx(n1, n2) function.
(b) Show that rx(n1, n2) asymptotically approaches rx(n1 − n2), that is, it becomes shift-

invariant.

3.24 Let x be a random vector with mean µx and autocorrelation Rx.

(a) Show that y = QT x transforms x to an uncorrelated component vector y if Q is the
eigenmatrix of Rx.

(b) Comment on the geometric interpretation of this transformation.
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3.25 The mean and the covariance of a Gaussian random vector x are given by, respectively,

µx =
[

1

2

]
and �x =

[
1 1

2
1
2

1

]

Plot the 1σ , 2σ , and 3σ concentration ellipses representing the contours of the density function
in the (x1, x2) plane. Hints: The radius of an ellipse with major axis a (along x1) and minor
axis b < a (along x2) is given by

r2 = a2b2

a2 sin2 θ + b2 cos2 θ

where 0 ≤ θ ≤ 2π . Compute the 1σ ellipse specified by a = √
λ1 and b = √

λ2 and then rotate

and translate each point x(i) = [x(i)
1 x

(i)
2 ]T using the transformation w(i) = Qxx(i) + µx .

3.26 Consider the process x(n) = ax(n − 1) + w(n), where w(n) ∼ WN(0, σ 2
w).

(a) Show that the M ×M correlation matrix of the process is symmetric Toeplitz and is given
by

Rx = σ 2
w

1 − a2




1 a · · · am−1

a 1 · · · am−2

...
...

. . .
...

am−1 am−2 · · · 1




(b) Verify that

R−1
x = 1

σ 2
w




1 −a 0 · · · 0

−a 1 + a2 −a · · · 0

0 −a
. . .

...
...

...
...

... 1 + a2 −a

0 0 · · · −a 1




(c) Show that if

Lx =




1 0 · · · 0

−a 1 · · · 0
...

...
. . . 0

0 0 −a 1




then LT
x RxLx = (1 − a2)I.

(d ) For σ 2
w = 1, a = 0.95, and M = 8 compute the DKLT and the DFT.

(e) Plot the eigenvalues of each transform in the same graph of the PSD of the process. Explain
your findings.

(f ) Plot the eigenvectors of each transform and compare the results.
(g) Repeat parts (e) and (f ) for M = 16 and M = 32. Explain the obtained results.
(h) Repeat parts (e) to (g) for a = 0.5 and compare with the results obtained for a = 0.95.

3.27 Determine three different innovations representations of a zero-mean random vector x with
correlation matrix

Rx =
[

1 1
4

1
4

1

]

3.28 Verify that the eigenvalues and eigenvectors of the M × M correlation matrix of the process

x(n) = w(n) + bw(n − 1), where w(n) ∼ WN(0, σ 2
w) are given by λk = Rx(e

jωk ), q
(k)
n =

sin ωkn, ωk = πk/(M + 1), where k = 1, 2, . . . ,M , (a) analytically and (b) numerically for
σ 2

w = 1 and M = 8. Hint: Plot the eigenvalues on the same graph with the PSD.
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3.29 Consider the process x(n) = w(n) + bw(n − 1).

(a) Compute the DKLT for M = 3.
(b) Show that the variances of the DKLT coefficients are σ 2

x(1+
√

2b), σ 2
x , and σ 2

x(1−
√

2b).

3.30 Let x(n) be a stationary random process with mean µx and covariance γ x(l). Let µ̂x =
1/N

∑N−1
n=0 x(n) be the sample mean from the observations {x(n)}N−1

n=0 .

(a) Show that the variance of µ̂x is given by

var(µ̂x) = N−1
N∑

l=−N

(
1 − |l|

N

)
γ x(l) ≤ N−1

N∑

l=−N

|γ x(l)| (P.3)

(b) Show that the above result (P.3) can be expressed as

var(µ̂x) =
σ 2

x

N
[1 + N(ρx)] (P.4)

N(ρx) = 2
N∑

l=1

(
1 − l

N

)
ρx(l) ρx(l) =

γ x(l)

σ 2
x

where

(c) Show that (P.3) reduces to var(µ̂x) = σ 2
x/N for a WN(µx, σ

2
x) process.

3.31 Let x(n) be a stationary random process with mean µx, variance σ 2
x , and covariance γ x(l). Let

σ̂ 2
x � 1

N

N−1∑

n=0

[x(n) − µ̂x ]2

be the sample variance from the observations {x(n)}N−1
n=0 .

(a) Show that the mean of σ̂ 2
x is given by

E{σ̂ 2
x} = σ 2

x − var(µ̂x) = σ 2
x − 1

N

N∑

l=−N

(
1 − |l|

N

)
γ x(l)

(b) Show that the above result reduces to E{σ̂ 2} = (N − 1)σ 2
x/N for a WN(µx, σ

2
x) process.

3.32 The Cauchy distribution with mean µ is given by

fx(x) = 1

π

1

1 + (x − µ)2
−∞ < x < ∞

Let {xk(ζ )}Ni=k
be N IID random variables with the above distribution. Consider the mean

estimator based on {xk(ζ )}Ni=k

µ̂(ζ ) = 1

N

N∑

k=1

xk(ζ )

Determine whether µ̂(ζ ) is a consistent estimator of µ.
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