
Deep Learning and Its Applications in Signal
Processing

Lesson 3: Distributed Deep Learning

Liang Dong, ECE

Challenges of Deep Neural Networks
▶ For today’s competitive AI, it is the trend that both the

volume of data and the complexity of deep neural networks
increase.

▶ Even with significant advances in GPU hardware, network
architecture and training methods, deep neural network
training is computationally demanding.

▶ Solution: Distributed training of deep neural networks on
parallel machines.

▶ Different aspects of training and inference of deep neural
networks can be modified to increase concurrency.

Jeffrey Dean, et. al., “Large Scale Distributed Deep Networks,” NIPS Proceedings,
2012.



Distributed Training of Deep Neural Networks

▶ Model Parallelism

Model Parallelism

▶ Different worker machines in a
distributed system are responsible
for the computation in different
parts of a single neural network.

▶ For example, each layer in the
neural network may be assigned to
a different machine.



Distributed Training of Deep Neural Networks

▶ Data Parallelism

Data Parallelism

▶ Each worker machine has a
complete copy of the model.

▶ Each worker machine gets a
different data section. That is, it is
trained on a subset of the training
data.

▶ The training results from the
worker machines are combined in
some way.



Combining Model Parallelism and Data Parallelism

▶ Model parallelism and data parallelism can be combined.

Figure: Multi-GPU systems clustering: We can use model parallelism
(model partitioning across GPUs) for each machine, as well as data
parallelism between machines.

Comparison of Model Parallelism and Data Parallelism

▶ Model Parallelism – scalable to large models
▶ Data Parallelism – easy implementation, good fault tolerance

and cluster utilization



Distributed Training with Data Parallelism

▶ Keep a copy of the entire model on each worker machine,
process a different subset of the training data on each worker
machine.

▶ It needs some way to combine the results and a method of
synchronizing the model parameters between the worker
machines.

▶ Different approaches:

– Parameter averaging vs. update-based (gradient-based)
approach
– Synchronous vs. asynchronous methods
– Centralized vs. distributed synchronization

Parameter Averaging

Training Procedure of Parameter Averaging:

1. Randomly initialize network parameters based on the model
configuration

2. Distribute a copy of the current parameters to each worker
3. Train each worker on a subset of the data
4. Set the global parameters to be the average of the parameters

from each worker
5. While there are more data to process, go to step 2



Parameter Averaging

Wi+1 = 1
N

N∑
n=1

Wi+1,n

N = 3 in this example.

Parameter Averaging

▶ Parameter averaging is mathematically equivalent to training
on a single machine, given that

– Parameter averaging after each mini-batch
– No internal update of the optimizer
– An identical number of examples processed by each worker
machine



Problems of Parameter Averaging

▶ The overhead of network communication and synchronization
is high.

▶ If we average infrequently, the local parameters in the workers
may diverge too much. This results in a poor model after
averaging.

That is, the average of multiple
different local minima is not guaranteed
to be a local minimum.

Asynchronous Stochastic Gradient Descent (Async SGD)

▶ Instead of transferring parameters from the workers to the
parameter server, we transfer the updates, i.e., the gradients.

▶ If the parameters are updated synchronously, the
update-based approach of data parallelism is equivalent to the
parameter averaging approach.



Asynchronous Stochastic Gradient Descent (Async SGD)

Wi+1 = Wi−λ
N∑

n=1
∆Wi,n

N = 3 in this example.

Asynchronous Stochastic Gradient Descent (Async SGD)

▶ Update-based data
parallelism becomes
more useful when we
relax the synchronous
update requirement.

▶ We allow the updates
∆Wi,n to be applied
to the parameter
vector as soon as they
are computed
(instead of waiting for
other N − 1 workers).



Advantage of Async SGD

▶ Higher throughput in the distributed system:
Worker machines can spend more time performing useful
computation instead of waiting for the parameter averaging
process to complete.

▶ Worker machines can potentially incorporate information
(parameter updates) from other workers sooner than when
using synchronous updating.

Problem of Async SGD – Stale Gradient Problem

▶ The calculation of gradients (updates) takes time. By the
time a worker has finished these calculations and applies the
results to the global parameter vector, the parameters may
have been updated several times.

Figure: With asynchronous updates to the parameter vector, we
introduce the stale gradient problem.



Stale Gradient Problem

▶ High gradient staleness can significantly reduce the network
convergence speed and even prevent some configurations from
converge.

▶ Many variants of Async SGD maintain the basic approach,
but apply various strategies to minimize the effects of stale
gradients.

Approaches to Dealing with Stale Gradients

▶ Scaling λ separately for each update ∆Wi,n based on the
staleness of the gradients, such that stale gradients have a
smaller impact on the parameter vector.

Wi+1 = Wi −
N∑

n=1
λn∆Wi,n

▶ Soft Synchronization:
Instead of updating the global parameter vector immediately,
the parameter server waits to collect some number S of
updates ∆Wi,n from any of the N learners. (1 ≤ S ≤ N)

Wi+1 = Wi −
S∑

n=1
λn∆Wi,n



Approaches to Dealing with Stale Gradients

▶ Using synchronization to bound staleness:

We delay the faster workers when necessary to ensure that the
maximum staleness is below a certain threshold.

Decentralized Async SGD

Figure: There is no centralized parameter server in the system. Instead,
peer-to-peer communication is used to transfer model updates between
workers.



Decentralized Async SGD – Compressed/Quantized
Update Vector δi,n

▶ Updates can be heavily compressed, so that network traffic
can be reduced by orders of magnitude.

▶ Compressed and quantized update vectors δi,n:

– Sparse: Only some gradients are passed in each vector δi,n

(the others are assumed to be 0). Sparse entries are encoded
using an integer index (to identify the entries in the sparse
array).

– Quantized to a single bit: Each element of the sparse
update vector takes value +τ or −τ . The value of τ is the
same for all elements of the vector, hence only a single bit is
required to differentiate between the two options.

– Integer indexes can be compressed using entropy coding.

Decentralized Async SGD – Residual Vector rn

▶ Residual vector rn:

– The difference between the original update vector ∆Wi,n

and the compressed/quantized update vector δi,n is stored in
a residual vector rn on worker n, instead of simply being
discarded.

– We quantize and transmit the compressed version of rn at
each step as well as updating rn appropriately.

– The net effect is that all information from the original
update vector ∆Wi,n is only delayed but not lost.



Problems of Decentralized Async SGD

▶ Convergence may be affected in the early stages of training.
It may help to solve this problem by using fewer compute
nodes for a part of an epoch.

▶ Compression and quantization are not free.
These processes result in extra computation time for each
minibatch, as well as a small amount of memory overhead per
worker machine.

Distributed Neural Network Training

Choose approaches according
to the criteria:
▶ Fastest training speed

(highest number of
training examples per
second, or lowest time per
epoch)

▶ Maximum attainable
accuracy as epochs → ∞,
for a given amount of
time, or for a given
number of epochs



Distributed Neural Network Training

▶ Parameter averaging has
the “last executor”
effect: Synchronous
systems have to wait on
the slowest executor
before completing each
iteration.

▶ Consequently,
synchronous systems are
less viable as the total
number of workers
increases.

Distributed Neural Network Training

▶ Asynchronous SGD
is a good option for
training as long as
gradient staleness
is appropriately
handled.



Distributed Neural Network Training

▶ Softsync approach
can be viewed as
spanning a
continuum between
näıve asynchronous
SGD and
synchronous
implementations,
depending on the
hyperparameters
used.

Centralized versus Decentralized Async SGD

▶ An asynchronous SGD implementation using a centralized
parameter server may introduce a communication bottleneck.

▶ Utilizing N parameter servers, each handling an equal fraction
of the total parameters is a solution to the communication
bottleneck problem.

▶ Decentralized asynchronous SGD is a promising idea with
implementations of compression, quantization, etc. of
parameter updates.



Distributed Deep Learning Considerations
▶ Distributed learning systems have overhead compared to

training on a single machine due to synchronization and
network transfers of data and parameters.

▶ Setup (i.e., preparing and loading training data) and
hyperparameter tuning can be more complex in distributed
systems.

▶ Distributed training tends to be more efficient when the ratio
of transfers to computation is low.

▶ Small and shallow networks are not good candidates for
distributed training as they don’t have much computation per
iteration.

▶ Networks with parameter sharing (such as CNNs and RNNs)
are good candidates for distributed training.

Distributed Deep Learning Considerations

▶ Distributed deep learning
can be considered when
either network size is large or
the amount of data is large.

▶ However, a mismatch
between the two (large
network and small data;
small network and lots of
data) may lead to
underfitting or overfitting –
Poor generalization of the
final trained model.



Distributed Multi-GPU and TPU Training with

▶ Model parallelism using multi-GPU systems may be viable for
large networks.

▶ Data parallelism: Keras has a built-in utility,
keras.utils.multi gpu model, which can produce a data-parallel
version of any model.

Distributed Multi-GPU and TPU Training with



Distributed Multi-GPU and TPU Training with

Distributed Multi-GPU and TPU Training with



Distributed Multi-GPU and TPU Training with

▶ Device Parallelism: It works best for models that have a
parallel architecture, e.g., a model with multiple branches.

▶ This can be achieved by using TensorFlow device scopes.

Distributed Multi-GPU and TPU Training with



Distributed Multi-GPU and TPU Training with

Distributed Multi-GPU and TPU Training with


