Deep Learning and Its Applications in Signal

Processing

Lesson 2: Regularization and Optimization for Deep Learning

Liang Dong, ECE

B

Baylor [Eiversity

SCHOOL OF ENGINEERING & COMPUTER SCIENCE
Department of Electrical & Computer Engineering

Generalization

¢ To train the model

Training
Data

Training error

T e With trained model, to
Data perform on previously
unobserved data

Test error /
Generalization error

Generalization: The model is capable of performing on
previously unobserved input data.

Generalization: Underfitting and Overfitting

Error

Underfitting zone

Overfitting zone

— - Training error
—— Generalization error

0 Optimal Capacity

Capacity

Training error: Model error measured on the training data.

Generalization error: Model error when it performs on new

input data.

Underfitting: both errors are high.

Overfitting: generalization error increases and generalization

gap widens.

Image from Deep Learning, by Goodfellow, Bengio, and Courville, The MIT Press,

2016.

Polynomial Degree = 1

Polynomial Degree = 4

Underfitting and Overfitting

Polynomial Degree = 15

error and large
gen. error

High bias, low var

“Just right”

— Model
) — True Function o

© Samples

Y Y
[~]
© Q
X N X - X
Underfitting Matched Overfitting

Large training Small gen. error Very small

training error but
large gen. error
Low bias, high
var

Regularization

Polynomial Degree = 1 Polynomial Degree = 4 Polynomial Degree = 15

— Model
o = True Function o
© Samples

X X X

< Regularization

Regularization: Take a model from “Overfitting” to
“Matched".

An effective regularizer reduces the variance significantly while
not overly increasing the bias.

Parameter Norm Penalties

Add a parameter norm penalty €2(0) to the cost function J to limit
the capacity of the model.

J(X,y;:0) = J(X,y;0) + A2(0)

where A is a hyperparameter that weights the relative contribution
of the norm penalty to the standard cost function.

Typically, only the weights of the affine transformation are
penalized but not the biases. Regularizing the biases can
introduce a significant amount of underfitting

Sometimes, we can use a different A for each layer of the
network.

Parameter Norm Penalties

L? parameter regularization — weight decay

1 1
Q0) = S [[wls = Sw'w

Vwd(w) =w

L' parameter regularization
Q(0) = [lwlli = > |wil
i

Vwi(w) = sign(w)

L' regularization results in a solution that is more sparse, i.e.,
some parameters have an optimal value of zero.
It can be used for feature selection.

Dataset Augmentation as Regularization

Train the model on more data by creating fake data and
adding it to the training set.

Useful for classification — The main task of a classifier is
invariant to a wide variety of transformations.

Inject noise in the input data, the hidden units, the weights,
or the output targets.

Early Stopping

Error

Validation

Training

>
Number of epochs

Stop training

Training error decreases steadily over time but validation error
begins to rise.

We obtain a better model by stopping at (returning to) the
parameter setting at the point in time with the lowest
validation error.

Parameter Sharing

Model A and Model B deal with similar tasks and the model
parameters may be close to each other. Therefore, we can use
a parameter norm penalty

Qw D, W) = wl) — wlb)|

Parameter sharing — Sets of parameters to be equal, e.g., in a
convolutional neural network (CNN).

Sparse Representation

_O_nxl
C11]t T2 4 -1 04 —3 6 17| 2
18 |39 25 0 4 0
6 “l6 2 1 1 -2 -3 0
1] 51 2 4 1 -4 | 1
N———— 0
Y | 0]

h is a sparse representation of data x. Usually, h has k
non-zero elements with k < d.
The regularized cost function is

J(X,y;0) = J(X,y;0) + AM2(h)

The norm penalty on the representation is
Q(h) = |[hfly =32, |hdl.

Bagging — Bootstrap Aggregating

Train several different
models separately with
different datasets from

data + labels

E the original dataset.
= il Mg Usually, different models
= do not make the same

error on the test data.

Model 1 Model 2 Model m

b= Bagged Ensemble All the models vote on
e the output for the test
data.
Model averaging /
ensemble method

(a) Standard Neural Network (b) Network after Dropout

Dropout trains the ensemble consisting of subnetworks that
can be formed by removing nonoutput units from the base
network.

At each training iteration (batch), we randomly remove a
subset of input/hidden neurons with mask p.

Training:
minE,J(0, p)

w PW
Present with Always
probability p present

(a) At training time (b) At test time

At test time we “rescale” the weight of the neuron to reflect
the percentage of the time it was active.

Inference:
py | x)=> p(p)ply | x,p)
u

where p(u) is the probability distribution of sampling p at
training time.

Dropout trains a bagged ensemble of models that share
hidden units.

Optimization for Learning

Minimize the expected loss on the training set (the empirical
risk)

m

ST L(f(x";0),yD)

1=1

1
ExayNﬁdata(X7y)L(f(X; 0)7y) - E
where pgata(X,y) is the empirical distribution defined by the
training set and m is the number of training samples.

Minimize a surrogate loss function, e.g., the negative
log-likelihood of the correct class. (Early stopping to prevent
overfitting.)

Stochastic/mini-batch gradient descent algorithms on a
stream of data (online learning) help minimize the
generalization error

‘](9) =]EX,prdata(X,y)L(f(X; H)a y)

Challenges in Neural Network Optimization

Neural networks are nonconvex functions that may have local
minima.

Model nonidentifiability — Any large training set cannot rule
out all but one setting of the model’s parameters. — Many
local minima

Nevertheless, for sufficiently large neural networks, most local
minima have a low cost function value compared with the
global minimum. As a result, these local minima are not
problematic.

Find a point in the parameter space that has low but not
necessarily minimal cost.

Local Maximum /Glob al Maximum

VR

Challenges in Neural Network Optimization

Saddle points: In low-dimensional spaces, local minima are

common. In higher-dimensional spaces, saddle points become
more common.

Gradient descent seems able to escape saddle points in many
cases.

Saddle point

Local maxima
a A3 > \
= ; 7 1
= i
= =7 {
= =2
Local minima

Maxima are much like saddle points from the perspective of
optimization.

Flat regions: Gradient and Hessian are zero.

Challenges in Neural Network Optimization

Cliff: Neural networks with many layers may have extremely
steep regions. These result from the multiplication of several
large weights or repeated multiplication by the same weight

matrix W, e.g., in a recurrent neural network (RNN).

—

J(w,b)

w
b

The gradient update step may move the parameters extremely
far, i.e., jumping off the cliff. — Make learning unstable

Vanishing and exploding gradient problem

Challenges in Neural Network Optimization

[ll-conditioned Hessian matrix — Stochastic gradient descent
gets stuck.

Noisy and biased estimate of gradient and Hessian matrix.
Intractable cost function as well as intractable gradient.

Cost function lacks a global minimum point.

Gradient descent is effective for making small local moves.
Therefore, it is critical to choose good initial points.

Stochastic Gradient Descent (SGD)
Compute gradient estimate g from a mini-batch of m samples.

1 m . .
&= —Voy L(f(x";0),y")
mo3
Update parameters 0 with learning rate ay at iteration k.

0=0—ag

The learning rate is gradually decreased to combat noise of
SGD random sampling. e.g., with ap = 100a,

] A=-Bag+PBar, B=k/T 0<k<T
¥k = o E>T

Data shuffling after a training epoch. Changing the
mini-batch size.

Momentum

The method of momentum is designed to accelerate learning.

The momentum algorithm accumulates an exponentially
decaying moving average of past gradients and continues to
move in their direction.

Ry (). g (@
v = pv—aVe|— > L(f(x";0),y"
B 0 [mz (S),y

1=1

0 = 0+v

where v is the velocity (or momentum with unit mass).
B € [0,1] determines how quickly the contributions of previous
gradients decay.

The gradient is a force that pushes the particle downhill along
the cost function surface. 3 corresponds to a viscous drag on
the movement.

Nesterov Momentum

Nesterov's accelerated gradient method

v = fBv—aVy [% iL<f(X(i)3 0 + Bv),y(i))
i=1

0 = 0+v

The gradient is evaluated after the current velocity is applied,
i.e., adding a correction factor to the standard method of
momentum.

Parameter Initialization

The choice of initial point affects the training of deep models.

Use random initialization to break symmetry between different
units. i.e., If two hidden units with the same activation
function are connected to the same inputs, they have different
initial parameters.

Randomly initialize the weights (with Gaussian or uniform
distribution) but set the biases with heuristically chosen
constants.

Sometimes, we can initialize the weight matrix with a random
orthogonal matrix.

Adaptive Learning Rates — AdaGrad

Learning rate is a hyper-parameter that significantly affects
model performance.

Scale the learning rates inversely proportional to the square
root of the sum of all the historical squared values of the
gradient.

r — r+g2
o
06 = 06— ——
5—|—\/F®g

where g is the gradient, « is a global learning rate, ¢ is a
small number for numerical stability, -2, /- and ® are
element-wise square, square root, and multiplication.

Parameter with large gradient corresponds to a rapid decrease
in the learning rate.

Adaptive Learning Rates — RMSProp

RMSProp modifies AdaGrad to perform better for nonconvex
cost function.

Gradient accumulation with an exponentially weighted moving
average. — To discard remote history.

= pr+(1-p)g’

Adaptive Learning Rates — Adam (Adaptive Moments)

Estimates of the first-order and second-order moments.

Bias corrections to the estimates of the moments.

Initialize first-order and second-order moments s = 0, r = 0.
t=0.

t = t+1

s = pis+(1—p1)g

r = por+(1—py)g’

w>
I

>
I

Repeat.

Newton's Method

Newton’'s method for optimization uses the second-order
Hessian H.

1 . .
g = Vo|—> L(fx":0).y")

o | =
H = V2 |—Y L(fx?;0),y?
0 -m ; (f(X))7 y)-
0 = 06-Hlg
If the Hessian is not positive definite, use regularized update

0=60—(H+aol) 'g

Computationally complex with the inversion of Hessian H.

Batch Normalization

Hidden Hidden
Hidden

Output

W

sindino ay) azijewioN
sindino ay) azijewioN

" sindino ay azijewoN

Batch normalization can be applied to any input or hidden
layer to resolve the problem that the parameter update for one
layer affects other layers.

Batch normalization allows each layer of a network to learn by
itself a little more independently of other layers.

Batch normalization reduces overfitting because it adds some
noise to each hidden layer's activation outputs.

Batch Normalization

Mini-batch mean: pu = % > i X
where m is the size of the mini batch.

Mini-batch variance: 02 = L 3" (x; — p)? (element-wise

m
arithmetic)

Batch Normalization: X; = TiTo? (element-wise arithmetic)
SGD does the “denormalization”: y; = vX; +

Batch normalization adds two trainable parameters v and 3 to
each layer.

