
Deep Learning and Its Applications in Signal
Processing

Lesson 2: Regularization and Optimization for Deep Learning

Liang Dong, ECE

Generalization

▶ Generalization: The model is capable of performing on
previously unobserved input data.

Generalization: Underfitting and Overfitting

▶ Training error: Model error measured on the training data.
▶ Generalization error: Model error when it performs on new

input data.

▶ Underfitting: both errors are high.
▶ Overfitting: generalization error increases and generalization

gap widens.
Image from Deep Learning, by Goodfellow, Bengio, and Courville, The MIT Press,
2016.

Underfitting and Overfitting

Underfitting
▶ Large training

error and large
gen. error

▶ High bias, low var

Matched
▶ Small gen. error
▶ “Just right”

Overfitting
▶ Very small

training error but
large gen. error

▶ Low bias, high
var

Regularization

▶ Regularization: Take a model from “Overfitting” to
“Matched”.

▶ An effective regularizer reduces the variance significantly while
not overly increasing the bias.

Parameter Norm Penalties

Add a parameter norm penalty Ω(θ) to the cost function J to limit
the capacity of the model.

J̃(X, y; θ) = J(X, y; θ) + λΩ(θ)

where λ is a hyperparameter that weights the relative contribution
of the norm penalty to the standard cost function.

▶ Typically, only the weights of the affine transformation are
penalized but not the biases. Regularizing the biases can
introduce a significant amount of underfitting

▶ Sometimes, we can use a different λ for each layer of the
network.

Parameter Norm Penalties

▶ L2 parameter regularization – weight decay

Ω(θ) = 1
2∥w∥2

2 = 1
2wHw

∇wΩ(w) = w

▶ L1 parameter regularization

Ω(θ) = ∥w∥1 =
∑

i

|wi|

∇wΩ(w) = sign(w)

L1 regularization results in a solution that is more sparse, i.e.,
some parameters have an optimal value of zero.
It can be used for feature selection.

Dataset Augmentation as Regularization

▶ Train the model on more data by creating fake data and
adding it to the training set.

▶ Useful for classification – The main task of a classifier is
invariant to a wide variety of transformations.

▶ Inject noise in the input data, the hidden units, the weights,
or the output targets.

Early Stopping

▶ Training error decreases steadily over time but validation error
begins to rise.

▶ We obtain a better model by stopping at (returning to) the
parameter setting at the point in time with the lowest
validation error.

Parameter Sharing

▶ Model A and Model B deal with similar tasks and the model
parameters may be close to each other. Therefore, we can use
a parameter norm penalty

Ω(w(A), w(B)) = ∥w(A) − w(B)∥2
2

▶ Parameter sharing – Sets of parameters to be equal, e.g., in a
convolutional neural network (CNN).

Sparse Representation


11
18
6
1


d×1

︸ ︷︷ ︸
y

=


2 4 −1 4 −3 6
3 9 −2 5 0 4
6 2 1 1 −2 −3
5 1 2 4 1 −4


d×n



0
2
0
0

−1
0



n×1

︸ ︷︷ ︸
h

▶ h is a sparse representation of data x. Usually, h has k
non-zero elements with k ≪ d.

▶ The regularized cost function is

J̃(X, y; θ) = J(X, y; θ) + λΩ(h)

The norm penalty on the representation is
Ω(h) = ∥h∥1 =

∑
i |hi|.

Bagging – Bootstrap Aggregating

▶ Train several different
models separately with
different datasets from
the original dataset.

▶ Usually, different models
do not make the same
error on the test data.

▶ All the models vote on
the output for the test
data.
Model averaging /
ensemble method

Dropout

▶ Dropout trains the ensemble consisting of subnetworks that
can be formed by removing nonoutput units from the base
network.

▶ At each training iteration (batch), we randomly remove a
subset of input/hidden neurons with mask µ.

▶ Training:
minEµJ(θ, µ)

Dropout

▶ At test time we “rescale” the weight of the neuron to reflect
the percentage of the time it was active.

▶ Inference:
p(y | x) =

∑
µ

p(µ)p(y | x, µ)

where p(µ) is the probability distribution of sampling µ at
training time.

▶ Dropout trains a bagged ensemble of models that share
hidden units.

Optimization for Learning
▶ Minimize the expected loss on the training set (the empirical

risk)

Ex,y∼p̂data(x,y)L(f(x; θ), y) = 1
m

m∑
i=1

L(f(x(i); θ), y(i))

where p̂data(x, y) is the empirical distribution defined by the
training set and m is the number of training samples.

▶ Minimize a surrogate loss function, e.g., the negative
log-likelihood of the correct class. (Early stopping to prevent
overfitting.)

▶ Stochastic/mini-batch gradient descent algorithms on a
stream of data (online learning) help minimize the
generalization error

J(θ) = Ex,y∼pdata(x,y)L(f(x; θ), y)

Challenges in Neural Network Optimization
▶ Neural networks are nonconvex functions that may have local

minima.

▶ Model nonidentifiability – Any large training set cannot rule
out all but one setting of the model’s parameters. → Many
local minima

▶ Nevertheless, for sufficiently large neural networks, most local
minima have a low cost function value compared with the
global minimum. As a result, these local minima are not
problematic.

▶ Find a point in the parameter space that has low but not
necessarily minimal cost.

Challenges in Neural Network Optimization

▶ Saddle points: In low-dimensional spaces, local minima are
common. In higher-dimensional spaces, saddle points become
more common.

▶ Gradient descent seems able to escape saddle points in many
cases.

▶ Maxima are much like saddle points from the perspective of
optimization.

▶ Flat regions: Gradient and Hessian are zero.

Challenges in Neural Network Optimization

▶ Cliff: Neural networks with many layers may have extremely
steep regions. These result from the multiplication of several
large weights or repeated multiplication by the same weight
matrix W, e.g., in a recurrent neural network (RNN).

▶ The gradient update step may move the parameters extremely
far, i.e., jumping off the cliff. → Make learning unstable

▶ Vanishing and exploding gradient problem

Challenges in Neural Network Optimization

▶ Ill-conditioned Hessian matrix → Stochastic gradient descent
gets stuck.

▶ Noisy and biased estimate of gradient and Hessian matrix.
▶ Intractable cost function as well as intractable gradient.
▶ Cost function lacks a global minimum point.

▶ Gradient descent is effective for making small local moves.
Therefore, it is critical to choose good initial points.

Stochastic Gradient Descent (SGD)

▶ Compute gradient estimate ĝ from a mini-batch of m samples.

ĝ = 1
m

∇θ

m∑
i=1

L(f(x(i); θ), y(i))

▶ Update parameters θ with learning rate αk at iteration k.

θ = θ − αkĝ

The learning rate is gradually decreased to combat noise of
SGD random sampling. e.g., with α0 = 100ατ ,

αk =
{

(1 − β)α0 + βατ , β = k/τ 0 ≤ k < τ
ατ k ≥ τ

▶ Data shuffling after a training epoch. Changing the
mini-batch size.

Momentum

▶ The method of momentum is designed to accelerate learning.

▶ The momentum algorithm accumulates an exponentially
decaying moving average of past gradients and continues to
move in their direction.

v = βv − α∇θ

[
1
m

m∑
i=1

L(f(x(i); θ), y(i))
]

θ = θ + v

where v is the velocity (or momentum with unit mass).
β ∈ [0, 1] determines how quickly the contributions of previous
gradients decay.

▶ The gradient is a force that pushes the particle downhill along
the cost function surface. β corresponds to a viscous drag on
the movement.

Nesterov Momentum

▶ Nesterov’s accelerated gradient method

v = βv − α∇θ

[
1
m

m∑
i=1

L(f(x(i); θ + βv), y(i))
]

θ = θ + v

▶ The gradient is evaluated after the current velocity is applied,
i.e., adding a correction factor to the standard method of
momentum.

Parameter Initialization

▶ The choice of initial point affects the training of deep models.

▶ Use random initialization to break symmetry between different
units. i.e., If two hidden units with the same activation
function are connected to the same inputs, they have different
initial parameters.

▶ Randomly initialize the weights (with Gaussian or uniform
distribution) but set the biases with heuristically chosen
constants.

▶ Sometimes, we can initialize the weight matrix with a random
orthogonal matrix.

Adaptive Learning Rates – AdaGrad

▶ Learning rate is a hyper-parameter that significantly affects
model performance.

▶ Scale the learning rates inversely proportional to the square
root of the sum of all the historical squared values of the
gradient.

r = r + g2

θ = θ − α

δ +
√

r ⊙ g

where g is the gradient, α is a global learning rate, δ is a
small number for numerical stability, ·2,

√
· and ⊙ are

element-wise square, square root, and multiplication.

▶ Parameter with large gradient corresponds to a rapid decrease
in the learning rate.

Adaptive Learning Rates – RMSProp

▶ RMSProp modifies AdaGrad to perform better for nonconvex
cost function.

▶ Gradient accumulation with an exponentially weighted moving
average. → To discard remote history.

r = ρr + (1 − ρ)g2

θ = θ − α

δ +
√

r
⊙ g

▶ RMSProp combined with Nesterov momentum

r = ρr + (1 − ρ)g2

v = βv − α√
r ⊙ g

θ = θ + v

Adaptive Learning Rates – Adam (Adaptive Moments)

▶ Estimates of the first-order and second-order moments.
▶ Bias corrections to the estimates of the moments.

Initialize first-order and second-order moments s = 0, r = 0.
t = 0.

t = t + 1
s = ρ1s + (1 − ρ1)g
r = ρ2r + (1 − ρ2)g2

ŝ = s
1 − ρt

1

r̂ = r
1 − ρt

2

θ = θ − αŝ
δ +

√
r̂

⊙ g

Repeat.

Newton’s Method

▶ Newton’s method for optimization uses the second-order
Hessian H.

g = ∇θ

[
1
m

∑
i

L(f(x(i); θ), y(i))
]

H = ∇2
θ

[
1
m

∑
i

L(f(x(i); θ), y(i))
]

θ = θ − H−1g

▶ If the Hessian is not positive definite, use regularized update

θ = θ − (H + αI)−1g

▶ Computationally complex with the inversion of Hessian H.

Batch Normalization

▶ Batch normalization can be applied to any input or hidden
layer to resolve the problem that the parameter update for one
layer affects other layers.

▶ Batch normalization allows each layer of a network to learn by
itself a little more independently of other layers.

▶ Batch normalization reduces overfitting because it adds some
noise to each hidden layer’s activation outputs.

Batch Normalization

▶ Mini-batch mean: µ = 1
m

∑
i xi

where m is the size of the mini batch.

▶ Mini-batch variance: σ2 = 1
m

∑
i(xi − µ)2 (element-wise

arithmetic)

▶ Batch Normalization: x̂i = xi−µ√
δ+σ2 (element-wise arithmetic)

▶ SGD does the “denormalization”: yi = γx̂i + β

▶ Batch normalization adds two trainable parameters γ and β to
each layer.

