
Deep Learning and Its Applications in Signal
Processing

Lesson 1: Review of Deep Neural Networks

Liang Dong, ECE

Deep Neural Network

▶ Human brain contains about
86 billion nerve cells
(neurons) – the “gray
matter”.

▶ It also contains billions of
nerve fibers (axons and
dendrites) – the “white
matter”.

▶ These neurons are
connected by trillions of
connections, or synapses.

Deep Neural Network

Figure:
Perception
of
happiness

Deep Neural Network

For example (the neural network
shown left),

ŷ = softmax (σ(σ(xW1)W2)W3)

▶ The activation function σ(·) is nonlinear.
▶ A layered neural network is a highly nonlinear system that can

model the complex reality.
▶ The activation function relates to logistic regression, e.g.,

using the “sigmoid” function σ(x) = 1
1+e−x .

Activation Function

▶ The “sigmoid” function: σ(x) = 1
1+e−x

▶ Useful property of the sigmoid function:
σ′(x) = σ(x)(1− σ(x)).

Activation Function

▶ Rectified Linear Unit (ReLU): ReLU(x) = max(0, x)

▶ “Leaky” Rectified Linear Unit:
LReLU(x) = max(αx, x), 0 < α < 1

Activation Function

▶ Hyperbolic tangent function: tanh(x) = sinh(x)
cosh(x) = e2x−1

e2x+1

▶ tanh(0) = 0, tanh(∞) = 1, tanh(−∞) = −1.

Training Through Backpropogation

Cost function (e.g., squared
error):

J(yi, ŷi) = |ŷi − yi|2

where yi is the known correct
output (target or label).

▶ Train the weights W by minimizing the cost function:

min
W

J(y, ŷ)

Training Through Backpropogation

▶ Gradient decent (to minimize the mean squared error)

w ← w − α∇ 1
2m

∑
m

∥ŷ− y∥2

where m is the number of training samples and α is the
learning rate.

▶ Stochastic gradient decent

w ← w − α∇1
2∥ŷ− y∥2

Training Through Backpropogation

▶ Calculation of the early-layer gradients needs to use the
weights of later layers.

▶ Backpropogation: Update the later-layer weights first then the
early-layer weights.

▶ Vanishing gradient problem: The gradient becomes smaller
and smaller at the early layers. (e.g.,
σ′(x) = σ(x)(1− σ(x)) ≤ .25.)

Parameter Estimator – Maximum Likelihood Estimation

▶ Maximum likelihood estimator is a preferred parameter
estimator in terms of consistency and efficiency.

θML = arg max
θ

Πm
i=1pmodel(x(i); θ)

= arg max
θ

m∑
i=1

log pmodel(x(i); θ)

= arg max
θ

Ex∼p̂data log pmodel(x; θ)

▶ To minimize the dissimilarity between the empirical
distribution p̂data and the model distribution pmodel, we want
to minimize the Kullback-Leibler (KL) divergence of the two
distributions.

DKL(p̂data∥pmodel) = Ex∼p̂data [log p̂data(x)− log pmodel(x)]

Maximum Likelihood Estimation

▶ To minimize the KL divergence is to minimize the
cross-entropy between the empirical distribution p̂data and the
model distribution pmodel.

minimize− Ex∼p̂data log pmodel(x)

▶ Maximum likelihood estimation is equivalent to minimization
of the cross-entropy between the distributions.

Parameter Estimation – Bayesian Estimation

▶ Bayesian estimator makes prediction using a full distribution
over parameter θ.

▶ Bayesian estimator has an influence from the prior distribution
p(θ), which expresses a preference for the model.

▶ With a set of data, we can recover the effect of data on our
belief about θ.

p(θ|x(1), . . . , x(m)) = p(x(1), . . . , x(m)|θ)p(θ)
p(x(1), . . . , x(m))

Bayesian Estimation

▶ With a set of data, the predicted distribution over the next
data sample is

p(x(m+1)|x(1), . . . , x(m)) =
∫

p(x(m+1)|θ)p(θ|x(1), . . . , x(m))dθ

▶ Bayesian estimator generalizes better when limited training
data is available.

▶ Bayesian estimator suffers from high computational cost when
training data set is large.

Maximum a posteriori (MAP) Estimation

▶ In stead of the full Bayesian posterior distribution over the
parameter θ, we want a single point estimate.

▶ Maximum a posteriori (MAP) estimator chooses the point of
maximal posterior probability:

θMAP = arg max
θ

log p(θ|x(1), . . . , x(m))

= arg max
θ

log p(x(1), . . . , x(m)|θ) + log p(θ)

▶ Many regularized estimation strategies can be interpreted as
making the MAP approximation to Bayesian inference. The
regularization consists of adding an extra term to the
objective function that corresponds to log p(θ).

Optimizer – Stochastic Gradient Descent

Models trained with gradient descent – To find a very low value of
the cost function (may not be global or even local minimum)

Figure: The gradient decent process may
end up in two local minimums.

g = 1
m
∇θ

m∑
i=1

Loss(x(i), y(i); θ)

θ = θ − αg

Stochastic Gradient Descent

▶ Motivation: Large training sets are more computationally
expensive.

▶ The gradient is an expectation. The expectation can be
approximately estimated with a small set of samples.

▶ Stochastic gradient descent (SGD) is an extension of the
gradient descent algorithm. Calculate the gradient for one
new sample and take a step in that direction.

g = ∇θLoss(x, y; θ)

▶ Compromise approach – Minibatch with size m′ (m′ < m):

g = 1
m′∇θ

m′∑
i=1

Loss(x(i), y(i); θ)

Stochastic Gradient Descent

Figure: Comparison of stochastic gradient decent and minibatch gradient
decent.

Model Evaluation Metrics – Classification Model

▶ Classification Accuracy

Accuracy = Number of corrected predictions
Total number of predictions

▶ Logarithmic Loss. It works well for multi-class classification by
penalising the false classifications.

Log Loss = − 1
N

N∑
i=1

M∑
j=1

yij log pij

where yij indicates whether sample i belongs to class j and
pij is the probability of sample i belonging to class j.

Model Evaluation Metrics

▶ Confusion Matrix. A confusion matrix is an N ×N matrix,
where N is the number of classes being predicted.

Model Evaluation Metrics

▶ Confusion Matrix for a binary classification problem. N = 2.

Model Positive Model Negative
Target Positive True Positive (TP) False Negative (FN)
Target Negative False Positive (FP) True Negative (TN)

Accuracy = TP + TN
TP + FN + FP + TN

Model Evaluation Metrics

▶ Confusion Matrix for a binary classification problem. N = 2.

Model Positive Model Negative
Target Positive True Positive (TP) False Negative (FN)
Target Negative False Positive (FP) True Negative (TN)

Precision = TP
TP + FP

Model Evaluation Metrics

▶ Confusion Matrix for a binary classification problem. N = 2.

Model Positive Model Negative
Target Positive True Positive (TP) False Negative (FN)
Target Negative False Positive (FP) True Negative (TN)

Recall = True Positive Rate = Sensitivity = TP
TP + FN

F1 = 2× Precision× Recall
Precision + Recall

Model Evaluation Metrics

▶ Evaluating models on an imbalanced data set.

First Model

Target\Model A B C
A 150 30 20
B 0 9 1
C 2 0 8

Accuracy = 0.76
F1 Score = 0.62

“Better model” according to F1
score

Second Model

Target\Model A B C
A 198 2 0
B 9 1 0
C 4 4 2

Accuracy = 0.91
F1 Score = 0.53

Model Evaluation Metrics

▶ Confusion Matrix for a binary classification problem. N = 2.

Model Positive Model Negative
Target Positive True Positive (TP) False Negative (FN)
Target Negative False Positive (FP) True Negative (TN)

Specificity = TN
FP + TN

False Positive Rate = 1− Specificity = FP
FP + TN

Model Evaluation Metrics

▶ AUC–ROC: Area Under the receiver operating characteristic
(ROC) curve

True Positive Rate = Sensitivity. False Positive Rate = 1 -
Specificity.

Model Evaluation Metrics – Regression Model

▶ Mean Absolute Error

Error = 1
N

N∑
j=1
|yj − ŷj |

▶ Root Mean Squared Error

Error =

√√√√ 1
N

N∑
j=1

(yj − ŷj)2

Credit Assignment Path and Depth of Learning

▶ The credit assignment path is a
chain of causal links, some of
which have modifiable weights.

▶ Of a credit assignment path, the
number of causal links with
modifiable weights is the depth.

▶ In a neural network, the maximum
depth of all credit assignment
paths is the depth of learning.

Credit Assignment Path and Depth of Learning

▶ (a) Credit assignment path of a feedforward neural network.
In this example, depth is three.

▶ (b) Credit assignment path of a recurrent neural network
whose depth can be unlimited.

Deep Learning vs. Shallow Learning

▶ A learning system with a depth of two has proven to be a
universal approximator.

▶ A neural network with one hidden layer can represent any
bounded continuous function (to arbitrary ϵ) or any Boolean
function (exactly).

|F (x)− f(x)| < ϵ
With d input binary values, it may need
2d nodes in the hidden layer.

Deep Learning vs. Shallow Learning

▶ Modern deep learning systems typically have learning depths
that are numbered in tens and hundreds. It is difficult to
determine the exact depth that distinguishes deep learning
from shallow learning.

▶ A greater depth – Not only does it better extract features
from the input data, but it also reduces system coefficients for
the same learning performance.

▶ Sometimes, good learning performance involves selecting a
network structure that matches the particular data structure.

Supervised Learning

Supervised Learning: Observing several examples of a random
vector x and an associated value or vector y, it predicts y from x
by estimating p(y|x).

Regression: Learning algorithm
output is f : Rn → R.

Classification: Learning algorithm
output is f : Rn → {1, 2, . . . , k},
or a probability distribution over
the classes.

Supervised Learning

Structured Output: Sentence parsing, image segmentation, object
detection, image captioning, transcription, language translation,
etc.

Unsupervised Learning

Unsupervised Learning: Observing several examples of a random
vector x, it explicitly or implicitly learns p(x) or some properties of
this distribution.

Density Estimation (or Prob. Mass Function Estimation): Learning
the probability distribution that generated a dataset. Learning
useful properties of the structure of the dataset. Dividing the
dataset into clusters of similar examples (clustering).

Unsupervised Learning

Synthesis: Generating new
samples that are similar to the
training data. For example,
speech synthesis.

Denoising: Generating a clean
example from a corrupted
example with unknown
corruption process.

The Curse of Dimensionality

Curse of Dimensionality – The number of possible distinct
configurations of a set of variables increases exponentially as the
number of variables increases.

Figure: The amount of training data needed to cover 20% of the feature
range grows exponentially with the number of dimensions.

Vincent Spruyt, “The Curse of Dimensionality in classification”.

The Curse of Dimensionality: Deep-Layered Representation

▶ A very large number of regions, such as O(2k), can be defined
with O(k) examples, so long as we introduce some
dependencies between the regions through additional
assumptions about the underlying data-generating
distribution.

▶ The core idea of deep learning:

▶ It is assumed that the data is generated by a combination of
factors or features, possibly at multiple levels of the hierarchy.

▶ The advantages conferred by the use of deep distributed
representations counter the challenges posed by the curse of
dimensionality.

Manifold Learning

Figure: A manifold is a
connected region in
high-dimensional space.

▶ A connected set of points that can be
approximated well by considering only
a small number of degrees of freedom,
or dimensions, embedded in a
higher-dimensional space.

▶ Interesting inputs occur only along a
collection of manifolds containing a
small subset of points.

▶ Interesting variations in the output of
the learned function occur only along
directions that lie on the manifolds (or
from one manifold to another).

▶ Manifold Learning, because the
probability distribution of images,
sounds or text strings in real life is
highly concentrated.

Architecture Design for Deep Neural Network

▶ Most neural networks arrange layers of units in a chain
structure, with each layer being a function of the layer that
precedes it.

▶ In these chain-based architectures, the main considerations are
choosing the depth of the network and the width of each layer.

▶ Another key consideration of architecture design is how to
connect a pair of layers to each other. e.g., full connection
vs. sparse connection.

▶ Deeper networks typically use fewer units per layer, use fewer
parameters, and are often able to generalize to test sets.

Architecture Design for Deep Neural Network

▶ In general, the layers need not be connected in a chain, even
though this is the most common practice.

▶ Many architectures build a main chain but then add extra
architectural features to it, such as skip connections going
from layer i to layer i + 2 or higher. These skip connections
make it easier for the gradient to flow from output layers to
layers near the input.

Architecture Design for Deep Neural Network

▶ By adding more layers and more units within a layer, one can
use a deep neural network to represent functions of increasing
complexity.

▶ The ideal network architecture for a task is found with
experiments guided by monitoring the validation set error.

▶ Specialized architectures have been developed for specific
tasks. e.g.,

Figure: CNN for computer vision.

Figure: RNN for sequence
processing.

Steps to Establish A Deep Learning Algorithm

Establish a deep learning algorithm (for supervised learning):

1. Specify a dataset – training data, verification data, and test
data.

2. Design model architecture of a deep neural network.

3. Model parameter training:
▶ Define a loss function according to parameter estimator, e.g.,

the negative log-likelihood. Loss function may include
additional terms such as regularization terms.

▶ Use an iterative numerical optimizer for gradient-based
learning.

4. Evaluation – Cross validation and testing of the trained model.

Deep Learning Algorithm Examples with

▶ Keras is a high-level neural network API, written in Python

and capable of running on top of TensorFlow

, CNTK, or Theano .

▶ Keras is a deep learning library that allows for easy and fast
prototyping through user friendliness, modularity, and
extensibility

▶ It can run seamlessly on CPU and GPU.

Example: Feedforward Network – Multilayer Perceptron

Example: Feedforward Network – Multilayer Perceptron

▶ Fully connected layer: 10 input-layer neurons and 20
hidden-layer1 neurons.

Example: Feedforward Network – Multilayer Perceptron

▶ Fully connected layer: 20 hidden-layer1 neurons and 20
hidden-layer2 neurons.

Example: Feedforward Network – Multilayer Perceptron

▶ Fully connected layer: 20 hidden-layer2 neurons and 10
output-layer neurons.

Example: Feedforward Network – Multilayer Perceptron

▶ Activation function – a fixed nonlinear function that is after
an affine transformation.

▶ Rectified Linear Unit (ReLU) by default.

Example: Feedforward Network – Multilayer Perceptron

▶ Activation function – Softmax.

Example: Feedforward Network – Multilayer Perceptron

Activation Functions of Hidden Units
▶ Rectified linear units

(ReLU) are default
for hidden units.

▶ Generalization:
Absolute value
rectification, leaky
ReLU, parametric
ReLU

▶ Maxout units
▶ Logistic Sigmoid
▶ Hyperbolic Tangent
▶ Linear hidden units
▶ Softmax units
▶ Radial basis function
▶ Softplus

Output Units

▶ Linear Units for Gaussian output distributions
▶ Sigmoid Units for Bernoulli output distributions (to ensure

that there is always a strong gradient when the model has the
wrong answer)

▶ Softmax Units for Multinoulli output distributions
▶ Gaussian mixture outputs of mixture density networks

▶ The choice of loss (cost) function is tightly coupled with the
choice of output unit.

Example: Convolutional Neural Network

Example: Convolutional Neural Network

▶ 2D convolutional layer: kernel size 3× 3, 28 filters (depth 28).

Example: Convolutional Neural Network

Example: Convolutional Neural Network

▶ 2D max pooling layer: pool size 2× 2.

Example: Convolutional Neural Network

Example: Convolutional Neural Network

▶ Flattening the 2D arrays for fully connected layers.

Example: Convolutional Neural Network

▶ Fully connected layers.
▶ Out-layer 128 neurons. Activation function – ReLU.

Example: Convolutional Neural Network

▶ Dropout rate = 0.2. That is the fraction of the units to drop.

Example: Convolutional Neural Network

▶ Fully connected layers.
▶ Out-layer 10 neurons. Activation function – Softmax.

Training the Model

Training the Model
Gradient-Based Learning
▶ Most loss functions of

neural networks are
nonconvex.

▶ (Stochastic) gradient
descent has no
convergence guarantee.

▶ Drive the cost function
to a very low value –
may not have
convergence guarantees

▶ Sensitive to the initial
parameters

▶ Initialize all weights to
small random values,
biases to zero or small
positive values

Training the Model
Optimizers in Keras:
▶ SGD: Stochastic gradient

descent optimizer
▶ RMSProp: RMSProp

optimizer (good for
RNN)

▶ Adagrad and Adadelta
optimzers

▶ Adam: Adam optimizer
[1]

▶ Adamax: A variant of
Adam

▶ Nadam: Nesterov Adam
optimizer

[1] Diederik P. Kingma and Jimmy Ba, ”Adam: A Method for Stochastic
Optimization,” CoRR, abs/1412.6980, 2014, http://arxiv.org/abs/1412.6980

Training the Model
Loss (Cost) Function
▶ Principle of maximum

likelihood – Use the
cross-entropy between
the training data and the
model’s predictions as
the cost function.

▶ The total cost function
used to train a neural
network will often
combine one of the
primary cost functions
with a regularization
term.

L(θ) = −Ex,y∼p̂data log pmodel(y | x)

Training the Model

Loss (Cost) Function
▶ If is Gaussian, we have

the mean squared error
cost.

L(θ) = 1
2Ex,y∼p̂data∥y− f(x; θ)∥2 + const

Training the Model
Loss (Cost) Function
▶ Unfortunately, mean

squared error and mean
absolute error often lead
to poor results when
used with gradient-based
optimization. Some
output units that
saturate produce very
small gradients.

▶ The cross-entropy cost
function is more popular
than mean squared error
or mean absolute error,
even when it is not
necessary to estimate an
entire distribution
p(y | x).

Training the Model

Loss (Cost) Function in Keras

▶ mean squared error
▶ mean absoluate error
▶

mean absoluate percentage
error

▶
mean squared logarithmic
error

▶ squared hinge
▶ hinge
▶ categorical hinge
▶ logcosh

Training the Model

Loss (Cost) Function in Keras

▶ categorical crossentrophy
▶ sparse categorical

crossentropy
▶ binary crossentropy
▶

kullback leibler divergence
▶ poisson
▶ cosine proximity

Training the Model

A Metric is a function to
judge the performance of the
model.
▶ binary accuracy
▶ categorical accuracy
▶

sparse categorical accuracy
▶

top k categorical accuracy
▶ sparse top k categorical

accuracy

▶ Custom Metrics

Keras Model Attributes and Methods

▶ model.layers is a flattened list of the layers comprising the
model.

▶ model.inputs is the list of input tensors of the model.
▶ model.outputs is the list of output tensors of the model.
▶ model.summary() prints a summary representation of your

model.
▶ model.get weights() returns a list of all weight tensors in the

model, as Numpy arrays.
▶ model.set weights(weights) sets the values of the weights of

the model, from a list of Numpy arrays.

