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FROM THE EDITOR
Min Wu  |  Editor-in-Chief  |  minwu@umd.edu

In many cultures, spring is a symbol of 
renewal. For the majority of our read-
ers (who live in the Northern Hemi-

sphere), it will be the start of spring 
when you receive this issue of IEEE Sig-
nal Processing Magazine. You will find 
a different look to the magazine from 
what you have become so familiar. 
Indeed, we are welcoming the new sea-
son with a new magazine design.

The design that we are replacing has 
served our members and readers for 
more than a decade. I still remember 
the refreshing look and feel of that 
change led by the then Editor-in-Chief 
K.J. Ray Liu—the font was updated, 
the graphics options were expanded, 
and, for the very first time, the maga-
zine had a professional “perfect bind-
ing,” which allowed the topic name and 
volume number to be printed on the  
magazine’s spine for an easy at-a-
glance view while on a bookshelf.

About a year ago, the IEEE Magazines 
Department brought to my attention that a 
redesign frequency of every three to five 
years is a common practice in the maga-
zine world to keep the look and feel of a 
magazine up to date and stimulating. We 
were long overdue for a redesign by this 
standard. Although personally I was happy 
with many parts of the elegant design we 
had, I saw the need for more flexible tem-
plates to support appealing and informative 
visual content. Still, when Senior Art 
Director Janet Dudar told me the redesign 
would be a completely new design, includ-
ing the cover’s iconic magazine title, I was 
a bit hesitatant at first about the change. 

Like many of you, the magazine’s title at 
the top of the front cover had been imprint-
ed in my mind as a symbol of our maga-
zine. But in the professional world of 
publishing, the decade-old font and design 
had begun to show some “age,” while other 
magazines within and beyond the IEEE 
have embraced more modern font families 
and designs. Even the Google logo had 
undergone various redesigns, with the lat-
est update as recent as last fall. So came the 
journey for our magazine to explore differ-
ent design options and critique and iterate 
the designs to reach a new balance.

Thanks to our hardworking Area Edi-
tors Gwenaël Doërr and Kenneth Lam and 
associate editors, we have also experiment-
ed with new columns to complement the 
existing ones. For example, the traditional 
platform for the magazine to highlight new 
books is to invite volunteers who have a 
strong expertise in related areas to read 
through a whole book and write a thought-
ful review, which can be a relatively slow 
process. Given the magazine’s large read-
ership with diverse interests, we piloted 
out a complementary “lightweight” ver-
sion to the “Book Review” column to 
inform readers of more recently published 
books in a timely fashion. This new “Book 
Digest” column is intended to provide a 
visually appealing summary of the books 
that have been selected by a group of 
senior editors based on such criteria as 
timeliness of the topic, track record of the 
authors, training material for students, sig-
nal processing focus, and other consider-
ations beneficial to readers. You may have 
seen the first “Book Digest” column in the 
January 2016 issue of the magazine.

Another example is a new column 
called “Perspectives.” Several influential 

magazines from sister Societies routinely 
publish commentary sections that present 
analysis by technical experts or policy 
gurus on issues of interest to the readers. 
These commentaries complement the 
existing editorials by offering readers 
valuable perspectives on a broader range 
of issues. Inspired by the values of com-
mentaries, we initiated this new column to 
highlight an area of recent exciting 
research and project its potential techno-
logical impact to our everyday life. You 
will find the first “Perspectives” column 
article on the prospects of time reversal 
techniques in the 5G wireless communi-
cations in this issue. 

I would like to take this opportunity 
to thank the IEEE Magazines Depart-
ment staff for their efforts during this 
redesign. Special appreciation is given to 
Senior Art Director Janet Dudar, Asso-
ciate Art Director Gail A. Schnitzer, 
Managing Editor Jessica Barragué, and 
Senior Managing Editor Geri Krolin-
Taylor—the redesign could not be com-
pleted so efficiently without their 
thoughtful insights!

As professionals advancing technolo-
gies, we constantly benefit from going out 
of the status quo and trying out different 
things or in different ways with an open 
mind. Innovations often start from that 
moment of willingness to try something 
different. We hope you feel refreshed from 
this new design of the magazine, and per-
haps venture out from your comfort zone 
to explore something different in this new 
season. Happy reading!

SP
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PRESIDENT’S MESSAGE
Rabab Ward  |  SPS President  |  rababw@ece.ubc.ca

am honored to begin the position of 
president of our IEEE Signal Process-
ing Society (SPS). I’d like to take this 

opportunity to tell you why.
As an SPS volunteer these past 

20 years or so, I’ve had the pleasure of 
working with a large number of volun-
teers and collaborating closely with 
many of you on various committees and 
tasks. I have learned so much from 
acclaimed leaders in industry and aca-
demia, as well as young professionals 
and students. Your energy, creativity, and 
intelligence inspire me every day. 

It’s been a privilege to work closely 
with our past presidents—Alex Acero, 
Ray Liu, José Moura, Mostafa Kaveh, 
Alfred Hero, Fred Mintzer, and Richard 
Cox. These colleagues have been true 
statesmen with visionary long-term goals 
for the future well-being of our Soci-
ety.  Their selfless devotion has propelled 
the Society to higher ground, and I’m 
humbled to be counted as a member of 
such a league of extraordinary people. 

Presently, and for the last couple of 
years, I have also worked with members 
of our past and present SPS Executive 
Committee: Mari Ostendorf, Kostas 
Plataniotis, Charlie Bouman, Thrassos 
Pappas, Alex Kot, Wan-Chi Siu, and 
Carlo Regazoni. These colleagues are 
extremely wise, energetic, and dedicated 
leaders in their fields, and it’s always a 
pleasure to work with them. 

I am grateful that, due to the hard 
work of our staff and volunteers, our 
Society is in top shape both financially 
and from a management perspective. I 
am proud of the work of all of our 
members. Our publications continue to 
have a high impact in our field, our con-
ferences and workshops continue to 
thrive, and many of our Chapters are 
making great strides in industry and 
academia. In recent years, several new 
initiatives have proven successful. Alex 
Acero, SPS’s past president, touched on 
some of these achievements in the pre-
vious issue of this magazine [1]. These 
include the IEEE Signal Processing 
Cup, the seasonal schools, the growing 
numbers of Chapters around the world, 
increased student memberships, and the 
various types of travel grants available. 

There has also been the introduction 
of two new publications; two new confer-
ences ChinaSip and GlobaSIP; the paper 
repository, SigPort and the video tutorial 
online library SigView; two public rela-
tions videos about signal processing; and 
the newly introduced awards for industry 
members. In 2014, our five-year Society 
review and five-year periodical review 
passed with stellar results—so much so 
that the review committee said they’d be 
passing our Society’s best practices to 
other Societies. Three special interest 
groups (SIGs) have been introduced in 
the last three years; these SIG are provi-
sional groups created to promptly 
address emerging technical areas. The 
three SIG are on big data, Internet of 
Things, and computational imaging.

All of these fabulous achievements 
owe their great success to  the dedica-
tion of our Society volunteers. Your 
innovations and foresight have born the 
ideas, but the successful implementa-
tions of these ideas  also required a lot 
of novelty, persistence, and devil-in-the-
details hard work. 

I am excited to be working with you 
during these interesting times, as we 
watch signal processing theories and 
applications grow and broaden. It’s 
astounding to see the ever-increasing 
abstractions of the signal processing dis-
cipline and its applications to a vast num-
ber of fields and to technical and societal 
needs. You anticipate and tackle these 
demands and develop innovative solu-
tions that have influenced the world. 
Ours is a highly dynamic, ever-evolving 
Society, as evidenced by the increased 
capacity and scope of our technical com-
mittees, that take leading roles in foster-
ing the development of new technologies, 
as new fields and theories emerge.  Sig-
nal processing has become a fundamental 
science. It not only deals with signals 
captured by instruments, it’s also essen-
tial for processing a wide range of infor-
mation and data. In many ways, it is the 
science behind our digital life. It is the 
science that powers essential aspects of 
everyday life.

While I see a bright future for our Soci-
ety and I’m excited to take a leadership 
role, I am aware of the many current and 
future challenges we face. I will discuss 
that in my next president’s message in the 
May issue of the magazine. But, first and 
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World’s FIRST
Visual

Innovation
Award

Call for Nomination: The Visual Innovation Award
reconizes pioneers of transformative technologies and 
business models that have had great impact on human 
experiences or are anticipated to do so in the near future. 
The Award Commitee consits of well-known industry 
executives, visionary entrepreneurs, and scholars. 
Nominations are to be submitted online no later than 
31 March 2016. Finalists selected by the Award 
Committee will be honored at the 2016 IEEE 
International Conference on Image Processing 
(ICIP 2016) in Phoenix, Arizona, In September 2016. 
Please visit http://2016.ieeeicip.org/ for more information 
and for the online submission form.

Nominate you favorite visual innovator TODAY!

Details can be found at:
http://2016.ieeeicip.org/VisualInnovationAward.asp

Important Dates:

31 March 2016: Deadline for nominations
15 June 2016: Finalists announced
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foremost, thank you to Alex Acero, our 
past president, for not only directing 
and managing the daily affairs of the 
Society, but also dedicating so much 
time to raising the visibility of our SPS 
among the numerous other IEEE Societ-
ies and at the IEEE level. I was recently 
asked by another IEEE Society president 
if I will continue the great work started 
by Alex Acero and Ray Liu, in IEEE 
financial affairs. Those are big shoes to 
fill, yet I will certainly do my best. 

I extend a warm welcome to our 
incoming President-Elect Ali Sayed. Ali is 
a superb researcher and a highly 
acclaimed academic and educator who has 
contributed greatly to our Society in so 

many ways, and at the highest levels with 
both our publications and our conferences.

SPS’s Vice President of Technical 
Directions Charlie Bouman ended his 
three-year term this past December. 
Charlie’s brilliant mind and charisma 
will be missed, however, I am happy 
that Walter Kellerman has taken this 
position. I have worked closely with 
Walter over the last two years, and I 
have learned to pay close attention to 
his advice. John Apostolopoulos and 
Björn Ottersten will also be missed as 
they ended their terms on our Board of 
Governors in December 2015 while 
Robert Heath,  Lina Karam, and  Min 
Wu joined the board in January of this 

year. I have a deep respect for every one 
of these people and feel fortunate to 
count them as colleagues.

I would love to hear from all of you, 
too. Your ingenuity and hard work power 
our Society. I welcome all feedback, 
comments, suggestions, and advice on 
any topic, big or small, that will help our 
Society thrive and continue growing and 
reaching for new heights. You can get in 
touch with me at rababw@ece. ubc.ca.

SP
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Congratulations!

Perez-
Gonzalez
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SOCIETY NEWS

In this column of IEEE Signal Process-
ing Magazine, 52 IEEE Signal Pro-
cessing Society (SPS) members are 

recognized as Fellows, and award recipi-
ents are announced.

52 SPS members 
elevated to Fellow
Each year, the IEEE Board of Directors 
confers the grade of Fellow on up to one-
tenth of 1% of the Members. To qualify 
for consideration, an individual must have 
been a Member, normally for five years 
or more, and a Senior Member at the time 
for nomination to Fellow. The grade of 
Fellow recognizes unusual distinction in 
IEEE’s designated fields.

The SPS congratulates the following 
52 SPS members who were recognized 
with the grade of Fellow as of 1 Janu-
ary 2016:

Kiyoharu Aizawa, Tokyo, Japan, for 
contributions to model-based coding 
and multimedia lifelogging.

Ozgur B. Akan, Istanbul, Turkey, for 
contributions to wireless sensor networks.

Edward Baranoski, McLean, Virginia, 
for leadership in knowledge-aided radar 
systems for indoor environments.

Kenneth Barner, Newark, Delaware, 
for contributions in nonlinear signal 
processing.

Shannon Blunt, Washington, D.C., for 
contributions to radar waveform diversity 
and design.

Tony Chan, Kowloon, Hong Kong, for 
contributions to computational models 
and algorithms for image processing.

Xilin Chen, Beijing, China, for contri-
butions to machine vision for facial image 
analysis and sign language recognition.

Maria-Gabriella Di Benedetto,
Rome, Italy, for contributions to impulse-
radio ultrawideband and cognitive net-
works for wireless communications.

Frederic Dufaux, Paris, France, for 
contributions to visual information pro-
cessing and coding.

Faramarz Fekri, Atlanta, Georgia, for 
contributions to coding theory and its 
applications.

Dinei Florencio, Redmond, Washing-
ton, for contributions to statistical and 
signal processing approaches to adversar-
ial and security problems.

Jessica Fridrich, Binghamton, 
New York, for contributions to digital 
media forensics, steganography, and 
steganalysis.

Alan Hanjalic, Delft, The Nether-
lands, for contributions to multimedia 
information retrieval.

Dimitrios Hatzinakos, Toronto, Cana-
da, for contributions to signal processing 
techniques for communications, multi-
media and biometrics.

Larry Heck, Mountain View, Califor-
nia, for leadership in application of 
machine learning to spoken and text lan-
guage processing.

Wendi Rabiner Heinzelman, Roches-
ter, New York, for contributions to algo-
rithms, protocols, and architectures for 
wireless sensor and mobile networks.

Jiwu Huang, Shenzhen, China, for 
contributions to multimedia data hiding 
and forensics.

Lance Kaplan, Adelphi, Maryland, 
for contributions to signal processing 

and information fusion for situational 
awareness.

Hitoshi Kiya, Tokyo, Japan, for con-
tributions to filter structure, data hiding, 
and multimedia security.

Erik Larsson, Linkoping, Sweden, for 
contributions to the technology of multi-
antenna wireless communications.

Ta-Sung Lee, Hsinchu, Taiwan, 
for leadership and contributions in 
communication systems and signal 
processing.

Weisi Lin, Singapore, Singapore, for 
contributions to perceptual modeling and 
processing of visual signals.

Fa-Long Luo, San Jose, California, 
for contributions to adaptive signal pro-
cessing for hearing and multimedia 
applications.

Xiaoli Ma, Atlanta, Georgia, for con-
tributions to block transmissions over 
wireless fading channels.

Dimitris Manolakis, Lexington, 
Massachusetts, for contributions to sig-
nal processing education, algorithms 
for adaptive filtering, and hyperspectral 
imaging.

Jonathan Manton, Parkville,Victoria, 
Australia, for contributions to geometric 
methods in signal processing and wire-
less communications.

Farid Melgani, Trento, Italy, for con-
tributions to image analysis in remote 
sensing.

Lamine Mili, Falls Church, Virginia, 
for contributions to robust state estima-
tion for power systems.

Hlaing Minn, Richardson, Texas, for 
contributions to synchronization and 
channel estimation in communication 
systems.

Digital Object Identifier 10.1109/MSP.2015.2510605

Date of publication: 7 March 2016

SPS Fellows and Award Winners Recognized
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Satoshi Nakamura, Ikoma, Nara, 
Japan, for contributions to speech recog-
nition and speech-to-speech translation.

Antonio Napolitano, Napoli, Italy, for 
contributions to the statistical theory of 
nonstationary signal processing.

Fernando Perez-Gonzalez, Vigo, Gali-
cia, Spain, for contributions to multime-
dia security.

Petar Popovski, Aalborg, Denmark, 
for contributions to network coding and 
multiple access methods in wireless com-
munications.

Alexandros Potamianos, Zografou, 
Attiki, Greece, for contributions to 
human-centered speech and multimodal 
signal analysis.

Sundeep Rangan, Brooklyn, New 
York, for contributions to orthogonal fre-
quency division multiple access cellular 
communication systems.

Kui Ren, Buffalo, New York, for con-
tributions to security and privacy in cloud 
computing and wireless networks.

Ivan Selesnick, Brooklyn, New York, 
for contributions to wavelet and sparsity 
based signal processing.

Osvaldo Simeone, Newark, New 
Jersey, for contributions to cooperative 
cellular systems and cognitive radio 
networks.

Sun Sumei, Singapore, Singapore, for 
leadership in design and standardization 
of wireless communication systems.

John Thompson, Edinburgh, United 
Kingdom, for contributions to multi-
ple antenna and multihop wireless 
communications.

Qi Tian, San Antonio, Texas, for 
contributions to multimedia informa-
tion retrieval.

Sennur Ulukus, College Park, 
Maryland, for contributions to charac-
terizing performance limits of wireless 
networks.

Yue Wang, Arlington, Virginia, for 
contributions to genomic signal analytics 
and image-based tissue characterization.

Zhengdao Wang, Ames, Iowa, for 
contributions to multicarrier communica-
tions and performance analysis of wire-
less systems.

Zhongfeng Wang, Irvine, California, 
for contributions to very-large-scale 
integration design and implementation 
of forward error correction coding.

Kaikit Wong, London, United King-
dom, for contributions to multiuser 
communication systems.

Chenyang Xu, Berkeley, California, 
for contributions to medical imaging 
and image-guided interventions.

Lie-Liang Yang, Southampton, Unit-
ed Kingdom, for contributions to multi-
carrier communications and wireless 
transceivers.

Mark Yeary, Norman, Oklahoma, for 
contributions to radar systems for mete-
orology.

Jinhong Yuan, Sydney, New South 
Wales, Australia, for contributions to 
multiantenna wireless communication 
technologies.

Bing Zeng, Chengdu, China, for 
contributions to image and video 
coding.

Jianzhong Zhang, Mountain View, 
California, for leadership in standard-
ization of cellular systems.

The following individual was evaluat-
ed by the SPS, but is not an SPS mem-
ber:

Yiu Chan, Kingston, Canada, for 
development of efficient localization and 
tracking algorithms.

Alan Gatherer, Plano, Texas, for con-
tributions to systems-on-chip for 3G and 
4G cellular systems.

2015 IEEE SPS Awards to be 
presented in Shanghai, China
The IEEE SPS congratulates the follow-
ing SPS members who will receive the 
Society’s prestigious awards during 
ICASSP 2016 in Shanghai, China.

The Society Award 
honors outstanding 
technical contributions 
in a field within the 
scope of the IEEE SPS 
and outstanding lead-
ership within that 

field. The Society Award comprises a 
plaque, a certificate, and a monetary 
award of US$2,500. It is the highest-level 
award bestowed by the IEEE SPS. This 
year’s recipient is Alfred O. Hero, “for 
contributions to the field of statistical sig-
nal and image processing and for sus-
tained service to the Society.”

The Technical Achievement Award 
is presented this year to Li Deng “for

outstanding contribu-
tions to deep learning 
and to automatic 
speech recognition.” 
T h e  T e c h n i c a l 
Achievement Award 
honors a person who, 

over a period of years, has made out-
standing technical contributions to the-
ory and/or practice in technical areas 
within the scope of the Society, as 
demonstrated by publications, patents, 
or recognized impact on this field. The 
prize for the award is US$1,500, a 
plaque, and a certificate.

The Meritorious 
Service Award hon-
ors volunteers whose 
dedication, effort, 
and contributions 
have benefited the 
Society significantly.  

This year’s recipient is Min Wu, “for 
exemplary service to and leadership in 
the IEEE Signal Processing Society.” 
The award comprises a plaque and a 
certificate.

The SPS Education 
Award honors educa-
tors who have made 
pioneering and signifi-
cant contributions to 
signal processing edu-
cation. The award 

comprises a plaque, a monetary award of 
US$1,500 and a certificate. The recipient 
of the SPS Education Award is Ali H. 
Sayed “for the writing of scholarly and 
influential texts in the areas of adaptive 
systems and statistical signal processing.”

The Indus t r ia l 
Leader Award recog-
nizes an industry 
business or technical 
leader whose leader-
ship has resulted in 
major and outstand-

ing advances or new directions using 
signal processing technologies within 
the scope of the Society. This award is 
for executive leadership resulting in 
major advances and new directions 
using signal processing in a business 
area. The prize is US$1,500, a plaque, 
and a certificate. The recipient of the 
Industrial Leader Award is John R. 
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Treichler “for sustained impact and 
leadership to the security and intelli-
gence industry through signal process-
ing innovations.”

The Industr ia l 
Innovation Award is 
presented this year to 
Gary Elko “for out-
standing contributions 
toward industr ial 
research and commer-

cialization of innovative electroacoustic 
devices and microphone array signal pro-
cessing.” The Industrial Innovation 
Award recognizes an individual or team 
at any level who were industry employ-
ees whose technical contributions have 
resulted in significant advances using sig-
nal processing technologies within the 
scope of the Society. The prize is 
US$1,500 per awardee (up to a maxi-
mum of US$4,500 per award) and a 
plaque and certificate.

Outstanding Publications Honored 
by SPS

A number of out-
standing publications 
are honored by the 
Society. The Sus-
tained Impact Paper 

Award honors the author(s) of a journal 
article of broad interest that has had 
sustained impact over many years on a 
subject related to the Society’s technical 
scope. The prize shall consist of 
US$500 per author (up to a maximum 
of US$1,500 per award) and a certifi-
cate. To be eligible for consideration, an 
article must have appeared in one of the 
IEEE Signal Processing Society trans-
actions or IEEE Journal of Selected 
Topics in Signal Processing, in an issue 
predating the spring awards board 
meeting by at least ten years (typically 
held in conjunction with ICASSP). This 
year, the Sustained Impact Paper Award 
recipients are Ingemar J. Cox, Joe 
Kilian, F. Thomson Leighton, and Talal 
Shamoon for their paper “Secure 
Spread Spectrum Watermarking for 
Multimedia,” IEEE Transactions on 
Image Processing, vol. 6, no. 12, Dec. 
1997. 

The IEEE Signal Processing Maga-
zine Best Paper Award honors the 

author(s) of an article of exceptional 
merit and broad interest on a subject 
related to the Society’s technical scope 
and appearing in the Society’s magazine. 
The prize comprises US$500 per author 
(up to a maximum of US$1,500 per 
award) and a certificate. This year, the 
IEEE Signal Processing Magazine Best 
Paper Award recipients are Zhi-Quan 
Luo, Wing-Kin Ma, Anthony Man-Cho 
So, Yinyu Ye, and Shuzhong Zhang for 
their article “Semidefinite Relaxation of 
Quadratic Optimization Problems,” pub-
lished in IEEE Signal Processing Maga-
zine, vol. 27, no. 3, May 2010.

The IEEE Signal Processing Maga-
zine Best Column Award honors the 
author(s) of a column of exceptional 
merit and broad interest on a subject 
related to the Society’s technical scope 
and appearing in the Society’s maga-
zine. The prize shall consist of 
US$500 per author (up to a maximum 
of US$1,500 per award) and a certifi-
cate. In the event that there are more 
than three authors, the maximum prize 
shall be divided equally among all 
authors and each shall receive a certifi-
cate. This year, the IEEE Signal Pro-
cessing Magazine Best Column Award 
recipients are Antonio Plaza, Javier 
Plaza, Abel Paz, and Sergio Sánchez
for their article “Parallel Hyperspectral 
Image and Signal Processing,” pub-
lished in IEEE Signal Processing 
Magazine, vol. 28, no. 3, May 2011.

The Overview Paper Award honors 
the author(s) of a journal article of broad 
interest that has had substantial impact 
over several years on a subject related to 
the Society’s technical scope. A paper 
considered for the award should present 
an overview of a method or theory with 
technical depth and application perspec-
tive. It should have a multiyear record of 
impact and also be relevant to current 
researchers and/or practitioners. The 
prize shall consist of US$500 per author 
(up to a maximum of US$1,500 per 
award) and a certificate. This year, the 
Overview Paper Award recipients are 
Beibei Wang and K.J. Ray Liu, for 
“Advances in Cognitive Radio Networks: 
A Survey,” IEEE Journal of Selected 
Topics in Signal Processing, vol. 5, no. 1, 
Feb. 2011.

Six Best Paper Awards were pre-
sented, honoring the author(s) of a 
paper of exceptional merit dealing 
with a subject related to the Society’s 
technical scope and appearing in one 
of the Society’s transactions, irrespec-
tive of the author’s age. The prize is 
US$500 per author (up to a maximum 
of US$1,500 per award) and a certifi-
cate. Eligibility is based on a five-year 
window preceding the year of election, 
and judging is based on general quali-
ty, originality, subject matter, and 
timeliness. This year, the awardees are:
■ Mark A. Davenport, Petros T. 

Boufounos, Michael B. Wakin, and 
Richard G. Baraniuk, “Signal 
Processing with Compressive 
Measurements,” IEEE Journal of 
Selected Topics in Signal Processing,
vol. 4, no. 2, Apr. 2010

■ Moshe Mishali and Yonina C. Eldar,  
“From Theory to Practice: Sub-
Nyquist Sampling of Sparse 
Wideband Analog Signals,” IEEE 
Journal of Selected Topics in Signal 
Processing, vol. 4, no. 2, Apr. 2010

■ Xiaoyang Tan and Bill Triggs, 
“Enhanced Local Texture Feature 
Sets for Face Recognition Under 
Difficult Lighting Conditions,” IEEE 
Transactions on Image Processing,
vol. 19, no. 6, June 2010

■ Tomás Pevný, Patrick Bas, and 
Jessica Fridrich, “Steganalysis by 
Subtractive Pixel Adjacency Matrix,” 
IEEE Transactions on Information 
Forensics and Security, vol. 5, no. 2, 
June 2010

■ Junil Choi, David J. Love, and Patrick 
Bidigare, “Downlink Training 
Techniques for FDD Massive MIMO 
Systems: Open-Loop and Closed-
Loop Training with Memory,” IEEE 
Journal of Selected Topics in Signal 
Processing, vol. 8, no. 5, Oct. 2014

■ Chunming Li, Chenyang Xu, 
Changfeng Gui, and Martin D. Fox, 
“Distance Regularized Level Set 
Evolution and Its Application to 
Image Segmentat ion,” IEEE 
Transactions on Image Processing,
vol. 19, no. 12, Dec. 2010.
The Young Author Best Paper Award 

honors the author(s) of an especially 
meritorious paper dealing with a subject 
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related to the Society’s technical scope 
and appearing in one of the Society’s 
transactions and who, upon date of sub-
mission of the paper, is under 30 years 
of age. The prize is US$500 per author 
(up to a maximum of US$1,500 per 
award) and a certificate. Eligibility is 
based on a three-year window preceding 
the year of election, and judging is based 
on general quality, originality, subject 
matter, and timeliness. Five Young 
Author Best Paper Awards are being pre-
sented this year:
■ João F.C. Mota, for the paper co-

authored with João M.F. Xavier, 
Pedro M.Q. Aguiar, and Markus 
Püschel, “Distributed Basis Pursuit,” 
IEEE Transactions on Signal 
Processing, vol. 60, no. 4, Apr. 2012

■ Dimitris S. Papailiopoulos, for the paper 
coauthored with Alexandros G. 
Dimakis, “Interference Alignment as a 
Rank Constrained Rank Minimization,” 
IEEE Transactions on Signal 
Processing, vol. 60, no. 8, Aug. 2012

■ Jingning Han, Ankur Saxena, Vinay 
Melkote, for the paper coauthored 
with Kenneth Rose, “Jointly 
Optimized Spatial Prediction and 
Block Transform for Video and 
Image Coding,” IEEE Transactions 
on Image Processing, vol. 21, no. 4, 
Apr. 2012

■ Yuhua Xu, for the paper co-authored 
with Jinlong Wang, Qihui Wu, Alagan 
Anpalagan, and Yu-Dong Yao, 
“Opportunistic Spectrum Access in 
Cognitive Radio Networks: Global 
Optimization Using Local Interaction 
Games,” IEEE Journal of Selected 
Topics in Signal Processing, vol. 6, 
no. 2, Apr. 2012

■ Peiran Song, for the paper coauthored 
with Gesualdo Scutari, Francisco 
Facchinei, Daniel P. Palomar, and Jong-
Shi Pang, “Decomposition by Partial 
Linearization: Parallel Optimization of 
Multi-Agent Systems,” IEEE 
Transactions on Signal Processing, vol. 
62, no. 3, Feb. 2014
The IEEE Signal Processing Letters 

Best Paper Award honors the author(s) 
of a letter article of exceptional merit 
and broad interest on a subject related to 
the Society’s technical scope and appear-
ing in IEEE Signal Processing Letters.

The prize shall consist of US$500 per 
author (up to a maximum of US$1,500 
per award) and a certificate. Judging is 
over a five-year window and is based on 
technical novelty, the research signifi-
cance of the work, quality, and effective-
ness in presenting subjects in an area of 
high impact to the Society’s members. 
The recipients of the IEEE Signal Pro-
cessing Letters Best Paper Award are 
Argyrios Zymnis, Stephen Boyd, and 
Emmanuel Candès, for “Compressed 
Sensing with Quantized Measurements,” 
IEEE Signal Processing Letters, vol. 17, 
no. 2, Feb. 2010.

2015 Conference Best Paper 
Award for Industry
The Conference Best Paper Award for 
Industry recognizes author(s) of an 
International Conference on Image Pro-
cessing (ICIP) and International Con-
ference on Acoustics, Speech, and 
Signal Processing (ICASSP)/GlobalSIP 
paper of exceptional industrial merit 
and industrial impact dealing with a 
subject related to the Society’s technical 
scope. To be eligible for consideration, 
the paper must have been submitted to 
ICIP or ICASSP/GlobalSIP.

The Conference Best Paper Award 
for Industry is being presented for the 
first time to Lingfei Meng and Kathrin 
Berkner for their ICIP 2015 paper 
“Parallax Rectification for Spectrally-
Coded Plenoptic Cameras.

2015 Chapter of the Year Award
The IEEE Signal Processing Society Guja-
rat Chapter has been selected as the fifth 
recipient of the 2015 Chapter of the Year 
Award, which will be presented at the 
ICASSP 2016 Awards Ceremony in 
Shanghai, China. The award is presented 
annually to a Chapter that has provided its 
membership with the highest quality of 
programs, activities, and services. The SPS 
Gujarat Chapter will receive a certificate 
and a check in the amount of US$1,000 to 
support local Chapter activities.

SPS members receive 
2016 IEEE awards
The IEEE has announced the recipients 
of the 2016 IEEE medals. IEEE medals 
are the highest honor of awards presented 

by the IEEE. The medals will be present-
ed at the 2016 IEEE Honors Ceremony 
at ICASSP. Three SPS members were 
awarded with IEEE medals for 2016

The IEEE Jack S. 
Kilby Signal Process-
ing Medal, awarded 
f o r o u t s t a n d i n g 
achievements in sig-
nal processing, will 
be presented to Louis 

L. Scharf (Colorado State University, 
Fort Collins,) for “pioneering and sus-
tained contributions to statistical signal 
processing and its practice.”

The IEEE James H. 
Mulligan, Jr. Educa-
tion Medal, distribut-
ed for a career of 
outstanding contribu-
tions to education in 
the fields of interest 

of IEEE, will be awarded to Simon S. 
Haykin (McMaster University, Hamil-
ton, Ontario, Canada) for “contributions 
to engineering education in adaptive 
signal processing and communication.”

The IEEE Dennis J. 
Picard Medal for 
Radar Technologies 
and Applications rec-
ognizes outstanding 
accomplishments in 
advancing the fields of 

radar technologies and their applica-
tions. The 2016 recipient is Nadav 
Levanon (Tel Aviv University, Israel) 
for “contributions to radar signal design 
and analysis, pulse compression, and 
signal processing.”

In addition, as announced previously, 
five SPS members have received IEEE 
Technical Field Awards. They are: Take-
hiro Moriya (IEEE James L. Flanagan 
Speech and Audio Processing Technical 
Field Award), Bede Liu (IEEE Fourier 
Award for Signal Processing), K.J. Ray 
Liu (IEEE Leon K. Krichmayer Gradu-
ate Teaching Award), Yonina Eldar  
(IEEE Kiyo Tomiyasu Award), and P.P. 
Vaidyanathan (IEEE Gustav Robert 
Kirchhoff Award). Details can be found 
in the “Society News” column of the 
November 2015 issue of the magazine.

SP
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READER’S CHOICE

Top Downloads in IEEE Xplore

The “Reader’s Choice” column has 
traditionally listed recent downloads 
from all publications of the IEEE 

Signal Processing Society (SPS). We 
decided to try some different things to 
increase the column’s utility to the 
reader. This month’s column focuses on 
articles in IEEE Tranasctions on Image 
Processing. Future issues will look at 
the top downloads from other SPS 
publications. We hope this will 
increase the number of different arti-
cles/papers we highlight, in part 
because we are guaranteed not to 
repeat from issue to issue, but also 
because journals with 
a focused readership 
will still have their 
top downloads high-
lighted. 

IEEE Transactions 
on Image Processing
includes image process-
ing, imaging systems, 
image scanning, dis-
play, and printing. The 
“word cloud” image 
seen in this article shows the concentra-
tion of topics used in the titles of the 
most downloaded papers over the past 
year weighted by the number of 
months the article was a top down-
load. This journal considers theory, 
algorithms, and architectures for 
image coding, filtering, enhancement, 

restoration, segmentation, and motion 
estimation; image formation in 

tomography, radar, 
sonar, geophysics, 
astronomy, micros-
copy, and crystal-
lography; image 
scanning, digital 
ha l f - toning and 
display, and color 
reproduction; and 
emerging topics 
related to image and 
video processing.

This issue’s “Reader’s Choice” lists 
the top ten papers most downloaded 
for the past year at the time of the 
print deadline. Download statistics can 
be found in the supplementary docu-
ment on the SigPort repository (http://
sigport.org/256), where we have 
included inset graphs to show the 
downloads for each month of the pre-
vious year and show if the article is a 
steady performer, a brilliant flash, a 

past glory, or a rising star. Your sug-
gestions and comments are welcome 
and should be sent to Associate Editor 
Michael Gormish (gormish@ieee.org).

Image Quality Assessment: 
From Error Visibility 
to Structural Similarity
Wang, Z.; Bovik, A.C.; Sheikh, H.R.; 
Simoncelli, E.P.
This paper introduces a framework 
for quality assessment based on the 
degradation of structural information. 
Within this framework a structure 
similarity index is developed and 
evaluated. MATLAB code available.

April 2004

New Challenges 
for Image Processing Research
Pappas, T.N.
The editor-in-chief of IEEE Transactions 
on Image Processing addresses the direc-
tion of the journal and image processing.

December 2011
Digital Object Identifier 10.1109/MSP.2015.2506188
Date of publication: 7 March 2016

We decided to try some 
different things to 
increase the column’s 
utility to the reader. 
This month’s column 
focuses on articles in IEEE
Tranasctions on Image
Processing.
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Image Super-Resolution 
Via Sparse Representation
Yang, J.; Wright, J.; Huang, T.S.; Ma, Y.
This paper presents an approach to sin-
gle-image super-resolution based upon 
sparse signal representation of low- and 
high-resolution patches. Coefficients 
are determined for each patch of the 
low-resolution input, and then used to 
generate the high-resolution output.

November 2010

Vector Sparse Representation of 
Color Image Using Quaternion 
Matrix Analysis
Xu, Y.; Yu, L.; Xu, H.; Zhang H.; 
Nguyen, T.
The proposed model represents the color 
image as a quaternion matrix, where a 
quaternion-based dictionary learning 
algorithm is presented using the K-qua-
ternion singular value decomposition 
(QSVD) (generalized K-means cluster-
ing for QSVD) method. It conducts the 
sparse basis selection in quaternion 
space, which uniformly transforms the 
channel images to an orthogonal color 
space. In this new color space, the inher-
ent color structures can be completely 
preserved during vector reconstruction.

April 2015

Image Quality Assessment for 
Fake Biometric Detection: Application 
to Iris, Fingerprint, and Face 
Recognition 
Galbally, J.; Marcel, S.; Fierrez J.
The proposed system attempts to enhance 
the security of biometric recognition 
frameworks by adding a liveness assess-
ment in a fast, user-friendly, and nonintru-
sive manner. Twenty-five general 
image-quality features are extracted from 
the authentication image to distinguish 
between legitimate and imposter samples 
for fingerprint, iris, and two-dimensional 
face biometrics.

Februrary 2014

Vector-Valued Image Processing 
by Parallel Level Sets
Ehrhardt, M.J.; Arridge, S.R.
This paper considers the components 
of an image as a vector based on the 
angle between the spatial gradients 
of their channels. By minimizing 
large angles parallel level sets are 
obtained and used for demosaicking.

January 2014

Face Recognition Across 
Non-Uniform Motion Blur, 
Illumination, and Pose
Punnappurath, A.; Rajagopalan, A.N.; 
Taheri, S.; Chellappa, R.; Seetharaman, G.
A methodology for face recognition 
in the presence of space-varying 
motion blur comprising of arbitrarily 
shaped kernels is presented. The 
authors model the blurred face as a 
convex combination of geometrically 
transformed instances of the focused 
gallery face and show that the set of 
all images obtained by nonuniformly 
blurring a given image forms a con-
vex set. The framework is then 
extended to handle illumination varia-

tions by exploiting the fact that the set 
of all images obtained from a face 
image by nonuniform blurring and 
changing the illumination forms a 
biconvex set.

July 2015

Active Contours 
Without Edges
Chan, T.F.; Vese, L.A.
This paper presents a model to detect 
objects  using curve evolut ion. 
Numerical comparisons show the 
advantage of a stopping criterea 
based on the segmentation rather 
than the gradient.

February 2001

Weighted Guided 
Image Filtering
Li, Z.; Zheng, J.; Zhu, Z.; Yao, W.; Wu, S.
The weighted guided image filter 
incorporates an edge-aware weight-
ing into existing guided image filter 
to address the problem of halo arti-
facts. The filter is applied to detail 
enhancement, haze removal, and 
image fusion.

January 2015

Image Denoising Via Sparse 
and Redundant Representations 
over Learned Dictionaries
Elad, M.;  Aharon, M.
This paper uses either a corrupted 
image itself or a high-quality image 
data base to learn dictionaries of small 
patches generated via the K-SVD 
algorithm. A global image prior is 
used to extend small patches to the 
entire image.

December 2006
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SPECIAL REPORTS

e live on an increasingly sensor-
driven planet. Sensors are virtual-
ly everywhere, feeding endless 

streams of data into a rapidly growing 
array of systems. The emerging Inter-
net of Things (IoT) is poised to drive 
sensor deployments to an even higher 
level over the next several years, 
impacting business, government, and 
countless private lives in ways both 
known and not yet fully understood. 

Connected smart devices that collect 
and exchange information with each 
other will form the IoT’s heart. Market 
research firm Gartner forecasts that 
4.9 billion connected “things” will be in 
use by the end of 2015, up 30% from 
2014, and will reach 25 billion units by 
2020. Without sensor end points, this 
progress would not be possible.

Signal processing is an enabling 
technology for a wide range of sensors 
and related devices. Researchers world-
wide are currently implementing signal 
processing in various and frequently 
innovative ways to help create a new 
generation of powerful sensors that 
promise to improve lives and, in a num-
ber of cases, literally improve the world 
(or at least limit the destruction caused 
by human activities).

Assessing ocean dynamics
With the goal of advancing the measure-
ment of oceanic dynamics that shape 
marine biology, climate patterns, and 
even military operations, engineers at the 
University of Nebraska and the U.S. 

Naval Research Laboratory have turned 
to signal processing to help develop a 
next-generation temperature sensor.

“Temperature measurement is an 
important aspect of oceanography,” says 
Ming Han, an associate professor of elec-
trical and computer engineering at the 
University of Nebraska, Lincoln. Han 
notes that the new fiber-optic sensor he 
and his coresearchers created can reg-
ister significantly smaller temperature 
changes at approximately 30 times the 
speed of existing commercial technol-
ogies. The high-speed sensor promises 
to help users gain a better understand-
ing of a variety of ocean and ocean-
related environments. “Currents, 
mixing events, large-scale circulation, 
air-sea exchange and, ultimately, 

global climate change are a few obvi-
ous examples,” he says.

Han and coresearcher postdoctoral 
researcher Guigen Liu developed the 
enhanced sensor by attaching a small 
silicon pillar to the tip of the fused sili-
ca glass typically used in fiber optics 
(Figure 1). The pair worked in collabo-
ration with Weilin “Will” Hou, a Naval 
Research Laboratory oceanographer.

The optical density of silicon natu-
rally changes whenever it is exposed to 
even slight temperature shifts, making it 
a sensitive material that’s particularly 
suitable for thermometry, Han explains. 
The ease with which the silicon trans-
fers heat, combined with its small size, 
enables the device to register changes at 
extremely fast rates. “We chose silicon 

Digital Object Identifier 10.1109/MSP.2015.2504562
Date of publication: 7 March 2016

Signal Processing Powers a Sensor Revolution

W

FIGURE 1. Ming Han, an associate professor of electrical and computer engineering at the Univer-
sity of Nebraska, Lincoln, and postdoctoral researcher Guigen Liu, developed an enhanced marine 
temperature sensor by attaching a small silicon pillar to the tip of the fused silica glass typically 
used in fiber optics.
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as the sensing material for an optical 
Fabry–Perot cavity (a small light-trap-
ping device, approximately a millionth 
of an inch wide, built out of small, half-
silvered mirror), which forms the basis 
of the sensing scheme,” Han says.

The researchers 
also created a novel 
signal processing 
method that averag-
es multiple wave-
length peaks to help 
lower noise interfer-
ence,  which can 
introduce artificial 
temperature fluctua-
tions that adversely 
affect sensor preci-
sion. “Compared to other fiber-optic 
thermometers that are mostly based on 
silica material, silicon not only pro-
vides us with higher sensitivity and 
faster response, but also a very high 
refractive index that endows the reflec-
tion spectrum from the Fabry–Perot 
cavity with many more wavelength 
peaks,” Han says.

Since each of the peak wavelengths 
can be used to monitor temperature 
change, and because they all have almost 
the same sensitivity, the average 

wavelength is calculated as the ultimate 
signal. “Due to the independence of each 
peak wavelength, the random noise of 
the average wavelength has been sub-
stantially suppressed,” Han says. “We 
use curve fitting to find the peak wave-

lengths precisely, 
then we make an 
average to all the fit-
ted wavelengths,” he 
notes, adding that the 
approach provides a 
relatively simple, yet 
very effective signal 
processing method 
for sensor noise 
reduction. “For each 
peak wavelength, we 

used a Gaussian function to fit a set of 
discrete data of the spectrum to get the 
value more precisely,” Han says. In their 
experiments, the researchers were able to 
achieve an ultimate temperature resolu-
tion of less than 1 × 10–3 °C. “This high-
resolution surveillance on temperature 
variation is a huge necessity for ocean-
ography,” Han says.

With several sensor prototypes 
already successfully tested, the research-
ers are now working toward developing 
a field-deployable version designed to 

operate in extreme conditions. “We are 
still working on improving the package 
and designing the graphical user inter-
face for more convenient operation and 
smarter data processing,” Han says.

Han is also looking forward to devel-
oping versions of the sensors for other 
environmental measurement applica-
tions. “We have demonstrated that this 
sensor can also be explored for use as a 
fast response anemometer and tempera-
ture-compensated pressure sensor by 
using a laser to get the silicon optical 
cavity heated,” he remarks.

Sensitive sniffer
Chemical sensors used to detect hazard-
ous gases and environmental pollutants 
are the focus of a growing number of 
research projects. At the Nanooptics and 
Plasmonics Laboratory of the Moscow 
Institute of Physics and Technology 
(MIPT), Dmitry Fedyanin and his doctor-
al student, Yury Stebunov, have created a 
small, highly sensitive nanomechanical 
sensor designed to analyze the chemical 
composition of various natural, man-
made, and biological substances.

“The ultimate goal in chemical and 
biological sensing is detection and mea-
surement of very low molecule concen-
tration in air, blood, and other 
environments,” says Fedyanin, the project 
leader and a senior fellow at MIPT. “In 
order to achieve this goal, the sensor 
should be able to resolve a single mole-
cule, which is bound to the sensor sur-
face,” Fedyanin explains.

The new sensor contains no elec-
tronic circuits, yet can be produced 
through a standardcomplementary 
metal–oxide semiconductor process 
technology. The device consists of two 
parts: a photonic nanowave guide to 
control the optical signal, and a cantile-
ver (a rigid structure anchored at only 
one end) hanging over the waveguide 
(Figure 2). The cantilever, which mea-
sures m5 n  long, m1 n  wide, and 90 
nm thick, is connected tightly to a chip.

Two optical signals travel through 
the waveguide during oscillations: a 
pump optical signal and a probe optical 
signal. Vibrations of the nanobeam can-
tilever are excited by the pump signal. 
“The pump signal propagates along the 

Pump Signal

Probe Signal

Nanophotonic Waveguide

Nanobeam

Cantilever

FIGURE 2. In the chemical and biological sensor developed by researchers at the Nanooptics and 
Plasmonics Laboratory of MIPT, a nanobeam cantilever is suspended above a photonic waveguide. 
A pump optical signal excited at a light wavelength and sinusoidally modulated at a frequency actu-
ates the cantilever. Simultaneously, the power of the continuous wave probe signal excited at a light 
wavelength and propagating along the same waveguide is controlled by the vibrating nanobeam, 
providing the capability to gauge the amplitude of mechanical oscillations. By doing a scan of the 
modulation frequency, it is possible to measure the decrease in the resonant frequency of the canti-
lever and determine the mass of adsorbed molecules.
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With several sensor 
prototypes already 
successfully tested, 
the researchers are 
now working toward 
developing a field-
deployable version 
designed to operate in 
extreme conditions.
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waveguide and the cantilever experienc-
es a ponderomotive force (i.e., a nonlin-
ear force that a charged particle 
experiences in an inhomogeneous oscil-
lating electromagnetic field), which is 
proportional to the gradient of the 
squared electric field of the pump sig-
nal,” Fedyanin says. Since the pump sig-
nal is sinusoidally modulated, it 
produces a sinusoidal force on the canti-
lever. “This can be considered as a trans-
duction process: the pump optical signal 
is converted to mechanical oscillations 
of the cantilever,” Fedyanin explains. 
“The amplitude of these oscillations 
depends on the resonant frequency of 
mechanical oscillations of the cantilever 
and the quality factor of the cantilever.”

The oscillating cantilever modulates 
the intensity of the probe optical signal at 
the frequency of the cantilever’s mechani-
cal oscillations. “The probe signal trans-
mitted through the waveguide section 
with the cantilever contains information 
about the cantilever’s vibrations and 
noise,” Fedyanin says. Thanks to the 
strong interaction between the highly con-
fined optical mode and nanobeam cantile-
ver, the laser noise is typically lower than 
the noise produced by the cantilever and 
does not limit the sensitivity of the sen-
sor.” Finally, the probe signal is detected 
by a photodetector, which converts the 
optical signal into an electrical signal.

The cantilever’s oscillations make it 
possible to determine the chemical com-
position of the environment in which the 
chip is placed. That is because the fre-
quency of mechanical vibrations depends 
not only on the materials’ dimensions and 
properties, but also on the mass of the 
oscillatory system, which changes during 
a chemical reaction between the cantile-
ver and the environment. By placing dif-
ferent reagents on the cantilever, 
researchers can make it react with specific 
substances or even biological objects. 
“The sensor sensitivity is high enough to 
detect single proteins and DNA mole-
cules,” Fedyanin says.

“To achieve ultimate sensitivity and 
single-molecule resolution, one needs 
to maximize the signal-to-noise ratio by 
reducing the effective electrical band-
width of the photodetector and filtering 
out the noise, which can be done by 

using advanced filtering,” Fedyanin 
says. “Such a low bandwidth can be 
achieved, for example, by embedding 
the actuation-transduction scheme in a 
phase-locked loop.” Under laboratory 
conditions, it is possible to efficiently 
perform measurements simply using a 
lock-in amplifier, 
Fedyanin notes.

Fedyanin says that 
the biggest challenge 
facing the researchers 
is getting the sensor to 
work reliably and 
accurately at room 
temperature, which 
has so far proved elu-
sive. “Experimental 
s t u d i e s  a n d 
optimization are required for developing 
practical devices,” he says.

Although the research has already gener-
ated some commercial interest, Fedyanin 
says that the sensor itself remains several 
years away from production. “We expect 
that such a device can appear on the market 
in five to ten years,” Fedyanin predicts.

A “smart” fence
As the IoT gradually weaves its way into 
the fabric of everyday life, even property 
fences—such as types surrounding air-
ports, nuclear power stations, industrial 
sites, and various other types of public 

and private properties—are becoming 
Internet connected. A sensor technology 
developed by a team of experimental 
physicists led by Uwe Hartmann, a pro-
fessor at Saarland University, aims to 
prevent unauthorized individuals from 
gaining access to secure sites by raising 

an alert as soon as 
anyone attempts to 
climb over or cut 
through a fence. 

The magnetic sen-
sors are integrated 
into a thin cable that 
can be added to virtu-
ally any type of 
perimeter fence. The 
cable and fence are 
then connected via a 

digital bus to a processing and analysis 
system that can rapidly calculate the pre-
cise location of any security breach. 
“Any tiny vibration of the fence due to 
intrusion can be detected by the magnet-
ic field sensors in an accurate way 
through analyzing the data from all of 
the sensors,” says Saarland University 
physicist Haibin Gao, a research team 
member working on the project’s sensor 
technology. “Complex algorithms permit 
the discrimination of false alerts and 
identification of the intrusion category.”

The “smart” fence is designed to 
detect a wide range of tampering 

FIGURE 3. Fenced-in areas can be continuously, unobtrusively monitored with a sensor-powered 
“smart” fence technology developed by a team of experimental physicists, led by Prof. Uwe Hartmann 
(left) of Saarland University and coresearchers Uwe Schmitt (right) and Haibin Gao (front).

Researchers worldwide 
are currently implementing 
signal processing in 
various and frequently 
innovative ways to help 
create a new generation 
of powerful sensors that 
promise to improve lives.
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actions, including someone attempting 
to climb over it, or cut its links with 
bolt cutters. “The sensors can detect 
disturbances in the surrounding mag-
netic field, including the magnetic field 
above them, with a range extending 
several meters,” Gao states. The sensors 
can even detect a drone flying close 
overhead  (as long as the drone contains 
metal, of course).

The cable, which contains the lin-
early arranged sensors, features a 
diameter comparable to a standard 
electrical cable. It allows the remote 
monitoring of many kilometers of 
perimeter fencing and can be attached 
to the fence, built into it, or even bur-
ied beneath it. The contactless sensors 
are not subject to wear, consume rela-
tively little power, and are unaffected 
by rain or fog.

While using the fence to detect 
potential intrusions is relatively easy, 
preventing time-wasting false alerts is 
much more difficult. This is where sig-
nal processing becomes essential, 
improving the system’s ability to distin-
guish between real intrusion attempts 
and different types of natural phenome-
na. “There are various sources generat-
ing magnetic field changes that can be 
detected by magnetic sensors,” Gao 
explains. “The vibration of the fences 
can be caused by wind, passing ani-
mals, or real invasion events.”

Gao notes that signal processing, 
besides providing signal amplification 
and filtering, allows the fence to distin-
guish between various sources of 
induced magnetic field changes. “Sig-
nal processing is used to correct real-
time data from all the magnetic sensors, 
which can be up to 1,000 devices, and 
to indicate the signal amplitude, fre-
quency ranges and distributions, or to 
set up thresholds for signal amplitude 
and frequency,” he says. “Through the 
magnetic sensing technique, invasion 
events can be detected without influ-
ences from the environment such as 
temperature, weather, and animals.”

The researchers are currently refin-
ing the technology to enable the system 
to unambiguously assign a particular 
type of vibration or magnetic field 
change to a specific type of disturbance. 
To ensure both accuracy and reliability, 
the researchers are now simulating dif-
ferent types of disturbances on a series 
of test fences (Figure 3). The fences, 
installed on the Saarland University 
campus, are currently being subjected 
to long-term monitoring experiments in 
an effort to determine how the system is 
affected by various physical and envi-
ronmental factors. Data collected by 
each fence is used by the researchers to 
model typical disturbance scenarios 
and to train the analysis system with 
complex mathematical methods. The 

biggest remaining challenge, Gao says, 
is the development of a self-learning 
algorithm that will allow the system to 
work autonomously without continuous 
human interaction or supervision at air-
ports and other fenced-in sites.

The researchers are currently col-
laborating with a number of compa-
nies to make the system more efficient 
and deployable and, most importantly, 
to lower the cost of producing the 
sensors to a price point where large-
volume production becomes economi-
cally feasible. 

Goa notes that the system’s ability to 
operate independently of environmental 
conditions gives the technology a sig-
nificant advantage over many estab-
l ished surveil lance techniques, 
particularly cameras, which are often 
hampered by rain and fog. Also, unlike 
cameras, the smart fence poses no 
threat to personal privacy. “The sensors 
simply report that a vibrational distur-
bance was caused by a human agent at 
a specific location,” Gao says, “No 
other information is gathered.”

Author
John Edwards (jedwards@johnedwards
media.com) is a technology writer based 
in the Phoenix, Arizona, area. 
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Yan Chen, Beibei Wang,Yi Han, Hung-Quoc Lai, 
Zoltan Safar, and K.J. Ray Liu

1053-5888/16©2016IEEE

PERSPECTIVES

Why Time Reversal for Future 5G Wireless?

s the demand for wireless voice and 
data services has continued to grow 
dramatically, operators struggle to 

satisfy this demand with acceptable 
quality of service. The main approach 
until now was to increase the system 
bandwidth and spectral efficiency. For 
instance, there was an almost tenfold 
increase for each new generation of cel-
lular technology [the first generation 
(1G) technology can support up to 
30 kHz, second generation (2G) around 
200 kHz, third generation (3G) around 
1.25–5 MHz, and fourth generation (4G) 
up to 20 MHz]. Meanwhile, technolo-
gists have begun seeking more innova-

tive and efficient communication 
technologies to meet the ever-increasing 
demand for data traffic with advanced 
signal processing capabilities for the 5G 
wireless communication systems. It is 
expected that 95% of data traffic will 
come from indoor locations in a few 
years [1]. Compared to outdoor propaga-
tion, wireless medium in an indoor envi-
ronment often exhibits richer multipath 
propagation mostly without a strong 
line-of-sight (LOS) component, which 
makes the design of 5G indoor commu-
nication systems even more challenging. 

Several key ideas have received 
attention as promising candidates for 
future 5G wireless communication sys-
tems in recent years. The first candidate 
solution is the massive multiple-input, 

multiple-output (MIMO) technique [2]. 
The massive MIMO effect, in essence, 
makes the channels to different users 
quasiorthogonal with very simple spatial 
multiplexing/demultiplexing procedures 
and achieves large spectral efficiency 
gains [3]. A straightforward approach 
to implement this technique is to mount 
hundreds of antennas on the transmitter 
and/or the receiver. However, challenges 
such as pilot contamination, hardware 
implementation complexity, antenna 
correlation, and mutual coupling due 
to the large number of antennas have 
to be carefully addressed. In addition, 
the requirement of deploying a large 
number of antennas at the base station 
in massive MIMO systems may not be 
feasible in indoor scenarios.

Digital Object Identifier 10.1109/MSP.2015.2506347
Date of publication: 7 March 2016

Several influential magazines from sister Societies of the IEEE 
and other technical or scientific associations regularly pub-
lish commentary sections that present analysis by technical 
or policy experts on issues of interest to the readers. These 
commentaries complement existing editorials and offer read-
ers valuable perspectives on a broader range of issues. 

Inspired by the values of these commentaries, we are initi-
ating a new column for IEEE Signal Processing Magazine
(SPM) called “Perspectives,” which highlights an area of 
recent exciting research and projects its potential technologi-
cal impact to our everyday lives. Different from a feature arti-
cle or other existing technical columns of SPM, this 
“Perspectives” column offers an outlook of an author or 
group of authors, as backed by technical evidences avail-
able thus far.

In this first “Perspectives” column article, Chen et al. 
present a brief overview and their technical opinions on 

the prospects of time-reversal (TR) techniques in the fifth-
generation (5G) wireless communications based on their 
survey of the literature as well as their firsthand, cutting-
edge research that has been transferred into the early 
stages of practice. 

 It is possible that, after seeing the same technical evidenc-
es and perhaps having access to additional evidences, other 
experts may have different opinions.  We welcome readers’ 
feedback toward the “Perspectives” column articles, and we 
will be happy to share your comments with the authors.  
Your comments may be used to help us initiate future articles 
in this new column, organize forum discussions, or evolve 
into articles for the eNewsletters. 

Gwenaël Doërr (gwenael.doerr@technicolor.com), 
Kenneth Lam (enkmlam@poly.edu.hk), 

and Min Wu (minwu@umd.edu)

A

Editors’ Note
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The second candidate solution is net-
work densification by more heteroge-
neous network deployment, such as the 
small cell technique and device-to-device 
(D2D) communication technique [4]. 
These techniques can improve the link 
efficiency by replacing longer links with 
shorter ones. However, coordination and 
interference management among the 
small cells (or D2D links) may become 
challenging. Ideally, the network should 
be easily scalable so that when additional 
cells/links are needed, little interference 
will be introduced, requiring only low-
complexity interference management. 

Another candidate solution is the 
cloud-based radio access networks 
(C-RAN) [5], where all the baseband 
processing is carried out through high-
performance computing in a centralized 
structure, which transforms the evolution 
of the wireless networks from today’s 
cell-centric architecture into a device-
centric architecture [3]. Nevertheless, as 
with network densification, the limited 
fronthaul link capacity may prevent the 
C-RAN from fully utilizing the benefits 
made possible by concentrating the pro-
cessing intelligence at the cloud. 

Besides the aforementioned challeng-
es of the candidate techniques, the opera-
tion of a large number of base stations and 
heterogeneous devices will consume a lot 
of energy. Therefore, the next-generation 
networks should focus on achieving better 
energy efficiency and reduce the complex-
ity of user devices as much as possible. 

From the aforementioned discussion, 
we can see that most of the existing solu-
tions for 5G have their inherent limita-
tions, which may make them either 
difficult to implement as a collectively 
cohesive solution or not as efficient as 
expected. Moreover, these solutions may 
not work well in indoor environments, 
where the vast majority of current and 
future data traffic will come from. In this 
article, we will show that TR communi-
cation possesses many outstanding char-
acteristics to address most of the 
previously mentioned challenges and, 
therefore, is an ideal candidate platform 
for 5G indoor systems. 

What is the TR phenomenon?
Time reversal (TR) is a fundamental 
physical phenomenon that takes advan-
tage of an unavoidable but rich multipath 
radio propagation environment to create 
a spatial-temporal resonance effect, the 
so-called focusing effect. Let us imagine 
that there are two points A and B within 
the space of a metal box. When A emits a 
radio signal, its radio waves bounce back 
and forth within the box, some passing 
through B. After a certain time, the ener-
gy level reduces and is no longer observ-
able. Meanwhile, B can record the 
multipath profile of the arriving waves as 
a distribution in time. Then, such a mul-
tipath profile is time reversed (and conju-
gated) by B and emitted accordingly, the 
last first and the first last. With channel 
reciprocity, all of the waves, following 

the original paths, will arrive at A at the 
same particular time instant, adding up in 
a perfectly constructive way. This is 
called the focusing effect. In essence, it is 
a resonance effect taking place at A stim-
ulated by B using the time-reversed mul-
tipath profile through the interaction with 
the box as demonstrated in Figure 1.

One can imagine that the larger the 
transmission power, the more bouncing 
back and forth of the electromagnetic 
(EM) waves in the box, and, therefore, 
the more observable multipaths. When 
the power is fixed, so is the maximum 
number of observable multipaths. Since 
radio waves travel at the speed of light, 
for one to see the multipath profile in 
detail, it needs high resolution in time, 
which implies very broad bandwidth in 
frequency. The larger the bandwidth, 
the better the time resolution, and, 
therefore, the more multipaths can be 
revealed. Essentially, multipaths are 
naturally existing degrees of freedom 
ready to be harvested via transmission 
power and bandwidth. 

In a real environment, especially 
indoors, depending on the structure 
of the buildings, the number of 
observable multipaths is limited due 
to the power of the radio and its 
bandwidth. Still, one can observe 
around 15–30 significant multipaths 
with 150-MHz bandwidth—the entire 
Industrial Scientific Medical (ISM) 
band at 5.8 GHz. Such a large num-
ber of degrees of freedom that exist 
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FIGURE 1. An illustration of TR: (a) the channel probing phase and (b) the data transmission and focusing phase.
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in nature can be harvested to enable 
engineering applications. 

Brief history of TR
Mathematically, the TR effect is simply 
for the environment to serve as the com-
puter to perform a perfect deconvolution; 
that is, the environment behaves like a 
matched filter! The research of TR dates 
back to the 1950s, where TR was utilized 
to compensate the phase-delay distortion 
that appears during long-distance trans-
missions of slow-speed pictures over 
telephone lines [6]. It has also been used 
to design noncausal recursive filters to 
equalize the ghosting artifacts of analog 
television signals caused by multipath 
propagation [7]. 

It was observed in a practical under-
water propagation environment [8] that 
the energy of the TR acoustic waves 
from transmitters could be refocused 
only at the intended location with very 
high spatial resolution. The 
spatial and temporal focusing 
feature can also be used for 
radar imaging and acoustic 
communications. Note that the 
resolution of spatial and tem-
poral focusing highly depends 
on the number of multipaths. 
To be able to harvest a large 
number of multipaths, large 
bandwidth and a high sampling 
rate is required, which was dif-
ficult or even impossible to 
achieve in the past. Fortunately, 
with the advance of semicon-
ductor technologies, broadband 
wireless technology has 

become available in recent years, and 
exploiting the TR effect has also become 
possible in wireless radio systems. 
Experimental validations of the TR tech-
nique with EM waves have been con-
ducted [9], including the demonstration 
of channel reciprocity and spatial and 
temporal focusing properties. Combining 
the TR technique with ultrawideband 
(UWB) communications has been stud-
ied with the focus on the bit error rate 
(BER) performance through simulations 
[10]. A system-level theoretical investiga-
tion and comprehensive performance 
analysis of a TR-based multiuser com-
munication system was conducted [11], 
where the concept of TR division multi-
ple access was proposed. Also, a TR 
radio prototype was built to conduct TR 
research and development [12]. As 
shown in Figure 2, the TR prototype is a 
customized software-defined radio plat-
form for designing and deploying TR-

based communication systems. The 
hardware architecture combines a specif-
ic designed radio-frequency (RF) board 
covering the ISM band with 125-MHz 
bandwidth, a high-speed Ethernet port, 
and an off-the-shelf user-programmable 
MityDSP-L138F module board (contain-
ing ARM9, floating point DSP, and 
Xilinx Spartan-6 FPGA). The size of the 
radio is cm cm cm5 17 23# # , the 
weight is about 400 g, and the power 
consumption is 25 W. As a comparison, 
the size, weight, and power consump-
tion of the massive MIMO prototype at 
Lund University in Sweden [13] is 

. m . m m,0 8 1 2 1# #  300 kg,  and 
2.5 kW, respectively. 

When applying the TR technique in 
wireless communications, if the trans-
mitted symbol duration is larger than 
(or equal to) the channel delay spread, 
the time reversed waveform can guar-
antee the optimal BER performance by 

virtue of its maximum signal-
to-noise ratio (SNR) property. 
However, if smaller, which 
is generally the case in high-
speed wireless communication 
systems, the delayed versions 
of the transmitted waveforms 
will overlap and interfere with 
each other. Such intersymbol 
interference (ISI) can be no-
tably severe and cause cru-
cial performance degradation, 
especially when the symbol 
rate is very high. The problem 
becomes even more challeng-
ing in a multiuser transmission 
scenario, where the interuser 

FIGURE 2. An example of the TR prototype: (a) three-dimensional (3-D) architecture for collecting measurements and (b) details of the prototype. 
(Figure courtesy of Origin Wireless, Inc.) 
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interference (IUI) is introduced due to 
the nonorthogonality of the channel im-
pulse responses among different users. 
To address this problem, one can utilize 
the degrees of freedom provided by the 
environment, i.e., the abundant multipa-
ths, to combat the interference using sig-
nature waveform design techniques. The 
basic idea of signature waveform design 
is to carefully adjust the amplitude and 
phase of each tap of the signature wave-
form based on the channel information 
such that the signal at the receiver can 
retain most of the useful signal while 
suppressing the interference as much as 
possible. Moreover, with random scat-
terers, TR can achieve focusing that is 
far beyond the diffraction limit [14], 
which is a half wavelength. 

TR effects
In this section, we argue that 
TR is an ideal platform for 
future 5G wireless communi-
cation systems because it can 
realize a massive MIMO-like 
effect using a single antenna 
and has low complexity, as the 
environment is serving as the 
computer. It is highly energy 
efficient, scalable for extreme 
network densification, and 
ideal for cloud-based radio 
access networks. It also offers, 
in a simple way, very high-
resolution localization perfor-
mance for indoor positioning 
systems, an essential property 

for Internet of Things (IoT) applica-
tions. TR communication meets all the 
requirements one can envision for 
future 5G wireless! 

A single-antenna realization of 
massive MIMO effect
In a typical indoor environment, the re-
flection, diffraction, and scattering in the 
wireless medium due to the various ob-
stacles and reflectors—such as walls, 
windows, and furniture—often create a 
large number of multipath components. 
As new spectrum and larger bandwidth 
become available, more rich-scattering 
multipaths can be revealed. But how 
many multipaths can be harvested? To 
answer that, we used two universal soft-
ware radio peripherals as channel 
sounders to probe the real channel in an 
office environment. Specifically, we 

scanned the spectrum from 4.9 to 
5.9 GHz to acquire the channel impulse 
response with a bandwidth of 
10 MHz–1 GHz using transmission pow-
er of 100 mW. Based on these experi-
ments, we show in Figure 3 the number 
of significant multipaths in an indoor en-
vironment versus the channel bandwidth. 
It can be seen that, with a single antenna, 
the number of multipaths can approach 
approximately 100 as the bandwidth in-
creases to 1 GHz. Such degrees of free-
dom can be further scaled up by deploy-
ing more antennas. 

Different from the way conventional 
techniques exploit the multipath propa-
gation environment—e.g., orthogonal 
frequency-division multiplexing 
(OFDM) exploiting the multipath com-
ponents as frequency diversity and 
code-division multiple access using the 

Rake receiver to coherently 
combine the multipath compo-
nents—the TR technique can 
take advantage of the multipa-
th propagation without the 
need for deploying complicat-
ed receivers or a large number 
of antennas if sufficiently 
large bandwidth can be used. 
The larger the bandwidth, the 
better the resolution of indi-
vidual multipath components. 
As shown in Figure 4(a) and 
(b), there are two ways to realize 
the massive MIMO effect. One 
is to use a large number of real 
antennas to straightforwardly 

FIGURE 4. Two different ways of realizing a massive MIMO effect: (a) the multiantenna approach and (b) the TR approach.
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build a massive antenna sys-
tem. And the other is to lever-
age TR that inherently treats 
the multipaths in the environ-
ment as virtual antennas. 
Both can achieve the spatial-
temporal resonance at a par-
ticular space and time that 
we now commonly term as 
the massive MIMO effect. 
Basically, it is a small focus-
ing ball of energy that takes 
place due to the very high 
degree of freedom. 

Therefore, by exploiting a 
large number of virtual anten-
nas, a single-antenna TR sys-
tem can achieve superior focusing effect 
in both time and spatial domains, result-
ing in similar promising performance as 
massive MIMO systems. In addition, the 
implementation complexity of a TR sys-
tem is much lower since it utilizes the 
environment as a virtual antenna array 
and a computing resource. If cooperation 
of users, e.g., cooperative communica-
tions, is a distributed way of achieving 
the MIMO effect of high diversity, then 
TR is similarly a cooperation of virtual 
antennas to achieve the massive MIMO 
effect. The TR waveform is nothing but 
to control each multipath (virtual anten-
na). Of course, what cooperation pays 
for is the spectral efficiency due to the 
use of time for distributed processing, in 
return for the diversity effect. 

In Figure 5, the performance compar-
ison is shown in terms of the expected 

achievable rate between a practical TR 
system and an ideal genie-aided massive 
MIMO system. The expected achievable 
rate is computed by averaging the achiev-
able rate defined in [15] over different 
channel realizations. By genie aided, we 
mean an ideal condition that the interfer-
ence and antenna coupling effects in the 
massive MIMO system can be complete-
ly eliminated with optimal beamforming. 
The genie-aided massive MIMO system 
has M transmit antennas with 20-MHz 
bandwidth where M is in the order of 
hundreds [13], while the TR system has a 
single transmit antenna with 1-GHz 
bandwidth. It is assumed that there are 
ten users in both systems, each equipped 
with a single antenna. In other words, the 
massive MIMO system we considered 
here is a multiuser MIMO (MU-MIMO) 
system [2]. The total transmit power is 

set to be the same for both sys-
tems. The overhead of both 
systems mainly comes from 
the channel acquisition, and 
thus is similar. From Figure 5, 
it can be seen that, at the cost 
of a larger bandwidth, the TR 
system can achieve compara-
ble if not better rates with the 
genie-aided massive MIMO 
system by using only a single 
antenna. This is achieved 
through exploiting a large 
number of virtual antennas that 
naturally exist in the environ-
ment. Note that the perfor-
mance of the TR system was 

obtained from real data, while that of 
massive MIMO is the best case scenario. 
Also note that the massive MIMO sys-
tem requires a large number of antennas 
that is suited for high-power outdoor base 
stations, while the TR system leverages 
large bandwidth to harvest naturally ex-
isting multipaths, ideal for low-power in-
door applications. 

Energy efficiency
TR technology can take advantage of 
the multipath propagation and achieve 
good energy efficiency. The temporal 
focusing effect concentrates a large por-
tion of the useful signal energy of each 
symbol within a short time interval, 
which effectively reduces the ISI for 
high-speed broadband communications. 
The spatial focusing effect allows the 
signal energy to be harvested at the 
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intended location and reduces 
leakage to other locations, 
leading to a reduction in both 
the required transmit power 
consumption and cochannel 
interference to other locations. 

Defining energy efficiency 
(in bits/Joule) of a system as the 
spectral efficiency (sum-rate in 
bits/channel use) divided by the 
transmit power expended (in 
Joules/channel use), and using 
real-world channel measure-
ments in a typical indoor envi-
ronment, we compare the 
energy efficiency of a TR sys-
tem with that of a direct trans-
mission system without TR. The results 
are shown in Figure 6. It can be seen that 
with TR, the energy efficiency can be 
improved by up to 7 dB. Note that a wide 
bandwidth is generally required for a TR 
system to resolve the rich multipaths and 
fully harvest energy from the environment. 
As 5G technology is expected to be able to 
support larger bandwidth, the benefits and 
unique advantages of TR due to the tempo-
ral and spatial focusing effects in a rich-
scattering environment promise a great 
potential for achieving high energy-effi-
ciency in next-generation networks. 

High capacity when
bandwidth is available
By utilizing spatial focusing, a TR 
access point (AP) can communicate 
with multiple users simultaneously 
within the same spectrum, i.e., the spec-

trum is fully reused by different users. 
Such a full spectrum reuse feature, 
together with wide bandwidth, have the 
potential to provide high capacity [15]. 
This is validated in Figure 7, where we 
show the performance comparison in 
terms of achievable rate between the 
TR system and two OFDM systems. 

It can be seen that for the one-user 
case, even with basic TR waveform, the 
TR scheme can achieve much better per-
formance than long-term evolution (LTE) 
in all SNR regions and better perfor-
mance than LTE-advanced (LTE-A) in 
most SNR regions. With optimal wave-
form, the performance of the TR system 
can be further improved. When there are 
ten users, due to the selectivity among dif-
ferent users, the achievable rate of LTE 
and LTE-A can be enhanced, and LTE-A 
can achieve comparable and even slightly 

better performance than the TR 
system with basic TR wave-
form. Nevertheless, with opti-
mal waveform, the TR system 
can still outperform LTE and 
LTE-A in most SNR regions, 
which demonstrates that the TR 
system can achieve higher ca-
pacity than OFDM systems 
when the bandwidth is wide 
enough. Note that there is a 
large amount of spectrum at 
millimeter-wave frequencies [3] 
that can be utilized by TR. 

Scalability for extreme 
network densification

With a high capacity, a single TR AP has 
the potential to serve many users while 
creating little interference to other wire-
less users. However, in some scenarios, 
the density of users may be so high that 
one single AP is insufficient to support all 
of them. We will show that the TR system 
is highly scalable and extra APs can be 
added with simple reconfiguration. 

In conventional wireless communica-
tion systems, a mechanism is needed to 
prevent or alleviate the interference intro-
duced by adding more APs due to the near-
far effect. This near-far effect is solely the 
result of the distance between the AP and 
the users. In the TR system, however, dif-
ferent users have different resonances, 
which are the result of location-specific 
channel impulse responses instead of the 
distance only. With such a strong-weak fo-
cusing effect, there is no clear definition of 
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cell boundaries. Thus, the TR 
system has a simple reconfigura-
tion property, allowing the easy 
addition of new APs to the sys-
tem. The newly added APs in 
the TR system help pick up 
users and reuse the same spec-
trum without incurring much in-
terference, while in conventional 
systems, intercell radio resource 
management is needed to coor-
dinate resource allocation be-
tween different cells and to limit 
the intercell interference. Such a 
self-configuring feature provides 
native support for machine-to-
machine (M2M) and D2D com-
munications where multiple 
pairs of machines/devices can 
coexist and share the spectrum 
without complicated transmis-
sion coordination strategies. 

Figure 8 shows the perfor-
mance comparison in terms of 
normalized achievable rate ver-
sus the number of APs, where 
the normalization is performed 
over the achievable rate of the 
single AP case. It can be seen 
that the normalized achievable 
rate of conventional systems 
remains unchanged regardless 
of the increase of the number of 
APs. This is because neighbor-
ing APs cannot use the same 
resource in conventional sys-
tems due to the interference. On 
the other hand, with the TR system, by 
utilizing the spatial focusing effect, all 
APs use the same spectrum and thus the 
normalized achievable rate increases as 
the number of APs increases. Note that 
although different APs share the same 
spectrum, they are nearly orthogonal with 
each other. In traditional systems, such 
orthogonality can only be achieved by 
applying additional techniques, such as 
time, code, or frequency division multi-
plexing. In the TR system, this near-
orthogonality is achieved naturally by 
utilizing the large number of multipath 
components in the wireless channel. 

The performance degradation of each 
individual user is shown in Figure 9, 
where the normalization is over the 
point-to-point link capacity. It can be 

seen that the performance degradation of 
the IEEE 802.11 system is much more 
severe than the TR system. This is 
because each link in 802.11 requires an 
exclusive use of the channel, which is 
inefficient if there are many users/APs 
close to each other. On the contrary, the 
TR system can tolerate interference 
through the interference mitigation effect 
of TR so that multiple users/APs can 
share the same spectrum. Therefore, the 
performance degradation is more grace-
ful, and each user is more robust against 
the interference from nearby users/APs. 

Ideal for cloud-based networking
In most of the current C-RAN structures as 
shown in Figure 10, the fronthaul link 
capacity between the baseband units 

(BBUs) and the distributed 
remote radio heads (RRHs) 
often becomes a bottleneck 
when there are a large number 
of users/terminal devices (TDs) 
in the network. Several solutions 
have been proposed to tackle 
this challenge, such as signal 
compression and sparse beam-
forming. However, in these 
schemes, the data transmitted in 
the fronthaul is proportional to 
the aggregated traffic of all TDs, 
and the fronthaul link capacity 
can still be a bottleneck in a very 
dense network. 

On the other hand, if TR 
technology is used as the air 
interface in C-RAN, due to its 
unique spatial and temporal 
separation effects, all TDs are 
naturally separated by the 
location-specific signatures in 
both downlink and uplink, 
and the baseband signals for 
all TDs can be efficiently 
combined and transmitted. 
This unique feature of TR 
technology can be leveraged 
to create in essence a tunnel-
ing effect between the BBUs 
and the RRHs to alleviate the 
traffic load in the fronthaul 
link of C-RAN. 

The data rate in the fron-
thaul connecting the BBUs 
and each RRH is only depen-

dent on the system bandwidth and the 
number of bits used for every symbol, 
thus serving more TDs will not increase 
the traffic on the fronthaul link. Figure 
11 shows the performance comparison 
in terms of normalized total transmitted 
data versus the number of TDs, where 
the normalization is performed over the 
transmitted data of the single TD case. 
The normalized total transmitted data in 
the fronthaul in an LTE-based C-RAN 
increases linearly with the number of 
TDs, while that of a TR-based C-RAN 
almost keeps constant, showing that the 
TR tunneling effect can deliver more 
information in the C-RAN and alleviate 
the burden of the fronthaul caused by 
network densification, a feature essen-
tial to next-generation systems. 
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FIGURE 10. The C-RAN architecture.
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Low complexity
Since TR systems essentially treat the 
rich-multipath environment as a com-
puting machine that facilitates matched 
filtering, the receiver can perform a 
simple one-tap detection and thus the 
complexity of TR systems can be sig-
nificantly reduced—essentially, the 
environment is doing the analog signal 
processing! As discussed in [16], by 
convolving the signal sequences with 
the TR signature waveforms, a TR sys-
tem can concentrate most of the compu-
tational complexity at the more 
powerful AP-side while keeping the 
complexity of TDs at a minimal level, 
i.e., the TR system exhibits a unique 
asymmetric architecture. This desirable 
feature can provide less complexity and 
thus lower the cost of the TDs, which is 
ideal for supporting IoT [16]. 

Additional features
Besides the features previously dis-
cussed, there are many additional fea-
tures when operating TR systems in a 
rich-scattering environment. For exam-
ple, the unique spatial focusing effect 
can be used to significantly improve the 
resolution of indoor positioning sys-
tems [12]. The idea is to utilize the 
location-specific characteristic of mul-
tipaths. That is, for each physical geo-
graphical location, there is a unique 
logical location in the multipath space. 
By matching the multipath profile with 
those in the database, the physical loca-
tion can be identified. Real-world 
experiments show that the TR-based 
indoor positioning system can achieve 
perfect 1–2 cm localization accuracy 
with a single AP working in the ISM 
band with bandwidth 125 MHz under 
the non-LOS condition [12]. 

Moreover, the unique location-specif-
ic multipath profile can be exploited to 
enhance the system security at the physi-
cal layer, where the user at the intended 
location can receive better SINR than all 
other ineligible users at different loca-
tions. Another interesting and unique fea-
ture is the pinpoint beamforming effect, 
i.e., the spatial focusing can be a 3-D 
“ball” by utilizing the distributed virtual 
antennas that naturally exist at different 
geographic locations. 

Conclusions and discussions
We have shown the major features of TR, 
including massive multipath effect, energy 
efficiency, high capacity, scalability for 
network densification, tunneling effect for 
cloud-based networking, low complexity, 
and some additional features such as 
improving the resolution of indoor posi-
tioning systems and providing physical 
layer security. Such features collectively 
address the major challenges of 5G indoor 
communications. Therefore, TR appears 
to be a promising platform for 5G indoor 
and offer great opportunities for the com-
munity to develop further. 

However, some challenges deserve 
more consideration in the future: 
■ Number of multipaths: The perfor-

mance of TR systems depends highly 
on the degrees of freedom in the envi-
ronment, i.e., the number of multipa-
ths. The larger the number of 
multipaths, the higher the TR focusing 
gain and thus the better the perfor-
mance. When the number of multipa-
ths varies from place to place, one may 
want to ensure the same performance. 

■ Dynamic environment: One implicit 
assumption of TR systems is that the 
channel is stationary. In a dynamic 
environment, the estimated channel in 
the channel probing phase may not be 
consistent with the real channel in the 
data transmission phase, due to which 
the focusing gain may be reduced 
causing performance degradation. 
Through real experiments, one can see 
that the channel is quite stable as long 
as there is no severe disturbance of the 
environment [9], [12]. When the envi-
ronment is highly dynamic, one may 
need to probe the channel more fre-
quently to sustain the operation. 

■ Mobility: The benefit from the focusing 
effect of TR relies on accurate channel 
estimation. If the transmitter and/or 
receiver become mobile, the channels 
are no longer reciprocal when the speed 
is faster than what the channel coherent 
time can handle, and the focusing gain 
may drop greatly due to outdated chan-
nel estimate. Therefore, the channel 
needs to be reprobed in mobile TR sys-
tems, and the reprobing will be more 
challenging if there are many TDs or 
the TDs are moving at a high speed. 

■ Synchronization/timing: Finding the 
right timing of the focusing peak is 
critical to facilitate the TR system 
operation. This can be resolved 
through oversampling and performing 
synchronization in the oversampled 
domain, which, however, will increase 
the cost of analog-to-digital converters 
and digital-to-analog converters.
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FROM THE GUEST EDITORS

The old-age dependency ratio, which is 
defined as the ratio of the population age 
65 and over to the population age 

between 15 and 64, has been rising in many 
countries all over the world. According to 
the United Nations estimates for the “more 
developed regions,” this ratio is anticipated 
to exceed 30% in 2020 and reach 40% by 
2030, largely as a result of an accelerating 
increase in the aged population. This 
implies that those of working age, and, sub-
sequently, the overall economy, will face a 
greater burden in supporting the aging pop-
ulation. In addition, the demand and trend 
are upward for continued independent liv-
ing, in both more and less developed 
regions. As such, there is a growing interest 
in assisted living technologies that enable 
self-dependent living within homes and resi-
dences for the elderly, in particular those 
homes that will ensure an elderly person 
more years of life in good health.  

Remote monitoring capabilities, such 
as fall risk assessment, fall detection, and 
detection of small changes from pre-
defined baselines in health conditions and 
motor functional abilities of the elderly, 
will address the challenges associated 
with self-dependent living. All of the 
aforementioned capabilities are rooted in 
fundamental signal processing problems 
related to signal capturing, analysis, and 
interpretation.  More specifically, these 
entail signal detection and enhancement 
in the presence of noise and interference; 
signal representation in a domain that is 

conducive to capturing a rich set of fea-
tures for vital signs estimation, human 
activity detection, localization, and health 
and well-being classification; the use of 
single and multiple sensors; centralized 
and distributed data fusion; and change or 
anomaly detection for risk assessments; 
to name but a few. Contributions in signal 
processing for assisted living technologies 
have not only been driven by recent 
developments in signal analysis and inter-
pretation but also important revisits to 
“classical” approaches for exploiting the 
underlying phenomenology and the spec-
ificities of the problem at hand. 

In this issue
This special issue of IEEE Signal Pro-
cessing Magazine (SPM) provides a syn-
opsis of the emerging area of signal 
processing for assisted living, including 
the most recent developments as well as 
interesting open problems at the forefront 
of the current research. The six articles 
demonstrate the role of signal processing 
in addressing key challenges and solving 
pressing problems encountered in assist-
ed living applications related to various 
sensing modalities.

The first article by Bennett et al. pro-
vides an overview of wearable inertial mea-
surement unit-based sensors for ubiquitous 
monitoring of movements and physical 
activities. It discusses associated signal pro-
cessing techniques with a focus on enhanc-
ing accuracy, lowering computational 
complexity, reducing power consumption, 
and improving the unobtrusiveness of the 
wearable computers.

Erden et al. present a survey of signal 
processing methods employed with dif-
ferent types of sensors, including pyro-
electric infrared and vibration sensors, 
accelerometers, cameras, depth sensors, 
and microphones. Their article demon-
strates the need for a sensor network cov-
ering multiple modalities to achieve an 
intelligent home design that enables the 
elderly to live independently. 

The article by Savazzi et al. investi-
gates signal models and processing meth-
odologies for exploiting the multitude of 
available wireless communication links to 
achieve device-free radio vision systems 
to address key challenges in assisted liv-
ing applications. 

Witrisal et al. provide insights into the 
potential of high-accuracy localization 
systems as a key component of assisted 
living technology, and their article dem-
onstrates the ability of  exploiting mul-
tipath and propagation environment 
knowledge to reduce the required infra-
structure and enable robust localization.

Amin et al.’s contribution focuses on 
radar technology and discusses the non-
stationary signal processing techniques 
that play a fundamental role in fall detec-
tion for elderly assisted living applica-
tions. It also reports on some of the 
challenges facing radar technology devel-
opment for fall detection.

Finally, the article by Debes et al. cov-
ers state-of-the-art methods for monitor-
ing activities of daily living to provide 
detection of deviations from previous pat-
terns that can be crucial in identifying the 
early onset of geriatric dysfunctions.
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Call for Papers
The fourth IEEE Global Conference on Signal and Information Processing (GlobalSIP) will be held 
in Washington, DC, USA on December 7–9, 2016. GlobalSIP has rapidly assumed flagship status 
within the IEEE Signal Processing Society. It focuses broadly on signal and information processing 
with an emphasis on up-and-coming signal processing themes. The conference aims to feature 
world-class plenary speeches and overview talks, tutorials, exhibits, oral and poster sessions, 
and government panel discussions on emerging topics and funding opportunities in Signal and 
Information Processing. GlobalSIP 2016 is comprised of co-located symposia selected based on 
responses to the Call for Symposium Proposals. Featured symposia include:

Big data signal processing
Signal and information processing over 
networks

Distributed information processing, 
optimization and resource management 
over networks

Machine learning, deep learning
Signal processing in information secrecy, 
privacy and security

Compressed sensing, sparsity analysis and 
applications

Signal processing for 5G wireless networks
Cognitive communications and radar
Signal processing in energy and power 
systems

Big data analytics in neuro-imaging
Autonomous systems
Emerging signal processing applications in 
industry

June 5, 2016 : Paper Submission Due
August 5, 2016 : Final Acceptance decisions notifications sent to all authors
September 5, 2016 : Camera-ready papers due.

Prospective authors are invited to submit full-length papers, with up to four pages for technical 
content including figures and possible references, and with one additional optional 5th page 
containing only references. Manuscripts should be original (not submitted/published anywhere 
else) and written in accordance with the standard IEEE double-column paper template.

Note that IEEE Communictions Society will hold its annual Globecom Conference at Washington 
DC in Dec. 4-8, 2016. Interested attendees may take advantage of the opportunity to attend both 
GlobalSIP and Globecom back to back in one trip.

For updated and detailed information about the technical symposia, please check online at 
http://2016.ieeeglobalsip.org/. For technical inquiries, please contact conference TPC Chairs at 
tpc-chairs@2016.ieeeglobalsip.org.

Conference Timeline:

http://2016.ieeeglobalsip.org/

Fourth IEEE Global Conference on Signal 
and Information Processing
December 7–9, 2016, Greater Washington D.C., USA
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SIGNAL PROCESSING FOR ASSISTED LIVING

Terrell R. Bennett, Jian Wu, 
Nasser Kehtarnavaz, and Roozbeh Jafari

1053-5888/16©2016IEEE

Inertial Measurement Unit-Based Wearable 
Computers for Assisted Living Applications
A signal processing perspective

There has been a very rapid growth in wearable computers over the past few years. 
Assisted living applications leveraging wearable computers will enable a healthier 
lifestyle and independence in a variety of target populations, including those suffer-

ing from neurological disorders, patients in need of rehabilitation after surgical proce-
dures or injury, the elderly, individuals who might be at high risk of 

emotional stress, and those who are looking for a healthier life-
style. Application paradigms for assisted living include 

activities of daily living (ADLs) monitoring, indoor 
localization, emergency and fall detection, and reha-

bilitation. All of these applications require moni-
toring of movements and physical activities for 

individuals. Wearable inertial measurement 
unit (IMU)-based sensors can offer low-
cost and ubiquitous monitoring solutions 
for physical activities. Signal processing 
techniques with a focus on enhancing 
accuracy, lowering computational com-
plexity, reducing power consumption, 
and improving the unobtrusiveness of 
the wearable computers are of interest in 
this article, which constitutes the first 
attempt made at reviewing the literature 
of wearable IMU-based signal processing 

techniques for assisted living applications. 
Various signal processing techniques with 

the aforementioned performance metrics in 
mind are reviewed here.

Introduction
Cisco predicts the number of wearable devices will 

increase from 22 million in 2013 to 177 million in 2018 [1]. 
Many innovative applications are under development for wearable 

devices. Assisted living is one of the application areas with major potential 
impact. There are two common approaches to implementing these monitoring systems: 
using vision or wearable sensors. Vision-based approaches are considered to be invasive 
to a user’s privacy and suffer from line-of-sight issues for cameras. They may not be avail-
able everywhere, and signal processing techniques associated with vision sensors are typi-
cally computationally intensive, even though they may provide rich information for 
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certain applications. Wearable IMU-
based sensors, however, can offer low-cost 
and ubiquitous monitoring solutions. Typi-
cal IMUs consist of a three-axis acceler-
ometer  that  measures dynamic 
accelerations caused by motion and gravi-
ty and a three-axis gyroscope that mea-
sures angular velocities about the three 
axes. Some IMU sensors also include 
magnetometers that measure the Earth’s 
magnetic field. These sensors are avail-
able as long as the user is wearing them. 
However, wearable sensors face their own 
challenges, such as reliability issues asso-
ciated with wearing the sensors improper-
ly. Moreover, users would only wear a few 
sensors, and, therefore the systems cannot sense the movements 
of every joint and limb. Power consumption is another challenge 
related to wearable sensors. Small form factor, long battery life, 
comfort, and wearability require low power consumption. Effi-
cient signal processing techniques deliver solutions to address 
these challenges. Signal processing techniques with a focus on 
enhanced accuracy, lower computational complexity, and 
reduced power consumption of the wearable computers are of 
interest. Our survey article constitutes the first attempt at 
reviewing the literature of wearable IMU-based signal process-
ing techniques for assisted living applications and reviews vari-
ous signal processing techniques based on the given 
performance metrics.

A review of assisted living applications
As mentioned previously, assisted living applications can include 
ADLs, indoor localization, emergency and fall detection, and 
rehabilitation. Figure 1 shows the flow for IMU-based assisted 
living applications and topics. The following are applications 
that use IMU sensors to make an impact on everyday life.

Activities of daily living
Monitoring and classifying daily activities are keys to assess-
ing the quality of life of various target populations. In this 
article, the ADLs tracked using IMUs are categorized into 
postural transitions (e.g., sit-to-stand and stand-to-sit), period-
ic movements (e.g., walking and running), eating, and sleep-
ing habits. As people get older, performing daily tasks can 
become challenging. Due to the high cost of health-care cen-
ters and the need for the elderly to live independently in their 
homes, developing IMU-based monitoring systems for ADLs 
is becoming more important [2], [3]. This is not limited to 
assisting the aging population, it can also help many others. 
IMU-based wearables allow workers to function more effi-
ciently and without distractions by providing information 
based on their current activity [4]. People can track their sleep 
patterns by wearing an IMU-based sensor on their wrist to 
detect and log the duration of their sleep/awake time [5]. 
Users are also able to automatically track their dietary activi-
ties by detecting the arm and trunk intake gestures, chewing, 

and swallowing of food [6]. IMU-based wearables are a part 
of smart environments that monitor and recognize human 
gestures so that robots can assist them or the users can control 
things based on their hand gestures [7], [8]. These types of 
applications can influence the quality of life for those with 
disabilities. Several challenges need to be considered for 
monitoring and classifying ADLs using IMUs. These include 
sensor displacement, variations in the movements and envi-
ronments, and the form factor of the sensors.

Indoor localization
People spend a considerable amount of their time indoors, so it 
can be very useful to have indoor localization systems. Human 
localization plays an important role in creating context-aware 
smart environments. IMU-based localization has been used in 
many applications such as location-aware computing [9], estimat-
ing energy expenditure in human walking [10], military opera-
tions [11], and finding specific locations in a building [12]. 
Assisted living technology can greatly benefit from IMU-based 
indoor localization. Some applications include locating users and 
providing directions to a desired place in a building and reducing 
the time necessary for first responders to find people in an emer-
gency situation. It is necessary for such a system to be reliable 
and report the position accurately. A global positioning system 
(GPS) is mainly used for outdoor localization; due to obstacles 
and materials used in the buildings, it may not be available for 
indoor localization. A local positioning system (LPS) uses 
modalities such as received signal strength (RSS), vision, ultra-
sound, and inertial data to provide the location information with-
in a specific coverage area. RSS and ultrasound approaches 
suffer from signal attenuation, while vision systems have line-of-
sight issues. Pedestrian dead reckoning (PDR) is an alternative 
approach that estimates the user’s movement by detecting steps, 
estimating stride lengths, and the direction of motion based on 
inertial data collected from body-worn sensors [13].

Emergency and fall detection
Elderly people are prone to falls, which may cause injury. This 
is a major area of concern in assisted living because these inju-
ries can result in long-term hospitalization and medical costs. 

Signal
Processing

ApplicationsWearable Sensors

Signal
Processing

FIGURE 1. Data flow for IMU-based assisted living applications. (Wearable image copyright: Askold 
Romanov, elderly women copyright: KatarzynaBialasiewicz, fallen man copyright: AnnBaldwin, 
rehabilitation image copyright: Wavebreakmedia.)
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Therefore, a fall detection system is necessary in assisted liv-
ing. There are two major considerations for this application: 
1) speed of detection and 2) accuracy of detection. The first is 
important because the nature of this application is to prevent 
injuries caused by falling if possible. For example, having a sys-
tem that can detect falls before the user hits the ground 
becomes very promising if the system can activate a protective 
device (e.g., air bags attached to the user’s hip). If no protective 
device is available, it is critical to get help to the user as soon as 
possible. The second consideration is necessary to ensure that 
falling events are properly detected and there are no false or 
missed detections. Several methods have been proposed using 
IMU sensors to detect falls before the target hits the ground 
[14], [15]. In these methodologies, detection speed is very 
important and challenging. Another approach reliably detects 
falls while also finding other common human activities that 
may share similar attributes (e.g., standing to lying in bed) [16]. 
Many elderly people cannot stand after falling due to injuries 
sustained, and an emergency message is needed to inform the 
hospital or care center [8].

Rehabilitation
There are many cases in which clinicians do not need to keep 
patients in the hospital to observe the recovery process after 
an operation or treatment. IMU-based systems can play an 
important role here and can allow patients to live indepen-
dently in their homes while being monitored remotely by cli-
nicians. The idea behind such systems is to provide general 
information about the effect of certain behavioral recommen-
dations without having the patient admitted to a rehabilitation 
center or a laboratory for observation [17]. IMU sensors are 
able to measure the muscle strength and power by detecting 
high-frequency body sway [18] and the speed with which 
muscular forces produce movement of body segments [19]. 
Estimating knee joint flexion or extension angles can be used 
to infer activity type or intensity, muscle activity, and gait 
events [20]. Monitoring ADLs is also a key for evaluating 
changes in physical and behavioral profiles of the elderly and 
other patients, including obese people [21]. For example, 
increasing activity levels after surgery can be used to indicate 
overall improvement as well as efficacy of therapeutic proce-
dures [22].

Signal processing techniques
Signal processing techniques translate the physical signals 
sensed from wearable IMU sensors into useful information 
required by target applications. In this article, our goal is to 
review the signal processing techniques from various per-
spectives, including preprocessing, feature extraction, feature 
selection, classification, and measurement models. 

Preprocessing
For IMU-based assisted living applications, the raw sensor 
data usually gets preprocessed to remove noise from the sig-
nal and to determine the segments of interest. These tasks are 
called filtering and segmentation. Filtering techniques retain 

the useful information in a signal while rejecting unwanted 
information based on the application. Segmentation tech-
niques are used to determine the duration of the movements 
or events of interest. 

Three different types of filters are used: low-pass filters, high-
pass filters, and band-pass filters. A low-pass filter is used to 
remove high-frequency noise for a recognition task of five hand 
gestures [7] and for physical activity monitoring for assisted liv-
ing [16]. A 17-Hz low-pass filter is used to reject electronic noise 
in gyroscope data for sit-to-stand and stand-to-sit measurements 
[8]. Based on the walking frequency of test subjects, a 3-Hz low-
pass filter is applied to remove noise from walking signals [12]. 
A 6-Hz low-pass filter is applied for balance control measure-
ments during sit-to-stand movements [18], while a low-pass filter 
with a cut-off frequency of 3 Hz is used to preprocess raw data 
for sit-to-stand parameter measurement [19]. The accelerometer 
measurement consists of gravitational acceleration and dynamic 
acceleration caused by motion. In some applications, only one 
part of the acceleration is used, and filtering techniques are 
applied to reject the other one. A 1-Hz low-pass filter is used to 
remove the dynamic acceleration, and thus the direction of the 
gravity vector is found during quasi-static activities [15]. A 1-Hz 
high-pass filter is used to reject the gravitational acceleration, 
which, in turn, removes the effect of the gross changes in the ori-
entation of the body segment where the sensor is placed [23]. 
Some applications may only look at signals within a certain fre-
quency range, and the band-pass filter can be used to preprocess 
the data. A 3–11-Hz band-pass filter is used to clean the acceler-
ometer signal for detecting sleep and awakening phases [5]. For 
motor fluctuation monitoring in Parkinson’s disease patients, a 
3–8-Hz band-pass filter is used for the analysis of tremors, and a 
1–3-Hz filter is applied for analysis of bradykinesia and dyskine-
sia [23]. The sliding window segmentation technique is simple 
and effective and is often used in the reviewed literature for seg-
mentation [6], [7], [14], [17], [24], [25].

Feature extraction
Features are normally extracted from the sensor data depending 
on their effectiveness in a particular application. Feature extrac-
tion starts with the preprocessed sensor data and generates 
derived values that are intended to be informative and nonre-
dundant while enabling subsequent learning and generalizing 
the data, which will lead to better human interpretation. The 
features are divided here into four categories: time domain fea-
tures, frequency domain features, time–frequency domain fea-
tures, and others. The time domain features are the general 
statistical measurements that can represent the generalization 
of the data. The frequency domain features analyze the fre-
quency performance of the sensor signals, which is usually 
the periodicity of the signal over a long duration (i.e., period-
icity of the walking). The time–frequency domain features 
refer to features that contain both time and frequency infor-
mation simultaneously with different time–frequency repre-
sentations (e.g., short-time Fourier transform, wavelets) that 
are useful for nonstationary signals (e.g., postural transitions). 
The other features refer to the features that have specific 
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meanings to specific applications (e.g., posture transition 
duration for fall detection and step length for gait analysis). 
Table 1 lists commonly used features of IMU sensors in 
assisted living applications.

The time domain features listed in Table 1 are primarily 
the general statistical features of a signal. Among those, sig-
nal vector magnitude and root mean square (RMS) look at 
the magnitude of the three-axis signal and do not contain 
directional information from the IMU sensor. These features 
usually play an essential role in movement classification and 
detection tasks if the most discriminative feature is not 
known. The frequency domain features are good at analyzing 
stationary signals that contain certain frequency patterns. For 
example, the fast Fourier transform (FFT) features for a cer-
tain long duration can be used to distinguish between walk-
ing, falling, and sitting down activities [2] and to distinguish 
between walking, running, standing, and going up stairs [27]. 
The principal frequency component can be considered to 
monitor the motor fluctuation of patients with Parkinson’s 
disease [23]. The time–frequency domain feature listed cap-
tures the frequency features as well as the time at which the 
frequency component occurs. This information is important 
for analyzing nonstationary signals in which the frequency 
components change over time. This is true for all the transi-
tional movements (e.g., sit-to-stand and sit-to-lie). This fea-
ture has been proven powerful for detecting daily activities of 
elderly subjects, which primarily consist of transitional 
movements [22]. It is also used to detect the postural transi-
tion time, which helps evaluate the fall risk of the elderly [8]. 
A comparison work shows that frequency domain features 
(FFT-based features) perform better than wavelet transform 
features in distinguishing continuously dynamic activities 
such as walking, walking upstairs, walking downstairs, run-
ning, and jogging [26]. 

The first three categories in the table generalize the signal 
based on statistics. The fourth category includes the features 
that are useful for certain applications. To extract these fea-
tures, users are required to be knowledgeable about the appli-
cation so that they know which features will best serve their 
purpose. Posture transition duration [3], [18], trunk tilt [3], 
and vertical velocity [15], [28] are among the features that can 
be used to detect and evaluate the sit-to-stand motion. Step 

and stride length, velocity, cadence, swing, and stance are 
important in gait analysis [21]. Step length and heading are 
commonly used features for indoor localization [9], [11], [13].

Feature selection
In the previous section, we covered the extraction of various 
features from the IMU sensor data. Feature selection provides 
a way to select the most suitable feature subset for certain 
tasks from the available features. For example, to reduce over 
fitting and information redundancy, feature selection tech-
niques can be applied to select the best feature subset for clas-
sification and detection tasks. It is useful when users do not 
know which features are useful and want to pick the best sub-
set from a broad of set of existing features. Here, feature 
selection also refers to the investigation that analyzes the sen-
sitivity of different features for applications. 

There are three different methods of feature selection: wrap-
per, filter, and embedded. Wrapper methods use a predictive 
model to score feature subsets. Each new subset is used to train 
a model that will be tested on the rest of the data set. Based on 
the prediction performance, each subset is assigned a score and 
the best subset will be chosen. Filter methods use general mea-
surement metrics of a data set to score a feature subset instead 
of using the error rate of a predictive model. Some common 
measures are mutual information and inter/intra class distance. 
The embedded methods perform the feature subset selection 
in conjunction with the model construction. One example is 
the recursive feature elimination algorithm, which is com-
monly used with a support vector machine (SVM) to repeat-
edly construct a model and remove the features with low 
weights. The different feature selection techniques are stated 
next for assisted living applications.

A large set of features are extracted and a wrapper-based 
feature selection technique is applied to determine the best 
subset of the feature space in a preimpact fall detection appli-
cation [14]. Each individual feature is assigned a ranking score 
based on its discriminative performance, and the best ranked 
features are selected to form a final feature vector and fit it to 
the classification algorithm. A framework is proposed to deter-
mine the best sensor locations and the most relevant sensor 
features for discriminating ADLs that can be important to 
assess physical and behavioral changes over time for the 

Table 1. A list of features.

Feature Category Feature List
Time domain Mean, variance, signal vector magnitude, correlation coefficient, RMS, skewness, maximum magnitude change, slope of the fit-

ting line, standard deviation of fitting error, standard deviation of difference, trapezoidal numerical integration, signal entropy, 
maximal acceleration, maximal jerk, maximal velocity, peak power, range of cross covariance between each of two axes [2], 
[3], [14], [16], [19], [22], [23], [26]

Frequency domain FFT coefficients, principal frequency components, energy of 0.2-Hz window centered on the main frequency over the total FFT 
energy, logarithm of the magnitude-squared discrete Fourier transform coefficients [2], [23], [26], [27]  

Time–frequency domain Wavelet transform [8], [22]

Others Posture transition duration, trunk tilt, vertical velocity, step length, step frequency, heading information, local energy of the trunk 
dynamics, postural transition smoothness, postural orientation, singular value decomposition, cadence, swing, stance [3], [9], 
[11], [12], [15], [16], [18], [21], [28]
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elderly and patients with chronic diseases [24]. Three differ-
ent feature selection algorithms are tested for 13 different fea-
tures for five different groups of ADLs. Accelerometer based 
balance parameters are determined and compared during the 
sit-to-stand movement and the results show the area under the 
curve (AUC) and RMS are useful features and AUC appeared 
to be more sensitive than RMS [18].

Classification
Classification is widely used in applications of assisted living. 
Classification can be used to detect falls and prefalls, to dis-
tinguish between healthy and unhealthy motor function, and 
to detect ADLs. A variety of machine-learning and pattern 
recognition algorithms are explored in the area of the IMU-
based assisted living. Table 2 shows some of the commonly 
used classification algorithms.

Thresholding-based decision making is 
a popular classification scheme in assisted 
living applications. This approach is 
straightforward to use and is often used for 
binary classification tasks. When the value 
of a feature is above a threshold, it is clas-
sified as one of the two states and when the 
value is below a threshold, it is recognized 
as the other. When the designer finds a fea-
ture that can discriminate between two possible states, the 
thresholding technique is a good candidate due to its simplici-
ty and because it can be easily interpreted. The thresholding 
technique is applied to classify walking versus running [10]. 
If the variance of the accelerometer is below a defined thresh-
old, the activity is recognized as walking, and recognized as 
running if the accelerometer variance is larger than a defined 
threshold. Based on this decision, an adaptive step length esti-
mation algorithm is derived. A thresholding technique is 
applied to the inertial frame’s vertical velocity magnitude to 
detect the occurrence of falls before impact [28]. To deter-
mine the posture transition time for sit-to-stand, a threshold is 
applied to determine the beginning and ending of the transi-
tion movement [8]. A threshold based on the maximum mea-
sured vertical velocity from ADLs and the minimum 
measured vertical velocity from falls is used to distinguish 
falls and normal activities [15]. Thresholding is used to distin-
guish tremor motions from nontremor motions in a movement 

from the action research arm test, which is designed to test 
recovery of upper-limb function [29].

Instance-based learning methods classify an instance 
based on the similarity between the instance under test, and 
the labeled instances in the training data set. This method 
does not need to train a model in the training phase. However, 
it is computationally expensive in the testing phase because it 
needs to calculate the similarity between each testing instance 
and all of the instances in the training set. The k-nearest  
neighbors (kNN) algorithm is one example of an instance-
based classification algorithm. It performs well in activity rec-
ognition tasks, and it is used to determine the different types 
of the ADLs [16], [24]. 

Neural networks are a family of statistical algorithms 
inspired by biological neural networks (i.e., the human 
brain). It consists of a large number of nodes acting as neu-

rons in a network and the weighted con-
nections between different neurons. With 
a large enough set of training data and 
parameter tuning, it can provide high 
classification performance. A very large 
data set is often required for training, and 
this is not usually available for IMU-
based applications. Moreover, the trained 
model is not interpretable for users. In 

IMU-based assisted living applications, the training data is 
usually small, and, in most cases, the user wants to under-
stand the models. These two factors make neural networks 
less attractive in this area. The authors explored the classifi-
cation performance of a neural network while varying the 
size of the training data set for a physical movement moni-
toring application [16]. Four transition movements were 
detected using the neural networks and kNN for an average 
accuracy of 84%.

SVM is one of the most popular discriminative classifica-
tion algorithms in different areas in recent years. SVM tries to 
find the margins that will maximize the separation between 
different classes. In the training phase, the margins are deter-
mined and it is computationally efficient in the testing phase 
based on the trained model. It is similar to neural networks in 
that it will be difficult to interpret by users. However, it does 
not require a very thorough training or a very large training 
data set. A preimpact fall detection system is discussed based 
on the SVM classifier [14]. A SVM is applied for monitoring 
motor fluctuations in patients with Parkinson’s disease and the 
optimal kernel is analyzed [23].

The HMM is a statistical Markov model in which the sys-
tem is assumed to be a Markov process with unobserved 
states. HMM is well studied and is often used in temporal 
pattern recognition such as speech recognition and gesture 
recognition. It is widely used to recognize different activities 
based on IMU time series sensor data and is also good at rec-
ognizing a sequence of movements. Human intention recogni-
tion in smart assisted living systems is presented using a 
hierarchical HMM [7]. The HMM is first used to recognize 
the low-level hand gestures with a finger-worn inertial sensor 

Table 2. Classification algorithms.

Classification Type Classifier

Thresholding [6], [8], [10], [15], [28], [29]

Instance based KNN [16], [24]

Neural networks Multilayer perceptron [16] 

SVM Linear kernel SVM [14], polynomial kernel 
SVM [23]

Hidden Markov models 
(HMMs)

Hierarchical HMM [7], continuous HMM [27], 
HMM [4], [17]

Feature selection provides 
a way to select the most 
suitable feature subset 
for certain tasks from the 
available features.
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and, after that, a hierarchical HMM is applied to model the 
correlation and constraints between commands. A continuous 
HMM is proposed to jointly classify the pedestrian activity 
and gait phases with the assumption that state-conditional 
output density functions of the HMM to be a Gaussian mix-
ture model [27]. This approach is robust to subject variability. 
It will still perform well when new subject data is tested with-
out any training for this subject. In-home assembly task rec-
ognition is performed using a HMM on accelerometer data 
with fusion of the linear discriminant analysis (LDA) decision 
from sound data [4]. A method for spotting sporadically 
occurring gestures (e.g., handshake, drink, pick up the phone, 
etc.) in a continuous data stream from body-worn inertial sen-
sors was designed using a HMM [17]. The method contains 
two stages. In the first stage, signal sections likely to contain 
specific motion events are selected using a similarity search-
ing algorithm; and in the second stage, the HMM is applied to 
classify the activities. 

Measurement models
In addition to classification algorithms, advanced measure-
ment models are applied to fuse different modalities of IMU 
sensors (e.g., accelerometer, gyroscope, and magnetometer) to 
compensate for errors and drifts. This leads 
to robust measurements for different tasks 
in assisted living. Kalman filters and parti-
cle filters are among the most popular 
fusion techniques. The Kalman filter is an 
algorithm that uses a model and a series of 
noisy and possibly inaccurate measure-
ments observed over time to produce esti-
mates of unknown variables that tend to be 
more precise than those based on a single 
measurement alone. It is widely used in the navigation and 
control systems. A conventional Kalman filter is used to 
reduce the drift from inertial sensors in an indoor navigation 
system with foot-mounted strap-down inertial sensors [11]. 
The inertial navigation system calculates the position change 
at a high frequency rate, and the integration error from the 
inertial sensor will accumulate over time. The GPS is also a 
part of the system and when GPS data is available, the GPS 
derived positions are compared with the positions derived 
from the inertial navigation system. The differences are fed 
into a Kalman filter that estimates the errors from the inertial 
navigation system and compensates the measurements so that 
the errors remain small. A Kalman filter is used to combine 
the acceleration, angular velocity and biomechanical con-
straints to generate robust estimation of the knee joint flexion/
extension angles [20]. The gyroscope noise and the acceler-
ometer noise are modeled by the Kalman filter. The proposed 
system works effectively for both walking and running for 
five minutes when compared to a camera-based motion track-
ing system. 

Unlike the Kalman filter, the adaptive filter is a system 
with a linear filter that has a transfer function controlled by 
variable parameters that are adaptively updated according to 

certain optimization criterion. An adaptive filter is designed to 
fuse all of the sensor information and pseudo-measurements 
to provide a self-contained pedestrian tracking system during 
normal walking [9]. In the cases that the systems are nonlinear 
and the noise is non-Gaussian, a particle filter, which is more 
complex, will usually perform better than a Kalman filter. A 
particle filter is used to fuse the step length and heading infor-
mation from inertial sensors to provide an indoor localization 
system [12].

Performance analysis
The performance and efficiency of assisted living technolo-
gies can be evaluated using many metrics. The goal for this 
section is to compare recent signal processing advances with 
respect to accuracy, power consumption, and computational 
complexity of the sensors and algorithms.

Accuracy
The accuracy of IMU-based signal processing techniques is a 
key aspect for assisted living applications. The cost of faults 
can be significant, especially when the techniques are used to 
assist the elderly, individuals who are vulnerable, and those 
that are in need of care. 

Signal processing techniques are pro-
posed to reliably detect the human postural 
transition and ADLs, recognize gestures, 
and track the users’ sleeping patterns and 
diet. FFT was used to extract information 
from IMU sensor data to recognize and dis-
tinguish falling, sitting, and walking activi-
ties [2]. Using FFT on data from a 
wrist-worn sensor with a 10-Hz sampling 
rate was unable to accurately discern 

between falling and sitting down. A method of physical activity 
monitoring to detect activities such as sitting, standing, and 
lying has sensitivities and specificities of 90.2% and 93.4% for 
sitting, 92.2% and 92.1% for standing+walking, and, 98.4% and 
99.7% for lying with a sternum-mounted sensor sampling at 
40 Hz [22]. Overall, the detection errors were 3.9% for standing + 
walking, 4.1% for sitting, and 0.3% for lying. Finally, the over-
all symmetric mean average errors were 12% for standing + 
walking 8.2% for sitting, and 1.3% for lying. A model to fuse 
data from hand movements and audio sampled at 2 kHz from a 
wood workshop to recognize workers’ activities is presented 
[4]. Different methods were used to improve the classification 
and it is shown that in isolation, the accuracy of activity detec-
tion is 98%, 87%, and 95% for the user-dependent, user-inde-
pendent, and user-adapted detection, respectively. A data set 
was created from a wrist-worn IMU sensor, and a method to 
detect sleep and wake states was proposed [5]. The algorithm 
was compared with traditional algorithms using total sleep time 
(TST) and sleep efficiency (SE) as the comparison parameter. 
The proposed method achieves an overall median accuracy of 
79% for detecting sleep and wake intervals.

Several accurate human localization techniques are pro-
posed, leveraging IMU-based wearable solutions. An adaptive 

Classification can be used 
to detect falls and prefalls, 
to distinguish between 
healthy and unhealthy 
motor function, and to 
detect ADLs.
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step-length estimation algorithm for the pedestrian navigation 
system (PNS) has an accuracy of 95% in the worst case [10]. 
Two PDF algorithms including Weiberg and zero velocity 
updates (ZVU) for stride-length estimation are tested at three 
different walking speeds (slow, normal, and fast) [13]. The 
authors show that the Weiberg algorithm performs better than 
ZVU at all walking speeds. An IMU-based self-contained 
pedestrian tracking method is proposed that uses ZVU and the 
step length estimation as a control variable to correct the 
acceleration drift. This method improves the tracking accura-
cy by decreasing the final position error for different scenarios 
such as short and long distance walking and reduces the final 
position error up to 66% when compared to other algorithms 
[9]. A method using IMU sensors attached on soldiers’ boots 
is compared to the implementation of ZVU with and without 
magnetic heading information [11]. Using ZVUs along with 
magnetic heading information can be accurate for the soldiers 
when they are operating an attack in a building. This method 
stayed within 2 m of the true path over a path of more than 90 m. 
A method using phone inertial sensors with a default rate of 
50 Hz is proposed, i.e., infrastructure-free, phone position 
independent, user adaptive, and easy to deploy [12]. The step-
length estimation is used as a personal model for a user and 
this model is updated each time the system collects data. The 
users are put into different groups based on their personal 
models. The step-detection error for the cellphone in hand and 
in pocket cases for different algorithms were compared and 
error rates from 1.6% to 24.5% (in hand) and 1.1% to 25.6% 
(in pocket) were reported. An investigation using IMU sensors 
sampling at 1 kHz detects preimpact falls using trunk vertical 
velocity [15]. Falls can be distinguished from normal ADLs, 
with 100% accuracy and with an average detection speed of 
323 millesconds prior to trunk impact and 140 milliseconds 
prior to knee impact, in their subject group. Sensor locations 

and sampling can impact accuracy. This information for the 
reviewed papers is given in Table 3.

Power consumption/computational complexity
Power-aware IMU-based sensors can potentially reduce the 
size of batteries, enhance sensor lifetime, and enable long-term 
monitoring. Signal processing algorithms with lower computa-
tional complexity make it possible to analyze the collected data 
more quickly and provide faster feedback. Exploring the lowest 
sampling rate for activity detection using FFT features can save 
power [2]. The results show that 10 Hz is able to distinguish 
between walking and sitting, but does not do well distinguish-
ing falling with a wrist-worn accelerometer. A granular deci-
sion-making module is proposed to reduce the power 
consumption significantly for a wearable IMU-based move-
ment monitoring system [30]. Movements that are of no interest 
are removed as early as possible from the signal processing 
chain, deactivating all of the remaining modules in the signal 
processing chain as well as the microprocessor. The bit resolu-
tion, the key factor that affects the system power consumption, 
is only increased as the target movement is detected. Similarly, 
a low-power programmable signal processing architecture for 
dynamic and periodic activity monitoring applications saves 
power by performing signal processing in a tiered fashion by 
removing irrelevant data as soon as possible [25]. Using wavelet 
decomposition 75.7% power savings are achieved while main-
taining 96.9% sensitivity detection of target actions.

Conclusions
The growth of wearable IMU sensors has created many 
opportunities to improve people’s health and lives through the 
development of innovative applications. This article has pro-
vided an overview of signal processing techniques and their 
performance for assisted living applications. Many of the 
applications reviewed are the subject of ongoing research and 
there many opportunities for improvement still remain. A 
variety of signal processing techniques are being used, but for 
an actual working system, the accuracy and power concerns 
must be taken into consideration on a case by case basis not-
ing that applications and related hardware have different 
needs. Applications using wearable IMU sensors will contin-
ue to improve and provide valuable information to help peo-
ple to have healthier lifestyles with greater independence.
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Table 3. Sensor sampling rate and location.

Sensor Sampling Rates Sensor Locations

100 Hz [4]–[6], [9]–[11], 
[13], [17], [20], 
[23]

Wrist/Hand [2], [4]–[7], [12], [17], 
[23], [24], [26], [29]

50 Hz [7], [12], [19], 
[24], [29]

Hip/Waist [14], [19], [24], 
[25], [28]

40 Hz [3], [8], [22] Thigh [14], [20], [21], [23], 
[26]

Below 
40 Hz

10 Hz [2], 25 Hz 
[25], 32Hz [21]

Sternum/
Trunk

[3], [7], [8], [15], 
[16], [18], [21], 
[22], [24], [27]

47 Hz [14] Lower Leg/
Calf

[20], [23]

57 Hz [28] Ankle/Foot [7], [9]–[11], [13], 
[21], [25], [26]

64 Hz [26] Upper Arm [4], [6], [17], 
[24], [29]

Above 
100 Hz

128 Hz [18], 250 Hz 
[27], 1 kHz [15]

Other Ear [24], pocket [12], 
knees [25]
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ur society will face a notable demographic shift in the near future. According to a 
United Nations report, the ratio of the elderly population (aged 60 years or older) to 
the overall population increased from 9.2% in 1990 to 11.7% in 2013 and is expect-

ed to reach 21.1% by 2050 [1]. According to the same report, 40% of older people live 
independently in their own homes. This ratio is about 75% in the 

developed countries. These facts will result in many societal 
challenges as well as changes in the health-care system, 

such as an increase in diseases and health-care costs, a 
shortage of caregivers, and a rise in the number of 

individuals unable to live independently [2] . 
Thus, it is imperative to develop ambient intel-

ligence-based assisted living (AL) tools that 
help elderly people live independently in 
their homes. The recent developments in 
sensor technology and decreasing sensor 
costs have made the deployment of vari-
ous sensors in various combinations via-
ble, including static setups as well as 
wearable sensors. This article presents a 
survey that concentrates on the signal 
processing methods employed with dif-
ferent types of sensors. The types of sen-
sors covered are pyro-electric infrared 

(PIR) and vibration sensors, accelerome-
ters, cameras, depth sensors, and micro-

phones.

Introduction
AL systems basically aim to provide more safety and 

autonomy and improve wellness and health conditions of 
older people while allowing them to live independently, as 

well as relieving the workload of caregivers and health providers. 
A fundamental component of the AL systems is the use of different types of 

sensors to monitor the activities of the residents. These sensors can be broadly catego-
rized into two groups: 1) static sensors at fixed locations, e.g., PIR sensors, vibration 
sensors, pressure sensors, cameras, and microphones, and 2) mobile and wearable sen-
sors, e.g., accelerometers, thermal sensors, and pulse oximeters. There are several 
choices of specific sensors or sensor combinations—currently there are many AL 

O

IM
A

G
E

 L
IC

E
N

S
E

D
 B

Y
 IN

G
R

A
M

 P
U

B
LI

S
H

IN
G

, 
W

O
M

A
N

—
©

 IS
TO

C
K

P
H

O
TO

.C
O

M
/S

IL
V

IA
JA

N
S

E
N

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


37IEEE SIGNAL PROCESSING MAGAZINE |   March 2016 |

systems implementing various tasks, such as fall detection 
[3]–[5], mobile emergency response [6], video surveillance 
[7], automation [8], monitoring activities of daily living [9], 
and respiratory monitoring [10]. Falls among the elderly are a 
major concern for both families and medical professionals. 
Falls are considered to be the eighth leading cause of death in 
the United States [11] and fall injuries can result in serious 
complications [12], [13]. Autonomous fall detection systems 
for AL can reduce the severity of falls by informing other 
people to deliver help and reduce the amount of time people 
remain on the floor. These systems can increase safety and 
independence of the elderly.

To truly assist elderly people, an AL system should satisfy 
some basic requirements [14]:
■ Low-cost: Almost 90% of the older adults prefer to stay in the 

comfort of their own homes. Therefore, an AL system should 
be affordable by the average elderly person or  couple.

■ High accuracy: Since the aim is to enhance the wellness 
and the life quality of elderly people, a 
tolerable error rate should be achieved.

■ User acceptance: The AL systems 
should be compatible with the ordinary 
activities of people so that they can inter-
act with the system easily, i.e., by speak-
ing naturally, using simple gestures, etc. 
Also, users do not find wearable systems 
or those that need to be carried practical. 
Thus, contact-free and remotely control-
lable systems are desired. 

■ Privacy: The AL systems should be non-
visual and share minimal private data 
with the monitoring call center regarding the daily living 
activities of individuals.
Despite the presence of surveys [2], [15], [16] and prolif-

eration of different types of sensors in the AL field, a com-
prehensive study concentrating on the utilized sensor signal 
processing methods is not available. This article aims to 
provide an overview of most recent research trends in the 
AL field by focusing on PIR sensors, vibration sensors, 
accelerometers, cameras, depth sensors, and microphones 
and the related signal processing methods, which together 
meet most of the aforementioned requirements. Ambient 
information monitoring sensors are used in home safety 
[17]–[19], home automation [8], [20]–[23], activity monitor-
ing [14], [24]–[27], fall detection [28]–[34], localization and 
tracking [35]–[37], and monitoring the health status indica-
tors of elderly and chronically diseased people outside hos-
pitals [38]–[44].

Human activity recognition
using various sensor modalities
The most important signal processing problem in AL systems 
is the recognition of human activity from signals generated by 
various sensors including vibration sensors, PIR sensors, and 
wearable accelerometers. Obviously, each sensor generates dif-
ferent kinds of time-series data. Therefore, signal-processing 

and machine-learning algorithms tailored for each specific 
sensor need to be developed. 

PIR sensor signal processing
PIR sensors are low-cost devices designed to detect the pres-
ence of moving bodies from stationary objects. They are easy 
to use and can even work in the dark, unlike ordinary vision-
based systems, because they image infrared light. A PIR sen-
sor functions by measuring the difference in infrared 
radiation between the two pyro-electric elements inside of it. 
This difference occurs due to the motion of bodies in the 
viewing range of the sensor. When the two pyro-electric ele-
ments are subject to the same infrared radiation level, they 
generate a zero-output signal by canceling each other out. 
Therefore, the analog circuitry of a PIR sensor can reject false 
detections very accurately. 

PIR sensors are widely used in the context of AL. In 
[38], eight PIR sensors are installed in the ceiling of hospi-

tal rooms  to assess the daily activities of 
elderly patients. The activities are classi-
fied in 24 different categories by check-
ing the number of sensors activated and 
recording the time interval for which they 
remain activated. Barger et al. [24] intro-
duce a system of distributed PIR sensors 
to monitor a person’s in-home activity. 
The activity level of the person is defined 
as the number of sensor firings in a room 
per time spent in the room. Mixture mod-
els are applied to the sensor data in the 
training set to develop a probabilistic 

model of event types. These models are then used to identi-
fy the type of event associated with each observation in the 
test set. In [27], a PIR sensor installed in a corner of a liv-
ing room is employed to detect the abnormalities in daily 
activities of an elderly person. The PIR sensor sends the 
value “1” to the controller if there are activities from the 
person and the value “0” otherwise. Hidden Markov mod-
els (MMs), forward algorithms, and Viterbi algorithms are 
used to analyze the obtained data sequence. If a certain 
deviation from the constituted models is detected, the care-
giver receives an alert. In [26] a wireless sensor network 
including PIR, chair, bed, toilet, and couch sensors is sug-
gested to determine the wellness of the elderly. Time-
stamped sensor activities are recorded and fed to 
predefined wellness functions. 

In [25], PIR and contact sensors are used to assess neuro-
logic function in cognitively impaired elders. The contact sen-
sor is responsible for tracking the presence or the absence of 
the resident and recording the time spent in the home and out 
of the home. PIR sensors are utilized for the estimation of 
walking speed and daily activity. The walking speed of the 
resident is estimated from the time of PIR sensor firings that 
are placed sequentially along a hall. The amount of daily 
activity is decided based on the number of sensor firings per 
minute when the subject is in the home. 

The most important signal 
processing problem in AL 
systems is the recognition 
of human activity from 
signals generated by 
various sensors including 
vibration sensors, PIR 
sensors, and wearable 
accelerometers. 
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In [35], a system to actively assist in the resident’s life such 
as housework, rest, sleep, etc. is described. The system is 
formed by an array of PIR sensors and locates a resident with 
a reasonable accuracy by combining the overlapping detection 
areas of adjacent sensors. In [17], an intruder detection system 
based on PIR sensors is developed. Mrazovac et al. [8] use a 
microphone array and a three-dimensional (3-D) camera in 
addition to PIR sensors for home automation, i.e., to detect the 
presence of and localize the users for smart audio/video play-
back control. 

The aforementioned studies all use the 
binary outputs produced by the analog 
PIR motion detector circuits. However, it 
is possible to capture a continuous-time 
analog signal corresponding to the ampli-
tude of the voltage signal of the PIR sen-
sor that represents the transient behavior 
of the sensor circuit. By processing these 
analog signals, more complicated tasks, as 
opposed to just the on/off type operations, 
can be accomplished. The block diagram 
of an intelligent PIR sensor signal pro-
cessing system is shown in Figure 1. The 
original output of the sensor signal ( )x t  is 
first digitized using an analog-to-digital 
converter. Feature vectors vn  are then 
extracted from the digitized signal [ ] .x n
It is possible to extract a feature vector for 
each signal sample. However, it is compu-
tationally more efficient to extract a fea-
ture vector for a frame of data, as in 
speech processing systems. Finally, these 
feature vectors are fed to a classifier to 
detect the events of interest such as walk-
ing, falls, uncontrolled fires etc. The clas-
sifier is usually trained using past and/or 
simulated data. 

A PIR sensor-based system for human 
activity detection is described in [19], [33], 
and [45]. The system is capable of detect-
ing accidental falls and the flames of a 
fire. Instead of the binary signal produced 
by the comparator structure in the PIR 
sensor circuit, an analog output signal is 
captured and transferred to a digital signal 
processor for further processing. As 
shown in Figure 2(a), a walking event is 
almost periodic when the person walks 
across the viewing range of the sensor. On 
the other hand, a person falling produces 
a clearly distinct signature as shown in 
Figure 3, and uncontrolled flames lead to 
a signal with high-frequency content. 
Since flames of an uncontrolled fire flick-
er up to a frequency of 13 Hz, a sampling 
frequency of 50 Hz, which is well above 

the Nyquist rate, is chosen. The goal is to recognize falls, uncon-
trolled fire events, and a person’s daily activities. In practice, 
PIR signals are not as clearly distinguishable as the ones shown 
in Figures 2 and 3. For example, the person may walk toward 
the sensor and the periodic behavior is no longer clearly visible.

Wavelet transform is used for feature extraction from the 
PIR sensor signal. In the training stage, wavelet coefficients 
corresponding to each event class signals are computed and 
concatenated. Three, three-state MMs are designed to 
recognize the three classes. The characteristics of the 

Sensor
Feature

Extraction Classifier
x (t ) x [n ] vnA/D

Falls

Walking

Gestures

Fire

...

FIGURE 1. A block diagram of an intelligent PIR sensor signal processing system.

FIGURE 2. A PIR sensor raw output signal recorded at a distance of 5 m (a) for a person walking and 
(b) for a flame of an uncontrolled fire.
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FIGURE 3. A time-domain PIR sensor signal record due to a person falling.
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transitions between the three states of the MMs are different for 
each event class. The wavelet coefficient sequence correspond-
ing to the current time window of two seconds is fed to the 
three MMs, and the MM producing the highest frequency 
determines the activity within the window. Uncontrolled flames 
are very accurately detected, since the sensor signal for a flick-
ering flame exhibit high frequency activity that no person can 
produce by moving his or her body as shown in Figure 2(b). 

It is not possible to distinguish a fall from sitting on the 
floor or a couch using only a single PIR sensor. In [33] and 
[45], multisensor systems are developed for fall detection. 
Sound, PIR, and vibration sensors are placed in a home. 
MMs are used as classifiers in these multisensor systems. 
They are trained for regular activities and falls of an elderly 
person using PIR, sound, and vibration sensor signals. Vibra-
tion and sound sensor data processing will be described in 
the next two sections. Decision results of MMs are fused by 
using a logical “and” operator to reach a final decision.  

In [21], a remote control system is developed based on a 
PIR sensor array and a camera for home automation. The sys-
tem recognizes hand gestures. The camera is responsible to 
detect the hands of the user. Once a hand is 
detected, simple hand gestures such as left-
to-right, right-to-left, and clockwise and 
counterclockwise hand movements are rec-
ognized by the PIR sensor signal analysis 
to remotely interact with an electrical 
device. The system includes three PIR sen-
sors, each of which is located at a corner of 
a triangle. Signals received from each PIR 
sensor are transformed into wavelet 
domain and then concatenated according to 
a predefined order. In this case, the distinc-
tive property of the resulting wavelet features for different 
hand gestures is not the oscillation characteristics, but the 
order of the appearances of the peaks in the wavelet sequence. 
Therefore, the winner-take-all (WTA) hashing, which is an 
ordinal measure, is used for further feature extraction and 
classification instead of MMs. Wavelet sequences are convert-
ed to binary codes using the  WTA hash method, and Jaccard 
distances are calculated between the trained and test binary 
codes. The model yielding the smallest distance is determined 
as the class of the current test signal. The system described in 
[21] produces higher recognition results than the system in 
[22], which uses only the binary outputs of the analog PIR 
sensor circuitry for the same task. 

In [41], a method for the detection of breathing movement 
using PIR sensors is proposed. PIR sensors are placed near a 
person’s bed. Sensor signals, corresponding to body movements 
due to breathing activity, are recorded. Short-time Fourier anal-
ysis of the PIR sensors’ signals is carried out. The recorded sig-
nals are divided into windows, and the existence of sleep apnea 
within each window is detected by analyzing the spectrum. If 
there are no peaks in a window, that is an indicator of a sleep 
apnea. It may also be possible to measure the respiratory rate of 
a person who is sleeping using PIR sensor signals. 

Vibration and acoustic sensor signal processing
Accelerometers designed to measure vibration are either 
based on the piezoelectric effect or electromechanical energy 
conversion. They are transducers for measuring the dynamic 
acceleration of a physical device. All of the commercially 
available wearable fall detection systems are based on accel-
erometers. They convert vibrations into electrical signals 
depending on the intensity of the vibration waves in the axis 
of the vibration sensor. Vibration sensors can be categorized 
into two groups based on the number of their axes: one-axis 
and three-axes sensor types.

As mentioned previously, vibration sensors can be wear-
able or they can be installed on intelligent homes with the aim 
of sensing the vibrations on the floor. In this section, we first 
review the stationary systems. 

Regular daily activities, such as walking, running, sitting 
on a chair, or objects falling on the floor cause measurable 
vibrations on the floor. Human falls also cause vibrations, 
which are transmitted through the floor. Therefore, a vibra-
tion sensor installed in each room of a house or an apartment 
can pick up the vibrations on the floor, and it may be possible 

to detect a human’s fall by continuously 
analyzing the sensor signal. In Figure 4, a 
ten-second-long vibration sensor signal 
generated by a person walking is shown. It 
is clearly different from the human fall sig-
nal shown in Figure 5. This signal was 
recorded on a concrete floor and the fall 
took place 3 m away from the sensor. 
Human falls usually take about two sec-
onds and create strong vibration signals 
because a typical human is more than 100 
lb heavier than most of the objects that can 

fall on the floor in a house. Machine-learning techniques can 
be used to classify the vibration signals. 

In [33], a multisensor AL system consisting of PIR sensors 
and vibration sensors is developed. Vibration sensor signals 
are sampled with a rate of 500 Hz. As shown in Figure 5, there 
is very little signal energy above 125 Hz on a concrete floor. 
Since vibrations and acoustic and sound waves are related to 
each other, it is natural to use the feature extraction techniques 
utilized in speech processing to analyze the vibration signals. 
Various wavelet and frequency domain feature extraction 
schemes are employed every two seconds to extract feature 
vectors from the signals. Wavelet and different frequency anal-
ysis methods are studied and compared to each other. Discrete 
Fourier transform (DFT) subband energy values, MFCCs, dis-
crete wavelet transform (DWT), and dual-tree complex wave-
let transform (DT-CWT)-based feature extraction methods are 
studied for feature extraction [33]. These feature vectors are 
classified using a support vector machine (SVM) for fall 
detection. They can also be used to estimate a person’s daily 
activity and can provide feedback to him or her. 

In [33], the data set contains 2,048-sample-long signals cor-
responding to 100 falls, 1,419 walking/running incidents, 30 sit-
ting cases on the floor, 30 slammed door cases, and 65 cases of 

Even though several
user-activated commercial 
devices are available for 
fall detection, they have 
limited benefits, especially 
in situations where the 
user loses consciousness. 
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fallen items. Eight MFCCs, eight DFT coefficients, eight wave-
let coefficients, and eight CWT coefficients are extracted for 
each record. About 40% of falling and walking/running records 
are used for training the SVM classifier. 
About one-third of sitting, slammed door, 
and fallen object records are also used for 
training. Remaining records are used as the 
test data set. The data set is available to the 
public. Best recognition results are obtained 
when complex wavelet transform based fea-
tures and modified mel-frequency cepstrum 
coefficients are used. When combined with 
PIR sensors the multisensor AL system 
becomes very reliable. The AL system has 
the capability to place a phone call to a call 
center whenever a fall is detected. 

In [46], acoustic sensors are used instead of vibration sen-
sors for fall detection. The acoustic sensor is placed like a 
stethoscope on the floor. In a practical system, it is desirable to 

have a single vibration sensor unit installed on each floor of a 
house; however, there are some challenges. This unit has to be 
robust against variations on the type of the floor and the weight 

of the person as well as the distance 
between the sensor and the fall. The dis-
tance problem can be solved by installing 
two or more sensors, but this increases the 
cost. To cover all possibilities, extensive 
studies have to be implemented. In addition, 
the overall multisensor system described in 
[62] turns out to be a little bit too costly for 
a typical house and the network infrastruc-
ture. We hope that the Internet of Things 
(IoT) will be widespread in the near future, 
which will make the entire system feasible.

Wearable accelerometer sensor signal processing
Even though several user-activated commercial devices are 
available for fall detection, they have limited benefits, especially 

AL systems may provide 
safety and autonomy 
for elderly people while 
allowing them to live 
independently, as well  
as relieve the workload
of caregivers and
health providers.

FIGURE 4. A ten-second-long vibration sensor signal generated by a person walking.
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FIGURE 5. (a) A two-second-long human fall record. (b) The Fourier transform magnitude.
The Fourier transform domain is divided into eight nonuniform bands, and subband energy values 
are used as a feature set representing the time-domain vibration signal together with wavelet coef-
ficients and Mel-frequency cepstral coefficiencts (MFCCs).
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in situations where the user loses consciousness. As previously 
mentioned, all commercially available autonomous fall detec-
tion systems are based on wearable accelerometers. Such sys-
tems can also provide information about an individual’s 
functional ability and lifestyle. Wearable devices also use tilt 
sensors to automatically detect a fall event. One drawback is that 
the individual has to wear the device continuously day and 
night. On the other hand, monitoring is not limited to confined 
areas, where the static sensors are installed, and can be extended 
wherever the subject may travel. 

Dai et al. [47] developed a fall detection system using the 
accelerometers of a mobile phone. The app is capable of detect-
ing falls when the phone is placed in a shirt pocket, on a belt, or 
in a pants pocket. When the average magnitude of the 3-D 
acceleration vector and the average value of the vertical acceler-
ation in a short-time window exceed predefined thresholds a fall 
is reported. In [48] and [49], adaptive thresholds are developed. 
In [48], the threshold is determined using the body mass index 
of the user. Currently, mobile phone apps are not widely used by 
elderly people. In addition, methods based on using thresholds 
cannot be as reliable as systems that use machine-learning tech-
niques, since threshold-based methods are more prone to pro-
ducing frequent false alarms.

In [50], artificial neural networks (ANNs) are used for 
human-activity recognition. A single triaxial accelerometer is 
attached to the subject’s chest. Acceleration signals are modeled 
using autoregressive (AR) modeling. AR model coefficients 
along with the signal-magnitude area and the tilt angle form an 
augmented feature vector. The resulting feature vector is further 
processed by the linear-discriminant analysis and ANNs to rec-
ognize various human activities. 

Camera sensor-based methods 
In recent years, one of the key aspects of elderly care has been 
intensive activity monitoring, and it is very important that any 
such activity monitoring be also autonomous. An ideal autono-
mous activity monitoring system should be able to classify 
activities into critical events, such as falling, and noncritical 
events, such as sitting and lying down. While fast and precise 
detection of falls is critical in providing immediate medical 
attention, other noncritical activities like walking, sitting, and 
lying down can provide valuable information in the study of 
chronic diseases and functional ability monitoring [51], [52] and 

for early diagnosis of potential health problems. Furthermore, 
the system should be able to smartly expend its resources for 
providing quick and accurate real-time response to critical 
events versus performing computationally intensive opera-
tions for noncritical events.

There has been a lot of work on activity monitoring by 
vision-based sensors [28], [53]–[61]. However, in all of these 
methods, cameras are static at fixed locations watching the 
subjects, thus introducing the issue of confining the monitor-
ing environment to the region where the cameras are 
installed. The images acquired from the cameras are usually 
offloaded to a dedicated central processor. Also, 3-D model-
based techniques require initializations and are not always 
robust. Another major practical issue is that the subjects who 
are being monitored often raise privacy concerns [54], as they 
feel they are being watched all the time.

In contrast to static camera-based methods, Ozcan et al. [5] 
take a different approach, introducing an autonomous fall 
detection and activity classification system by using wearable 
embedded smart cameras. Since the camera is worn by the sub-
ject, the monitoring is not limited to confined areas and extends 
to wherever the subject may travel, as opposed to static sensors 
installed in certain rooms. In addition, since the images cap-
tured will not be of the subject, as opposed to static cameras 
watching the subject, privacy issues for the subjects is alleviat-
ed. Moreover, captured images are processed locally on the 
device, and they are not saved or transmitted anywhere. Only 
when a fall occurs can an appropriate message be wirelessly 
sent to emergency response personnel, optionally including an 
image from the subject’s camera. This image of the surround-
ings can be helpful in locating the subject. Also, the captured 
images carry an abundance of information about the surround-
ings that other types of sensors cannot provide. A recent study 
about privacy behaviors of lifeloggers using wearable cameras 
discusses privacy of bystanders and ways to mitigate concerns 
[62]. It is also expected that wearable cameras will be employed 
more to understand lifestyle behaviors for health purposes [63].

The proposed approach [5] is based on the oriented image 
gradients. Different from the original histograms of oriented 
gradients (HOG), separate histograms for gradient strength 
and gradient orientations are constructed, and the correlation 
between them is found. The gradient orientation range is 
between 0–180°, and it is equally divided into nine bins. The 

(a) (b) (c) (d)

FIGURE 6. Example frames captured during a fall from a standing position.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


42 IEEE SIGNAL PROCESSING MAGAZINE |   March 2016 |

gradient strength histogram contains 18 bins. Moreover, instead 
of using a constant number of cells in a 
block, the cells that do not contain signifi-
cant edge information are adaptively and 
autonomously determined and excluded 
from the descriptor in this proposed modi-
fied HOG algorithm. In [5], it is shown that 
the proposed method is more robust com-
pared to using fixed number of cells in 
detecting falls. In addition to detecting falls, 
the proposed algorithm provides the ability 
to classify events of sitting and lying down using optical flow. 
The method is composed of two stages. The first stage involves 
detection of an event. An event can be one of the following: fall-
ing, sitting, or lying down. Once an event is detected, the next 
stage is the classification of this event. An example set of cap-
tured frames for falling from standing up position is presented 
in Figure 6.

As reported in [5], the fall detection part of the algorithm 
was implemented on the CITRIC embedded camera platform 
[64], which is a small, stand-alone, battery-operated unit. It fea-
tures a 624-MHz fixed-point microprocessor, 64 MB synchro-
nous dynamic random access memory, and 16 MB NOR 
FLASH memory. The wireless transmission of data is per-
formed by a Crossbow TelosB mote. The images are processed 
locally onboard, and then dropped, thus, they are not trans-
ferred anywhere. For the falls starting from a standing position, 
an average detection rate of 87.84% has been achieved with 
prerecorded videos. With the embedded camera implementa-
tion, the fall detection rate is 86.66%. Moreover, the correct 
classification rates for the events of sitting and lying down are 
86.8% and 82.7%, respectively.

More recently, we have implemented the fall detection 
part of this algorithm on a Samsung Galaxy S4 phone with 
Android OS and performed experiments with ten subjects 
carrying this phone. The experimental setup can be seen in 
Figure 7. We have also implemented a method to fuse two 
sensor modalities: the accelerometer and camera data. The 
average sensitivity rates for fall detection are 65.66%, 
74.33%, and 91%, when we use only accelerometer data, 
only camera data, and camera data together with accelerom-
eter data, respectively.

Zhan et al. [65] propose an activity recognition method that 
uses a front-facing camera embedded in a user’s eyeglasses. 
Optical flow is used as the feature extraction method. Three 
classification approaches—k-nearest neighbor, logitBoost, and 
SVM—are employed. Further smoothing with hidden MMs 
provide an accuracy of 68.5–82.1% for a four-class classification 
problem, including drinking, walking, going upstairs, and going 
downstairs, on recorded videos.

Moghimi et al. [66] use an RGB-D camera mounted on a 
helmet to detect the users’ activities. They use compact and 
global image descriptors, including GIST, and a skin seg-
mentation-based histogram descriptor. For activity classifica-
tion, learning-based methods such as bag of scale invariant 
feature transform words, convolutional neural networks, and 
SVMs were explored.

Ishimaru et al. [67] propose an activity 
recognition method using eye blink fre-
quency and head motion patterns acquired 
from Google glass. An infrared proximity 
sensor is used for blink detection. The 
average variance of a 3-D-accelerometer is 
calculated to construct the head motion 
model. In the classification framework, 
four features (variance value of accelerom-
eter, mean value of blink frequency, and 

the x-center and y-center of mass value of the blink frequency 
histogram) have been used to classify five different activities 
(watching, reading, solving, sawing, and talking) on 
eight  participants with overall accuracy of 82%.

Conclusions
AL systems may provide safety and autonomy for elderly peo-
ple while allowing them to live independently as well as relieve 
the workload of caregivers and health providers. However, to 
find widespread use, these systems should be robust and reli-
able. Current commercially available autonomous systems, 
which are not user activated, employ simple threshold-based 
algorithms for sensor data processing. As a result, they are 
prone to producing too many false alarms. Advanced signal 
processing techniques have to be developed to take full advan-
tage of the recent developments in sensor technologies and pro-
vide robustness against variations in real-life conditions and 
the environment. Moreover, fusing multiple sensor modalities 
provides promising results with higher accuracy. Computation-
al problems can be solved with the help of the IoT, which refers 
to wireless systems connecting industrial, medical, automotive, 
and consumer devices to the Internet. The IoT will allow 
objects and people to be sensed over existing Internet infra-
structure. Vibration and PIR sensors, acoustic sensors and 
microphones, and cameras can be connected to form a network 
for an intelligent home designed for elderly people. The data 
and decision results that the sensors produce can be processed 
and fused over a cloud or a fog. We expect that the IoT will 
lead to remote health monitoring and emergency notification 
AL systems that will operate autonomously, without requiring 
user intervention. 

Vibration sensors can 
be categorized into two 
groups based on the 
number of their axes:
one-axis and three-axes 
sensor types.

FIGURE 7. An Android smartphone attached to the waist.
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Device-Free Radio Vision for Assisted Living
Leveraging wireless channel quality information for human sensing

W ireless propagation is conventionally considered as the enabling tool for transporting 
information in digital communications. However, recent research has shown that the 
perturbations of the same electromagnetic (EM) fields that are adopted for data 

transmission can be used as a powerful sensing tool for device-free radio vision. Applica-
tions range from human body motion detection and localization to passive 

gesture recognition. In line with the current evolution of mobile 
phone sensing [1], radio terminals are not only ubiquitous 

communication interfaces, but they also incorporate novel 
or augmented sensing potential, capable of acquiring 

an accurate human-scale understanding of space 
and motion. This article shows how radio-fre-

quency (RF) signals can be employed to pro-
vide a device-free environmental vision and 

investigates the detection and tracking capa-
bilities for potential benefits in daily life.

It’s not difficult. Every time I lift my 
arm, it distorts a small electromagnetic 
field that is maintained continuously across 
the room. Slightly different positions of my 
hand and fingers produce different distor-
tions and my robots can interpret these dis-
tortions as orders. I only use it for simple 

orders: Come here! Bring tea! and so on. 
—Isaac Asimov, 

The Robots of Dawn, 1983.

Introduction
Device-free radio vision is an augmented functionali-

ty provided by radio transceivers—typically heterogene-
ous, densely distributed, and networked—that monitor the 

fluctuations of the EM field across the space. These monitoring 
devices may be pre-existing, deployed at arbitrary (or optimized) loca-

tions for communication purposes in the area of interest, and exchange digital 
information by any wireless communication protocol. Radio vision systems leverage dif-
fraction, reflection, and scattering phenomena that affect RF propagation for ubiquitous 
sensing. RF signals can be either narrowband or wideband, in licensed or unlicensed fre-
quency bands, with carrier frequencies ranging from MHz to GHz and higher. The pres-
ence, position, and motion of a human body in the network area affect the EM field in a 
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predictable way, making it possible to estimate and track its 
activity without the need to deploy and calibrate any additional 
wearable sensor (sensor-free detection), nor to ask for specific 
user actions (noncooperative detection). This passive sensing 
approach has been experimented with in heterogeneous net-
works, but it is also appropriate for most of the emerging low-
power wireless standards, and for personal and device-to-device 
(D2D) communications [2], including Wi-Fi, Bluetooth low 
energy (BLE), ZigBee, and D2D-enabled 
long-term evolution (LTE Advanced) [3]. 

Tracking and recognition of human 
motions and activities are done through real-
time processing of the wireless channel quali-
ty information (CQI). In this article, 
leading-edge research and developments are 
discussed with a special focus on assisted liv-
ing applications [4].

Leveraging RF signals
for sensing: Device-free vision
Personal sensing is the current scale at 
which these technologies are being studied by the research 
community: they are designed for sensing a single (or a lim-
ited number of) individual(s) based on real-time analysis of 
CQI. As depicted in Figure 1, radio-based vision systems 
track RF field perturbations by dense networks of air-inter-
acting wireless devices and process CQI data for the pur-
pose of human sensing. To support “vision” functions, three 
key distinctive technological features are incorporated:

■ Sensorless interaction and anonymous tracking. Gesture-
based interactions of the user with the environment are 
detected without instrumenting the human body (device-
free) or deploying sensors calibrated for each user (sensor-
less). Subjects are anonymously tracked and localized, in 
contrast to privacy-intrusive video cameras, inferring the 
EM perturbations from CQI.

■ Ubiquitous monitoring. Unlike existing infrared (IR) rec-
ognition platforms [4], device-free radio 
vision systems support ubiquitous user 
detection in complex non-line-of-sight 
(NLOS) indoor spaces [5], using both fixed 
(e.g., Wi-Fi access points, ZigBee/
Bluetooth devices) and nomadic (e.g., 
smartphones, tablets) radio devices (see 
Figure 1) that are interacting over mixed 
line-of-sight (LOS) and NLOS, or through-
the-wall links [6]. RF signals with wave-
lengths that are long enough to penetrate 
dense objects, such as doors or walls, can 
be exploited to recognize human motion 

and gestures even if these gestures are visually in shadow 
or in a different room adjacent to the one where the RF 
device itself is operating. 

■ Scalable CQI (big-data) analytics. The technology typically 
requires information aggregation, processing, and computation 
of massive amounts of CQI data generated from, and delivered 
to, highly distributed and heterogeneous wireless devices. 
CQI data for real-time processing are often produced at high 

FIGURE 1. Device-free radio vision is based on tracking the perturbations of the RF field sensed by dense networks of radio-interacting wireless devices.
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A crucial problem for 
quantitative evaluation 
of radio vision system 
performance is the 
availability of a simple but 
realistic model to describe 
human body-induced 
shadowing. 
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rates, in the order of tens of thousands of observations per 
second, to cover large spaces. Learning and running analytics 
from these large volumes of data requires the use of signal 
processing tools designed to efficiently work on high-dimen-
sional and often incomplete data sets [7] (e.g., due to random 
power cycling of devices or communication failures). 

Active and passive configurations
Device-free radio vision systems can be based on active or pas-
sive configurations, as illustrated in Figure 2. The distinction 
between active and passive systems differentiates systems in 
which the active part (the transmitter) is under the control of the 
system from those where it is not [8]. Passive systems capitalize 
on a pre-existing network infrastructure where densely air-inter-
acting devices are exposed to some EM fields (e.g., FM radio [8], 
Wi-Fi [5], [9]), and capture those ambient RF signals. CQI pro-
cessing might be carried out distributedly or centrally. Active
systems exploit dense communications with fixed/nomadic trans-
mitters acting as interconnected mobile probes. These systems 
typically rely on a decentralized architecture where user data are 
propagated in direct mode instead of through a remote service 
provider (e.g., cellular base stations, Wi-Fi access points), even if 
providers might trigger the first device connection, for logging, 
uplink/downlink (UL/DL) synchronization, etc. This concept is 
in line with the current trend [3] of enabling small/femto-cell 
deployments with smartphones that are able to discover other 
phones in proximity and overhear RF signals from D2D links.

Modeling of RF signals for radio vision
In radio vision systems, CQI measurements used for recognition 
can be either in the form of physical (PHY) layer values, e.g., the 
baseband radio channel state information (CSI) sampled at sym-
bol level, or received signal strength (RSS) data extracted at 
upper layers.

Let us consider a wireless transmission organized into peri-
odic frames consisting of groups of adjacent symbols, and a 
human body, located at position x  inside the wireless link area, 

performing an activity d  defined as an ensemble of nonrigid 
body motions [10]. The user state [ , ]x dH =  defines a generic 
combination of user location and activity. The effects of the user 
state H  on the channel response are observed over a set 

{ , , }T1J f=  of consecutive received symbols (or frames). 
For a static environment where the human body does not 
obstruct the link (i.e., human-free state ),QH =  the equivalent 
baseband channel response |h g ek

j
k
N

0 k
kQx a= x x
z

-
-

=
^ h /

can be modeled as multipath with a combination of N delayed 
paths: ka  and kz  are the amplitude and the phase shift of the 
kth ray, respectively, and g kx x-  models the received pulse wave-
form with delay .kx  A human in state H  modifies the channel 
response at symbol time t J!  as

| | ,h t g e|
|

t k t
j t

k
N

0 k
kx aH H= x x
z

H
H

-
-

=
^ ^ ^

^h h h
h/ (1)

where the amplitude | | ,t tk k kTa a aH H= +^ ^h h  the phase 
shift | |t tk k kTz z zH H= +^ ^h h, and the augmented delay 

| |t tk k kTx x xH H= +^ ^h h  of the kth ray highlight the 
human-induced perturbations compared to the human-free 
state .QH =  Amplitude |tka H^ h and phase shift |tkz H^ h

incorporate human-induced micro-Doppler effects. 
In what follows, the effect of human body motion on CQI is 

experimentally evaluated, either for single and multicarrier dig-
ital communication systems. An introductory case study is 
shown in Figure 3, where detection of human motion is based 
on RSS [Figure 3(a)], and CSI measurements extracted from an 
orthogonal frequency-division multiplexing (OFDM) imple-
mentation [Figure 3(b)].

RSS
The RSS is a practical metric to assess CQI at frame level, 
and it is commonly adopted for transmitter (TX)–receiver 
(RX) link adaptation and link-layer transmission scheduling 
tasks. Power estimators, or peak detectors, are commonly 
used to acquire information about signal strength as depicted 

FIGURE 2. Active/passive network configurations for device-free radio vision. (a) Passive: capturing ambient radio signals. (b) Active: D2D communications.
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in Figure 3(a): the automatic gain control (AGC) loop exploits 
RSS information to adapt the dynamic range before analog to 
digital conversion. At frame time ,t  the RSS st  can be mod-
eled in logarithmic (dB) scale as

,s s st tQ TH H= +^ ^ ^h h h (2)

where the additive deviation stT H^ h from QH =  models the 
body-induced perturbation and ( ) [ ( )]s sE tQ QH= =  is the 
(average) RSS observed in the human-free state. The sequence 

( ) [ ( )]s s Rt t
T 1

J !H H= #
!  collects the human-induced RSS 

footprint observed over T  frames. Likewise, the RSS pro-
file is the deviation with respect to :QH = sT H =^ h

[ ] .s s Rt t
T 1

JQ !H - #
!^ ^h h  In IEEE 802.15.4 standard-com-

pliant devices, the digital RSS indicator (RSSI) stt  can be used as 

estimator of the RSS with 8-bit resolution. Other radios also 
implement the link quality indicator (LQI) that correlates with 
packet reception rate (see [11] and references therein), and pro-
vides an indirect estimate of RSS values. In Wi-Fi standards, RSS 
estimation can be obtained from the received channel power indi-
cator (RCPI). In LTE, the reference signal received power 
(RSRP) measures the power over the reference signals.

Recognition of human activity can be also based on multi-
link processing. Figure 3(a) (bottom) shows the profiles 

s RT 1T !H #
, ^ h  over two IEEE 802.15.4 links , ,1 2, , ,! " ,

for T 160=  frames, based on 20 RSSI independent measure-
ments [ ]s s R, t t

T 1
J !H H= #

, , !t t^ ^h h  featuring a human body 
standing in the surroundings of both links (located at 0.5 m 
above the ground), then crouching and sitting on the floor. 
Since the human torso causes more attenuation than the waist 
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FIGURE 3. CQI: RSS and baseband CSI. (a) RSS information extraction: example. RSS processing for device-free radio vision: (top) digital/analog RSSI 
extraction, (bottom) RSSI data (dashed curves)—and corresponding average profiles (solid curves)—for a human standing, crouching, and sitting on 
the floor (T = 160 IEEE 802.15.4 frames). Active configuration is considered with two IEEE 802.15.4 links. (b) CSI extraction in multicarrier (OFDM) 
modulation. Baseband processing example for OFDM modulation: (top) CSI extraction, (bottom) CSI power footprints over K=4 OFDM pilot subcarriers 
( ,T 223 000=  symbols) corresponding to the human body crossing the link in four seconds. OFDM implementation: 2.6 GHz, 64 subcarriers, cyclic 
prefix 16 samples, baseband sampling 5MHz with 16 payload symbols/frame.
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and ankles, when a person is standing, there is a larger RSS 
attenuation with respect to the same body lying on the floor. 
The profiles ,sT H, ^ h  superimposed in solid lines, average out 
noise and time-warping effects. Detection of the human state 
can be based on matching (e.g., using simple time-domain fea-
tures) the observed entries ,s H,t ^ h  or the estimated deviations 

,sT H,t ^ h  with the corresponding RSS profiles learned during 
a training procedure. Human-state estimation possibly entails 
denoising, time warping, and reconstruction of missing RSSI 
observations (i.e., by interpolation methods) [12], [13]. Missing 
or incomplete data can be represented as sΩ/ H,t ^ h6 @ over the 
set of t Ω J! 3  received frames, where ( )Ω $/  is the sam-
pling operator nulling the entries of s H,t ^ h not in Ω [7].

Baseband modeling of CSI
Baseband CSI measures the channel response at symbol level: 
CSI estimation is typically obtained from training/reference 
signals (RSs) multiplexed with information symbols and peri-
odically placed in every frame. Therefore, in contrast to RSS, 
processing of CSI for the purpose of radio vision can leverage 
on multiple independent measurements at frame level and can 
be used to capture fast human body movements and gestures. 
Assuming frequency-flat channel as for narrowband communi-
cation but time-varying for dynamic multipath environments, 
the received RSs ( )r h nt t t t~H= +  at symbol time t J!
(with t~  and nt  the transmitted RSs and the noise term, 
respectively), captures the moving body in state H  through the 
corresponding complex channel envelope adopted from (1)

( ) ( | ) ( ) ( ) .h t e h h( | )
t kk

N j t
t0

k Q TaH H H= = +z H
=

-/ (3)

Human body effects on the channel response are now embed-
ded into a characteristic footprint of channel variations over T
received symbols .[ ]h hCT

t t
1

J!H H=#
!^ ^h h  The CSI pro-

file set is ,[ ]h h h hCT
t t t

1
JQT T!H H H= = -#
!^ ^ ^ ^h h h h  with 

h Q =^ h [ ]hE t QH =^ h  being the average response for the 
human-free state. Noisy profiles [ ]h h ht tQT H H= - !X

t tt ^ ^ ^h h h

with estimated channels ht Ht ^ h and human-free response h Qt ^ h
are typically observed over a subset of times (or symbol index-
es) Ω J3  accounting for the training/data multiplexing, and 
missing symbols.

The use of multicarrier (OFDM) modulation enables multi-
dimensional processing of CSI over the time-frequency grid and 
allows a fine-grained classification of human motion [12]. As 
depicted in Figure 3(b), the CSI estimation is carried out by 
periodic transmission of RSs over standard defined time-fre-
quency patterns [3]. The received RSs rt  over the K  pilot 
subcarriers , ,f fK1 f" , inside OFDM symbol t  can be writ-
ten as [ ]r diagt t $~= h nt tH +^ h  with vector t~  collecting 
the transmitted RSs, and baseband channel vector 

[ ]h H ,t f t f f
fK

1H H= =^ ^h h  containing the Fourier transform 
( )F $  of channel |ht x H^ h

( | ) | .H H hF,f t f t f

H ,f t

Q T xH H= +

T H

^ ^ ^
^

h h h
h

1 2 34444 4444
(4)

The CSI footprint is the matrix [ , ,H hCK T
1 f!H H=#^ ^h h

]hT t JH !^ h  with human-induced prof i le HT H =^ h

.HH QH -^ ^h h6 @  The estimate H Ht ^ h is evaluated over the 
time-frequency set Ω  now accounting for framing structure 
and irregular time-frequency RSs spacing. In Figure 3(b) 
(bottom), an OFDM transmission over 2.6 GHz is imple-
mented in-lab using software-defined radio (SDR) devices: a 
person is crossing the link and standing for four seconds, 
causing an average attenuation of 5 dB. The CSI power foot-
print estimates H ,f t

2
Ht ^ h  are shown for K 4=  pilots and 

,T 223 000=  symbols.
A crucial problem for quantitative evaluation of radio 

vision system performance is the availability of a simple but 
realistic model to describe human body-induced shadowing. 
Ray-tracing [14], EM/stochastic [15], [16], and geometric-
based (see [2] for a review) models have been investigated to 
predict the correlation between the human body position x
and the corresponding channel perturbations. EM methods 
that exploit geometric/uniform theory of diffraction (GTD/
UTD), as well as ray-tracing algorithms, can be employed 
for their ability to accurately evaluate the EM field at the 
receiver, but they are usually very complex, time consuming 
and, above all, require perfect knowledge of the shape, com-
position, and properties of the obstacle. In “Diffraction-
Based Modeling of Human Body Shadowing,” we consider a 
simplified but effective framework based on the Fresnel–
Kirchoff diffraction theory as shown in Figure 4(a).

Research on radio vision: A survey
There has recently been an increasing interest in research on 
wireless human tracking via RF devices. This broadly 
defined domain encompasses different research areas such 
as signal processing, computer vision, communication net-
works, and human–machine interfaces. The first experimen-
tal activity dates back to the works [17], [18] showing that 
body motions leave a characteristic footprint on RSS pat-
terns [17], while RSS fluctuations can be effectively used for 
body localization [18]. 

Focusing on device-free human body localization, the 
radio tomography imaging (RTI) proposed in [6], [19], and 
[20] adopts computed tomography methods to reconstruct an 
image of the object(s) inside the network area. The technolo-
gy has been now transferred to a commercial product (i.e., 
Xandem system) targeting assisted living applications. The 
methods introduced in [5], [9], and [11] allow the explicit 
tracking of the target’s (or targets’) position using a Bayesian 
approach that jointly process the RSS mean and standard 
deviations [11]. More recently, device-free systems based on 
Bayesian tracking of RSS profiles have been also designed 
for obstacle/object two-dimensional (2-D) mapping [21], 
detection of human breathing [13], [22], and fall detection 
[23], [24].  Human gesture recognition and body motion 
detection have been addressed in recent research projects 
(SenseWaves, E-eyes, WiSee, and Wi-Vi) targeting both 
RSS [25] and baseband CSI analytics using radio devices 
operating at 900 MHz [8], [26], 2.4 GHz with 20-MHz 
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band Wi-Fi-compliant RF front ends [12], [27], and 
5.8 GHz [28]. Signal processing methodologies for these 
systems, most recent developments, and open issues will 
be discussed in the following sections.

Device-free localization
and motion tracking
In the context of assisted living, knowledge of the user loca-
tion [5] is important for a number of ser-
vices ranging from monitoring daily 
activities, forecasting user tendencies, to 
remote control of appliances (e.g., lights, 
doors, windows, air-conditioners). RSS-
based device-free localization (DF-L) [11], 
[18], [19] has emerged in the last few years 
for passive localization of people move-
ments in areas covered by pre-existing 
wireless mesh networks. Considering a sin-
gle target at location [x x , x ]1 2

T=  in the 
network area, if s,  is the RSS of the link ,
at a given time instant, the objective of 
DF-L is the est imation of x  f rom the RSS set 

[ , , ] .s s sL1
Tf=  As shown in Figure 5, RSS is approximated 

as a Gaussian variable in the logarithmic domain (i.e., as log-
normal shadowing [11])

,
,x

x
xs

w
w

X
X

, ,

, ,

0 0

1 1

"

!

n

n
=

+

+,
, ,

, ,

,

,^ h
) (5)

for a target outside ( )x X" ,  or inside ( )x X! ,  the sensitivity 
area of the link ,,  respectively. In the first case (empty scenar-
io), the RSS has a deterministic mean ,0n ,  that accounts for 
path-loss and other static effects due to fixed obstructions or 
scattering objects, while the random term ~ ,w 0N, ,0 0

2v, ,^ h

accounts for RSS measurement errors due to the hardware (i.e., 
for noisy RSSI) as well as for small power fluctuations due to 
variations in the surrounding environment. The mean RSS for 

x X! ,  is x x, ,1 0n n nD= +, , ,^ ^h h  (with 
),x 0T #n, ^ h  while the random shadowing 

is modeled as ~ , xw 0N, ,1 1
2v, ,^ ^ hh  with 

x x, ,1 0v v vD= +, , ,^ ^h h  (and xT $v, ^ h

) .0  An experimental evidence for model (5) 
is depicted in Figure 5 (top): a measurement 
campaign was conducted to evaluate experi-
mental RSS distributions to be compared 
with model (5) for target moving in the sur-
rounding of location x, both outside (blue) 
and inside (red) the sensitivity area of two 
selected links. Although better fits can be 
provided using other parametric distribu-

tions (e.g., Weibull, Nakagami distributions [29]), the approxi-
mation is reasonable to design estimation methods and infer 
performance bounds of practical interest (see “Accuracy 
Bounds for DF-L”). As shown in several experimental studies 
[6], [11], [20], both average xTn, ^ h and standard deviation 

xTv, ^ h maps of the RSS perturbations (i.e., perturbation 
maps) are strongly related to the target position relative to the 

Here we consider the framework proposed in [16] and sum-
marized according to the link scenario of Figure 4(a) (top), 
where the human body is sketched as a three-dimensional 
(3-D) homogeneous cylinder, having height a2 z  and an 
elliptical base with semi-axes ayu  and .ayv  The cylinder 
rotates along the vertical axis x{  with azimuth { , thus mod-
eling a human body standing in a specific position but possi-
bly changing its posture. As a tradeoff between model 
simplicity and accuracy, the 3-D cylinder is reduced to an 
equivalent 2-D rectangular knife-edge absorbing surface 
[11], [16] that is modeled according to the Fresnel–Kirchoff 
diffraction theory. The obstacle has the same height a2 z  but 
variable traversal semisize ( )ay {  with ( )a a ayv y yu# #{

while its barycenter B is placed in a specific position 
[ , ] .x x x x y1 2= = =  If the obstacle location x  is near the 

LOS path, and if multipath body-induced effects are neglect-
ed, by exploiting the paraxial approximation, the attenuation 
term in decibel scale

; ( ; )/x xlogE E E102
10 0

2
dBT { {=-^ h (S1)

due to the obstacle is derived analytically in [16]. 
;xE2

dBT {^ h depends on the received electric field ( ; )xE {

and the free-space case .E0  Focusing on body localization, 
attenuation can be considered as random due to the varying 
orientations {  of the obstruction body. Figure 4(a) shows the 
mean ( ) ( ; )x xEE 2

dBT Tn {= { 6 @ and the standard deviation 
;x x xEE 2 2

dBT T Tv { n= -{^ ^ ^ ^h h hh8 B  perturbation maps 
of the RF attenuation for the link of length d as a function of 
the obstacle position x after averaging with respect to azi-
muth  ,(d 5 m=  carrier frequency 2.48 GHz, with 

cma 90z = , . cma 27 5yu = , a 12yv =  cm). With the given 
geometrical constants, the sensitivity area X due to the obsta-
cle has a maximum width of about .0 7 m around the LOS 
path. The model (S1) neglects the true shape, complex composi-
tion, and EM properties of the obstacle (e.g., polarization, per-
mittivity, and conductivity), but it is accurate enough to model 
human-induced attenuation effects. Figure 4(b) shows the com-
parison of the average channel power perturbation 

( ; )/xE EE 0
2

dB{{ ^ h6 @ induced by a person against the values 
predicted by the model (S1) and the ones obtained by simulat-
ing the obstacle as a perfect conductor, having the same size of 
the person, placed over a concrete floor. As expected, the 
impact of the target presence is higher along the LOS path and 
close to the transmitting/receiving devices.

DIFFRACTION-BASED MODELING OF HUMAN BODY SHADOWING

Gesture-based interactions 
of the user with the 
environment are detected 
without instrumenting 
the human body (device-
free) or deploying sensors 
calibrated for each user 
(sensorless).
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link. This can be further appreciated in Figure 5, where 2-D 
experimental RSS profiles are shown at bottom for a subset of 
links. Based on the RSS measurements collected by a network 
of 14 nodes deployed in indoor and outdoor scenarios, the maps 
are evaluated for a human body moving over the positions x

within a 4 3m m# -area. The sensitivity area X,  for each link 
,  is centered on the LOS path (highlighted in green) and it is 
larger in indoor than in outdoor due to multipath effects. 

For position estimation, knowledge of the reference param-
eters { , }, ,0 0n v, ,  (for the human-free case) is required for all 
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FIGURE 4. (a) Link layout (top) and perturbation maps (bottom) of RF attenuation for mean and standard deviation. (b) Predicted versus measured- and 
EM-simulated average channel power perturbations (along and across the LOS path). Measurements are obtained with a person standing in [ , ]x x y T=
with varying posture. Predicted values are obtained for a rotating cylinder moving inside a 10 x 10-cm bin centered in .x
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The Cramer–Rao bound (CRB) provides a useful benchmark 
for assessing DF-L performances. The covariance matrix for 
any unbiased estimator xt  of the target position x  is lower 
bounded as ,Fx x x x x xCov E 1T $= - - -t t t^ ^ ^ ^h h h h6 @  where 

xF^ h is the 2 × 2 Fisher information matrix (FIM). According 
to the Gaussian model ~ ,Qs x xN n^ ^ ^h hh in (5), the FIM 
term ( , )i j  with , , ,i j 1 2! " ,  is

[ ]

,

x

x
x x x x

F F

x x x x
1 2

, ,i j i j

L

i j i j21 2
2

2
2

2
2

2
2

v

n n v v

= =

+
,

,

, , , ,

=

^

^

^ ^ ^ ^

h

h

h h h h= G/
(S2)

where the gradient functions / /x xx xi i2 2 2 2n nD=, ,^ ^h h  and 
/ / ,x xx xi i2 2 2 2v vD=, ,^ ^h h { , },i 1 2!  embody the informa-

tion on the target location provided by the perturbation maps of 

attenuation ,xTn, ^ h  and standard deviation ,xTv, ^ h  respec-
tively [11]. According to the diffraction model (5), and the relat-
ed analytical maps ( ) ( ; ; )x xEE 2

dB ,T Tn {=, { 6 @ and xTv =, ^ h

;;x xEE 2 2
dB ,T T{ n- ,{ ^ ^ ^h hh8 B  obtained as in “Diffraction-

Based Modeling of Human Body Shadowing,” by computing 
all derivative terms of (S2), it is possible to obtain the F x^ h
matrix and, finally, the CRB for the complete L -link network. To 
demonstrate the effects of multiple links on the localization 
accuracy, the maps shown in Figure 6(b) show the lower 
bound to the root mean square error of the location estimate 

F xx xRMSE trE 12 $= - -t ^ h8 6B @  for , , ,L 1 8 16 24=

links. As expected, the localization accuracy is higher for a 
target near the terminals and along the LOS paths. For targets 
located in-between, the reduced sensitivity could be counter-
balanced by increasing the number of links [11].

ACCURACY BOUNDS FOR DF-L
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FIGURE 5. (a) Log-normal RSS modeling for two links (top left and top right) and for target inside (red) and outside (blue) the sensitivity area X,  for link 
.,  (b) Experimental RSS mean and standard deviation maps versus the target location x  for the highlighted network layout (top center) and some links 

in indoor and outdoor scenarios.
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links , , ,L1 f, =  together with the information about the per-
turbation maps { , }x xTn vD, ,^ ^h h  for all position values 

.x X! ,  While { , },, 00n v, ,  can be easily precalibrated when 
no target is moving in the network area, the evaluation of pro-
files { , }x xTn vD, ,^ ^h h  is more critical as it requires exten-
sive fingerprinting campaigns [9], [11], [19] or ray-tracing 
simulations [14]. Analytical modeling, when viable, has to be 
preferred as it allows to simplify the calibration to few model 
parameters and/or to evaluate predeployment performance. 
In [19] and [20], a simple single-parameter model is considered 
where ,xTn, ^ h  and xTv, ^ h are assumed to be constant and 
inversely proportional to the square root of the link distance for 
x X! ,  with X,  modeled as an ellipsoid with foci at the 
two nodes. Parametric models for shadowing effects can 
be also found in [2], while diffraction-based models are 
considered in [16]. Once the perturbation maps are availa-
ble, the target position x  can be estimated from (5) using 
inference methods. The weighted least squares (WLS) criterion is 

,x s xminarg
x C x1n= - -t ^ ^h h  w i t h  s x C x1n- =-^ ^h h

,s x C x s x1Tn n- --^ ^ ^h h h6 6@ @ xn =^ h ,x xL1
Tgn n^ ^h h6 @  and 

covariance , ,x x xC diag L1
2 2fv v=^ ^ ^h h h6 @ as weighting factor. 

Assuming the RSS fluctuations as independent over the links, the 
maximum likelihood (ML) criterion also applies as 

| ,x s xmaxarg L
x

=t ^ h  with the log-likelihood function 
| ( [ ])s x xCln det-L = -^ ^h h s x C x

2
1n- -^ ^h h  (irrelevant con-

stant terms are neglected) and [ ]det $  the determinant operator. 
The information provided by instantaneous measurements s  can 
also be augmented with prior information about the target motion, 
using sequential Bayesian filtering such as Kalman filtering (KF), 
grid-based  filtering (GF), or particle filtering (PF) [11].

Another DF-L approach is the radio tomographic imaging 
(RTI) [19], where the DF-L problem is formulated as the esti-
mation of a motion image of the area, capturing any variation 
with respect to the human-free scenario observed during the 
calibration phase. In RTI, the area is divided into M  voxels, 

, , ,m M1 f=  the image to be estimated is v v vM1
Tg= 6 @

where v0 1m# #  measures the target occupancy (i.e., in terms 
of “probability” metric) of voxel m. For sparse motion, RSS is 
approximated as the sum of the contributions generated by all 
occupied voxels

( )s m v w,
m

M

m
1

0Tn n= + +, , , ,

=
/ , (6)

where ( )mTn,  is now the attenuation contribution due to tar-
get in voxel m  and ~ ,w 0N 2v, ,^ h the RSS fluctuation. Con-
sidering all links, it is ,s v w0$Tn n= + +  with matrix 

RL MT !n =# ( )mTn,6 @ that collects the perturbations for all 
links and voxels, 0n = , , L0 1 0

Tgn n6 @  the human-free reference 
vector, and ~w 0 Qw w ,NL1

Tg= ^ h6 @  the shadowing term. LS 
estimation has been proposed for imaging solution, as 

(v x x
T T

1 1T Tn n C C= + +t ) sx x
1T T

2 2 TnC C -  with xiC  accounting 
for regularization along each direction [19]. The target position 
corresponds to the voxel associated with the maximum image 
value: .argmaxm v

m
m=t t  In [20], RTI has been also applied to 

RSS variances modeled as linearly increasing with the number 
of occupied voxels ( ) :v m v, mm

M2 2
0
2 2

1
Tv v v v= = +, , , ,=

^ h /  the 
same LS approach is then adopted for image evaluation. 

Examples of DF-L results based on both mean and variance 
measurements are given in Figure 6(a), for indoor (left) and out-
door (right) scenarios, where a human target moves according to 
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FIGURE 6. (a) DF-L: belief images of the target location for two frames of the user trajectories in 4-m x 3-m indoor and outdoor scenarios. (b) CRB limit 
to the DF-L accuracy considering L=1, 8, 16, 24 RF links of 5-m length.
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the highlighted trajectory. The snapshot likelihood | xsL^ h and 
the posterior pdf x sp |^ h are evaluated by GF Bayesian filtering 
and serve as location belief images. It can be seen that filtering 
is especially useful in indoor environments as it allows to solve 
ambiguities due to multipath. 

Human activity
and gesture recognition 
Focusing on device-free activity recogni-
tion (DF-AR), active and passive systems 
(Figure 2) can be further differentiated 
into systems exploiting baseband signal 
processing (e.g., using SDR devices) or 
RSS-related metrics for the prediction of 
surrounding activities. With respect to 
DF-L, DF-AR systems typically require a 
higher sampling frequency. Typical recom-
mendations for optimal sampling frequencies in activity rec-
ognition are above 6 Hz but higher sampling potentially 
fosters good recognition accuracy [8], [25] (see Figure 7). 

Methods such as RTI and fingerprinting are too slow and thus 
not employed. Instead, either systems conditioned on charac-
teristic signal patterns or machine learning techniques are 
frequently applied.  Apart from RSS, movement-indicating 

features/profiles in frequency-domain (for 
instance Doppler shift) are exploited. 

The main classes considered for DF-AR 
are the detection of basic whole-body 
activities, whole/half body gestures and 
human breathing detection. The achievable 
recognition accuracy for DF-AR is limited 
by the system class (active or passive), the 
CQI (baseband CSI or RSS), the radio 
technology, the sampling rate (6+ Hz) and 
time/frequency domain features. For basic 
activities such as walking (at different 
speeds), crawling or standing, the recogni-

tion accuracies reached from CSI-based systems match those 
achievable with body-worn accelerometers [8]. Highly accu-
rate, fine-grained part- and whole-body motions can be 
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FIGURE 7. (a) The impact of human body movements/activities: CSI power footprints for human standing, walking, lying, and crawling with time-domain 
features. (b) The impact of different CSI sampling rates (CSI/second) on the performance of a k-nearest neighbor classifier [8]. (c) Classification accu-
racy from RSSI for movement in proximity, distance to receiver, walking speed, gestures (standing, walking, lying, and crawling), and crowd size. In this 
example, RSSI from environmental 802.11 access points was captured by a single receiver (a smartphone) [25].

This article shows how 
radio-frequency (RF)
signals can be employed 
to provide a device-free 
environmental vision and 
investigates the detection 
and tracking capabilities 
for potential benefits
in daily life.
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recognized via frequency-domain features like Doppler shifts 
from OFDM sub-channels (micro-Doppler fluctuation) [28]. 
However, as highlighted in the tutorial “CQI-Based Human 
Activity Recognition” and also depicted in Figure 7, RSS-
based systems are further limited in their achievable accu-
racy and recognized classes; thus, they qualify for 
applications in ambient assisted living but not, e.g., for 
highly reliable systems.

Basic whole-body activities
Machine-learning approaches can be applied to extract 
information about the environmental situ-
ation from RSS fluctuations. Radio devic-
es at frequencies between 900 MHz up to 
5 GHz with arbitrary node deployments 
are typically utilized. Simple time-
domain features are employed, such as 
root mean square (RMS), average magni-
tude squared (AMS), signal-to-noise ratio 
(SNR), signal amplitude, signal peaks, 
and the number of large delta in succes-
sive peaks. The E-eyes system [12] com-
bines Wi-Fi 2.4-GHz links from different 
devices (e.g., access points, thermostats, 
laptops) and collects fine-grained CSI 
measurements as location-activity pro-
files. In [8], recognition accuracy has been 
improved by exploiting frequency domain features. Further-
more, the authors have compared DF-AR performance with 
accelerometer-based recognition, showing comparable accu-
racy, in the order of 90–95% for indoor scenarios. Signals 
from nearby broadcasting FM radio stations also qualify for 
the detection of activities [26]. 

Gestures
Utilizing a multiple-input, multiple-output (MIMO)-OFDM 
receiver, the WiSee system [28] can distinguish nine pre-
defined gestures from different people simultaneously with 
an accuracy of 94%. Simultaneous detection of gestures 
from multiple individuals can be obtained by utilizing mul-
tiantenna nodes and leveraging micro-Doppler fluctuations. 
In a related system (WiVi [27]), a single antenna receiver is 
used, while a preamble transmission stage is designed to 
isolate the time-varying reflections induced by the human 
body and null direct and wall-reflected disturbance. The 

system tracks the direction of the moving 
object using inverse synthetic aperture 
radar: consecutive CSI measurements are 
collected over time to emulate an antenna 
array at the receiver. Gestures can be also 
detected by monitoring RSS at link-layer. 
In [25], simple classes of hand gestures 
can be recognized using off-the-shelf 
smartphone devices (observing more 
than ten RSS samples/second). Although 
the achievable accuracy is lower than for 
the active systems previously discussed, 
a clear distinction of up to 11 hand ges-
tures performed in proximity of the 
phone is possible. 

Recognition of breathing
Contact-free RF respiration monitoring systems can detect 
the breathing rate of a single individual. Detection of breath-
ing can be based on monitoring the RSS fluctuations from a 
pre-existing IEEE 802.15.4 network surrounding the subject 
[22]. Using ML estimation, an error of 0.3 breaths/minute is 

Baseband CSI based
CSI processing enables accurate activity recognition thanks to 
fine-grained frequency- and high time-resolution. Standard 
machine-learning techniques (e.g., k-nearest neighbor, decision 
trees, support vector machines) can be applied to time-domain 
CSI features such as mean [ ],sE t J! t  variance [ ]svart J! t

(Figure 7), or CSI power footprint .s hRT
t t

1 2
J! H=#
!

t t ^ h8 B
Elementary activities such as phone calls, opened/closed 
doors, or a human body standing, walking at different speeds 
[8], lying, and crawling can be distinguished. These activities 
(or combination of) have to be trained separately by machine-
learning methods beforehand. For recognition of fine-grained 
activities or gestures, frequency-domain features, e.g., micro-
Doppler fluctuations, are required [28]. However, Doppler 
shifts caused by human motion are several magnitudes smaller 
than the signal bandwidth. Focusing on MIMO OFDM 
modulations, analysis of such fluctuations is possible after 

transforming the received symbols into narrowband pulses. 
Then, patterns from falling/rising signal-edges of Doppler fluc-
tuations can be exploited for gesture and activity recognition. 

RSS based
RSS-based passive systems measure noisy link-layer RSSI. 
In such settings, human activity can be detected using sim-
ple time-domain features [see Figure 3(a)], including 
denoising [13] and dynamic time warping [12]. Although 
RSS samples are often bursty, a weak distinction between 
simple human activity classes is feasible [25] with about 
ten RSS observations/second while best accuracy is 
achieved with 40–80 RSS/second, where a precision and 
recall rate in the order of 90% for simple activities and 
70% for gestures is possible. Further improvement is 
achieved by filtering noise, and focusing on the falling and 
rising edges of the composition of the signal features.

CQI-BASED HUMAN ACTIVITY RECOGNITION

In radio vision systems,
CQI measurements used 
for recognition can be 
either in the form of 
physical (PHY) layer 
values, e.g., baseband 
radio channel state 
information (CSI), or 
received signal strength 
(RSS) extracted at
upper layers.
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Future research on 
radio vision systems is 
expected to combine 
the use of localized RF
signal inspection with 
large-scale and big-data 
processing.

shown as achievable. The nodes transmitted every 240 mil-
liseconds at 2.48 GHz. Prediction is taken after a 
10–60-second measurement period. The UbiBreathe system 
[13] uses off-the-shelf Wi-Fi devices and provides a reason-
able breathing estimation accuracy even using a single 
point-to-point link. Other systems are 
based on microwave Doppler radars and 
ultrawideband (UWB) (see [13] and refer-
ences therein): they provide high accuracy 
but limited range and require an ad-hoc 
design and PHY layer optimization.

Monitoring a human’s fall:  
A case study
The adoption of a device-free wireless fall 
detection technology is highly attractive in 
the context of assisted living, as a person who has fallen might 
not only be unable to activate a personal emergency response 
system but may have also forgotten how to use it. Today’s 

commercially available products already use a broad range of 
active devices (e.g., necklaces with emergency buttons, fall sen-
sors in mobile phones, etc.). However, these devices are often too 
difficult for elderly people to operate and are thus useless in 
emergencies [30]. Body-worn sensing devices also require coop-

eration from the monitored subjects and 
might hinder daily activities. Systems based 
on cameras, video, or acoustic sources are 
also effective but penalized by privacy con-
cerns. However, the proliferation of in-home 
wireless connected devices as part of the 
Internet of Things paradigm is acting as a 
boost to the development of new radio-based 
vision technologies. The possibility of moni-
toring human well-being by leveraging pre-
existing indoor network infrastructures is 

becoming attractive in several applications. 
Here, we highlight an experimental case study specifical-

ly focused on real-time processing of CQI for detection of 
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FIGURE 8. (a) HMM-based fall detection using SDR devices. SIMO-OFDM, (two RX antennas, single RS subcarrier). (b) Impact shock detector based on 
CQI data (ROC curve).
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the impact shock during a body’s fall. The 
in-lab system of Figure 8(a) consists of a 
deployment of wireless devices exchang-
ing data over 2.6-GHz bands using an 
OFDM radio front end. A single-antenna 
OFDM transmitter communicates with a 
receiver employing two antennas (with 
spacing of 24 cm). The receiver extracts 
and processes two, possibly incomplete, 
CSI power footprints sΩ/ ,t6 @  from the 
corresponding links (LOS and NLOS) 

, .1 2, , ,! " ,  Body falling is monitored 
over a predefined position ( ):x  localiza-
tion can be obtained by DF-L methods. 

The observed sequences s,t  a re 
modeled by a hidden Markov model (HMM) [23], [24] with state 
space [ ]Q qRQ

j j
Q1

1!H =#
, =^ h  containing Q-selected values from 

the CQI profiles sT H, ^ h learned during training for falling-state 
estimation. HMM parameters, [ , , π ],A Bm H =, , , ,^ h  include 
probabilities of state transition | ,A p q qq q,i j t i t j1= = =, -6 6@ @
observation B ,i j =,6 @ | ,p s qs q,t i t j= =,t6 @  and initial state 
π [ ] .p q qi i0= =,6 @  The HMM parameters are learned by the 

expectation maximization algorithm (e.g., Baum–Welch algo-
rithm) and trained separately for each link [23]. Other methods 
[24] can be adopted to leverage space-time profiles correlation 
over colocated links. A decision about a human fall is based on 
the model likelihood 

[ | ( )] [ , | ( )]s s qpL
( )q Q

m mH H=
6

, , ,,

! H,

t t/ (7)

with state sequence [ , , ]q q qT1 f=  and joint probability 
[ , | ( )] [ | ] [ | ] .s q sp p q p q q,t

T
t t t t1 1$m H P=, , ,= -t t  Func t ions 

|sL m, ,t6 @ are continuously evaluated for both links [Figure 
8(a) on the right]. 

Fall detection can be based on a hard decision with respect to 
precalibrated threshold x  such that | /sL m H, ,t ^ h6 @

| .sL Q 2m x, ,t ^ h6 @  Likelihood |sL Qm, ,t ^ h6 @ is obtained for 
HMM Qm, ^ h that considers arbitrary (but safe) body movements 
in the same position. After the impact shock is detected, a simple 
change detector can be applied to the observed CQI sequences 
for tracking any postfall event and, in turn, detect possibly long 
lie conditions, corresponding to negligible RF fluctuations.

Impact shock detection
In the complete case study highlighted in Figure 8(b), the 
human fall detector is now based on an optimized subset of 
pre-existing links [23] deployed around the subject of interest 
and selected during a calibration procedure (noninformative 
links are purged). A decision about the fall/nonfall event is 
based on majority voting over the optimized link subset. 

The analysis of detector performance is crucial: unde-
tected falls might have a dramatic impact—on the other 
hand, an excessive number of false activations might cause 
the detector to be perceived as useless. Validation of detec-
tor accuracy is thus illustrated in Figure 8(b) where the 
receiver operating characteristic (ROC) curve relates 

sensitivity versus false positive rate. A 
sensitivity of 0.97 and false positive rate 
of 0.007 compares well with performanc-
es of existing device-based systems [30].

Concluding remarks
and future directions
This article focuses on device-free radio 
vision systems acting as a flexible sens-
ing tool and addressing key challenges in 
assisted living applications. The goal of 
this emerging research field is to develop 
models and processing methodologies for 
exploiting the inherent (but currently 
unused) sensing capabilities of the multi-

tude of available wireless communication links, opening 
also to investigate new radio technologies and unexplored 
bands. Future research on radio vision systems is expected 
to combine the use of localized RF signal inspection with 
large-scale and big-data processing. Running real-time ana-
lytics from massive volumes of RF data will pose new sig-
nal processing relevant problems, as well as the redesign of 
conventional statistical learning tools applied to unprece-
dented high-dimensional data structures.
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The adoption of a device-
free wireless fall detection 
technology is highly 
attractive in the context 
of assisted living, as a 
person who has fallen 
might not only be unable 
to activate a personal 
emergency response 
system but may have also 
forgotten how to use it.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

________________

_____________

_______________

mailto:stefano.savazzi@ieiit.cnr.it
mailto:stephan.sigg@aalto.fi
mailto:monica.nicoli@polimi.it
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


58 IEEE SIGNAL PROCESSING MAGAZINE |   March 2016 |

area of signal processing with an emphasis on wireless com-
munications, distributed and cooperative systems, radio local-
ization, and intelligent transportation systems.

Vittorio Rampa (vittorio.rampa@ieiit.cnr.it) is a senior 
researcher at the Institute of Electronics, Computer, and 
Telecommunication Engineering of Consiglio Nazionale 
delle Ricerche, Italy. From 1999 to 2015, he has was an 
adjunct professor at the Politecnico di Milano, Italy, where he 
taught courses on software radio and radio localization sys-
tems. His main research interests are signal processing algo-
rithms and architectures for wireless communications, virtual 
instrumentation techniques for test and verification of wire-
less systems, radio vision algorithms, and architectures for 
wireless sensor networks.

Sanaz Kianoush (sanaz@kianoush@ieiit.cnr.it) received 
her Ph.D. degree in electronic engineering from the 
University of Pavia, Italy, in 2014. She is a postdoctoral 
researcher at the Institute of Electronics, Computer, and 
Telecommunication Engineering of Consiglio Nazionale delle 
Ricerche, Italy. Her research interests include localization in 
wireless sensor and cognitive radio networks and context-
aware activity recognition.

Umberto Spagnolini (umberto.spagnolini@polimi.it) is a 
professor at the Politecnico di Milano, Italy.  He is the author 
of more than 250 peer-reviewed papers and some patents. His 
areas of experience include channel estimation and space–
time processing for wireless communication systems, coop-
erative and distributed systems, parameter estimation/
tracking and wavefield interpolation for ultrawideband radar, 
oil exploration, and remote sensing. His interests are in statis-
tical signal processing for communication systems and 
remote sensing.

References
[1] N. D. Lane, E. Miluzzo, H. Lu,  D. Peebles, T. Choudhury, and A. T. Campbell, 
“A survey of mobile phone sensing,” IEEE Commun. Mag., vol. 48, no. 9, pp. 140–
150, Sept. 2010.

[2] R. M. Buehrer, C. R. Anderson, R. K. Martin, N. Patwari, and M. G. Rabbat,
“Introduction to the special issue on non-cooperative localization networks,” IEEE J. 
Sel. Top. Signal Processing., vol. 8, no. 1, pp. 2–4, Feb. 2014.

[3] A. Laya, W. Kun, A. A. Widaa, J. Alonso-Zarate, J. Markendahl, and L.
Alonso, “Device-to-device communications and small cells: Enabling spectrum 
reuse for dense networks,” IEEE Wireless Commun., vol. 21, no. 4, pp. 98–105,
Aug. 2014.

[4] J. Lloret, A. Canovas, S. Sendra, and L. Parra, “A smart communication archi-
tecture for ambient assisted living,” IEEE Commun. Mag., vol. 53, no. 1, pp. 26–33,
Jan. 2015.

[5] M. Seifeldin, A. Saeed, A. E. Kosba, A. El-Keyi, and M. Youssef, “Nuzzer: A 
large-scale device-free passive localization system for wireless environments,” IEEE 
Trans. Mobile Comput., vol. 12, no. 7, pp. 1321–1334, July 2013.

[6] N. Patwari and J. Wilson, “RF sensor networks for device-free localization: 
Measurements, models and algorithms,” Proc. IEEE, vol. 98, no. 11, pp. 1961–1973,
Nov. 2010.

[7] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimization for 
Big Data analytics,” IEEE Signal Processing Mag., vol. 31, no. 5, pp. 18–31, Sept.
2014.

[8] S. Sigg, M. Scholz, S. Shuyu, J. Yusheng, and M. Beigl, “RF-sensing of 
activities from non-cooperative subjects in device-free recognition systems using 

ambient and local signals,” IEEE Trans. Mobile Comput., vol. 13, no. 4, pp. 907–
920, Apr. 2014.

[9] A. Saeed, A. E. Kosba, and M. Youssef, “Ichnaea: A low-overhead robust 
WLAN device-free passive localization system,” IEEE J. Sel. Top. Signal 
Processing, vol. 8, no. 1, pp. 5–15, Feb. 2014.

[10] K. Youngwook and L. Hao, “Human activity classification based on micro-
Doppler signatures using a support vector machine,” IEEE Trans. Geosci. Remote 
Sens., vol. 47, no. 5, pp. 1328–1337, May 2009.

[11] S. Savazzi, M. Nicoli, F. Carminati, and M. Riva, “A Bayesian approach to 
device-free localization: Modelling and experimental assessment,” IEEE J. Sel. Top. 
Signal Processing, vol. 8, no. 1, pp. 16–29, Feb. 2014.

[12] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-eyes: 
Device-free location-oriented activity identification using fine-grained WiFi sig-
natures,” in Proc. ACM Int. Conf. Mobile Computing and Networking, 2014, pp. 
617–628.

[13] H. Abdelnasser, K. Harras, and M. Youssef, “UbiBreathe: A ubiquitous non-
invasive WiFi-based breathing estimator,” in Proc. MobiHoc, Hangzhou, China,
22–25 June 2015, pp. 277–286.

[14] M. Scholz, L. Kohout, M. Horne, M. Budde, M. Beigl, and M. A. Youssef,
“Device-free radio-based low overhead identification of subject classes,” in Proc. 
ACM Workshop on Physical Analytics, Florence, Italy, 2015, pp. 1–6.

[15] D. B. Smith, D. Miniutti, T. A. Lamahewa, and L. W. Hanlen, “Propagation 
models for body-area networks: A survey and new outlook,” IEEE Antennas 
Propag. Mag., vol. 55. no. 5, pp. 97–117, Oct. 2013.

[16] V. Rampa, S. Savazzi, M. Nicoli, and M. D’Amico, “Physical modeling and 
performance bounds for device-free localization systems,” IEEE Signal Processing 
Lett., vol. 22, no. 11, pp. 1864–1868, Nov. 2015.

[17] K. Woyach, D. Puccinelli, and M. Haenggi, “Sensorless sensing in wireless 
networks: Implementation and measurements,” in Proc. 4th Int. Symp. 
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 3–6 
Apr. 2006, pp. 1–8.

[18] M. Youssef, M. Mah, and A. Agrawala, “Challenges: Device-free passive local-
ization for wireless environments,” in Proc. ACM Int. Conf. Mobile Computing and 
Networking, 2007, pp. 222–229.

[19] J. Wilson and N. Patwari, “Radio tomographic imaging with wireless net-
works,” IEEE Trans. Mobile Comput., vol. 9, no. 5, pp. 621–632, 2010.

[20] J. Wilson and N. Patwari, “See-through walls: Motion tracking using variance-
based radio tomography networks,” IEEE Trans. Mobile Comput., vol. 10, no. 5, pp. 
612–621, May 2011.

[21] Y. Mostofi, “Cooperative wireless-based obstacle/object mapping and see-
through capabilities in robotic networks,” IEEE Trans. Mobile Comput., vol. 12, no. 
5, pp. 817–829, May 2013.

[22] N. Patwari, L. Brewer, Q. Tate, O. Kaltiokallio, and M. Bocca, “Breathfinding: 
A wireless network that monitors and locates breathing in a home,” IEEE J. Sel. 
Top. Signal Processing, vol. 8, no. 1, pp. 30–42, Feb. 2014.

[23] S. Kianoush, S. Savazzi, F. Vicentini, V. Rampa, and M. Giussani, “Leveraging 
RF signals for human sensing: Fall detection and localization in human-machine 
shared workspaces,” in Proc. IEEE Int. Conf. Industrial Informatics, Cambridge,
U.K., July 2015, pp. 1456–1462.

[24] B. Mager, N. Patwari, and M. Bocca, “Fall detection using RF sensor net-
works,” in Proc. IEEE 24th Int. Symp. Personal Indoor and Mobile Radio 
Communications, Sept. 2013, pp. 3472–3476.

[25] S. Sigg, S. U. Blanke, and G. Troster, “The telepathic phone: Frictionless activ-
ity recognition from WiFi-RSSI,” in Proc. IEEE Int. Conf. Pervasive Computing,
Mar. 2014, pp. 148–155.

[26] S. Shi, S. Sigg, and Y. Ji, “Monitoring of attention from ambient FM-radio sig-
nals,” IEEE Pervasive Comput., vol. 13, no. 1, pp. 30–36, Jan.–Mar. 2014.

[27] F. Adib and D. Katabi, “See through walls with WiFi!” in Proc. ACM 
SIGCOMM Conf. Applications, Technologies, Architectures and Protocols for 
Computer Communication, Hong Kong, Aug. 2013, pp. 75–86.

[28] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture recognition 
using wireless signals,” in Proc. ACM Int. Conf. Mobile Computing and 
Networking, Miami, FL, Sept. 2013, pp. 27–38.

[29] H. Hashemi, M. McGuire, T. Vlasschaert, and D. Tholl, “Measurements and 
modeling of temporal variations of the indoor radio propagation channel,” IEEE 
Trans. Veh. Technol., vol. 43, no. 3, pp. 733–737, Aug. 1994.

[30] R. Igual, C. Medrano, and I. Plaza, “Challenges, issues and trends in fall detec-
tion systems,” Biomed. Eng. Online, vol. 12, no. 66, pp. 1–66, 2013.

SP

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

__________________

___________________

_________________

mailto:vittorio.rampa@ieiit.cnr.it
mailto:sanaz@kianoush@ieiit.cnr.it
mailto:umberto.spagnolini@polimi.it
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


59IEEE SIGNAL PROCESSING MAGAZINE |   March 2016 |

SIGNAL PROCESSING FOR ASSISTED LIVING

Klaus Witrisal, Paul Meissner, Erik Leitinger, Yuan Shen, 
Carl Gustafson, Fredrik Tufvesson, Katsuyuki Haneda, Davide Dardari, 
Andreas F. Molisch, Andrea Conti, and Moe Z. Win

1053-5888/16©2016IEEE

High-Accuracy Localization for Assisted Living
5G systems will turn multipath channels from foe to friend

 Digital Object Identifier 10.1109/MSP.2015.2504328
 Date of publication: 7 March 2016

Asisted living (AL) technologies, enabled by technical advances such as the advent of the 
Internet of Things, are increasingly gaining importance in our aging society. This arti-
cle discusses the potential of future high-accuracy localization systems as a key compo-

nent of AL applications. Accurate location information can be tremendously useful to 
realize, e.g., behavioral monitoring, fall detection, and real-time assis-

tance. Such services are expected to provide older adults and peo-
ple with disabilities with more independence and thus to 

reduce the cost of caretaking. Total cost of ownership and 
ease of installation are paramount to make sensor sys-

tems for AL viable. In case of a radio-based indoor 
localization system, this implies that a conven-

tional solution is unlikely to gain widespread 
adoption because of its requirement to install 
multiple fixed nodes (anchors) in each room. 
This article therefore places its focus on 1) 
discussing radiolocalization methods that 
reduce the required infrastructure by 
exploiting information from reflected mul-
tipath components (MPCs) and 2) show-
ing that knowledge about the propagation 
environment enables localization with high 
accuracy and robustness. It is demonstrated 

that new millimeter-wave (mm-wave) tech-
nology, under investigation for 5G communi-

cations systems, will be able to provide 
centimeter (cm)-accuracy indoor localization in 

a robust manner, ideally suited for AL. 

Introduction
The robust provisioning of accurate location information is 

a key enabler for AL systems. A recent survey on ambient intel-
ligence in health care [1] illustrates the wide range of applications that 

could be supported by a cm-accuracy indoor positioning system alone: activity 
recognition, behavioral pattern discovery, anomaly detection, and decision support methods 
can all be based on such a sensor modality. Application examples include behavioral moni-
toring to assess the physical and mental health of individuals, emergency (fall) detection to 
alert caretakers or emergency services, real-time assistance to provide context awareness to 
medication management systems (as a reminder—for instance—to take medications 
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before/during/after meals) or as an orthotic and rehabilitation 
tool for individuals suffering from cognitive decline, geo-
fencing for people with dementia, and even as a navigation 
aid for visually impaired (see [1] and the references therein). 

However, as of today, the technologies for indoor localization 
have not converged toward a unique winning approach, hence, 
the topic is still a subject of research and 
competitions [2]. Among the many location 
sensing methods proposed [3]–[9], active or 
passive radiolocalization are most promising, 
because radio transceivers can be integrated 
in existing devices like smartphones and built 
at small form factors with low power con-
sumption. In active localization, devices to 
be localized are equipped with a radio device 
participating in the communication, which 
is not the case in passive localization [10]. 
Video cameras and microphones [11]–[13], 
for example, suffer from occlusions and a 
lack of acceptance because of privacy concerns. But the influ-
ence of the dense multipath radio channel in indoor environments 
still makes accurate and robust radiolocalization a challenging 
task. Ultrawideband (UWB) signals have been shown to deliver 
excellent accuracy, since they allow for a separation of the MPCs 
[14]–[17]. On the one hand, the direct signal path can be isolated 
from interfering MPCs; on the other hand, position-related infor-
mation in later-arriving MPCs becomes accessible as well and 
turned into an advantage [18]. 

Unfortunately, dedicated technology is required to implement 
traditional UWB systems operating in the microwave band (at 
3.1–10.6 GHz). With the advent of mm-wave communications 
in the 60-GHz band [19]–[21], a UWB localization system could 
operate synergetically with an existing communication sys-
tem, e.g., using the IEEE 802.11ad standard [22]. Furthermore, 
60-GHz regulations allow much higher transmit power com-
pared to microwave UWB systems. Beamforming technologies 
proposed for these systems [19] perfectly complement the needs 
of the localization system and vice versa: also, the beamforming 

algorithms will benefit from the location information and from 
environmental radio maps, i.e., spatial characterizations of the 
propagation channel that can be estimated and tracked in real 
time. Location awareness is created, which is beneficial for differ-
ent layers of the protocol stack of a communications system [23]. 

The reduction of the required infrastructure is of key 
importance for a viable localization system 
for AL. At the same time, localization with 
high accuracy and robustness is needed. 
This article discusses a range of multipa-
th-assisted localization approaches that 
actively take environmental propagation 
information into account to cope with these 
seemingly conflicting requirements. Even 
with only a single anchor node within each 
room, highly accurate and robust location 
estimates can be obtained [18], [24], [25]. 
As a side effect, this method also reduces 
the amount of electromagnetic radiation, 

possibly increasing its acceptance by users. High accuracy and 
robustness are more easily achieved with active systems [18], 
[24] where the user has to wear, e.g., a bracelet as illustrated in 
Figure 1, while passive systems [25], [26] prevent the risk of 
lacking user compliance. 

The following issues are highlighted in this article: 
■ A model of the received signal using a geometry-based sto-

chastic channel model and the concept of virtual sources/
anchors. This leads to an environment model that describes 
the localization capability in a specific environment. 

■ Performance limits for indoor localization employing mul-
tipath propagation, showing the relevance of geometrically 
modeled MPCs. 

■ Algorithms for multipath-assisted localization and tracking: 
maximum likelihood localization, tracking filters with data 
association, algorithms for passive localization, and multitar-
get identification. 

■ Experimental and numerical results demonstrating the locali-
zation accuracy and robustness using a current experimental 
microwave-band system and the potential performance of a 
mm-wave system. 

■ Discussions and conclusions, evaluating the usefulness of the 
presented concepts for accurate and robust localization as a 
key component of an AL system.
Creating the proposed infrastructure, developing the appropri-

ate distributed processing algorithms, and validating the appli-
cations in challenging AL environments will require significant 
multidisciplinary work over the coming years. 

Signal models and performance bounds
A suitable signal model supporting the analysis of a multipath-
assisted localization system requires a description of the geome-
try to address the position dependence of signal features and 
stochastic elements to represent signal impairments and noise. 
We use a geometry-based stochastic channel model to describe 
the signal transmitted from a mobile agent node to a fixed 
anchor node (or the other way around, from anchor to agent). 

FIGURE 1. An illustration of a high-accuracy, multipath-enabled indoor 
localization system for AL applications. Information from reflected signals 
(such as the exemplary rays depicted) can be exploited if the geometry 
of the environment is taken into account. (Images used with permission; 
rendering: www.lauenstein-planungen.de; photo: www.aktivwelt.de.)

In addition to localization 
and tracking, radio signals 
may be used for the 
reconstruction of a three-
dimensional map of the 
surrounding environment, 
e.g., to assist people 
with impaired vision 
capabilities.
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The received signal is modeled as a convolution of a UWB 
transmit pulse ( )s t  with the channel 

( ) ( ) ( ) * ( ) ( ),r t s t s t t w tk
k

K

k
1

a x o= - + +
=

/ (1)

where the sum accounts for K -deterministic MPCs with 
complex amplitudes { }ka  whose delays { }kx  yield useful 
position-related information, while the stochastic process 

( )to  represents diffuse multipath (DM), which is interference
to these useful components. The signal ( )w t  denotes white 
Gaussian measurement noise at power spectral density (PSD) 

.N0  We assume a unit-energy pulse ( ),s t  such that the energy 
of the kth  MPC is given as .| |k

2a  DM is everything that is 
not or cannot be described by the deterministic components. 
It is modeled as a (Gaussian) random process with autocovari-
ance { ( ) ( )} ( ) ( ),v t v S tE x x d x= -o

*  where ( )S xo  is a power 
delay profile (PDP) accounting for the nonstationary variance 
of the DM in the delay domain [27]. 

We assume that the result of a possible linear beamformer 
is already incorporated in ( ) .r t  Beamforming will have an 
impact on the energies | |k

2a  and the DM, but, for simplic-
ity, we do not indicate these dependencies in our equations. 

To describe the localization environment, we propose a 
model for the signal-to-interference-plus-noise ratios (SINRs) 
of MPCs along with their propagation delays. The delays are 
deterministically related to the geometry at hand. We model 
the delay kx  of the kth  MPC using a virtual anchor (VA) [28], 
[18] at position ,ak  yielding /c1 p ak kx = - , where p  is 
the position to be determined and c  is the speed of light. For 
reflections at plane surfaces, the positions of the VAs can be 
computed straightforwardly: physical anchors are simply mir-
rored with respect to the planes; iterated mirroring operations 
account for higher-order reflections [27]. 

The SINR of the kth  component is defined as 

( )
| | ,

N T S
SINRk

k

k

0

2

p x

a=
+ o

(2)

relating the useful MPC energy | |k
2a  to the combined effects 

of the noise and the interfering DM. The latter is character-
ized by its PDP at the corresponding delay. The influence of 
the DM scales with the effective pulse duration Tp, i.e., with 
the inverse of the bandwidth of the measurement signal. 

The model for the received signal in (1) enables the deri-
vation of a Cramér–Rao lower bound (CRLB) on the position 
estimation error. (The derivation is briefly discussed in “Deri-
vation of the PEB.”) Using the information inequality, we obtain 
a bound for the position error as { },Jtrp pEr | p p

2 1$- -t" ,

where the square root of the right-hand side is defined as the 
position error bound (PEB), pt  is the estimated position, and 
Jp  is the equivalent Fisher information matrix (EFIM) [29]–
[32]. The EFIM can be written under the assumption of resolv-
able, “nonoverlapping” MPCs in the form [27] 

( ),J J
c

8
SINRp k

k

K

r k2

2 2

1

r b
z=

=

/ (3)

where b  denotes the effective (root mean square) bandwidth of 
the measurement signal and ( )Jr kz  is a rank-one matrix with 
an eigenvector pointing along the angle of arrival (AoA) kz  of 
the kth MPC. This simple, canonical form of the EFIM allows 
for important conclusions regarding localization: 
■ Each geometrically modeled (deterministic) MPC yields 

additional position-related information that is quanti-
fied by its SINR value. In fact, the range dk

t  estimated 
from the kth  MPC has an error variance bounded as 

/ ( );d c 8var SINRk k
2 2 2$ r bt" ,  i.e., the SINRs indicate the 

uncertainties of the MPC ranges. 
■ The equations relate to the system parameters (e.g., band-

width expressed by b  and ),Tp  the environment model (the 
SINR values), and the geometry (the AoAs) and, thus, indi-
cate the expected performance in a specific scenario.
Figure 2 shows an evaluation of the PEB according to 

(3) for a single fixed anchor for SINR values estimated from 
measured channel impulse response data [33]. The evaluation 
takes into account the visibility of the VAs across the floor 
plan, but it assumes a “global” model of SINRs for the entire 
room shown. To create a more detailed picture, one could esti-
mate individual SINR-sets for different parts of a room or even 
estimate the SINR values online [34]. Two-dimensional (2-D) 
positioning is considered here; the measurement data have 
been acquired over a bandwidth of 2 GHz at a 7 GHz carrier 
[33]. According to this result, the expected precision lies between 
1–10 cm for most of the area. 

FIGURE 2. The PEB and tracking results for . ,T 0 5 nsp = ,f 7 GHzc =  and a 
single fixed anchor. The PEB (3) has been computed from estimated SINRs 
(2); gray crosses are 60 positions used for this SINR estimation [18]. Solid 
and dashed ellipses denote the standard deviation ellipses corresponding to 
the CRLB and to the error covariance matrices of an extended Kalman tracking 
filter, respectively, at several points along two trajectories. These ellipses are 
enlarged by a factor of 20 for better visibility.
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Figure 2 provides a prediction of the spatial distribution of 
the achievable performance. It can be considered as an indica-
tion for the robustness of the localization system for a specific 
environment. As mentioned in the section “Signal Models and 
Performance Bounds,” the set of VAs and the quantification of 
their relevance as given by the SINR model represents an envi-
ronment model that reflects the potential localization accuracy. 
Using (2) and (3), the influence of system parameters, such as 
the signal bandwidth, can be quantified. 

Algorithms for multipath-assisted 
environment-aware localization
For the practical application of a multipath-assisted positioning 
and tracking system, two core challenges need to be tackled: 

■ Algorithms are needed that can properly exploit the position-
related information provided by each MPC.

■ Algorithms are needed that can estimate the required side 
information, i.e., the environment model. 

Efficient solutions must be able to capture the relevant infor-
mation from measurements at a reasonable computational 
complexity. 

Multipath-assisted localization and tracking
Figure 3 shows the block diagram of a multipath-assisted 
tracking scheme that is based on a Bayesian tracking filter 
[18], [33]. A core component of this scheme is the data asso-
ciation block. It associates, at each timestep ,n  the arrival 
times of a number of MPCs to the predicted delays. The 
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The CRLB is a lower bound on the error variance of a 
parameter estimator. It is obtained from the second deriva-
tive of the log of the measurement likelihood function with 
respect to (w.r.t.) the estimation parameters, quantifying the 
curvature of this likelihood function. For an unbiased estima-
tor, this curvature relates to the potential measurement preci-
sion [48]. Assuming zero-mean complex Gaussian noise 
processes, a likelihood function derived from a discrete-time 
version of the signal model (1) can be written as 

r r S C r S( },) exp{f H
n

1\] - a a- --^ ^h h (S1)

where r  is the received signal sampled at rate / ,T1 s  the 
parameter vector [ , ]T T T] a x=  stacks the complex ampli-
tudes { }ka  and delays { },kx [ , , ]S s s RN K

K1 f != #
x x   

is the signal matrix containing delayed versions 
[ ( ), ( ), , (( ) )]s s ss T N T1s

T
k k ksk fx x x= - - - -x  of the sam-

pled transmit pulse, and the matrix C I C Rn n N
N N2

c !v= + #

denotes the covariance matrix of the noise processes. The 
elements of the DM covariance matrix are given by 
[ ] ( ) ( ) ( );C T S iT s nT iT s mT iT,n m i

N
0
1

c s s s s s s= - -o=

-/  the AWGN 
samples have variance / .N T2

0n sv =

A number of analytical manipulations are needed to 
obtain the insightful expressions (2) and (3) for the 
CRLB. First of all, it can be intuitively argued that (S1) 
satisfies the regularity condition required for the CRLB 
derivation [48] for all points within the room: consider-
ing a correct geometry and a sufficiently large signal 
bandwidth, the likelihood has a maximum at the true 
position whose spatial extent is small w.r.t. the room 
dimensions. It can be shown that the regularity condi-
tion is satisfied even without these assumptions, but this 
is out of the scope of this article. The difficulty in the der-
ivation of the CRLB lies in finding the inverse of the 
covariance matrix .Cn  Under the assumption that the 
useful components in (1) are nonoverlapping, it is fair to 

assume that each of these components can be observed 
independently. The DM process is then treated as sta-
tionary for each MPC at a variance defined by the PDP 
at the MPC’s corresponding excess delay, .( )S kxo  We 
can then use the Fourier transform to compute the 
inverse and obtain for the Fisher information of the kth
delay estimate the expression [27] 

r
( (
(f

S
S

f
N S f

f
f8
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dE r
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f k

2
2 2
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2 2
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x x
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-
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^ h

) 3 #

,8 SINR
( )

k
2 2BS
r b= (S2)

where 2| ( |f S f fd
f

2 2b = )#  is the mean square band-
width of the Fourier transform (S f ) of pulse (s t ,)

2 ))| | /( (N T SSINRk k k0 pa x= + o  is the SINR of the kth
MPC. The second line only holds for a block spectrum (BS) 
| ( |S f T2

p=)  for | | /( );f T1 2 p#  a generalized version of 
this equation has been derived in [27]. 

To compute the EFIM for the position vector from the 
Fisher information matrix of the parameter vector ,]
we evoke the matrix inversion lemma to account for 
the nuisance parameters { }ka  and a parameter trans-
formation to convert the delays { }kx  to the position 
vector p  [30]. The latter requires the computation of 
the Jacobian /H p2 2x= ,  the derivative of the delays 
{ }kx  w.r.t. position p.  It describes the variation of the 
delays w.r.t. the position and can assume different, 
scenario-dependent forms, depending on the roles of 
anchors and agents. General expressions for these 
spatial delay gradients have been derived in [27]. 
For an MPC arriving from direction kz  we get 

p e/ ( )k k2 2x z=  with unit-norm vector e ( )kz  pointing 
in di rec t ion ,kz  which leads to the matr ices 

e e( ) ( ) ( )Jr k k k
Tz z z=  in (3).

Derivation of the PEB
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FIGURE 3. A block diagram of state space tracking and data association scheme using MPC range estimates. The input is the received signal ( ),r tn

the overall output is the estimated agent position pn+t  at time step .n  The estimation is performed using the environment model represented by the 
memory blocks.
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arrival times (collected in the set )Zn  are estimated from 
the received signal ( )r tn  by a high-resolution maximum-
likelihood channel estimation (MLE) algorithm; the predict-
ed delays are computed from the VA positions { }ak

(collected in the set )An  and the predicted agent position 
p .n

-t  The data association is needed to identify the potential 
(virtual) signal sources, to discard false detections due to 
DM, and to ignore missing arrival-time measurements. It 
has been accomplished in [18] and [33] using a constrained 
optimal subpattern assignment approach [35]. This means 
that the predicted and estimated MPC delays are matched 
using combinatorial optimization with the constraint that 
associations at a distance larger than a so-called cut-off dis-
tance are discarded. The output of the data association 
block, i.e., the positions of the associated VAs A ,n ass  and 
corresponding MPC delays ,Z ,n ass  are fed into the tracking 
algorithm as measurement inputs. 

In the upper branch of the block diagram, the SINR 
model is updated, which reflects the reliability of the range 
measurements: the SINRs are estimated using past mea-
surements of the MPC amplitudes [34]. The SINRs can also 
be estimated from offline training data [18]. Using this side 
information, the tracking filter can perform an appropriate 
measurement weighting of the extracted delays [18]. Fur-
thermore, the SINRs allow for relevance determination: the 
overall set of VAs An  can be reduced to a set of relevant 
VAs .Anu  Also geometric considerations, like the visibili-
ties of certain VAs, can be incorporated at this stage [33]. 

Figure 4 illustrates the efficiency of this approach based 
on experimental data in the microwave-UWB at a bandwidth 
of 2 GHz [18], [33]. It compares the CDFs of the position 
errors for algorithms having different levels of environ-
ment models available. The data have been obtained on 
25 measurement trajectories with two fixed anchors. Trajec-

tory points were spaced by 5 cm, while the different trajecto-
ries were obtained by shifting the entire tracks in 1-cm steps. 
An algorithm that exploits SINR information (red curves) 
obtains excellent robustness and accuracy: all 25 runs have 
similar performance with %90  of the errors below 4 cm. 
Without SINR information (black and gray), ten of 25 runs 
diverge. This occurs mostly in a short part of the trajecto-
ry where the line-of-sight (LOS) to one of the anchors is 
lost, being a strong indication of a reduced robustness. The 
overall CDF for the 15 nondiverging runs is shown by the 
black bold dashed line; %90  of the errors are within 7 cm. 
Tracking results are also observable in Figure 2, showing 
two example trajectories and the performance using only 
a single anchor. The standard deviation ellipses of the 
tracking filter match those corresponding to the CRLB and 
indicate the relevance of position information available in 
different directions. 

Figure 4 also shows the influence of a correction of the 
VA positions, which has been done to refine the environ-
ment model in comparison to a VA model computed from 
the floor plan. A maximum a posteriori (MAP) estimator 
has been used for this refinement, employing a set of train-
ing data at known locations. The performance without this 
MAP refinement is indicated by the blue dash-dotted curve. 
It shows a similar robustness but a reduced accuracy. We see 
this result as an evidence that the SINR model improves the 
robustness, while the VA-position refinement is needed to 
optimize the accuracy. 

The environment model, e.g., the SINR information, is the 
key to obtaining efficient tracking algorithms; not only in terms 
of achieving optimal performance, but also in terms of com-
plexity. The set of relevant VAs in a scenario is significantly 
smaller than the overall set of VAs that would be taken into 
account by visibility considerations [18] (usually, the number 
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of MPCs carrying relevant information is on the order of five 
to ten per radio link for the scenarios considered).  By also 
considering the uncertainty of the VA positions in the envi-
ronment model, i.e., including the VAs to the state space, the 
position refinement can be done online at low complexity [34], 
eliminating the need for training measurements. Processing 
steps such as environment model tracking and relevance 
determination are potential features of a cognitive localization 
system. Cognition is aimed at understanding the surrounding 
world as found, for instance, in human visual perception (cf. 
[36] and [37]). 

The presented tracking approach naturally makes use of the 
position estimate obtained in the previous time step. Hence, 
an initialization strategy is also needed, i.e., a localization 
algorithm. Reference [24] proposes a maximum likelihood 
estimation algorithm based on (S1). The important role of DM 
is taken into account by directly estimating the corresponding 
PDP ( )S xo  from the sampled received signals. No data asso-
ciation is necessary, since the entire received signal is used. 
In this way, a similar performance is achieved as in Figure 4. 
Examples of the likelihood as a function of position p  are 
shown in the section “Analysis of mm-Wave Localization Sys-
tems for Assisted Living” for mm-wave measurements. 

This maximum likelihood approach can also be used in a 
tracking manner, resulting in particle-filter-based implementa-
tions of the scheme in Figure 3. Although such algorithms have 
increased computational complexity, they provide enhanced 
robustness because the particles can represent multiple position 
hypotheses. This helps to avoid cases where Kalman filter-
based schemes diverge. 

Simultaneous localization and mapping
using multipath channel information
How the environment model information can be obtained in 
practice remains a problem. In particular, in AL scenarios, 
plug-and-play installation is of prime importance. That is, ide-
ally, the environment model has to be acquired “online” while 
the system is in operation. Simultaneous localization and 
mapping (SLAM) is a well-known approach to learn a map of 
the environment with a mobile agent and, at the same time, 
localize the agent within this map [38]. Its application to mul-
tipath-assisted indoor localization is discussed in [34]. In this 
case, the learned map contains the data of the environment 
model, the VA positions, and the SINR values; i.e., the 
requirement of plug-and-play installation is fulfilled. In [39], 
a structure-from-motion approach has been proposed to also 
estimate the agent and (virtual) anchor locations simultane-
ously from a set of UWB measurements. 

The SLAM algorithm presented in [34] includes map fea-
tures (the VA positions) within a joint state-space of a tracking 
filter with the agent and thus updates the VAs whenever new 
data are available. Again, a data association is needed for this 
purpose, which has been accomplished by a similar subpattern 
assignment approach as previously discussed. Sets of associ-
ated past measurements are then used to estimate the current 
SINR values. Nonassociated measurements ,Z ,n ass  on the 
other hand, are grouped by their delays and used to compute 
candidate VAs that will be included in the environment model, 
if observed for a sufficiently long time. These new VAs are 
described by the set An

new  shown in Figure 3. 

FIGURE 5. An illustration of the environment map obtained by a simultaneous 
localization and mapping (SLAM) algorithm. Two anchors at a( )

1
1  and a( )

1
2

represent the infrastructure. The agent position as well as the floor plan (repre-
sented by VAs) are estimated using specular multipath, for which one example 
path is shown. Gray squares indicate geometrically expected VAs, blue and red 
square-cross markers with uncertainty ellipses (30-fold) represent discovered 
VAs. An agent tracking result is shown in black with an error ellipse (100-fold).
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FIGURE 4. CDFs of the position error p pn truee = -+t  for .T 0 5 nsp =
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without estimated SINRs. Bold lines denote the total performance for 
all runs, the dashed line indicates the performance without SINRs on all 
nondiverging runs (15 out of 25).
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Reference [34] demonstrated that a 2-D-map can be con-
structed with no prior information about the scenario other than 
the absolute positions of two fixed anchors. Figure 5 shows an 
illustrative example of this SLAM approach, which has been 
obtained from the same measurement data as the CDFs in Fig-
ure 4. Gray squares indicate the positions of some expected 
VAs computed from the floor plan. Discovered VAs are shown 
by red (Anchor 1) and blue (Anchor 2) square-cross markers; 
their marginal position covariance matrices are indicated by 
standard deviation ellipses, enlarged by a factor of 30 for better 
visibility. The corresponding true agent trajectory is indicated 
in gray. The current estimated agent position is shown by the 
red dot; its standard deviation ellipse is in black (enlarged by 
a factor of 100). 

As shown in the figure—after 68 time steps—a number 
of relevant VAs have been identified that match very well 
with the geometrically computed VAs. Some of these VAs 
have only been associated for a few time steps, correspond-
ing to rather large variances due to large geometric dilution 
of precision and/or low SINR values (e.g., MPC “A1 door 
and left window”). On the other hand, some VAs already 
have converged accurately to their true location (e.g., MPC 
“A1 blackboard”). Falsely discovered VAs often show a very 
large variance of their associated amplitudes, corresponding 
to a low SINR. Thus, their influence on the tracking process 
remains limited. The overall tracking performance almost 
matches up the performance of the approach discussed in 
Figure 4, and %90  of the errors are within 4.4 cm. Assum-
ing the availability of side information, e.g., from an iner-
tial measurement unit, we expect that the robustness of this 
SLAM algorithm against divergence gets even higher. 

Passive localization exploiting multipath
As mentioned previously, passive localization has the great 
advantage that no specific user compliance is necessary—in 
other words, the person to be helped does not need to remem-
ber to carry a specific device. At the same time, the passive 
principle makes it more challenging to handle multipath. 
While in an active system, localization can be achieved based 
on the triangulation with LOS paths, in passive localization 
we have to base it on “direct paths” that go from the transmit-
ter, via reflection at the target, to the receiver. Furthermore, 
these “direct paths” are embedded in background paths—
paths that propagate from transmitter to receiver without par-
ticipation of the target—and the delay of the background 
paths can be larger or smaller than those of the direct path. 
Second, there are also indirect paths, which involve reflection 
at both target and additional objects. And analogously to 
active localization, where the LOS path might be shadowed 
off, the direct path might be blocked. This overall makes tar-
get localization much more difficult. 

Despite these difficulties, passive vital sign monitoring has 
a long history (the main motivation used to be in a military/
surveillance context, but the principles can be applied to AL 
as well). Narrowband Doppler radar was already being used 
to detect the presence of breathing beginning in the 1970s. 

However, this does not allow the localization of the breathing 
person and is of somewhat limited utility for AL applications. 
A more promising approach seems to be the use of wideband 
multiple-input, multiple-output (MIMO) radar. Reference [40] 
demonstrated a prototype that could precisely localize a person 
and track the small-scale movement of the chest that occurs 
during breathing from a distance of several meters away. This 
was enabled with a sounding waveform extending over 7-GHz 
bandwidth (within the UWB band from 3 to 10 GHz), com-
bined with an eight-element transmit array and high-resolution 
(iterative maximum-likelihood estimation) evaluation. Most 
noteworthy, the localization can be achieved without a direct 
path, as long as the environment (location of walls, etc.) is 
known. The figures in [40] demonstrate the relative location of 
the echo reflected from the head and chest when the target is 
breathing in/out. 

The situation is more difficult when more than one pos-
sible target is present. In contrast to active devices that send 
out unique signatures and allow identification of all associ-
ated signals, it is difficult (and often impossible) to distin-
guish between the MPCs belonging to different targets. Such 
multitarget localization is another difficult but important 
problem—obviously, in many AL situations (e.g., eldercare 
homes), multiple targets might be present simultaneously, 
and if they are moving, their trajectories might intersect. 
From an algorithmic point of view, we have to distinguish the 
cases where transmitter and receiver have multiple antenna 
elements (and can resolve directions of the echoes), versus 
the (much more difficult) case of distributed single-antenna 
transceivers (e.g., [41]). 

In addition to localization and tracking, radio signals may be 
used for the reconstruction of a three-dimensional map of the 
surrounding environment, e.g., to assist people with impaired 
vision capabilities. This is, of course, strongly related to the 
mapping task of the SLAM approach. The passive reflections 
of the radio waves from the environment are exploited together 
with additional reflections from targets and walls. A single sen-
sor through-the-wall radar with data association is discussed 
in [25], multipath-assisted through-the-wall imaging in [26]. 
The suitability of UWB radars for mapping, imaging, and also 
breathing detection was shown in [42]. Recently, the concept 
of personal radar has been proposed as a smartphone-centric 
low-cost solution for the navigation and mapping problem 
[43]. Personal radar could be an additional feature offered by 
5G smartphones, exploiting mm-wave massive antenna arrays 
with electronic pencil-beam steering capability and high rang-
ing accuracy. The small wavelength of mm-wave technology 
permits the packing of a massive antenna array in pocket-size 
space [44]. In fact, mm-wave technologies could provide a 
most suitable platform for the purpose of high-accuracy local-
ization for AL, as discussed next. 

Analysis of mm-wave localization systems
for assisted living
Insights gained so far show the promising features of a mul-
tipath-assisted indoor localization system. However, the 
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price to pay is a very large signal bandwidth to enable the 
separation of MPCs at sufficiently high SINRs. Microwave-
band UWB systems can fulfill this promise, but their mass-
market adoption seems unlikely [9] given the recent 
developments of indoor wireless systems. For conventional 
wireless systems, it would also be possible 
to utilize the phase evolution of the MPCs 
for precise localization and tracking [45]. 
This technique, however, requires large 
arrays for separating the MPCs at moder-
ate bandwidths and might not be relevant 
in an AL context. On the other hand, 5G 
wireless systems will include UWB radios 
in the mm-wave frequency band. The 
IEEE 802.11ad standard [22], for example, already defines 
an air-interface for a 2-GHz bandwidth system in the 
60-GHz frequency band. Beamforming and tracking of 
MPCs are key elements of such systems. Despite the promis-
ing features of mm-wave systems for localization, only few 
papers address this aspect so far, and even fewer discuss 
measurement data and realistic channel models [46], [47]. 

This section highlights the great potential of mm-wave 
technologies for realizing multipath-assisted indoor localiza-
tion. We analyze, for this purpose, exemplary measurement 

data discussed in [19] and [20] that mimic the intended AL 
application scenario. It is shown that a single access point 
provides enough position-related information to enable high 
accuracy localization. A properly parameterized environment 
model is a key ingredient to achieve this. 

Measurement scenario and setup
The mm-wave channel measurements of [19] and [20] are 
MIMO measurements with 7 × 7 locations on both transmit-
ter (TX) and receiver (RX) sides obtained by a vector net-
work analyzer. In the intended application, one array assumes 
the role of the agent to be localized, while the other corre-
sponds to the anchor, i.e., the fixed infrastructure. The mea-
surement grid on the agent side was moved to 22 different 
locations in the room. Both LOS and obstructed LOS (OLOS) 
situations have been measured; the latter were obtained using 
a laptop screen to shadow the direct link to the anchor. These 
measurements have been conducted at a center frequency of 
63 GHz. To mimic the IEEE 802.11ad standard [22], we 
selected a subband of 2 GHz from the total measured band-
width of 4 GHz using a raised cosine filter (cf. [33]). 

Measurement results
We first analyze the SINRs of the MPCs as defined in (2), i.e., 
the ratio of the useful energies of the deterministic MPCs to the 
interference by DM and additive white Gaussian noise 
(AWGN). The SINRs are estimated using the technique of [18] 
and [33], a method of moments estimator operating directly on 
the MPC amplitudes. In this way, the PDP ( )S xo  does not 
explicitly have to be estimated. We use the array positions on 
the anchor side to provide the required signal ensemble. The 
array at the agent side is used to show the potential of beam-
forming. In a practical setup, it may be advantageous to imple-
ment the beamforming at the anchor side, i.e., at the 
infrastructure, where the array has a known orientation, while 
at the agent side, low-complexity terminals may be used that 
have only one or a few fixed antennas. We reverse these roles 

here, since the horizontal array geometry at 
the agent side was better suited for a proof 
of principle. 

The estimated SINRs in Figure 6(a) 
show the relevance of selected MPCs in 
this environment for several agent positions. 
The LOS is the MPC providing most posi-
tion-related information. Besides the fact 
that it is usually the strongest component of 

a radio channel, this significance is due to the relatively low 
impact of DM on the LOS component at a bandwidth of 2 GHz 
[33]. Interestingly, in some cases, the SINR of the LOS com-
ponent drops only slightly in the OLOS situation, although its 
energy drops significantly (the average LOS K-factor over the 
estimation positions decreases from .8 9 dB to .. )7 4 dB-  This 
implies that the component is still exploitable for localization. 
The reflected components also show significant SINRs over 
the estimation points but there is a considerable amount of 
location-dependence of the SINRs. It is more pronounced than 

FIGURE 6. (a) Estimated SINRs of selected reflections using .T 0 5 nsp =  and 
f 63 GHzc =  and (b) PEB for LOS, OLOS, and NLOS (complete lack of the 
LOS component) scenarios. Solid lines indicate LOS measurements; while 
dashed and dash-dotted lines correspond to OLOS and NLOS measurements, 
respectively. The x-axis labeling refers to the measurement sets acquired at 
different positions , , ,d d d1 2 5f  as reported in [19] and [20].
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for microwave band UWB measurements [33], highlighting 
the need for online estimation (tracking) of the environment 
model, as explained in the section “Simultaneous Localization 
and Mapping Using Multipath Channel Information” and [34]. 

Figure 6(b) shows the PEB corresponding to the estimated 
SINRs of Figure 6(a). The PEB is a measure of the potentially 
achievable localization accuracy, hence, highly accurate sin-
gle-anchor localization is possible in this scenario. The PEB 
increases only slightly in the OLOS situations due to the still 
significant SINR of the LOS component. Even if the LOS 
component is not taken into account at all, (NLOS; the red 
dash-dotted line), the agent is still localizable at centimeter 
level, easily satisfying requirements of most AL applications. 
A proper operation in total absence of an LOS indicates the 
“good” robustness of the discussed techniques. 

Figure 7 shows the likelihood (S1) for a sampled received sig-
nal ( )r t  as a function of position p,  evaluated over the floor plan. 
Figure 7(a) compares LOS and (b) OLOS conditions with (c) 
OLOS with the use of beamforming. The bold black lines indicate 
the directions to the anchor, thin black lines the directions to first-
order VAs, and black dashed lines the directions to second-order 
VAs. The black diamonds mark the estimated positions of the agent. 
Using a maximum likelihood positioning algorithm as in [24], an 
error in the centimeter level is achieved (2 cm for the LOS and 3 
cm for the OLOS situations). Only a small degradation results in 
the OLOS case, as anticipated from the analysis of the SINR values. 

The potential use of beamforming shows a different great 
advantage: the multimodality of the likelihood function is 
reduced, which reduces the risk of converging to a wrong local 
maximum. Large modes at locations farther away from the 
true agent position are suppressed due to the angular resolu-
tion of the array antenna. Note, however, that MPC delays are 
still responsible for providing a high accuracy in a direction 
orthogonal to the LOS path. Without the processing of mul-
tipath, we would see a smooth maximum (along the circle) 
instead of a sharp peak. The likelihood function in Figure 7(c) 

has been computed by using a phased-array beamformer for 
each exploited MPC. This is achieved by coherently adding the 
signals at the agent-side array positions, taking into account the 
relative phase shifts that correspond to the known arrival angles 
of the MPCs. The figure exemplary shows that such a process-
ing, envisioned for 5G mm-wave communication systems, can 
greatly improve the robustness of the localization, since many 
local maxima can be ruled out. 

Discussion and conclusions
This article envisions accurate and robust indoor localization as 
a key sensing modality of an AL system. It has been shown that 
awareness to the signal propagation conditions enables the 
robustness and allows to reduce the needed infrastructure. 
Experimental, measurement-based results support the discus-
sion of theoretical findings. 

A geometry-based stochastic model of the received signal 
allows the derivation of theoretical PEBs and thus provides 
the theoretical background for a number of multipath-assisted 
localization and tracking algorithms. More specifically, an 
environment model, consisting of a geometrical model (based 
on VA positions) and a measurement uncertainty model (based 
on the SINR of MPCs), yields insight in the potential location 
information that can be acquired at a certain position, in a 
certain environment. Several algorithms have been discussed 
that exploit such information: maximum likelihood localiza-
tion, tracking filters with data association, and algorithms for 
passive localization. The benefit of using this environmental 
information has been shown. 

Future 5G mm-wave communication systems could be an 
ideal platform for achieving high-accuracy indoor localiza-
tion with this concept. In addition to a large signal bandwidth, 
beamforming capabilities are envisioned for such systems, which 
can be exploited to make the localization and tracking more 
robust and efficient. It becomes feasible to obtain accurate and 
robust indoor localization with only a single anchor node in a 

FIGURE 7. The likelihood function over the floor plan for (a) LOS, (b) OLOS situation, and (c) OLOS situation with phased-array beamforming. The posi-
tion error of the MLE is 2 cm and 3 cm for LOS and OLOS situations, respectively. Bold black lines show the directions to the anchors, thin black line the 
directions to first-order VAs, and black dashed lines the directions to second-order VAs. The black diamonds mark the estimated positions of the agent.
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room, with a system that also serves as a 
standard-compliant access point for 5G 
communications. 

Note that, vice versa, the environment 
model can be exploited by the communica-
tions system. “Location awareness” is cre-
ated by providing a site-specific propagation 
model that can be used to improve the robust-
ness of the radio air-interface. For example, 
the arrival and departure angles of the most 
significant radio paths are encoded in the 
environment model, which will be useful for 
efficient beamsteering algorithms for com-
munications in highly dynamic environments, extending the 
scope of the proposed concepts well beyond AL scenarios. 
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Creating the proposed 
infrastructure, developing 
the appropriate distributed 
processing algorithms, 
and validating the 
applications in challenging 
AL environments will 
require significant 
multidisciplinary work 
over the coming years.
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Radar is considered an important technology for health monitoring and fall detection 
in elderly assisted living due to a number of attributes not shared by other sensing 
modalities. In this article, we describe the signal processing algorithms and tech-
niques involved in elderly fall detection using radar. A human’s radar signal returns 

differ in their Doppler characteristics, depending on the nature of the 
human gross motor activities. These signals are nonstationary in 

nature, inviting time-frequency analysis in both its linear 
and bilinear aspects, to play a fundamental role in 

motion identification, including fall features deter-
mination and classification. This article employs 

real fall data to demonstrate the success of 
existing detection algorithms as well as to 

report on some of the challenges facing tech-
nology developments for fall detection. 

Introduction
The elderly population aged 65 years or 
older is growing, and their ratio to the 
population aged 20–64 will reach 35% in 
2030 [1]. The worldwide population over 
65 is projected to increase to one billion in 
2030. An overwhelming majority of elder-

lies exercise self-care within their own 
homes most of the time. One out of three 

elderly people over the age of 65 will fall every 
year, and the percentage rises for the elderly liv-

ing in long-term care institutions. The fall can 
result in injuries and reduced quality of life and, 

unfortunately, it represents one of the leading causes of 
death in the elderly population. Eventually, the elderly who 

are at high risk of falling will have to move to institutionalized 
care, which can cost approximately US$3,500 per month. Most seniors 

are unable to get up by themselves after a fall, and it was reported that, even with-
out direct injuries, half of those who experienced an extended period of lying on the floor 
(more than an hour) died within six months after the incident. Therefore, prompt fall 
detection saves lives, leads to timely interventions and most effective treatments, and 
reduces medical expenses. Furthermore, it avoids placing major burdens on the elderly’s 
family. Driven by a pressing need to detect and attend to a fall, elderly fall detection has 
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become an active area of research and development and is iden-
tified as a major innovation opportunity to allow seniors to live 
independently [2]. There are competing technologies for fall 
detection, of which wearable devices, like accelerometers and 
“push buttons,” are most common. The shortcomings of these 
devices are that they are intrusive, easily broken, and must be 
worn or carried. In addition, push-button devices are less suited 
for cognitively impaired users. 

Although in-home radar monitoring of the elderly for fall detec-
tion is still in its early stage of development, it carries great potential 
to be one of the leading technologies in the near future. The attrac-
tive attributes of radar, related to its proven technology, nonobstruc-
tive illumination, nonintrusive sensing, insensitivity to lighting 
conditions, privacy preservation, and safety, have brought electro-
magnetic waves to the forefront of indoor monitoring modalities in 
competition with cameras and wearable devices [3]. Radar back-
scatters from humans in motion generate changes in the radar fre-
quencies referred to as Doppler effects. The Doppler signatures 
determine the prominent features that underlie different human 
motions and gross motor activities. Recently, enhanced detection 
and classification techniques of radar signals associated with 
micro- and macromotions have been developed to identify falls 
from standing, sitting, kneeling, and other motion articulations [4]–
[10]. Reference [4] explored the dynamic nature of a fall signal and 
used the Mel-frequency cepstral coefficients (MFCCs) in conjunc-
tion with machine-learning approaches to differentiate radar echo 
behaviors between falls and nonfalls. This differentiation was 
achieved in [4], [6],  [7], and [9] using features extracted from time-
frequency signal representations. Radar fall signals were analyzed 
using wavelet transform (WT) in [8] and [10] and features extract-
ed in the joint time-scale domain were used for fall classification.  

A Doppler radar obtains target Doppler information by 
observing the phase variation of the return signal from the targets 
corresponding to repetitively transmitted signals. An important 
property of Doppler radar is its ability to effectively suppress clut-
ter, represented by strong scatterings of the electromagnetic 
waves from a room’s furniture, floors, ceiling, or from interior 
walls. Radars also have the capability to separate motions of ani-
mate and inanimate targets, like fans and pendulums [11]. Radar 
units in homes can be low cost, low power, small in size, and can 
be mounted on walls and ceilings in different rooms, depending 
on operational requirements and logistic needs as well as the 
required signal strength. 

The role of radars in assisted living predicates on its ability to 
perform detection, classification, and localization. Successful 
detection of a fall as well as locating its occurrence to at least room 
accuracy, and classifying its type (see Figure 1) with low false 
alarm and high classification rates would provide key information 
to first responders on the scene. On the other hand, distinguishing 
between a fall due to a heart attack and one due to tripping can 
certainly aid in mobilizing the necessary care and treatment. 

The emerging area of fall detection using radar builds on 
three foundations: 
1) Information Technology: via the development of signal 

processing algorithms and the corresponding software for 
elderly fall detection, localization, and classification.  

2) Human Factors and Behavior Science: via the understand-
ing of human normal gross motor activities and those 
affected by medications and physically impairing illnesses. 

3) System Engineering and Engineering Design: via efficient 
integrations of hardware and software modules to produce 
a cost-effective, reliable, and smart system that realizes the 
full potential of fall detection algorithms.
In this article, we discuss only the first foundation, though 

the other two foundations are essential for the development of 
an overall system for fall monitoring. The main challenges in 
fall detection using radar are: 
■ High false-alarm rates stemming from confusion of falls 

with similar motions, like sitting and kneeling 
■ Presence of scatterers caused by interior walls that create 

clutter and ghost targets 
■ Occlusion of the fall due to large stationary items, e.g., fil-

ing cabinets 
■ Weak Doppler signatures stemming from orthogonality of 

motion direction to the radar line-of-sight 
■ Reliability of fall detection irrespective of the immediate 

preceding motion articulations 
■ Similar Doppler signatures of pets jumping off tables and 

chairs to those of a human falling 
■ The presence of multiple persons in the radar field of view.

Although it is important to develop superior fall detec-
tion algorithms, some of the aforementioned challenges can 
be addressed through logistics and increased system 
resources. In [5], multiple Doppler sensors are exploited to 
raise the precision of fall detection by covering the target 
movement from multiple directions and to combat occlu-
sions. The fusion of data is performed by feature combina-
tion or selection. Although more complex to implement, the 
combination method is shown to outperform the selection 
method for different fall and nonfall motion classifications. 
When using multiple radars, a change in the carrier frequen-
cy is recommended to avoid mutual interference. The radar 
operational frequencies should not, in general, intervene 
with other services, such as terrestrial TV, cellular phones, 
global positioning system, and Wi-Fi, and should adhere to 
the frequency allocations guidelines. 

In [4]–[6], [8], and [9], a fall is isolated from a preceding 
motion by prescreening that involves identifying the begin-
ning and the end of a possible fall event. The fall micro-Dop-
pler features are then extracted within the identified time 
interval. An ultrawideband range-Doppler radar with 2.5-
GHz bandwidth is used in [13] to provide range information 
for target localization. Range-Doppler radars are also used in 
[14] to detect physiological (heartbeat, respiration) and motion 
parameters to identify a fallen person. Characteristics corre-
sponding to the detected heartbeat, respiration, and motion, or 
combinations thereof, are proposed to differentiate between 
an animal present in the room and the fallen person. A range-
Doppler radar can also resolve targets and thereby permits the 
radar to handle more than one person in the field of view (e.g., 
[15]). In this case, both the intended elderly and other 
person(s) in the room will be monitored. When used in a 
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multiunit system, the range information localizes the target, 
through trilateration, and as such, can eliminate ghosts [5]. 

Signal model
Consider a monostatic continuous-wave (CW) radar that trans-
mits a sinusoidal signal with frequency fc  over the sensing peri-
od. The transmitted signal is expressed as ( ) ( ) .exps t j f t2 cr=

Consider a point target located at a distance of R0  from the 
radar at time ,t 0=  and that moves with a velocity ( )v t  in a 
direction forming an angle i  with the radar line-of-sight. As 
such, the distance between the radar and the target at time 
instant t  is given by 

( ) ( ) ( ) .cosR t R v u du
t

0
0

i= + # (1)

The radar return scattered from the target can be expressed as 

( )
( )

,expx t j f t
c
R t

2
2

a ct r= -c c mm (2)

where t  is the target reflection coefficient and c  is the veloc-
ity of the electromagnetic wave propagation in free space. The 
Doppler frequency corresponding to ( )x ta  is given by 

( ) ( ) ( ) / ,cosf t v t2D ci m=  where /c fc cm =  is the wavelength. A 
spatially extended target, such as a human, can be considered 
as a collection of point scatterers. Therefore, the correspond-
ing radar return is the integration over the target region X
and is expressed as 

( ) ( ) .x t x t daa=
X
# (3)

In this case, the Doppler signature is the superposition of all 
component Doppler frequencies. Torso and limb motions gen-
erally generate time-varying Doppler frequencies, and the 
nature of this variation defines the Doppler signature associ-
ated with each human gross motor activity, including a fall. 
The exact Doppler signatures depend on the target shape and 
motion patterns. 

Appropriate signal analysis domains
A human fall has a quick acceleration motion of short duration 
at the beginning until reaching the ground and a slow decelera-
tion motion of long duration toward the end upon lying on the 
floor. Such a dynamic creates a Doppler radar return that is 
nonstationary, as in (3). This type of nonstationary signal can 
be well described and analyzed by joint time-frequency repre-
sentations that reveal the local behavior of the signal and depict 
its time-varying Doppler frequency signatures, thereby sup-
porting the radar primary tasks of detection and classification. 

A number of methods are available to perform time-fre-
quency analysis of the Doppler signatures [4], [6], [7], [9]. 
These methods can be generally divided into the linear time-
frequency analysis and quadratic time-frequency analysis 
methods. Short-time Fourier transform (STFT) is a commonly 
used technique to perform linear time-frequency analysis [16]. 
Time-scale analysis using WT [17] is also considered an effec-
tive linear method to analyze and extract the characteristics of 
radar fall signals that exhibit nonstationary behaviors [8], [10]. 

Quadratic time-frequency distributions (QTFDs) involve 
the data bilinear products and are defined within Cohen’s class 
[18]. QTFDs have been shown to be most suitable in analyzing 
wideband signals that are instantaneously narrowband. The 

(a)

(b)

FIGURE 1. Types of falls from (a) a heart attack and (b) tripping. (Figure used with permission of [12].) 
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spectrogram ( , )S t f  is a key member of Cohen’s class and is 
obtained at time index t  and frequency f  by computing the 
squared magnitude of STFT of the data ( )x t  with a window 

( ) .h t  Other members of Cohen’s class are obtained by the 
two-dimensional (2-D) Fourier transform of its kerneled 
ambiguity function, expressed as 

( , ) ( , ) ( , ) ( ),expD t f A j f j t4 2z i x i x r x ri= -
3

3

3

3

xi =-=-

// (4)

where

( , ) ( ) ( ) ( )expA x u x u j u2*

u

i x x x ri= + - -
3

3

=-

/ (5)

is the ambiguity function, ( , )z i x  is the time-frequency 
kernel, and ( ) *$  denotes the complex conju-
gate. Here, i  and ,x  respectively, denote 
the frequency shift (also referred to as 
Doppler frequency) and time lag. The 
properties of a QTFD are heavily depen-
dent on the applied kernel. 

The Wigner–Ville distribution (WVD) 
is often regarded as the basic or prototype 
QTFD, since its filtered versions describe 
Cohen’s class. WVD is known to provide 
the best time-frequency resolution for sin-
gle-component linear frequency modulat-
ed signals, but it yields undesirable 
cross-terms when the signal frequency 
law is nonlinear or when a multicompo-
nent signal is analyzed. The kernel function of the WVD is 
unity across the entire ambiguity function. Various 
reduced-interference distributions (RIDs) have been devel-
oped to reduce the cross-term interference. The majority of 
signals have autoterms located near the origin in the ambi-
guity domain, while the signal cross terms are distant from 
the time-lag and frequency-shift axes. As such, RID kernels 

( , )z i x  exhibit low-pass filter characteristics to suppress 
cross terms and preserve autoterms. For example, the Choi–
Williams distribution uses a Gaussian kernel in both frequen-
cy shift and time lag axes, which is expressed as 

( , ) ( ( ) ),exp 2z i x n ix= -  where n  is a constant [19]. Anoth-
er alternative is the extended modified B-distribution 
(EMBD), which is a product of a Doppler-domain filter and a 
lag-domain filter, expressed as [20] 

( , )
( )

( )
( )

( )
,

j j
2

2

2

2

z i x
b

b ri

a

a rx

C
C

C
C

=
+ +

(6)

where . . ,0 5 0 5# #i- . . ,0 5 0 5# #x- ,0 1# #a  and 
.0 1# #b  The lengths of the Doppler and lag windows are 

controlled by separate parameters a  and ,b  respectively. The 
extra degree of freedom in the formulation of the EMBD 
allows to independently adjust the lengths of the windows 
along both lag and Doppler axes. 

Figure 2 compares different time-fre-
quency representations of the Doppler signa-
ture of a human fall from standing in the 
form of the spectrogram, WVD, and 
EMBD. A 255-point Hamming window is 
used for the computation of the spectrogram. 
All results are depicted on a logarithm scale 
with a 25 dB dynamic range. It is clear that 
the spectrogram provides a clean distribution 
without cross terms, but with a coarse reso-
lution. Due to signal containing multiple 
irregular components as well as a strong 
residual clutter, the WVD exhibits a high 
level of cross-term and sidelobe contamina-
tion, thereby rendering QTFD-based motion 

classification challenging. The EMBD, on the other hand, pro-
vides better contrast and connectivity and reveals a higher level 
of detail as compared to the spectrogram. 

Similar to the STFT, the WT uses the inner products to mea-
sure the similarity between a signal and an analyzing function. In 
STFT, the analyzing functions are windowed complex exponen-
tials, and the STFT coefficients represent the projection of the 
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FIGURE 2. Time-frequency distributions of a fall motion: (a) spectrogram, (b) WVD, and (c) EMBD.

Driven by a pressing 
need to detect and attend 
to a fall, elderly fall 
detection has become an 
active area of research 
and development and 
is identified as a major 
innovation opportunity 
to allow seniors to live 
independently. 
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signal over a sinusoid in an interval of a 
specified length. According to the uncer-
tainty principle [18], the product of the 
time resolution and the frequency resolu-
tion is lower bounded, i.e., we cannot 
achieve a high resolution in both the time 
domain and the frequency domain at the 
same time. Therefore, although STFT can 
observe the time-varying frequency signa-
tures, the question always arises as the 
optimum window length for the given data for the best tradeoff 
between spectral and temporal resolutions. In the WT, the ana-
lyzing function is a wavelet. The WT implements the multireso-
lution concept by changing the position and scaling of the mother 
wavelet function and thereby captures both short-duration, high-
frequency components and long-duration, low-frequency compo-
nents [21]. There are many choices of the wavelet functions, 
depending on the properties imposed on the wavelets. When the 
data is in discrete form, the WT can be computed very efficiently 
by restricting the scales to be dyadic and the positions to be inte-
ger. Such a fast computation uses a high-pass filter and a low-pass 
filter to represent the wavelet function, and successive filtering 
generates the discrete stationary WT (SWT) [22]. SWT is redun-
dant and it produces the same number of samples as the data at 
each scale. However, it avoids the shift variant behavior that 
appears in the nonredundant discrete WT. 

It is noted that Mel-frequency cepstrum is another repre-
sentation of the short-term power spectrum for nonstationary 
signals and has been used in [4] to represent the Doppler sig-
natures. Empirical mode decomposition (EMD) has also been 
used to examine human Doppler signatures [23], [24]. EMD 
is an adaptive technique that decomposes a signal into time-
frequency components called intrinsic mode functions
(IMFs). Each IMF comprises signal components that belong 
to a specific oscillatory time scale. The energy as a function 
of the IMF index provides a unique feature vector with which 
human motion classification can be achieved. Furthermore, 
time-frequency representations based on compressed sensing 
and sparse reconstructions have been successfully employed 
for high-resolution Doppler signature analysis and radar oper-
ation with nonperiodic sub-Nyquist sampling [25], [26]. 

Feature extraction and classification
Figure 3 shows the data processing blocks for fall detection. The 
radar data is first transformed to an appropriate domain, fol-
lowed by a prescreening step that determines whether an impor-
tant event may have occurred and, if so, its time location. Once 
an event is detected by the prescreener, a classification process is 
initiated to detect whether such an event is a fall. More specifi-
cally, windowed transformed data around the identified event 
time location is used to extract pertinent features, which are used 
by a classifier to perform fall versus nonfall classification. A 
power burst curve (also referred to as the energy burst curve), 
which represents the signal power within a specific frequency 
band as a function of time, can be utilized for prescreening [4], 
[9]. The frequency band chosen for prescreening should be a 

low-frequency band that excludes the clutter-dominated zero-fre-
quency region but effectively captures human activities. An event 
is triggered for classification when the signal power in the speci-
fied frequency band exceeds a certain level. The coefficients of 
wavelet decomposition at a given scale have also been used in 
the prescreening stage to identify the time locations where fall 
activities may have occurred [10].

Feature definitions
For fall detection based on STFT, pertinent features include 
extreme frequency magnitude, extreme frequency ratio, and 
the time span of event [9]. 
1) Extreme Frequency Magnitude: The extreme frequency 

magnitude is defined as ( , ),maxF f fmax min= -+ -  where 
f max+  and ,f min-  respectively, denote the maximum fre-

quency in the positive frequency range and the minimum 
frequency in the negative frequency range. Critical falls 
often exhibit a high extreme frequency magnitude when 
compared to other types of observed motions. 

2) Extreme Frequency Ratio: The extreme frequency ratio is 
defined as ( / ,maxR f fmax min= + - / ) .f fmin max- +  For falls, 
due to the translational motion of the entire body, a high 
energy spectrogram is concentrated in either the positive or 
negative frequencies, resulting in a high extreme frequency 
ratio. On the other hand, other types of motions, such as 
sitting and standing, often demonstrate high energy content 
in both the positive and negative frequency bands because 
different body parts undergo different motion patterns, 
thereby corresponding to a low extreme frequency ratio. 

3) Time Span of Event: This feature describes the length of 
time, in milliseconds, between the start and the end of an 
event, i.e., ,L t textrm begin= -  where textrm  denotes the time 
where the extreme frequency occurs and tbegin  denotes the 
initiation time of the event. The latter is determined by the 
time when the magnitude of the frequency content of a sig-
nal passes a specific threshold. The different motion pat-
terns being compared in this work generally show distinct 
time spans. 
The aforementioned three features extracted from the 

spectrogram have been used for fall detection in [9]. Addi-
tional features have also been extracted from time-frequen-
cy distributions for classification of human activities (see, 
e.g., [27], [28] and references therein). These include torso 
Doppler frequency, total bandwidth of the Doppler signal, 
offset of the total Doppler, normalized standard deviation 
of the Doppler signal strength, period of the limb motion, 

Raw Radar
Data

TF/Wavelet
Transform

Feature
Extraction

Motion
Classifier Fall/Nonfall

Event
Detection

FIGURE 3. Data processing blocks for fall detection.
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shape of the spectrogram envelope, ratio 
of torso echoes to other echoes in the 
spectrogram, and Fourier series coeffi-
cients of spectrogram envelope. Nonpara-
metric features derived from subspace 
representations of the time-frequency dis-
tributions have also been proposed. Effec-
tive and reliable fall detection often 
requires the combined use of multiple 
features. Once a set of features is extracted, a classification 
algorithm can be applied to determine whether an event is a 
fall or nonfall activity. 

Classifiers
A variety of classifiers have been employed for fall detection 
[4], [27], with the support vector machine (SVM) being the 
most commonly used classifier. Different classifiers, includ-
ing k-nearest neighbor, are used to automatically distinguish 
falling from activities, such as walking and bending down [4]. 
The sparse Bayesian learning method based on the relevance 
vector machine improves fall detection performance over the 
SVM with fewer relevance vectors, and its effectiveness is 
demonstrated in [9]. Hidden Markov model-based machine 
learning is used in [6] to characterize the signal spectrogram 
for fall detection. However, the choice of employed features 
has been determined to have a greater impact on the classifi-
cation performance than the specific classifier applied (see 
[28] and references therein). 

Classification results
A CW radar was set up in the Radar Imaging Lab at 
Villanova University, Pennsylvania. A vertically polarized 
horn antenna (BAE Systems, Model H-1479) with an oper-
ational frequency range of 1–12.4 GHz and 3-dB beam-
width of 45° was used as a transceiver for the CW radar. 
The feed point of the antenna was positioned 1 m above 
the floor. Agilent’s E5071B RF network analyzer was used 
for signal generation and measurement of radar returns. A 
carrier frequency of 8 GHz was employed and the network 
analyzer was externally triggered at a 1 kHz sampling rate. 
Data were collected for eight different motion patterns 
using two test subjects, with each experiment motion pat-
tern repeated ten times (five times each for two test sub-
jects). Considered motion patterns include 1) forward 
falling, 2) backward falling, 3) sitting and standing, and 
4) bending over and standing up. Two different variations 
of each motion pattern were measured, one being a stan-
dard type of motion, whereas the other demonstrating a 
high-energy form of the same motion to study the impact 
of such variations on the classification performance. The 
recording time for each experiment was 20 seconds [9]. 

The typical spectrograms of the eight considered motion 
patterns are shown in Figure 4. The first four patterns are col-
lectively considered falls, whereas the last four patterns are 
collectively considered nonfall motions. Our objective is to 
correctly detect fall events from nonfall events. Figure 5 

depicts the ground truth of three aforemen-
tioned STFT-based features, i.e., the 
extreme frequency magnitude, the extreme 
frequency ratio, and the time span of the 
event [9]. Specifically, Figure 5(a) shows 
the three-dimensional view of the three 
features, whereas their pairwise 2-D plots 
are respectively provided in Figure 5(b)–
(d), where these features generally provide 

a clear distinction between the fall and nonfall events, except 
one outlier fall event (marked with a circle). Examination of 
the spectrogram of this outlier fall event shows that the corre-
sponding signal is very weak, yielding low extreme Doppler 
frequency as well as a short time span of event. The fall 
events exhibit larger extreme frequency magnitudes, higher 
extreme frequency ratios, and longer lengths of event time 
than the nonfall counterparts. These features, however, do not 
robustly classify the fall and nonfall activities based on a sin-
gle feature alone. 

The SVM classifier is applied by using a Gaussian kernel. 
Fivefold cross-validation is used on the motion data. The 
entire sample set is randomly partitioned into five equal-size 
subsets. Out of the five subsets, a single subset is retained as 
the validation data for testing the classifier, and the remaining 
four subsets are used as the training data. The cross-validation 
process is repeated five times, with each of the five subsets 
used exactly once as the validation data. The classifier is suc-
cessfully able to detect fall from nonfall events except for the 
misclassification of the outlier fall event as described earlier 
and marked with the circle in Figure 5(a). 

Wavelet-based approach

Feature Definition
WT-based features include the smoothed magnitude square of 
the discrete SWT coefficients of the radar signal at several 
dyadic scales over a moving window (frame) typically of 
0.5 seconds with 50% overlap [10]. The collection of features 
in 2.5 seconds centered at the event location identified by a 
prescreener forms the feature vector for classification. The 
smoothed magnitude square of the SWT coefficients is 
defined next. 

Smoothed Magnitude Square of the SWT Coefficients
Let ( )kipu  be the sum of the square of the SWT coefficients at 
dyadic scale 2i  in frame .k  There will be nine frames in a 
total of 2.5 seconds that contain a possible fall event. Normal-
ization of ( )kipu  by the sum of the nine values is often needed, 
giving ( ) .kip  The collection of the nine ( )k sip  forms the row 
vector .ip  Over the dyadic scales 2ib  to ,2ie  the feature vector 
for classification is [ ] .y i ib egp p=

The study in [4] applied cepstral analysis of the radar signal 
for fall detection. The MFCCs were extracted over a 4-second 
data segment that might contain a fall activity and encourag-
ing classification results between falls and nonfalls were 
observed. 

For fall detection based 
on STFT, pertinent features 
include extreme frequency 
magnitude, extreme 
frequency ratio, and the 
time span of an event. 
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FIGURE 4. Spectrograms of typical motion profiles [9]. (a) Fall backward. (b) Fall backward with arm motion. (c) Fall forward. (d) Fall forward with arm 
motion. (e) Sit and stand. (f) Fast sit and stand. (g) Bend and stand up. (h) Fast bend and stand up. (Figure reproduced with permission of the Institution 
of Engineering and Technology.)
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Classification Results
Wavelet-based fall detection results are presented using real data 
collected in three different bathrooms of senior residence apart-
ments [29]. A bathroom is where falls of elderly people could 
occur often and yet other sensors, such as video cameras or 
acoustic sensors, are not suitable due to privacy reasons or strong 
interferences. The data collection was performed from January 
to May 2013, where the Doppler radars were mounted above in 
the attic at the middle of the bathrooms. The data set contains 
19 different kinds of falls and 14 various typical nonfalls that 
were performed by a professionally trained female stunt actor 
[10]. The fall types and their counts are tabulated in Table 1. 

The radar used in the experiment is a commercially avail-
able pulse-Doppler range control radar with a price close to 
that of a webcam. The pulse repetition rate is 10 MHz, the 
duty cycle is 40%, and the center frequency is 5.8 GHz. 
The sampling frequency of the radar signal is 960 Hz. 
Based on the velocity range during a human fall, dyadic 
scales from two to 64 are used to generate the features, giving 
the feature vector length of ( ) ( ) .6 9 54scales frames# =  The 
wavelet function for SWT is the reverse biorthogonal 3.3 
wavelet. The window function is Hamming. The classifier is 
the k -nearest neighbor with k 1=  for fall versus nonfall clas-

sification. The data was acquired in a continuous manner as 
in practice. A prescreener based on the SWT coefficient val-
ues at scale equal to four gives the potential falls locations for 
feature extraction and classification. Figure 6 examines the 
classification performance using the SWT and the MFCC fea-
tures, using leave-one-out cross-validation between training 
and testing. The false-alarm rate is the number of false alarms 
normalized by the total number of events from the prescreen-
er. The WT classifier has comparable performance with the 
MFCC classifier for detection rate below 80% and has much 
better results otherwise. At a 100% detection rate, the WT 
classifier reduces the amount of false alarms by more than a 
factor of four from the prescreener. 

Open issues and problems
There are many challenges still facing the radar-based fall 
detection technology. Classifying a fall, once the corresponding 
event time interval is identified, has been the subject of most 
work in this area. However, identifying such an interval is still 
an open question, specifically when a fall is preceded by a high-
Doppler gross motor activity. For example, experiments have 
shown that progressive fall from a rapid walk is not easy to 
reveal. Fast sitting and slow falling can also be confused 
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FIGURE 5. Ground truth of motions with 3-D vision and three 2-D visions [9]. (Figure reproduced with permission of the Institution of Engineering and Technology.) 
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without the effective use of range information. Optimal sensor 
placement is also an open problem, as the Doppler frequency of 
a radar return is proportional to the target motion along the 
radar along the line-of-sight.Placing the radar several feet above 
the ground can provide clear signals for gait and fall analysis. 
On the other hand, the fall detection performance may not be as 
good as when it is mounted in the ceiling due to weaker relative 
motion that affects the features characterization [30]. Finally, 
radar fall detection would emerge to be elderly specific. In this 
respect, it would require 1) tuning the fall detection algorithms 
to the elderly physical impairments and any awareness of the 
use of walking aid devices, and 2) making the system dynamic 
by unsupervised or supervised learning, which can occur by 
observing the elderly over an extended period of time. 

There are limitations of using Doppler radar for fall detec-
tion. In fact, it is not straightforward for a Doppler radar to 
distinguish between a human fall and a pet jumping. Other 
normal activities, such as sitting on a chair, could also present 
challenges to a Doppler radar fall detection system. On the 
other hand, a pet is smaller in size than a human and sitting 
down does not exhibit the full dynamics of a fall. It is antici-
pated that, by extracting the reliable features and designing a 
proper classifier, some of these false alarms could be elimi-
nated. The use of Doppler radar for fall detection is still in its 
infancy and there are many open issues that need to be 
addressed and further investigated. 

Conclusions
Automatic real-time detection of falls may enable the first 
responders to provide rapid medical assistance, and, thus, save 

lives, minimize injury, and reduce the anxiety of the elderly 
who live alone. Effective use of radar technology for elderly 
fall detection relies on the signal processing techniques for 
Doppler signature analysis and motion classifications. In this 
article, we presented an overview of the the main approaches 
for revealing pertinent features in the joint-variable time-fre-
quency domain. More specifically, time-frequency analysis in 
both its linear and bilinear aspects, including WT, was shown 
to play a fundamental role in fall features determination and 
human motion classification. The success of feature-based fall 
detection schemes was demonstrated using real data experi-
ments and challenges facing technology development for fall 
detection were also discussed. Further developments in this 
area toward commercialization call for having a large reposi-
tory of fall data, both real and kinematically modeled, that will 
provide the means for understanding the nominal features of 
fall motions, and also for proper training and performance 
comparison of the different algorithms. 
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Monitoring the activities of daily living (ADLs) and detection of deviations from previous 
patterns is crucial to assessing the ability of an elderly person to live independently in 
their community and in early detection of upcoming critical situations. “Aging in place” 

for an elderly person is one key element in ambient assisted living (AAL) technologies. 

Topic motivation and significance
The continued increase in longevity will yield a steep rise in the 

old-age dependency ratio, defined as the ratio of the num-
ber of elderly people to those of working age. World-

wide, this ratio is expected to double from 11.7% to 
25.4% in the next 35 years, with countries like 

Japan, Germany, Italy, Spain, and Poland 
exceeding a 50% ratio [1]. In alignment to this 
development, the number of people aged 80 
and over is going to triple in the next 35 
years, going from 22 million to 61 million 
in the European Union  [2] with similar 
developments in the United States [3]. 

This trend leads to several sociological 
and economical challenges. On the one 
hand, several studies show that, at 90%, 
the vast majority of elderly people have the 

desire to live as long as possible, independent-
ly, in their own home [4]. On the other hand, 

there is the desire of families and health insur-
ers to have cost-effective alternatives to assisted 

living and nursing homes. The costs of maintain-
ing retirement living standards due to longevity are 

expected to roughly double in the next 35 years, while, 
at the same time, a shortage of caregivers is expected [5], [6]. 

AAL aims to deal with some of the challenges that devel-
op with longevity. It serves as a framework of solutions ranging 

from medication reminder tools to fall detection systems and communica-
tion tools. The technology used in these solutions is based on ambient intelligence, a 
paradigm within information technology that aims to aid people in their everyday lives 
by learning and adaptively responding to their behavior by integrating technology in 
their environment. As such, it can also assist elderly people to age in place while still 
having sufficient security standards in case of emergency [7]–[9]. 
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One important concept in AAL is the monitoring of 
ADLs [10]. The concept of ADLs is commonly used in health 
care, summarizing activities and daily routines, on which the 
functional status of a person is based, and, ultimately, on which 
the ability of a person to live indepen-
dently in a community is assessed. These 
include six basic ADLs (bathing/shower-
ing, dressing, feeding, functional mobility, 
personal hygiene, and continence) meant 
to assess physical self-maintenance and a 
larger number of instrumental ADLs, such 
as food preparation and housework. 

Because the manual assessment of the ADLs of a person 
is not feasible in a real-life situation, automatic classification 
and monitoring of ADLs using sensors deployed in house-
holds is a crucial technology for AAL. ADL monitoring can 
allow for early detection of diseases such as Alzheimer’s 
[11], [12] and dementia [13], [14] and can generally reveal a 
decrease in the ability of a person living independently. ADL 
monitoring yields several technical and nontechnical issues 
that need to be addressed. On the technical side, the choice 
and setup of sensors deployed in households, as well as the 
signal processing and machine-learning algorithms to be 
considered for event detection and classification, are impor-
tant. On the nontechnical side, ease of use and privacy are 
crucial [15], [16]. The most practically successful and useful 
system for ADL monitoring is thus one that requires little 
training or configuration effort and integrates seamlessly in 
a household. These considerations pose several challenges on 
the technology side, including: 
■ Sensor selection. Sensors have to be affordable, privacy 

preserving, and easy to install and configure, ruling out 
complicated sensors and microphones. This effects the 
achievable classification accuracy. 

■ Household invariance. Data and ground truth acquisition 
for each individual household is costly and laborious. 
ADL classifiers should provide reasonable performance 
on a variety of household configurations, with additional 
training data as optional input to boost accuracy.

Figure 1 summarizes some of the challenges that must 
be considered in a practically applicable ADL classifica-
tion system. 

State of the art in sensor technology to assess ADLs
Reliable and accurate sensor data is crucial for ADL monitor-
ing and classification tasks. Sensor effectiveness largely 
depends on the activity type to be recognized. In past works 
on ADL classification, various types of sensors were deployed 
in experiments leading to different architectures and perfor-
mance of the overall systems  [17]. Two main categories of 
sensors can be distinguished: wearable sensors and nonwear-
able sensors. Wearable sensors are usually attached to a per-
son directly (e.g., bracelet sensors or cardio sensors) or to their 
clothes (e.g., an accelerometer or a step counter) to measure 
location, pulse rate, body temperature, blood pressure, and 
other vitally important metrics as well as motion characteris-
tics. Nonwearable sensors are usually deployed in stationary 
locations of a house or a room and are able to detect a person 
and his movements and activities. Nonwearable sensors can 
specify the operational status of objects, measure water flow, 

room temperature, or door/cupboard open-
ings/closings. While wearable sensors 
allow for higher localization accuracy and 
can detect body movements and vital 
health metrics  [18], nonwearable sensors 
are considered less intrusive and do not 
require any interaction from the user’s 
side. Wearable sensors also may have 

harsher power consumption requirements. However, in some 
cases, the wearable sensors might be part of or make use of 
devices the user already is familiar with and normally carries 
with them, such as a wristwatch or a cell phone. 

Nonwearable sensors
In Table 1, we summarize and categorize nonwearable sen-
sors that were used for ADL monitoring and classification in 
previous work. 
■ Infrared (IR) sensors are the most often used nonwear-

able sensors in past projects and studies on ADL classi-
fication  [19]–[24]. They are used to discover human 
presence in a room, detect motion in a specific area, or 
to locate a human within a house. In  [25], a modified 
passive IR (PIR) sensor was used to detect stove and 
oven operation. 

■ Ultrasonic sensors are usually used for person detection 
and localization by measuring distances to objects. In 
[26]–[28], these sensors were deployed together with other 
sensors to monitor the behavior of a person and to identify 
ADLs. In other studies, ultrasonic sensors were used to get 
accurate pacing trajectories and then to find ones that were 
abnormal [29], [30]. 

■ Photoelectric sensors are devices that detect a light source 
and output a signal when the light intensity is greater or 
less than the predefined threshold value. This type of sen-
sor is not extensively used; however, in some projects, they 

FIGURE 1. The challenges in ADL classification.
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A primary goal of AAL is to 
assess the self-maintenance 
of elderly people still 
living at home.
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are used as a presence detection sensor [31], [32] or as gait 
speed and direction measurer [33]. 
There are video-based approaches in which a camera is 

installed in a specific place of a house to detect person move-
ments and/or other general activities. While performing well 
under laboratory conditions, this type of sensor is unable to 
provide the same performance in natural conditions because 
of noise and nonconstant lighting  [34]. Moreover, a video-
camera-based approach is considered to be strongly privacy-
violating. To address privacy concerns, a 
low-resolution thermal sensor was recently 
proposed to be used instead of a traditional 
video camera [35], [36]. This sensor is able 
to provide almost the same activity informa-
tion as a video camera while preserving the 
user’s privacy. However, there are no stud-
ies that prove high operational performance 
of such types of sensors in real scenarios. 
■ Vibration sensors are usually deployed to detect a person 

falling [25], [37]. Vibration sensors can also be used in 
identifying interaction with various objects  [38], flushing 
toilets, or detecting water flows [39], [40]. 

■ Pressure sensors are used to detect the presence of a per-
son, steps, and fall events. These sensors are usually 
deployed in the form of floor mats and smart tiles [25], 
[31]. In [41], pressure sensors were installed not only in 
floors but also in furniture to obtain object usage informa-
tion during activities. 

■ Magnetic switches are usually used to report whether 
doors or cupboards are opened or closed. These sensors are 
also able to provide information on users accessing partic-
ular rooms and opening dressers, refrigerators, or trash 
cans. Details on installation and usage of magnetic switch-
es and other types of door sensors can be found in [24], 
[31], [42]–[44]. 

■ Audio sensors are usually used to detect sounds in-
house and discriminate between different types of 
sounds. In [27], [45] microphones were installed to clas-
sify environmental sounds into classes such as speech, 
phone ringing, dish clanging, and TV/radio to extract 
events such as talking, a door closing, a person walking, 
a phone ringing, an object falling, and TV usage. In [46] 

an array of acoustic sensors was installed to detect a 
person falling. 

■ A Wattmeter and other sensors that measure electricity 
consumption of domestic appliances and light are often 
used in identifying ADLs. Today, this can be one of the 
major indicator of well-being of a subject [47]. In [48], 
electricity consumed by room lights and various appliances 
was used to record electrical activity and then to translate it 
into the probability of a particular ADL. In [49] domestic 

energy was monitored along with other 
sensors to find abnormalities and monitor 
the person’s health and security status. 

Wearable sensors
In Table 2, we present a summary of wear-
able sensors that were used for activity 
recognition and ADL classification. Accel-
erometers are the most commonly used 

sensors for action, movement, and activity recognition 
[44], [50]. Attached to a specified human body, location 
accelerometers allow to differentiate between different 
types of motion (e.g., running, walking, sitting, scrubbing, 
etc.) [51], [52] or help to identity the posture of a person 
[53]. Often, accelerometers are also used to detect falls by 
measuring vibration or acceleration [54]. In some studies, 
accelerometers are used together with gyroscopes to obtain 
orientation information and better distinguish various 
types of motion and movement [55]. 

Table 1. Nonwearable sensors used for ADL classification.

Sensor Type of Measurement Task Usage Example 
Passive/Active IR Motion/Identification Localization/Presence detection Detection of person in kitchen 
Ultrasonic Motion/Identification Localization/Presence detection Detection of person in kitchen  
Photoelectric Motion/Identification Localization/Presence detection Detection of person in kitchen 
Video/Thermal Activity Localization/Presence detection Detection of person next to stove 
Vibration Vibration Presence detection/Object usage Detection of person in kitchen  
Pressure Pressure on object Presence/Fall/Steps detection Fall detection 
Magnetic switches Door/Cupboard opening/Closing Objects usage/Presence detection Cupboard opening 
Radio-frequency identification (RFID) Object information Objects usage/Presence detection TV usage 
Audio Activity Objects usage/Presence detection Shower usage 
Wattmeter Consumption information Electrical objects usage Water boiler usage 

Table 2. Wearable sensors used for ADL classification.

Sensor Task Usage Example 
Accelerometer Action recognition, types 

of motion, fall detection 
Person running, person falling 

Hand-worn sen-
sors 

Recognition of gestures, 
step counter 

Person eating, person walking 

Smartphone Recognition of actions, 
movements, and types of 
motion 

Person sleeping, person riding 
a bike 

RFID Recognition of actions of 
a person with objects 

Cutlery usage, opening of cup-
boards, kitchen device usage 

Vital monitoring 
sensors 

Monitoring vital body 
parameters 

High blood pressure detection, 
abnormal heart rate 

A smart home is a normal 
living environment 
augmented with technology 
to improve the comfort or 
security of its residents.
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Various types of hand-worn sensors are also considered in 
many activity recognition scenarios. These types of sensors 
include multifunctional wristwatches, magnetic sensors and 
other types of bracelets. Accelerometers are often integrated 
into wristwatches providing hand and arm gesture recogni-
tion capabilities  [56]. In  [57] an wrist-worn activity detector 
was used to perform sleep/awake activity classification. In [58] 
inertial sensors, accelerometers, and tilt switches were com-
bined in a wrist-worn sensing unit to model users’ rhythms 
and as a result recognize daily activities. Hand-worn magnetic 
sensors are able to distinguish between magnetic fields emit-
ted by different electrical devices and recognize the activity 
of a user [59]. Emergency buttons are often integrated into a 
wristwatch and used to request help in case of an emergency 
situation  [31]. Also, step counters are often integrated into 
wristwatches [57]. 

The modern smartphone offers a wealth of sensors, and 
can further be used as a communication platform [60]. Usu-
ally, accelerometers, gyroscopes, a global positioning sys-
tem, a magnetometer and a microphone are incorporated 
into a modern smartphone device, providing all necessary 
information for movement, action and activity recognition 
including fall detection [61]. 

RFID tags are often used to detect the interaction of a per-
son with an object and infer an ADL. In [62], RFID tags were 
deployed on various kitchen utensils such as bowls, cutlery, 
dishes, and jars to detect food preparation, eating, and drinking 
as well as on various cupboards, the TV, and furniture. Similar 
setups are considered in [63]–[65]. Matic et al. [66] focus spe-
cifically on monitoring dressing activity and detecting dress-
ing failures. Often, RFID sensors are used in combination with 
other sensors such as accelerometers [66].

In addition to these sensors, there is also a large variety 
of sensors that monitor vital signs such as blood glucose, 
humidity and temperature, blood pressure, heart rat, pulse 
oximetry, CO2 gas, electrocardiography, electroencepha-
lography, electromyography, and electrooculography. These 
allow for the monitoring of a large set of human vital statis-
tics and support activity recognition and ADL classification 
tasks [67], [68]. 

The ability of all of these sensors to provide rich infor-
mation about people’s lives and biometrics can raise severe 
privacy concerns. Figure  2 illustrates the richness of the 
sensors versus the perceived privacy of a person using these 
sensors. It is clear from the figure that sensors that provide 
rich information about a person are usually not perceived as 
privacy-preserving. For example, a video camera that allows 
for the recognition of almost any human activity in its field 
of view cannot be used in most rooms due to heavy privacy 
violations. In contrast, magnetic switches can be placed in 
every room without severely violating privacy, but they do 
not provide exhaustive information on every human activity. 
This can be partly improved by installing multiple instances 
of low-informative sensors (e.g., magnetic switches) so that 
richer insight into the user’s activities can be achieved up 
to the level of the most informative sensors. However, this 
comes at the cost of increased installation efforts and compli-
cates the deployment process. 

State of the art in ADL experimental setups
A primary goal of AAL is to assess the self-maintenance of 
elderly people still living at home. Therefore, many studies in 
ambient intelligence focus on automatically recognizing 
human activities that correspond to ADLs, such as bathing, 

FIGURE 2. The richness of the sensors versus a user’s perceived privacy.
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cooking, and eating, to be able to determine any changes in 
their patterns. The experimental setting in which human 
activity data can be collected is called a smart home. A smart 
home is a normal living environment augmented with tech-
nology to improve the comfort or security of its residents [69]. 
In the domain of AAL, sensors installed in the smart home 
can be used to monitor the behavior of people living in the 
home. For example, a team at Washington State University 
introduced the Center for Advanced Studies in Adaptive Sys-
tems (CASAS) Smart Home to test machine-learning tech-
niques for human activity recognition [70].

Depending on the focus of a study, the experimental sce-
nario and, consequently, the requirements on the smart home 
environment vary. The smart home can be a real home where 
sensors are installed, but it may also be a lab in which a smart 
home is built and where temporary residents can stay for 
a shorter or longer period of time. In addition, some studies 
use predefined scenarios to be able to systematically evaluate 
activity recognition algorithms, while others investigate pat-
terns of normal behavior. Finally, the type of sensors that are 
installed vary, depending on the focus, 
e.g., energy efficiency or privacy consid-
erations. Table 3 lists a selection of smart 
home data sets and properties of the exper-
imental settings. 

Related to the two types of sensors 
described in the “State of the art in sen-
sor technology to assess ADLs” sec-
tion—wearable and nonwearable—the 
experimental approaches can be sepa-
rated in in-situ and ambient approaches. 
In the in-situ approach, the goal is to cor-
rectly identify particular activities, and this is often tested in 
a laboratory setting for a short period of time according to 
predefined scenarios. The types of sensors used are most-
ly low cost and low power, so that many can be installed. 
These include accelerometers [63], [73], both body-worn and 
attached to objects; RFIDs [74], [75], also both body-worn 
and attached to objects; and door contact sensors. Although 
wearable sensors allow experiments to include activities out-
side of a home, contrary to the ambient approach, most work 
in the in-situ approach and are applied indoors and in living 
labs. The advantage of using low-cost and low-power sensors 

is the possibility of running the installation for long unin-
terrupted periods. However, because these relatively simple 
sensors require a wide coverage, the initial set up requires 
more effort. Moreover, wearable sensors may not be easily 
accepted by elderly users. 

The ambient approach is usually applied in experi-
ments of longer duration in real-life settings, either in a 
smart home where participants live in an apartment (days 
or weeks, e.g., [70]) or in a real apartment (e.g., [71]). In 
the controlled environment of a smart home it is easier to 
gather detailed and balanced data and annotate them, for 
example, with cameras, making it suitable to gather data 
to test activity recognition algorithms. On the other hand, 
data recorded in real environments is more representative 
of normal behavior and therefore more suited to test algo-
rithms for behavior modeling. For example, in [24], ambient 
sensors such as door contact sensors, motion sensors, and 
a float sensor in the toilet were used to recognize patterns 
of activities. This example was followed in [76] as part of 
the CASAS project to detect broad activities such as eating 

breakfast, sleeping, and wandering. 

ADL classification
The signal processing and machine-learn-
ing methods that are referenced in the liter-
ature on ADL classification span a broad 
range of techniques, from simple heuristics 
to more advanced machine-learning algo-
rithms such as hidden Markov models 
(HMMs) and conditional random fields 
(CRFs). Most of the classical machine-
learning algorithms such as support vector 

machines (SVMs) and random forests assume input data that 
is independent and identically distributed (IID). However, 
there are certain cases where the independence assumption of 
each data point does not hold. This is true, for example, in 
speech recognition (every syllable is dependent on the nearby 
ones) but also for human behavior modeling and recognition: 
What someone is doing at a specific point in time is not inde-
pendent from what he was doing just before. The taxonomy of 
machine-learning algorithms that are used for structured 
learning when the IID assumption does not hold is presented 
in Figure 3. 

Table 3. A summary of data sets collected in smart home environments, with their name and reference, whether wearable and/or nonwearable 
sensors were installed, approximately how long the (average) recording time was, and whether it was recorded in a (living) lab or a real home.

Data set Institution Sensor Types Recording Duration Lab/home 
CASAS [70] Washington State University Wearable and nonwearable Up to months Lab and home 
HIS [27] Grenoble TIMC-IMAG Lab Wearable and nonwearable Hours Lab 
[23] University of Virginia Nonwearable Weeks Home 
[24] University of Amsterdam Nonwearable Weeks Home 
TigerPlace [71] University of Missouri Nonwearable Year Home 
[65] Intel Research Seattle Wearable Weeks Home 
[72] Staffordshire University/Chiang Mai University Wearable Days Lab 
[63] TU Darmstadt/Fraunhofer IGD Wearable Hours Lab 

Generative models estimate 
the joint probability 
distribution of observation 
samples, which can be 
used to predict the most 
likely class to which a 
new sample belongs. 
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Two broad categories in machine learning are genera-
tive and discriminative models, where the former is model-
ing the joint probability distribution of the samples and the 
labels and the latter is modeling the conditional probability 
of the labels given the samples. The standard HMM is a typi-
cal algorithm of the first category, with several of its exten-
sions also falling into the same group. In the discriminative 
group, the basic models are CRFs and their extensions [for 
example, latent-dynamic CRFs (LDCRFs) and semi-Markov 
CRFs (SMCRFs)] as well as certain types of artificial neural 
networks (ANNs), with the most prominent ones being the 
recurrent neural networks (RNNs). 

Finally, a multitude of hybrid methods, aiming to combine 
the advantages of discriminative and generative models, are 
also available. These include, for example, approaches relying 
on kernel metric distances such as the Fisher kernel and vari-
ous combinations of HMMs with discriminant models such as 
random forests and ANNs. 

While most work in ADL classification is performed using 
one of the aforementioned machine-learning techniques, 
heuristic methods also were successfully applied. Short-term 
activities and data sets with sufficiently 
redundant sensor setups (to suppress false 
alarms) are especially suitable for heuristic 
methods. One successfully applied heuristic 
is the circadian activity rhythms [23], [77], 
which describe the measurement of home 
rhythmic behavioral activity as the resident 
engages in the habitat. In some cases, these 
simple heuristics are either fused together or used as features 
for a second-level machine-learning algorithm. For example, 
in [78], simple heuristics measures like means and variances 

are used as features for neural network models, while the out-
comes of the neural networks are fused under an HMM. 

For the data representation in activity recognition and ADL 
classification scenarios, the bag-of-words (BoW) approach has 
proven to be convenient and successful. Originating in natural 
language processing, the BoW approach represents a text (such 
as a sentence or a document) as the bag (multiset) of its words, 
disregarding grammar and even word order but preserving 
multiplicity. An analogous bag-of-visual-words also has been 
successfully used for general image classification  [79] and 
later for human action recognition and classification in video 
sequences [80]. Recent studies on human activity recognition 
show that the BoW representation allows achievement of high-
performance action recognition [81], [82]. 

Generative models
Generative models estimate the joint probability distribution 
of observation samples, which can be used to predict the 
most likely class to which a new sample belongs. They are 
called generative, because the model can be used to gener-
ate samples given the joint probability distribution. HMMs 

are a popular generative model that can 
deal with structured data where the IID 
assumption does not hold. In the context 
of traditional HMMs (having a finite 
number of discrete states), three impor-
tant questions are asked as part of the 
model learning and its application on 
unseen data [83]. 

1) Likelihood: Given a model and a sequence of observations, 
how likely is it that this sequence was generated by the 
given model? The answer to this problem is given by the 
forward-backward algorithm. 

2) Decoding: What is the most likely sequence of model 
states that generated a sequence of observations? The 
answer to this question is given by the Viterbi algorithm. 

3) Learning: How should transition and emission probabili-
ties be learned from observed sequences? The answer is 
given by the Baum–Welch algorithm, which can be seen as 
a special case of the expectation maximization algorithm 
and tries to optimize the model parameters to best describe 
the observation sequence, while using also the results of 
the two previous problems. 
Because HMMs are suitable to model sequential data, it 

is a popular classification method in activity recognition. A 
variety of HMM-based variants is presented in a compre-
hensive survey by Turage et al. [84]. Also, the recognition 
of human motion data can be modeled with HMMs. Li [85] 
proposed a straightforward and effective motion descriptor 
based on oriented histograms of optical flow field sequenc-
es. Following dimensionality reduction performed by prin-
cipal component analysis, the method was applied to human 
action recognition using the HMM approach. Yamato et al., 
in [86], used HMMs in their simplest form: training a set 
of HMMs, one for each action and modeling the observa-
tion probability function as a discrete distribution, adopting FIGURE 3. The taxonomy of algorithms for structured learning. 

Generative Discriminative

CRFFKLHMM

HHMM LDCRF
TOP

Spectral
HMM SMCRF

RF-HMM

RNN
ANN-HMM

RBM

CRF-HMM

Because HMMs are suitable 
to model sequential data, it 
is a popular classification 
method in activity 
recognition.
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a mesh feature that computed frame by frame on the data 
[87]. Finally, the learning was based on the standard Baum–
Welch approach. HMMs also can be applied on more com-
plex data types, as demonstrated in Martinez et al. [88]. 
They proposed a framework for action recognition based 
on combining an HMM with a silhouette-based feature set. 
The proposed solution relies on a two-dimensional model-
ing of human actions based on motion templates, utilizing 
motion history images that combine viewpoint (spatial) and 
movement (temporal) representations. 

Besides variations of the standard HMMs such as hierar-
chical HMMs (HHMMs) (where each class can be an HMM) 
and spectral HMMs (that can be used to do inference with 
unknown or continuous state spaces) the second impor-
tant generative model are restricted Boltzmann machines 
(RBMs), which are implementing hidden layers in a stochas-
tic neural network. They are often effective in cases where 
a lot of nonannotated data is available (typically thousands 
or tens of thousands of samples) but anno-
tated data are scarce. 

Discriminative models
While the approaches based on HMMs 
discussed in the previous section have 
achieved unquestionable success in 
numerous applications, one of the draw-
backs of HMMs is that they cannot take 
advantage of powerful discriminative 
learning techniques that have been developed for the classi-
fication of vectorial data, such as kernel machines or metric 
learning. Contrary to generative models, discriminative 
models do not try to model the underlying probability distri-
bution, but instead estimate the conditional probability of 
the labeled sequences given the observations. Among other 
advantages, discriminative models are typically efficient at 
dealing with data in high dimensional spaces. 

SVMs [89] are considered to be one of the most power-
ful discriminative classification methods that were applied 
to various problems including activity recognition and ADL 
classification [72]. By leveraging the structural risk mini-
mization and the kernel trick concepts [90], SVMs are very 
effective in discriminating between classes even on very 
high dimensional vectorial data. SVMs are using only few 
samples (support vectors) to describe their decision bound-
aries making them memory efficient and resistant to noise 
or small class overlaps. The main drawback of SVMs is 
the high computational complexity of the training proce-
dure that practically limits their applicability. Linear SVMs 
that are not using kernels are more attractive for large-scale 
data sets, however, they are not so powerful as SVMs that 
employ kernels. 

Random forest is an ensemble learning method that is using 
a set of decision trees to solve classification tasks. Introduced 
by Breiman [91], random forest is famous for its ability to accu-
rately separate data while being able to naturally handle both 
numerical and categorical features. Random forest requires no 

feature scaling procedure and by its intrinsic properties is not 
prone to overfitting. The employment of random forest in ADL 
classification scenarios can be found in [92]. 

CRFs have been proposed as a way to tackle similar struc-
tural problems where HMMs are applied, but relaxing certain of 
their assumptions [76], [93]. CRFs typically require less data to 
train than HMMs for a given performance level. They allow for 
the relaxation of the strong independence assumption between 
predictors and thereby allow for a richer set of features that can 
be partially overlapping. Their disadvantage is that they are 
computationally more complex (especially during training time) 
and, as all discriminative methods, they cannot make explicit 
estimations regarding the distribution of the observed variables 
and therefore cannot be used to sample from the learned model. 

The standard CRF models the transitions between labels, 
thus capturing extrinsic dynamics, but lack the ability to 
represent internal substructure. Several modifications of the 
standard CRF have been proposed and applied to ADL classi-

fication including LDCRFs and semi-CRFs 
which, however, can be very computation-
ally expensive. 

Hybrid models
To address the drawbacks of generative 
and discr iminative models, var ious 
studies have proposed to combine them 
into hybrid ones. Hybrid models allow 
to leverage the ability to separate struc-

tural objects by learning similarity between them and, at 
the same time, to have access to all tools and advantages 
of generative models listed above. The Fisher kernel [94] 
and tangent vector of posterior log-odds (TOP) kernel are 
cases of such a hybrid method that relies on kernel metric 
distances. Other hybrid algorithms use a discriminant 
model such as an ANN or random forest to calculate the 
frame posterior probabilities and/or additional synthetic 
features while an HMM is responsible for modeling time 
dependencies on a metalevel through temporal smoothing 
on the estimated outcomes of the discriminative methods. 
Finally, CRF-HMM is another hybrid model often used in 
natural language processing due to its ability to model 
non-IID data both at the low as well as the high level of 
representation, for example to capture relations between 
letters and words. 

Recently, hybrid HMM models have been also proposed 
for activity recognition. Ellis et al. [95] proposed to first 
learn low-level code-book representations for each sensor 
and use an random forest classifier to produce minute-level 
probabilities for each activity class. Subsequently, a high-
er-level HMM layer is used to learn patterns of transitions 
and durations of activities over time to smooth the minute-
level predictions. Fisher kernel learning (FKL) is another 
approach that combines the flexibility of generative meth-
ods and the power of discriminative ones [96]. Fisher kernel 
representations have recently been applied to activity rec-
ognition problems [97]. The key intuition behind the Fisher 

To address the drawbacks 
of generative and 
discriminative models, 
various studies have 
proposed to combine them 
into hybrid ones.
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kernel is that similar objects induce similar log-likelihood 
gradients in the parameters of a generative model allow-
ing effective discrimination of these objects. To construct 
a Fisher kernel for structured objects, it is required to cal-
culate the log-likelihood gradient for each of the objects 
in the parameters of a generative model. The Fisher kernel 
function can then be derived as a weighted inner product 
between the gradients of two structured objects [96]. The 
weighting is typically performed using the Fisher informa-
tion metric; this weighting is necessary because different 

types of model parameters have different scales. Jaakkola 
and Haussler [94] have shown that the Fisher information 
metric is asymptotically immaterial, which is the theoreti-
cal basis for often assuming it to be an identity matrix. In 
this case, a (normalized) kernel is used that simply embeds 
objects in an Euclidean space by using the gradients induced 
by the objects as features [96]. 

Experimental results
To evaluate different ADL classification methods, we consid-
er the following three data sets: 
■ Data set 1: This data set [24] describes the activities of a 

26-year-old man in his apartment where he lived alone. 
Fourteen state-change sensors were installed at doors, cup-
boards, the refrigerator, and the toilet flush. Sensors were left 
unattended, collecting data for 28 days in the apartment, 
resulting in 2,120 sensor events and 245 activity instances 
[24]. Seven ADL types were annotated. 

■ Data set 2: The second data set [98] is one of the multiple 
data sets recorded from the CASAS group of Washington 
State University. This particular data set was selected because 
it has the interesting property of capturing the activities of 
two people in a house, which can occur also in a practical 
application where one of the residents is a patient while the 
other is still healthy. The data were recorded over a period of 
two months using 34 sensors of four types: motion, item, 
door, and water sensors. Based on the annotations, 124 
instances of activities of interest were captured. 

■ Data set 3: Finally, we recorded our own data set in two 
independent households, each for one week. The sensors 
installed include contact, motion, acoustic sensors, and 
power meters. In the first household, there were 7,856 
events and in the second household there were 8,618 
events, which resulted in 394 and 644 activity instances, 
respectively, that were annotated as five different ADL 
types. In the first household, five contact sensors, five 
motion sensors, three acoustic sensors, and three power 
meters were distributed over three rooms. In the second 
household, three contact sensors, five motion sensors, two 
acoustic sensors, and three power meters were distributed 
over two rooms. The room layout and sensor positions 
are shown in Figures 4 and 5.
The following four classifiers are most prominent in the 

community and are tested on all three data sets: 1) SVM, 2) ran-
dom forest, 3) HMM, and 4) FKL. Regarding the evaluation of 
classification accuracy, the time slice accuracy is an established 
way of evaluating time series and represents the percentage of 
correctly classified frames, independently of the ADLs. How-
ever, since some of the ADLs have significantly larger duration 
compared to others, we also use the average class accuracy as a 
second criterion to avoid skewing the performance evaluation 
exclusively toward the dominant classes. To compute these accu-
racies, cross-validation is used. However, since the problem is 
structured learning and the IID assumption does not hold, the 
cross-validation is done at the event level, that is, without parti-
tioning the samples of the same ADL. For example, of a total of 

FIGURE 4. The layout and sensor setup of the first household.
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FIGURE 5. The layout and sensor setup of the second household.
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30 food preparation instances, 20 might end up in the training 
and the remaining ten in the validation set, both with their full 
duration (all frames). 

Data set 1
The evaluation results on data set 1 are presented in 
Table 4. Of the different classifiers, FKL performs best on 
average. SVM has the lowest class-average accuracy since 
it does not consider time dependencies between data sam-
ples. The same holds for random forest, however it is very 
effective at modeling the variations in the execution of dif-
ferent ADLs and also is a bit less prone to overfit the dom-
inant class (especially given that the annotation of ADLs is 
to some extent subjective resulting in some noise on the 
labels). The number of states per class for HMM was taken 
the same for all classes and this resulted in relatively low 
accuracy (in other words, this basic type of HMM cannot 
effectively model sequences that vary significantly in com-
plexity for the different classes). The intrinsic number of 
states is different for various ADLs and should be deter-
mined carefully to obtain better performance. For exam-
ple, there is a multitude of ways for doing food preparation 
but fewer ways for drinking. However, this would increase 
the complexity of HMM, requiring more training data and/
or a model that can better capture hierarchy, like an 
HHMM. A full overview on the confusion between classes 
for FKL is provided in Figure 6. 

Overall, the accuracies of classes Eat and, especially, 
Drink are substantially lower than those of the other classes 
because they are confused with each other and Idle. Both 
activities take place in the same location and involve similar 
actions such as opening a refrigerator or cupboard. The mag-
netic contact sensors that comprise the majority of the sen-
sors in this data set are not very efficient for discriminating 
between events that are so similar that they involve triggering 
of the exact same sensors. 

Data set 2
Because the activities of two residents are recorded in this data 
set and the classifiers do not allow for overlapping activities, the 
classifiers are trained and tested on the activities of one of the 
residents. However, this means the learned activities in the train-
ing data as well as the activities in the test set can be 

contaminated by the second resident. However, the evaluation 
results in Table 5 show that the classification algorithms can 
deal with this possible confusion to some extend, except for the 
Watch TV class. The effect of the contamination will reduce as 
the number of training examples increases, while the noise on 
the performance evaluation can be reduced by a bigger test set. 

Table 5. Time-slice and class-average accuracy for SVM, RF, HMM, 
and FKL on data set 2.

SVM RF HMM FKL

Tim
e-s

lic
e 

Ac
c.

 

Personal hygiene 0.56 0.61 0.51 0.64 
Sleep 0.43 0.47 0.42 0.52 
Work 0.76 0.78 0.80 0.77 
Meal preparation 0.84 0.89 0.93 0.84 
Watch TV 0.30 0.35 0.00 0.41 

Class-average accuracy 0.58 0.62 0.53 0.64

FIGURE 6. The confusion matrix for FKL on data set 1.
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Table 4. Time-slice and class-average accuracy for SVM, RF, HMM, 
and FKL on data set 1.

SVM RF HMM FKL

Tim
e-s

lic
e 

Ac
cu

ra
cy

 

Idle 0.82 0.80 0.19 0.67
Toilet 0.58 0.81 0.87 0.77
Shower 0.14 0.10 0.71 0.82
Bed 0.37 0.99 0.96 0.95
Eat 0.28 0.29 0.34 0.61
Drink 0.38 0.13 0.00 0.42

Class-average accuracy 0.43 0.52 0.51 0.71

FIGURE 7. The confusion matrix for FKL on data set 2.
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Similar to data set 1 with a one-per-
son household, FKL shows the highest 
performance in terms of average accu-
racy. random forest and SVM perform 
slightly worse than FKL, while HMM 
provides the worst average accuracy, 
mostly because of the complete failure 
on the Watch TV class. A confusion 
matrix for FKL is provided in Figure 7. 
The classes Work and Meal Preparation 
can be discriminated the best among all 
other ADLs in this data set, while Per-
sonal Hygiene and Sleep demonstrate 
moderate recognition accuracy, and Watch TV performs the 
worst. Since two people are living in the apartment and can 

perform different activities at the same 
time and at different locations, dissimilar 
activities such as Sleep and Meal Prepa-
ration can be also confused. 

Data set 3
For the third data set, we evaluated two 
scenarios. In the first scenario (one 
household) training and testing were 
done only using events coming from a 
single household. In the second scenario 
(two households) training and testing 
were performed on data taken from both 

households. All events from both households were shuffled 
in a way that the event sequence within one ADL is kept to 
preserve the structure in the data (non-IID assumption). 
Evaluation results on data set 3 for random forest, SVM, 
HMM, and FKL on one and two households are provided 
in Tables 6 and 7, respectively. 

Also, for this data set, FKL outperforms the other methods, 
both for the one household and the two households scenario 
(see Tables  6 and  7). However, the performance of random 
forest and HMM are very close to FKL for the two house-
holds scenario. The HMM even has an improved performance 
compared to its performance for the one household scenario, 
probably because (for this data set) the improvement that it can 
gain with more data is bigger than the potential loss because of 
increased variation in the class representation. 

The confusion matrices of FKL for the two scenarios are 
shown in Figures 8 and 9. In the one household scenario, FKL 
can achieve high performance, with the only noteworthy con-
fusion appearing for very similar activities (see Figure 8). For 
example, Food Preparation and No ADL (which is defined as an 
activity that is not described by a formal ADL, e.g., standing in 
the kitchen, reading at a table, etc.) have an overlap while Con-
tinence and Hygiene also are partly difficult to discriminate in 
the absence of clear signature detections from the sensors on 

Table 6. Time-slice and class-average accuracy for SVM, RF, HMM, 
and FKL on data set 3 for the one household scenario.

SVM RF HMM FKL

Tim
e-s

lic
e 

Ac
c.

 No ADL 0.12 0.31 0.17 0.65 
Continence 0.39 0.90 0.75 0.70 
Hygiene 0.93 0.81 0.63 0.79
Showering 0.89 0.73 0.55 0.94 
Food preparation 0.96 0.93 0.98 0.75 

Class-average accuracy 0.66 0.74 0.62 0.77

Table 7. Time-slice and class-average accuracy for SVM, RF, HMM, 
and FKL on data set 3 for the two households scenario.

SVM RF HMM FKL

Tim
e-s

lic
e 

Ac
c.

 

No ADL 0.31 0.19 0.62 0.63 
Continence 0.87 0.91 0.64 0.54 
Hygiene 0.72 0.74 0.57 0.78
Showering 0.64 0.44 0.80 0.87 
Food preparation 0.88 0.94 0.84 0.74 

Class-average accuracy 0.68 0.64 0.69 0.71

FIGURE 8. The confusion matrix for FKL on data set 3 for one household.
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FIGURE 9. The confusion matrix for FKL on data set 3 for two households.
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Automatic classification 
of ADLs enables automatic 
monitoring of the ability of 
an elderly person to live 
independently in his house 
and can allow for early 
detection of diseases
such as Alzheimer
and dementia. 
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which the events are based (such as water 
running in the sink, toilet flushing, etc.). 

The experiment with two households is 
more challenging and also more interesting, 
first of all because the sensor setups between 
the households are similar but not identical, 
and a BoW approach is used to map them in a 
common feature space for learning and infer-
ence. Furthermore, the households have dif-
ferent layouts and the persons are doing certain activities in very 
different ways. For example, in one of the households, cooking 
always involves opening and closing multiple kitchen cupboards 
while in the other household this is only done sporadically. Nev-
ertheless, the classification scheme based on Fisher kernel is able 
to do learning and inference in the joined space, with the only 
significant overlap between classes appearing between the 
Continence and Hygiene, which is to some extent attributable 
to the different sensor setups and bath layouts. 

Conclusions
Automatic classification of ADLs is a crucial part of assisted living 
technologies. It enables automatic monitoring of the ability of an 
elderly person to live independently in his or her house and can 
allow for early detection of diseases such as Alzheimer’s and 
dementia. ADL classification involves the whole chain from a 
plethora of wearable and nonwearable sensors, deployment 
options, and signal processing and machine-learning algorithms. 
Our study concludes that the recent developments in hybrid genera-
tive/discriminative methods, relying on kernel metric distances, are 
superior over traditional generative methods such as HMM and its 
variants. Specifically, FKL showed the best performance in a vari-
ety of data sets covering different activity types, sensors, and setups. 

We expect continuing improvements on all aspects of the 
aforementioned chain ranging from improvement of existing 
sensor technologies, addition of new sensors, the acceptability of 
certain technologies up to various algorithmic aspects such as the 
generalizability and adaptiveness that are briefly detailed next. 

Sensor technologies require improvements in several 
directions including size, accuracy, energy efficiency, and 
reliability. Establishing a common communication protocol 
would allow to create an unified framework, providing a 
significant speed up in infrastructure deployment. Reus-
ability of sensors from smart home applications would be 
another boosting factor helping to reduce infrastructure and 
installation costs. Several legal issues related to the data 
ownership and data security have to be addressed to get 
acceptance for using ADL monitor systems. 

While sensor technology improves, leading to higher-quali-
ty measurements and lower costs and maintenance, in practical 
applications the (elderly) user needs to be taken into account 
as well (see Figure 1). Specifically, user-centered design and 
transparency can help to increase the acceptance of users of 
technology in their home and their perceived privacy [15]. Fur-
thermore, users are more and more exposed to sensor technolo-
gy in other aspects of their lives, increasing their understanding 
and, thereby, acceptance. 

Finally, we note that there is still progress 
to be made such that research in ADL clas-
sification can be reliably applied in a practi-
cal solution. This covers the optimization of 
sensor setups for cost effectiveness, adaptive 
classification algorithms that allow tracking 
changing behavior over time and robustness 
with respect to context changes such as han-
dling of visitors, caregiving personnel, or 

pets. One of the biggest challenges from the signal processing 
and machine-learning side remains the generalizability over 
households. While training for an individual household is eas-
ily possible in a lab setup, this approach is not scalable to a 
real-world scenario with thousands of households and more. A 
successful approach for generalizability has to consider envi-
ronmental/climate parameters, building layout, sensor place-
ment, and the behavior of the elderly. 
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T
he increasing interest in big data applications is ushering in a large effort in seeking new, efficient, 
and adapted data models to reduce complexity, while preserving maximal intrinsic information. 
Graph-based models have recently been getting a lot of attention on account of their intuitive and 
direct connection to the data [43]. The cost of these models, however, is to some extent giving up 

geometric insight as well as algebraic flexibility.
Topology, as an intermediate analysis medium, focuses on coarse structures of an object/signal 

in general. It affords a formalism of transitioning from a local to a global description of an object, 
while providing significant information, which respects the local structure of measurements. It may 
also support a global visualization (e.g., data variation trends) and enhances the understanding of the 
underlying phenomenon.

Throughout this article, measurements may be considered proximal in various ways, depending on 
the specific application, and the selected proximity metrics are subsequently used in the construction 
of a graph structure, thus highlighting various groups of neighboring data. As described later, these 
groups, often based on proximity criteria, are represented by n -simplices, where n 1+  corresponds to 
the number of points in an associated group. Collectively, they form what is (and will be throughout) 
referred to as a simplicial complex, a special representation of a topological space. The key advantage 
of computational topology is its inherently algebraic structure on the basic elements of the resulting 
graph-like structure.

To that end, the goals of this article are to
■ introduce the prevalent tools in computational topology (or applied algebraic topology), in an 

application-friendly context of examples and illustrations; we will try to smooth out an otherwise 
taxing demand of abstract algebra by using primarily a linear algebra and calculus formalism
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■ demonstrate that, beyond the technical definitions and jargon, 
this area offers a framework naturally adapted to many signal 
processing problems, with familiar tools from linear algebra.
The first natural question one might ask is: Why use topology on 

data? When topology is preferred over other techniques, it is because 
of the following two reasons: 1) It studies invariants of continuous 
deformations of the shape of data; an immediate consequence is that 
the actual embedding of the data, dictated by the choice of param-
eters, is not an exceedingly crucial factor in the analysis. 2) It allows 
coarse measures of shape (clumps, holes, and voids), which are alge-
braically computed and quantitatively reflected.

The pipeline of the proposed methodology is graphically 
described in Figure 1. Here, we assume that our data are embed-
ded in a high-dimensional vector space, while in reality, they live 
in a simpler, smaller manifold. The point cloud thus represents a 
sampling of that manifold, i.e., an approximation whose invariants 
approach those of the manifold, thereby allowing one to better 
understand the process that generated those points. More precise 
statements about these issues may be found in [4] and [36].

Construction of simplicial complexes
To account for the simultaneous relationship between more than 
two data points, as is often captured by a graph, and thereby induce 
an algebraic structure that hypergraphs lack, we will first analyze 
structures based on elementary blocks. These are combined to yield 
a “graph” with higher-order relationships among the nodes, which 
will be referred to as a simplicial complex in the remainder of the 
article. This is a telling name, in that its basic components are sim-
ple pieces, called simplices; a point is a 0-simplex, an edge with 
two vertices is a 1-simplex, a filled-in triangle with three edges is a 
2-simplex, a tetrahedron is a 3-simplex, and so on.

All closed surfaces (compact manifolds of dimension 2, with-
out boundary) can be approximated by using triangles and identify-
ing some of their edges (for a detailed proof, refer to the appendix 
“Topology of Cell Complexes” in [24]). The triangle is thus the 
fundamental building block of two-dimensional (2-D) objects. The 
process of describing a surface as the union of triangles with some 
identification is called triangulation or simplicial approximation, as 

illustrated in Figure 2. The triangles are sufficiently simple objects 
to be described combinatorially through their vertices, and also suf-
ficiently versatile to approximate any such surface.

Simplicial complex: introduction
A simplicial complex is a generalized graph consisting of vertices, 
edges, triangles, and simplices of higher dimensions that are 
“glued together,” as depicted in Figure 3. For this gluing operation 
to yield a concrete algebraic structure, we require that the intersec-
tion of any two simplices is either empty or is another simplex.

These simplices can be embedded in a Euclidean space as 
follows: Given an abstract n-simplex, we describe its corre-
sponding standard n-dimensional simplex as

.{( , ..., ) , , }a a a a i1 0n
n i

i
i1 1 6; $D = =+ /

This is the convex hull of the points corresponding to 
the standard basis, e Ri

n 1! +  for , ..., .i n1 1= +  Figure 4 
depicts the standard 2-simplex.

From point clouds to simplicial complexes
In this section, we present standard constructions that turn a 
point cloud, possibly embedded in ,Rn  into a combinatorial–
topological space, while naturally preserving the proximal prop-
erties of the points. The analysis of these spaces yields useful 
information about the point cloud generating them. We extend 
these definitions to distance matrices (where the embedding 
is unknown or is of no interest) to construct a similar approxi-
mation. Finally, we demonstrate how a well-known discrete-
time technique in dynamical systems theory, i.e., the delay 
embedding of signals (time series), can be exploited to investi-
gate the topology underlying a signal.

Čech complex
Suppose that we start with a set of points { , , ..., }X x x xn1 2=  in 

.Rn  For a given ,r 02  we construct the balls of radius r  around 
each point of this set. We then consider an abstract collection of 

FIGURE 1. The computational topology pipeline: from (a) a continuous manifold with a boundary to (b) its sampled point cloud to (c) a coherent collection 
of geometric objects. Bettii refers to the number of i th order topological features. The zeroth order is the connected components, the first order is the 
number of holes, and the second order is the number of voids.

Betti0 = 1
Betti1 = 1
Betti2 = 0

(a) (b) (c)
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vertices { , , ..., }v v vn1 2  corresponding to the given points. We 
connect the vertices ,v vi j  by an edge if the balls ( )B xr i  and 

( )B xr j  intersect. If all three of the balls ( ), ( ), ( )B x B x B xr i r j r k

intersect, we add the triangle [ , , ]v v vi j k  and similarly proceed for 
higher-dimension simplices. The result of this procedure is the 
Čech complex, which is also often referred to as the nerve of the 
cover of radius .r  An example is shown in Figure 5. The nerve 
theorem states that, under certain conditions, the topological 
invariants of the union of balls of a cover coincide with those of 
the Čech complex [16]. This complex is thus an enlargement of 
the point cloud and can be used to glean its topological properties.

Unfortunately, the information needed to construct a Čech 
complex is not always available since one needs the actual 
embedding of these points in some high-dimensional Euclid-
ean space. If, instead, one is just given the distance matrix D of 
the points X, the following construction may be used to get a 
simplicial complex with, clearly, less information; nevertheless, 
it is suitable for further analysis. As a first step, we consider 
an abstract collection of vertices { , , ..., }v v vn1 2  correspond-
ing to the given set of data points. We then choose a parameter 
r 02  and connect the vertices ,v vi j  by an edge if the distance 
between the point xi  and x j  is less than or equal to .r2  This 
will yield the same vertices and edges as the  Čech complex 
defined previously. Since the actual embedding of the points 
is not given, we cannot proceed with the  Čech construction. 
Instead, we continue by adding a filled-in triangle (2-simplex) 
[ , , ],v v vi j k  if all three edges [ , ],v vi j [ , ],v vj k [ , ]v vk i  exist. We 
then continue by adding higher-dimensional simplices if all 
their lower-dimensional faces exist. This is referred to as the flag 
complex construction over the one-dimensional (1-D) skeleton.

It is important to note that this flag complex [Figure 6(c)] is 
different from the corresponding Čech complex [Figure 6(b)]. 
It is, in fact, even more of an approximation of the topological 
space in question, since embedding is not required as in the 
Čech complex case.

Vietoris–Rips complex
Another construction of a simplicial complex related to a point-
cloud { , , ..., }X x x xn1 2=  in a metric space is the Vietoris–Rips 
complex. Again, fix a parameter .r 02  Then, consider an 
abstract set of vertices { , , ..., }v v vn1 2  corresponding to the 
given set of data points. The simplex [ , , ..., ]v v vk1 2  is added to 
the simplicial complex if and only if the diameter of the set 

, , ...x x xk1 2  is less than .r  For a big family of metric spaces, the 
Vietoris–Rips complex thus constructed has the same points 
and edges as the  Čech complex with parameter / .r 2  One advan-
tage of the Vietoris–Rips complex is that it can be determined 
from only the distances between the points, without having to 
know their exact embedding. The relationship between the 
Vietoris–Rips and the  Čech complex is as follows [10]:

( ) ( ) ( ), ,R X C X R X
r
r

d
d

1
2

r r r1 1 $
+ll

where ( )R Xl  is a Vietoris–Rips complex using proximity 
parameter ,l ( )C Xl  is the  Čech complex theoretically 
obtained by balls of radius ,l  and d  is the interpoint 

Euclidean distance. In the following section, we describe how 
the aforementioned tools can be applied to signals in a 
meaningful and easy-to-understand way.

FIGURE 3. Some basic simplices: (a) 0-simplex, (b) 1-simplex, (c) 2-sim-
plex, and (d) 3-simplex.

(a) (b) (c) (d)

FIGURE 4. The standard 2-simplex embedded in R3 .

FIGURE 5. The construction of a Čech complex from a set of points.

FIGURE 2. A triangulated 2-D ellipsoid.
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Time-delay embedding for signals
In many signal processing applications, time series are the result 
of a process that can be modeled as a dynamical system. A 
delay-embedding modeling of the signal is one approach of 
visualizing the phase space of the associated differential system. 
The mathematical foundation of the delay-coordinate embed-
ding method is credited to Takens [45], who proposed to embed 
a scalar time series into an n-dimensional space. The general 
representation of this delay-coordinate embedding proceeds as 
follows: Given a discrete time series ( )x t  [Figure 7(a)] and an 
embedding dimension ,n  we consider a vector quantity of n
components to be

( ) ( ( ), ( ), ( ), ..., ( )),X t x t x t x t x t n1 2 1i i i= + + + -

where , ..., n1 1i i -  are constants representing the different 
index delays. The delay times and the embedding dimension 
are essential and problem-specific parameters. Their careful 
selection is typically a result of some prior knowledge about 
the signal or, alternatively, a result of experimentation. For the 
examples presented here, we will be using .n 2=

The output of the delay-embedding is a point cloud embed-
ded in the chosen dimension ,n  as depicted in Figure 7(b). Using 
the complexes described previously, we can proceed to ana-
lyze this point cloud and compute and compare its topological 
characteristics. We may possibly achieve a reduction in com-

putational complexity by a careful subsampling of this point 
cloud, while preserving the topological invariants of interest 
[Figure 7(c)]. As shown later in the “Applications” section, ran-
dom subsampling is, in some cases, an efficient and effective 
strategy to recover the topology of the original space.

Homology and higher-order Laplacians

Simplicial homology
In this section, we describe the construction of a topological 
invariant for the complexes described in the previous section. 
We start by defining the idea of the homology of a space using 
an example and explain how that can be computed using high-
er-order Laplacians, which we first define by building on the 
well-known notion of the graph Laplacian.

Intuitively, homology identifies topological features of our ini-
tial topological space by solving an algebraic problem of matrix 
reduction and rank identification. We focus our computations on 
the simplicial complex presented in Figure 8 and point to [24] for 
a more in-depth description of the relevant theory.

First, consider a vector space ( )C X0  whose basis ele-
ments are all the vertices of our given simplicial complex. In 
this example, ( ) , , , ,C X v v v v0 1 2 3 41 2=  with coefficients in 

.Z2  (The choice of coefficients plays a role in this construc-
tion. For all of our applications, we will confine ourselves to 
R  coefficients or Z2  coefficients; thus, all of our construc-
tions will be vector spaces. By choosing Z2  coefficients, we 
do not have to worry about signs. Again, we point to [8] and 
[24] for more general and in-depth information.) Similarly, the 
space of edges will be .( ) , , , ,C X e e e e e1 1 2 3 4 51 2=  Finally, 
the space of triangles will be .( )C X2 11 2v=  We then define 
a linear “difference” operator, called a boundary operator 

: ( ) ( ),C X C X1 1 0"2  which, when applied to an edge e1  yields 
a difference of vertices ( ) .e v v v v1 1 2 1 2 12 = - = +  We extend 
the application of this linear map to all elements of ( ),C X1  and 
similarly define a higher-order boundary operator to act on tri-
angles (2-simplices). In our example, ( ) e e e2 1 1 1 32 v = + +

for the filled-in triangle 1v  [or : ( ) ( ) .]C X C X2 2 1"2  Such 
operators can be defined for a structure of any dimension: For 

FIGURE 7. From signals to point clouds: (a) time series, (b) 2-D delay, and (c) subsampling.

1 1.5

0.5

–0.5

–1.5
–1.5 –1 –0.5 0 0.5 1 1.5

–1

0

1
0.5

–0.5

0 0.02 0.04 0.06
Time (s) x (t )

x
(t

+
τ)

1.5

0.5

–0.5

–1.5
–1.5 –1 –0.5 0 0.5 1 1.5

–1

0

1

x (t )

(a) (b) (c)

x
(t

+
τ)

0.08 0.1

0

–1

w
(t

)

FIGURE 6. The difference between a Čech complex and its flag. (a) Points 
in R2 , (b) the Čech complex, and (c) the Flag complex.
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instance, 32  acts on tetrahedra to yield the sum of its 2-simplex 
faces (triangles), 42  acts on pentatopes to yield the sum of its 
3-simplex faces (tetrahedra), and so on.

A matrix representation of these linear operators is thus 
obtained, and all of the computations reduce to manipulating 
tables as shown here:

, ,

.

v
v
v
v

e e e e e
e
e
e
e
e

v
v
v
v

v
v
v
v

1
1
0
0

0
1
1
0

1
0
1
0

1
0
0
1

0
1
0
1

1
1
1
0
0

2
2
2
0

0
0
0
0

1

1

2

3

4

1 2 3 4 5

2

1

2

3

4

5

1

1 2

1

2

3

4

1

1

2

3

4

1

2 2

2 c2

v

v v

= =

= =

Formally, the sequential application of these operators on 
the different spaces may be written as

.C C C2 1 0
2 12 2

(1)

Note that the element e e e1 2 3+ +  of C1  is but a loop that 
follows the cycle .v v v v1 2 3 1" " "  Another loop that is vis-
ible in our example is .e e e1 5 4+ +  There is a fundamental 
difference between these two loops. The first one bounds a 
filled-in triangle, while the second bounds an empty triangle, 
or what conceptually can be considered as a true hole. Both of 
these loops are elements of the vector space ( )C X1  and, for 
both of them, we get ( ) ( ) .e e e e e e01 1 2 3 1 1 5 42 2+ + = = + +

Thus, both are in the kernel of 12  defined as 
( ) { ( ): ( ) } .x C X x 0Ker 1 1 12 2!= =

The element e e e1 2 3+ +  is obtained as the image of 
the triangle 1v  under the map ,22  whereas e e e1 5 4+ +

is not the image of a triangle. In other words, define 
( ) { ( ): ( ) ( ) },Im y C X x C X x ywith2 1 2 22 7 2! != =  then e1 +

( )Ime e2 3 22!+  and ( ) .Ime e e1 5 4 22"+ +

It is also not hard to show that 0o1 22 2 =  so 
( ) ( ) .Im Ker2 12 23  The 1-D homology is obtained by consid-

ering the quotient space ( ) [ ( ) / ( )] .ImH X Ker1 1 22 2=  The quo-
tient space of a vector space V1  with respect to V2 /V V1 2^ h is the 
space of equivalent sets, where two elements in V1  are equiva-
lent if their difference is in .V2  The dimension of /V V1 2  is equal 
to ( ) ( ) .dim dimV V1 2-  For more on quotient spaces, we refer 
the reader to the chapter “Vector Spaces,” Theorem 7 [15]. From 
the previous discussion, this construction contains information 
about the holes or cycles bounding areas that are not filled in.

The algebraic structure that is imposed on the basic 
construction of the spaces makes sequential application of 
boundary operators possible in any higher dimension. For-
mally, one defines these quotients as the homology spaces

.( )
( )

( )
Im

H X
Ker

i
i

i

12
2

=
+

The dimensions of these spaces, which are called Betti 
numbers, ( ),dim Hi ib =  can be used to coarsely describe the 
simplicial complex at hand. Intuitively, 0b  counts the number 
of connected components, 1b  the number of nonvanishing 
holes, 2b  the number of voids, etc.

Higher-order Laplacians
A direct computation of the homology spaces as quotient 
vector spaces is computationally expensive and often 
unnecessary [5]. Combinatorial Laplacian operators, the 
matrix representations of which may be viewed as a gener-
alization of the graph Laplacian, are very useful in provid-
ing alternative ways to gather information about the 
homology spaces. These operators are related to combina-
torial Hodge theory [25]. The motivation of the graph 
Laplacian operators on graphs is directly related to prob-
ing the structure of graphs by tracking a diffusion (much 
like heat diffusion in a solid) through it by way of the 
spectral properties of the operator. A similar strategy can 
be developed using the boundary operators acting on a 
simplicial complex.

Given the boundary operators defined previously, a zero-
order Laplacian defined as ,L T

0 1 12 2=  operates on vertices and 
in fact coincides with the so-called graph Laplacian, which is 
widely used in numerous applications. It is easy to check that 

,L D A0 = -  where A  is the adjacency matrix of the underly-
ing graph of the complex, and D  is the diagonal matrix with 
the degrees of the vertices. It is also well known that the spec-
trum of a graph Laplacian yields clustering information about 
a given graph [6]; specifically, the cardinality of the number of 
0-  eigenvalues equals the number of disjoint connected com-
ponents of the graph. As we explain below, this property is gen-
eralized by higher-order Laplacian operators, providing efficient 
algebraic tools to assess the higher-order topological properties 
of any simplicial complex.

In a similar way, we can construct higher-order Lapla-
cian operators, Li i

T
i i i

T
1 12 2 2 2= + + +  such that L1  operates 

on edges, L2  operates on triangular faces, and so on. Much 
like the null-space dimension of a graph Laplacian uncov-
ers the number of connected components in a graph (which 
can be viewed as zero-cycles), the null space dimension of 

FIGURE 8. An example simplicial complex composed of one 2-simplex 1v

and two 1-simplices , .e e4 5
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the higher-order Laplacians also reflects the number of holes, 
voids, and higher-dimension analogs—in other words, the 
rank of the corresponding homology space. Formally, this is 
expressed as the isomorphism ( ) .L HKer i i-  To see this, note 
that if ( ),x LKer i!  then ( )x Ker i2!  and ( ) .x Ker i

T
12! +

Now, ( )x Ker i
T

12! +  implies that ( ),Imx i 1= 2 +  and since 
( ) ( ),Im Keri i12 23+  we have ( ) .L HKer i i-

The above isomorphism allows one to take advantage of 
the properties of the Laplacian operators to either explicitly 
compute the rank of the homology or to glean pertinent infor-
mation without having to perform a matrix reduction.

For example, instead of the rank of ,Hi  one may only wish to 
find if ,H 0i -  or equivalently if ( ) ,L 0Ker i =  then the follow-
ing simple procedure may be followed. First, compute the spectral 
radius of ,Li  say ,v  which may easily be accomplished by a power 
iteration method. Consequently, compute the spectral radius of the 
matrix ,I Liv -  say .vl  Since Li  is positive semidefinite, Li  is full 
rank if and only if .1v vl  This gives us a simple, low-complex-
ity test for checking if .H 0i -  Other properties of the Laplacian 
operators have also been used in the context of sensor networks to 
efficiently detect and localize coverage holes [5], [34], [44].

Applications

Biomedical signal analysis: Wheeze detection
Our first example is that of detecting a wheeze in a breathing 
signal using its global structure. Quoting Wikipedia, “A wheeze 
(formally called sibilant rhonchi in medical terminology) is a 
continuous, coarse, whistling sound produced in the respiratory 
airways during breathing.” Wheezing is caused by obstructions 
in the respiratory canal and is often a symptom of certain seri-
ous conditions. Therefore, timely detection of wheezing 
becomes medically very important.

From a signal processing perspective, the obstruction in the 
respiratory canal gives rise to a quasi-harmonic behavior in 
the audio signal. Because of this quasi-harmonic nature, time-
frequency techniques have difficulty in yielding efficient and 
consistent real-time algorithms, as shown in [9]. On the other 
hand, the time-delay embedding as described in the “Time 
Delay Embedding for Signals” section of a quasi-harmonic sig-
nal produces a point cloud where the points accumulate around 
an ellipse (in two dimensions). This is illustrated in Figure 9(a), 
where the top row corresponds to normal breathing signals, and 
bottom two rows correspond to breathing signals containing 
wheezes of different types. We can efficiently and accurately 
determine such an elliptical structure in the point cloud using 
topological methods, as described in the following three steps: 
1) Convert the time signal into a point cloud using time-delay 

embedding. 
2) Clean the resulting point cloud. 
3) Compute a topological invariant of the resulting point 

cloud and use it for classification.

From audio signals to point clouds 
The eccentricity of the ellipse around which the points lie in the 
time-delay embedding depends on the delay chosen. The first 

step is to obtain a reasonable delay so that the ellipse is not too 
eccentric, thereby obscuring the real structure in the point cloud.

The following simple heuristic can achieve this: First, we 
compute the time-varying autocorrelation function of the signal

( ) ( ) ( ) .R t x k t x kxx
k

= +/

We then select ,t tc c1 21 1x  where tc1  and tc2  are the first 
and second critical points of ( ) .R txx  The delay time to produce 
the point clouds in Figure 9(a) was computed this way.

Cleaning the point cloud 
First, note that if the points in the given point cloud are orga-
nized around an ellipse, then those in a subsample would fol-
low suit. This simple observation enables us to decrease the 
computational complexity. Our goal here is to highlight that 
this is a natural consequence of seeking coarse features, as 
often is the case in topological analysis. In this specific exam-
ple, our experiments show that we can reliably reduce the size 
of the point cloud by as much as 92%.

Second, any occasional deviation of the signal from being 
“almost harmonic” [19] can cause the points to venture into 
the center [as seen in the first two plots in the second row of 
Figure 9(a)], thus obscuring the elliptical structure. While this 
may severely impact the robustness of the procedure, such an 
occurrence is rare, making the density of points in the cen-
ter quite low. Such points could easily be pruned off using a 
density threshold. Figure 9(b) shows an example where the 
point clouds are shown at various parameters used for density 
thresholding. In the illustrations shown in Figure 9(b), K  is the 
number of nearest neighbors for each point used to determine 
the density, and T  is the density threshold below which the 
points will be pruned.

Topological invariants for classification 
Once the point cloud is obtained, we proceed to compute 
the topological invariant that captures the elliptical shape 
of the point cloud if present. As described in the 
“Construction of Simplicial Complexes” section, we next 
construct a simplicial complex from the given point cloud. 
We could proceed to obtain either a  Čech complex or a 
Vietoris–Rips complex as mentioned there, but since the 
points here are in two dimensions, we have a better alterna-
tive, i.e., 1) compute the Delaunay triangulation [23] of the 
points and 2) remove all the edges whose length is greater 
than a certain threshold along with all the triangles adjacent 
to those edges. Figure 9(c) and (d) illustrates this process. 
Note that the elliptical structure of the point cloud trans-
lates to a hole in the resulting complex, which may then be 
detected by computing ,H1  the first homology space. We 
refer the reader to [18] for details on a very efficient meth-
od using Euler characteristic [42].

In summary, the presence of a hole indicates an almost har-
monic structure, which is shown to characterize wheezes. Note 
that the null hypothesis is in itself a noteworthy result in that a 
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nonwheeze signal appears as chaotic, and its topology is also 
nicely captured at a minimal computational cost.

Sensor networks
The application of algebraic topology in sensor networks is 
very illustrative of its utility. Owing to the difficulties of 
obtaining location information of the sensors in the field and 
to the need for additional hardware to compute precise dis-
tances between pairs of sensors, it may be prohibitively 
expensive to obtain geometric information. Interestingly, 

problems like verifying coverage are purely topological in 
nature, and, as discussed previously, computational topology 
provides a coordinate-free solution to quantifying the cover-
age status as topological information.

Consider a set of sensors randomly deployed in a region to be 
monitored. Two problems are often of interest: 
■ verifying if the region being monitored is actually fully 

covered and accounted for 
■ discovering uncovered regions and identifying their sur-

rounding nodes.

FIGURE 10. A way to approximate the coverage area, shown in (b), in sensor networks using a complex constructed from the communication graph. If 
the communication radius is twice the individual sensor coverage radius, the Rips shadow is a good topological approximation to the coverage area, as 
shown in (d). (a) Sensors in a plane. (b) Sensor coverage. (c) The Čech complex. (d) The Rips shadow.

(a) (b) (c) (d)

FIGURE 9. The wheeze-detection process. In (a), the top row corresponds to normal signals, while the bottom two rows correspond to wheeze signals. 
(a) Delay embeddings. (b) Various samplings of a wheeze. (c) A triangulation of a wheeze. (d) A triangulation with large edges removed.
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 Obtaining an efficient solution that scales with the size of a 
sensor network is critical and depends on how much infor-
mation is needed to solve the aforementioned problems. It 
turns out that each node having a list of “names” of its 
neighbors in a certain proximity (communication radius) is 
sufficient to fully address these issues. Figure 10 illustrates 
this scenario.

To address the first problem, we construct a simplicial com-
plex whose topology is commensurate with that of the total 
coverage area of sensors [shown in Figure 10(b)]. We subse-
quently compute the first homology of this complex and check 
for its triviality. There is good evidence [21] showing that the 
Vietoris–Rips complex constructed from the communication 
graph closely represents the coverage area, if the communica-
tion radius is twice that of the coverage radius. The first Lapla-
cian operator ,L1  discussed in the “Higher-Order Laplacians” 
section, may then be used to check for the triviality of the 
first homology. Note that in using the isomorphism of the null 
space of L1  to ,H1  we exploit the sparse structure of the L1

matrix, with the ijth  element being nonzero if and only if the 
corresponding edges have an edge in common. This property 
enables us to store and distributively perform iterative compu-
tations. Additional implementation details may be found in [5].

One of the earliest applications of topology in sensor net-
works was presented in [9], where a variant of the coverage prob-
lem is considered. Given a set of fence nodes, which surround 
the intended sensing region, the problem is to determine if the 
region enclosed by the fence nodes is covered. In [9], a set of suf-
ficient conditions is given to guarantee such coverage.

Intuitively, these conditions specify that there is a disk in the 
union of coverage areas of individual sensors, whose bound-
ary contains the fence nodes. Finding a small subset of sensors 
that can form this disk helps minimize the number of sensors 
required to maintain coverage, thus saving power. The work in 
[14] presents a distributed algorithm to simultaneously verify the 
coverage and, if verified, provide such a small subset of sensors.

Another interesting problem that is purely topological in 
nature is that of target enumeration. In this case, the scenario is 
that of multiple targets in a sensing field, and each sensor can 
sense a subset of targets, leading to the challenge of determining 
the total number of sensors. To solve this problem [2], uses the 
Euler characteristic.

Social networks
One big-data problem that is of great current interest is that of 
social networks. We discuss here how one can 1) construct a 
socioplex, which captures higher-order information among the 
nodes, and 2) reduce its complexity, in a principled way, to obtain 
a so-called core network, which contains all of the important 
nodes and has the same topology as the original one. A topologi-
cal hole and its higher-dimensional variants may physically be 
understood as a loss of connectivity or a lack of cooperation.

First, we extend the classical idea of a sociogram [32]—
where individuals are represented by vertices, and their pairwise 
connections are depicted by edges—to that of a socioplex, which 
takes into account higher-order structures among the individuals. 

This socioplex can be obtained from extra information for the 
specific network. In our example, for instance, we are analyzing 
the coauthorship Communication and Networks Collaborative 
Technology Alliance (CNCTA), where a connection between 
two authors (author~node) is established if and only if they 
have published a paper together. Similarly, three authors yield 
a filled-in triangle if all three of them have published a paper 
together, and so on. The resulting simplicial complex is shown in 
Figure 11(a). Note that this new network includes all the infor-
mation in a classical sociogram, as the latter is no more than the 
1-D skeleton of the former.

The additional information injected into the socioplex pro-
vides, in some sense, sufficient insight to reduce the dimension 
of the complex by removing simplices through a series of homo-
topy collapses [26], similar to the one presented in Figure 12. 
The resulting reduced simplicial complex shown in Figure 11(b) 
has similar topological invariants (Betti numbers) to the original 
one, since homotopy collapses respect homology computations.

Whereas the original socioplex contained 516 authors and 
980 labels (papers), the final reduced version has 67 authors 
and 78 labels. Most importantly, the reduced complex con-
tains the important features since, due to the construction of 
the network, most of the time, the principal investigators are 
the connecting links between groups and research cliques. 
Thus, these important nodes are preserved in the collapse, 
whereas their immediate collaborators (graduate students, 
postdoctoral researchers, etc.) are collapsed into them. The 
process presented in [48] takes the redundant labels and 
appends them to the nodes on the core into which they col-
lapse. There is no relational information loss, as the core pre-
serves the structural entity among the main nodes (or agents) 
of the original network, with additionally a better visualiza-
tion potential. Its analysis through homology is also signifi-
cantly faster since the corresponding Laplacians are of much 
smaller size.

Conclusions and further reading
This article, meant to be a high-level introduction to the 
field of topological data analysis, describes a methodology 
that exploits relations among diverse data for capturing 
them as a topological complex, which, in turn, allows for 
further topologically based analysis, including exploration 
of topology-preserving dimension reduction of a network. 
We show how computational topology may be effectively 
applied in the context of failure detection and localization in 
sensor networks [22] as well as be complementary to com-
putational geometry [12]. The simplicity of the discussed 
methods led to fast and distributed algorithms [44]. In addi-
tion to the examples presented here, other applications have 
started to appear in various fields of engineering, including 
computer vision and robotics-related modeling [13], [30], 
human gait recognition [28], [29], biomedical applications 
[40], [49], and others.

This article, owing to its intentionally limited scope, skips 
the practically important and mathematically rigorous concept 
of persistent homology [3]. The homology spaces described 
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here may be unstable to disturbances in the data, i.e., it is 
possible that the generated homological spaces experience a 
nontrivial change in rank when the data are subjected to an 
arbitrarily small disturbance in the input data. While the appli-
cations chosen here are impervious to this effect, this will not 
necessarily be true for all applications. Persistent homology 
offers a stable topological summary of noisy data [7].

The “Simplicial Homology” section presents a view of 
rank of homology spaces as a generalization of the number of 
clusters in the data to higher-order features such as nonvan-
ishing holes, voids, etc. Likewise, persistent homology may 
be viewed as a higher-order analog of hierarchical clustering, 
which is stable and known to have more interesting properties 
than hard clustering [27] and has led, in the past few years to 
many interesting applications in engineering [17]. For exam-
ple, an excellent application of topology in clinical medicine 
may be found in [35].

As topological methods provide tools for analysis of 
various data shapes, there are several application avenues in 
computer vision and image processing. Some of the exam-
ples include graphical representation of gray-scale images 
[39], deformation-invariant models for digital images [20], 
[31], shape segmentation [41], and motion analysis [46]. As 
a further illustration of the scope of this topic, we refer the 
readers to applications such as comparison of maps [1], 
graph comparison [11], localization [38], text mining [47], 
and distributed trees for high-performance computing [33]. 
Various books have been recently published in this area of 
research, including a great introduction by Edelsbrunner 
and Harer [16], a concise book by Zomorodian [50], a more 
specific book about computational homology by Kaczynski 

et al. [26], and a recent book with more engineering flavor 
by Robinson [37].

This is but a snapshot of the flexible potential of topo-
logical analysis, and the afforded robustness together with an 
amenability to analyze large data sets constitute remarkable 
capabilities of a topological paradigm in signal analysis, and 
much awaits to be explored by the signal processing research 
community, particularly when distributed algorithms, as dem-
onstrated in some of the examples herein, are needed.
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FIGURE 11. Reducing coauthorship networks using topological methods: 
(a) the coauthorship network CNCTA and (b) the reduced network CNCTA.

(a) (b)

FIGURE 12. A simple homotopy collapse. In (a), the diagonal edges col-
lapse into the paired 2-simplex, resulting in the complex shown in (b). 
Note that a homotopy collapse preserves topological features.
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Cyberattacks have risen in recent 
times. The attack on Sony Pictures 
by hackers, allegedly from North 

Korea, received worldwide attention. 
U.S. President Barack Obama issued a 
statement and “vowed a U.S. response 
after North Korea’s alleged cyberattack” 
[1]. This dangerous malware, termed 
wiper, could overwrite data and stop 
important execution processes. An analy-
sis by the U.S. Federal Bureau of Investi-
gation showed distinct similarities 
between this attack and the code used to 
attack South Korea in 2013, thus con-
firming that hackers reuse code from 
already existing malware to create new 
variants. This attack, along with other 
recently discovered attacks such as Regin 
and Opcleaver, give one clear message: 
current cybersecurity defense mecha-
nisms are not sufficient enough to thwart 
these sophisticated attacks. 

Today’s defense mechanisms, such 
as commercial antivirus (AV) software, 
is based on scanning systems for suspi-
cious or malicious activity. If such an 
activity is found, the files under suspect 
are either quarantined or the vulnerable 
system is patched with an update. In turn, 
the AV software is also updated with new 
signatures to identify such activities in the 
future. The scanning methods are based on 
a variety of techniques such as static anal-
ysis-, dynamic analysis-, and other heu-
ristics-based techniques, which are often 
slow to react to new attacks and threats. 

Static analysis is based on analyz-
ing an executable without executing 

it. These techniques include searching 
for specific strings, computing crypto-
graphic hashes, and disassembling the 
executable to extract features. On the 
other hand, dynamic analysis executes 
the binary executable and studies its 
behavioral characteristics in a vir-
tual sandboxed environment. Some of 
the methods include system-call-level 
monitoring and memory snapshot com-
parison. Hackers are familiar with these 
standard methods and come up with 
ways to evade the current defense mech-
anisms. They produce new malware 
variants that easily evade the detection 
methods. These variants are created 
from existing malware using inexpen-
sive, easily available “factory tool kits” 
in a virtual factory-like setting, which 
then spread and infect more systems. 
Once a system is compromised, it either 
quickly loses control and/or the infec-
tion spreads to other networked systems. 

While security techniques constant-
ly evolve to keep up with new attacks, 
hackers too change their ways and con-
tinue to evade defense mechanisms. 
As this never-ending billion dollar “cat 
and mouse game” continues, it may be 
useful to look at avenues that can bring 
in novel alternative and/or orthogo-
nal defense approaches to counter the 
ongoing threats. The hope is to catch 
these new attacks using complementary 
methods that may not be well known 
to hackers, thus making it more dif-
ficult and/or too expensive for them to 
evade all detection schemes. This article 
focuses on such orthogonal approaches 
from signal and image processing that 
complement standard approaches. 

Malware landscape
Malware—malicious software—is any 
software that is designed to cause dam-
age to a computer, server, network, 
mobile phones, and other devices. 
Based on their specific function such as 
stealing data, spying, keylogging or 
others, malware are classified into dif-
ferent types such as trojans, backdoors, 
virus, worm, spyware, adware, and 
more. Malware are also identified by 
which platform they belong to, such as 
Windows, Linux, AndroidOS, and oth-
ers. While most malware are geared 
toward the Windows platform, they are 
also quickly expanding to other plat-
forms such as AndroidOS, Linux, and 
MAC OS X. Malware are further classi-
fied into families, which in turn, have 
many variants that perform almost the 
same function (Figure 1). According to 
the Computer Antivirus Research 
Organization (CARO) convention for 
naming malware, a malware is repre-
sented by Type:Platform/Family.Vari-
ant. For example, PWS:Win32/Zbot.
gen denotes a password-stealer mal-
ware of the generic Zbot family that 
attacks 32-bit Windows platforms. 

Malware variants are created either 
by making changes to the malware 
code or by using executable packers. 
In the former case, a simple mutation 
occurs by changing small parts of the 
code. These are referred to as unpacked 
malware variants. In the latter case, a 
more complex mutation occurs either 
by compressing or encrypting (usually 
with different keys) the main body of 
the code and appending a decompres-
sion/decryption routine, which during 
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runtime decompresses/decrypts the 
encrypted payload. The new variants 
are called packed malware variants,
and they perform the same function as 
the original malware but their attributes 
would be so different that AV software, 
which use traditional signature-based 
detection, would not be able to detect 
them. The tools used for obfuscation 
are called executable packers, available 
both as freeware and commercial tools. 
There are hundreds of packers that exist 
today that make it very easy for mal-
ware writers to create new variants. 

Malware analysis
Malware classification deals with identi-
fying the family of an unknown malware 
variant from a malware data set that is 
divided into many families. The level of 
risk of a particular malware is determined 
by its function, which is in turn reflected 
in its family. Hence, identifying the fami-
ly of an unknown malware is crucial in 
understanding and stopping new mal-
ware. It is usually assumed that an 
unknown malware variant belongs to a 
known set of malware families (super-
vised classification). Having a high clas-
sification accuracy (the number of 
correctly classified families) is desirable. 
A closely related problem is malware 
retrieval, where the objective is to retrieve 
similar malware matches for a given 
query from a large database of malware. 
In malware detection, the objective is to 
determine if an unknown executable is 
malicious, benign, or unknown. This 
problem is more challenging than mal-

ware classification, where all samples are 
known to be malicious. In the following, 
we will focus on malware classification 
and malware retrieval.

A common way to defeat static 
analysis is by using packers on an 
executable, which compress and/or 
encrypt the executable code and cre-
ate a new packed executable that mim-
ics the previous executable in function 
but reveals the actual code only upon 
execution runtime. Dynamic analysis 
is agnostic to packing but is slow and 
time consuming. Furthermore, today’s 
malware are designed to be virtual 
machine (VM) aware, which either 
do not do any malicious activity in the 
presence of VM or attempts a “suicide” 
when a VM is detected. 

In this context, the challenge is 
to develop complementary methods 
that are able to quickly identify mal-
ware without the need for disassembly, 
unpacking, or execution. Alternative 
representations of malware data as one-
dimensional (1-D) or two-dimensional 
(2-D) signals have patterns that are not 
captured by standard methods. 

Malware images
A common method of viewing and edit-
ing malware binaries is by using Hex 
Editors, which display the bytes of the 
binaries in hexadecimal representation 
from “00” to “FF.” Effectively, these are 
8-bit numbers in the range of 0–255. 
Grouping these 8-bit numbers results in 
a 8-bit vector, from which we construct 
a signal or an image as shown in 

Figure 2. For an image, the width is 
fixed and the height is allowed to vary 
depending on the file size. To ensure 
that a small file does not appear hori-
zontally stretched and a large file does 
not look vertically elongated, we pro-
vide some recommended image widths 
for different file sizes based on empiri-
cal observations [6]. Figure 3 shows an 
example image of a common Windows 
Trojan downloader, Dontovo.A, which 
downloads and executes arbitrary files. 
We can see that different sections of 
this malware exhibit distinctive image 
patterns. The .text section, which con-
tains the executable code, has a fine-
grained texture. It is followed by a black 
block (zeros), indicating zero padding at 
the end of this section. The .data section 
contains both uninitialized code (black 
patch) and initialized data (fine-grained 
texture). The final .rsrc section contains 
all the resources of the module, includ-
ing the icon of the executable. 

Visualizing these malware variants 
as images, one could make an empirical 
observation that there is visual similarity 
among malware variants of the same fam-
ily (Figure 4). At the same time, the vari-
ants are also distinct from those belonging 
to other families. This is because the vari-
ants are created using either simple code 
mutations or packing. It is easy to iden-
tify the variants for unpacked malware 
since the structure of the variants are very 
similar. In the case of packed malware, 
the executable code is compressed and/
or encrypted. During runtime, this code 
is then unpacked and executed. When two 
unpacked variants belonging to a specif-
ic malware family are using a packer to 
obtain packed variants of the same fam-
ily, their structure no longer remains the 
same as that of the unpacked variants. 
However, the structure within the packed 
variants are still similar though the actual 
bytes may vary due to compression and/
or encryption. This is because most of 
the current packers use weak encryption 
schemes [2]. The visual similarity of mal-
ware images motivated us to look at mal-
ware classification using techniques from 
computer vision, where image-based 
classification has been well studied. We 
use global image similarity descriptors 
and obtain compact signatures for these 
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FIGURE 1. The malware landscape: malware are categorized by their type, families, and variants.
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malware, which are then used to identify 
their families. 

Classification
Once the malware binary is converted to 
an image, an image similarity descriptor 
is computed on the image to characterize 
the malware. The descriptor that we use 
is the GIST feature [3], which is com-
monly used in scene classification [3], 
object recognition [4] and large-scale 
image search [5]. Every image location is 
represented by the output of filters tuned 
to different orientations and scales. A 
steerable pyramid with four scales and 
eight orientations is used. The local rep-
resentation of an image is then given by 

( ) ( ) ,V x V x ..
L

k k N1= =  where N 20=  is 
the number of subbands. To capture the 
global image properties while retaining 
some local information, the mean value 
of the magnitude of the local features is 
computed and averaged over large spatial 
regions: ( ) ( ) ( ),m x V x W x x

x
= -l l

l
/

where ( )W x  is the averaging window. 
The resulting representation is downsam-
pled to have a spatial resolution of 
M M#  pixels (here we use M 4= ). 
Thus, the feature vector obtained is of 
size .M M N 320# # =   For faster pro-
cessing, the images are usually resized to 
a smaller size (we use ) .64 64#  Our 
experiments showed that our initial 
choice of image width and the width of 
the resized image does not significantly 
affect our performance. 

To identify malware families, we 
use the nearest neighbor (NN) classifier, 
which assigns the family of the near-
est malware to an unknown malware. 
We obtained four data sets: Malimg 
data set (Windows) [8], Malheur data 
set (Windows) [9], MalGenome data 
set (Android) [7], and VxShare ELF 
data set (Linux) [10]. On all four data 
sets we performed supervised classifi-
cation with tenfold cross validation and 
obtained a high-classification accuracy 
(Table 1). Furthermore the accuracy of 
this method (95.14%) is comparable 
to that of the state-of-the-art dynamic 
analysis (98.12%), but 4,000 times faster 
[11]. In [12], we extend our approach to 
separate malware from benign software. 
To get a richer discrimination between 
benign and malicious samples, we adopt 

a section-aware approach and compute 
GIST descriptors on the entire binary as 
well as the top two sections of the binary 
thatcould contain the code. With more 
than 99% precision, this approach out-
performed other static similarity features. 

Search and retrieval
We developed search and retrieval of 
malware (SARVAM) [13] (http://sarvam.
ece.ucsb.edu), an online system for large-
scale malware search and retrieval 
(Figure 5). It is one of the few systems 
available to the public where researchers 
can upload or search for a sample and 
retrieve similar malware matches from a 
large database. As in [6], we use GIST 
descriptors for content-based search and 
retrieval of malware. For fast search and 
retrieval, we use a scalable Balltree-based 
NN searching technique. 

During the initial training phase of 
building SARVAM, we obtained a large 
corpus of malware samples from various 
sources. The image fingerprints for all the 
samples in the corpus are then computed 
and stored in a database. Simultaneous-
ly, we obtained the AV labels for all the 
samples from Virustotal [14], an online 
system that maintains a database of AV 
labels. These labels act as a ground truth 
and are later used to describe the nature of 
a sample, i.e., how malicious or benign a 
sample is. During the query phase, the fin-
gerprint for the new sample is computed 
and matched with the existing fingerprints 
in the database to retrieve the top matches. 

The initial database consisted of more 
than seven million samples comprising 
mostly malware and a few benign sam-
ples. For a new query, SARVAM finds a 
match in about six seconds. SARVAM 

8-bit
Vector

Malware Binary Image

SignalHex Viewer

FIGURE 2. Malware can be represented as a 1-D signal or as a 2-D image.

FIGURE 3. Visualizing a malware as a digital image: different sections of the executable are visible in 
the image.
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has been operational since May 2012, and 
we have received more than 440,000 sam-
ples since then. Nearly 60% of the sam-
ples we received are variants of already 
existing malware from our database. 

Sparsity-based malware analysis
In this section, we explore sparse repre-
sentation-based classification (SRC) 
methods to classify malware variants into 
families. Such methods have been previ-
ously applied to problems where samples 
belonging to a class have small variations 
in them, such as face recognition [16] 
and iris recognition [18]. We developed 
sparsity inspired classification of mal-
ware variants (SATTVA) [15], where 
we model a malware variant belonging to 
a particular malware family as a linear 
combination of variants from that family. 
Since variants of a family have small 
changes in the overall structure and differ 
from variants of other families, projec-
tions of malware in lower dimensions 
preserve this “similarity.” 

Given a data set of N  labeled malware 
belonging to L  different malware fami-
lies with P  malware per family, the task 

is to identify the family of an unknown 
malware u.  We represent a malware as a 
digital signal x  of range [ , ],0 255  where 
every entry of x  is a byte value of the 
malware. Since each malware sample can 
have a different code-length, we normal-
ize all vectors to a maximum length (M)
by zero-padding. 

The entire data set can now be repre-
sented as an M N#  matrix ,A  where every 
column represents a malware. Further, for 
every family k , , ...,( ),k L1 2=  we define 
an M P#  matrix [ , , ]A x x xk k k kP1 2 f=

where x {.}k  represents a malware sam-
ple belonging to family .k  Now, ,A  can 
be expressed as a concatenation of block-
matrices Ak

[ .. ]A A A A RL
M N

1 2 != # (1)

Let u RM!  be an unknown malware 
whose family is to be determined, with 
the assumption that u  belongs to one of 
the families in the data set. Then, follow-
ing [16], we represent u  as a sparse linear 
combination of the training samples as 

,x Au ij
j

P

i

L

ij
11

a a= =
==

// (2)

where [ , , ], ,L P
T

1 1 fa a a=  represents 
the N 1#  sparse coefficient vector 

.( )N LP= a  will have nonzero values 
only for samples that are from the same 
family as .u  The sparsest solution to (2) 
can be obtained using basis pursuit [18] 
by solving an l -1 norm minimization 
problem. Estimating the family of u  is 
done by computing residuals for every 
family in the training set and then select-
ing the family that has minimum residue. 

Random projections
When a malware binary is represented 
as a numerical vector by considering 
every byte, the dimensions of that vec-
tor can be very high. For example, a 
1-megabyte malware has around 1 mil-
lion bytes and this could make the cal-
culations computationally expensive. 
Hence, we project the vectors to lower 
dimensions using random projections 
(RPs). This also removes dependency 
on any particular feature extraction 
method. Previous works have demon-
strated that SRC is effective in lower-
dimensional RPs as well; see [16]–[18]. 
Let R RD M! #  be the matrix that pro-
jects u  from signal space M  to w  of a 
lower-dimensional space D ( )D M11

.w Ru RAa= = (3)

The entries of R  are drawn from a 
zero-mean normal distribution. The 
above system of equations is under-
determined and sparse solutions 
can be obtained by reduced l -1 norm 

(a) (b) (c) (d)

FIGURE 4. Visual similarity among malware variants of four different families. (a) Adialer.C, (b) Dialplatform.B, (c) Fakerean, and (d) Yuner.A.

Table 1. Accuracy on malware data sets from different operating systems: 
Windows, Linux, and Android.

Data Set Size Number of Families Accuracy 
Malimg (Win) 9,339 25 97.4 
Malheur (Win) 3,131 24 98.37 
VxShare (Linux) 568 8 83.27 
Malgenome (Android) 1,094 13 84.55 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


109IEEE SIGNAL PROCESSING MAGAZINE | March 2016 |

minimization. The overall approach is 
shown in Figure 6. 

We test our technique on two pub-
lic malware data sets: the Malimg data 
set [8] and the Malheur data set [9]. On 
both data sets, we select equal number 
of samples to reduce any bias toward a 
particular family. For comparison, we 
use GIST descriptors, which we had 

previously applied for malware clas-
sification. We use the SRC framework 
to identify the malware family of a test 
sample and compare it with NN classi-
fication that we previously used in [6]. 
We vary the projected dimensions from 
48 to 512, which are consistent for both 
RP and GIST. In our experiments, we 
choose 80% of a data set for training and 

20% for testing. On both the Malimg 
data set [Figure 7(a)] and the Malheur 
data set [Figure 7(b)], the best accuracy 
is obtained for the combination of RPs 
and the SRC classification framework 
(92.83% for Malimg and 98.55% for 
Malheur). The projected dimension is 
512 from higher dimensions of 840,960 
(Malimg) and 3,364,864 (Malheur). 

Initial Phase

Query Phase

Get AV Labels
From Virustotal

Compute
Fingerprints

Build
Ball Tree

for Fast NN

New
Sample

Retrieve
Top Matches

Compute
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AV Label Database

Tree Indices

Malware
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Malware

Malware

Malware

Malware
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Very High Confidence
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Very Low Confidence

FIGURE 5. The block schematic of SARVAM: In the initial phase, the image similarity descriptors and AV labels are computed and stored in a database. In 
the query phase, the NNs along with their corresponding AV labels are retrieved.
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FIGURE 6. The SRC framework for malware classification.
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The accuracies for GIST for both clas-
sifiers are almost the same. In [15], we 
extend this approach using a simple 
thresholding scheme to reject potential 
outliers in a data set. 

Future directions
While we explored signal- and image-
based analysis of malware data, a natu-
ral complement is to treat the malware 
as audio-like 1-D signals and leverage 
automated audio descriptors. Another 
possible approach is computing image 
similarity descriptors and/or random 
projections on all the sections and rep-
resent a malware as a bag of descrip-
tors, which can then be used for better 
characterization of malware. Using the 
error model in the sparse representa-
tion-based malware classification 
framework, we can determine the exact 
positions in which the malware variant 
differs from another variant. This 
approach can also be used to find the 
exact source from which a malware var-
iant evolves. Patched malware that 
attaches to benign software can be iden-
tified using this method. 

Conclusions
In this article, we explored orthogonal 
methods to analyze malware motivated 
by signal and image processing. Malware 
samples are represented as images or sig-
nals. Image- and signal-based features are 
extracted to characterize malware. Our 
extensive experiments demonstrate the 
efficacy of our methods on malware clas-
sification and retrieval. We believe that 
our techniques will open the scope of sig-
nal- and image-based methods to broader 
fields in computer security. 
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LIFE SCIENCES
Antonio Stanziola, Matthieu Toulemonde, Yesna O. Yildiz, 
Robert J. Eckersley, and Meng-Xing Tang
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Medical ultrasound (US) imaging, 
also known as echography, is one 
of the most frequently used front-

line clinical imaging modalities and is 
characterized by its safety, affordability, 
accessibility, and real-time image dis-
play. Sound pulses, typically in the 
megahertz range, are sent into the body 
and the backscattered echoes are used to 
create a tomographic image. The con-
trast of an US image arises from local 
variations in the physical properties of 
the tissues, primarily density and elastic-
ity, revealing tissue structures at depth. 

The blood flow of a living organism 
contains essential information related to 
tissue function and pathology. However, 
as blood is a fluid composed of plasma 
and blood cells that are similar to each 
other acoustically, the scattering of 
sound from blood is very weak com-
pared to surrounding tissue structures. 
Consequently, it is difficult to detect ves-
sels that are smaller in size than the 
pulse length, as the echoes from blood 
are completely masked by the neighbor-
ing tissue response. While for big vessels 
it is still possible to obtain hemodynamic 
information due to the weak scattering 
of blood cells, in general, the signal-to-
noise ratio (SNR) is poor and the infor-
mation content is limited. 

To overcome the limitations of con-
ventional US, gas bubbles of microme-
ter radius can be introduced into a 
patient’s bloodstream as agents for 
contrast  enhanced US imaging 
(CEUS). Microbubbles (MBs) act as 
resonant oscillators and scatter US 

signals efficiently 
when excited at the 
frequencies used in 
the clinical practice, 
typically in the range 
of 1–15 MHz. They 
are designed to have 
a diameter (<7 μm) 
capable of passing 
the pulmonary capil-
laries (the smallest 
vessels in the human body) and often 
include a lipid shell that encapsulates a 
low solubility gas, so as to increase 
their longevity in the circulation. 

The use of MBs in US imaging gen-
erates new and exciting possibilities [1]. 
It enables real-time imaging of blood 
flow with unprecedented sensitivity and 
resolution in both large vessels and 
microvasculature and provides indica-
tors of the perfusion of organs in, e.g., 
liver [Figure 1(a) and (b)], kidney 
[Figure 1(c) and (d)], heart, limbs, 
brain, breast, and lymphatic systems. 
The safety of MBs in diagnostic US has 
been well established. If the MB shell is 
coated with specific molecules, comple-
mentary to those expressed by the vas-
cular walls during specific pathological 
processes such as the initiation of can-
cer or atherosclerosis, it is possible to 
bind MBs to these receptors (targeted 
MBs) facilitating molecular imaging for 
early detection and diagnosis [1]. 

MBs as nonlinear 
oscillation systems
The equilibrium radius of an MB is a 
balancing act between the external pres-
sure of the blood, the internal pressure of 

the gaseous core, the 
shell elastic proper-
ties, and the surface 
tension. When an US 
wave excites an MB, 
since the bubble 
diameter (a few mn )
is much smaller than 
the clinical US wave-
length (hundreds 
of mn ), it causes a 

global change in the external pressure 
p0  that results in an oscillation of the 
MB associated with the emission of 
sound waves [Figure 2(a) and (b)]. As 
the gas core is highly compressible, 
the bubble radius can oscillate signifi-
cantly around its equilibrium value r0

if driven at or near its resonance fre-
quency, and this behavior is responsi-
ble for the strong scattering of the 
contrast agents. 

MBs are inherently nonlinear oscil-
lation systems. Even with US ampli-
tudes of tens of kilopascal, well below 
those typically used in clinical imag-
ing, the radius change for an MB is not 
symmetrical in the compression and 
expansion phases. This asymmetry is a 
key source of harmonic generation 
from MBs. 

The MB oscillation and subsequent 
scattering is highly dependent on the 
US parameters, including frequency 
and amplitude. A variety of analytical 
models have been developed to 
describe this process, most of them 
assuming a time-invariant spherical 
bubble. The simplest is the Rayleigh–
Plesset (RP) model, which considers a 
shell-free bubble of polytropic gas in an 
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The equilibrium radius 
of an MB is a balancing 
act between the external 
pressure of the blood, the 
internal pressure of the 
gaseous core, the shell 
elastic properties, and the 
surface tension.
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inviscid incompressible fluid of density 
.t  If p3  is the liquid pressure far away 

from the bubble and ( )p p t=  the pres-
sure at the bubble interface, the time 
evolution of the radius r  is governed by

rr r
p p

2
3 2

t
+ =

- 3 ,op (1)

where ro  and rp  are respectively the first 
and second derivatives of ( )r t  with 
respect to time. The nonlinear term on the 
left-hand side shows that bubble oscilla-
tion in response to a pressure wave is 
nonlinear and, for a sinusoidal excitation, 
the scattered signal will contain harmon-
ics and subharmonics [Figure 2(c)]. This 
has been verified experimentally and, 
since the scattering from existing struc-
tures in the body is generally considered 
to be linear, this is the main characteristic 
exploited to distinguish between MBs and 
tissue signals.

The nonlinear behavior of an MB can 
be further enhanced by the presence of a 
shell. The RP equation has, therefore, 

been refined to include the effects of the 
shell, the surface tension at the bubble 
interface, the viscosity of blood, and the 
finite speed of sound, leading to a num-
ber of modified Rayleigh models [3]. 

Detecting nonlinear scattering 
signals from MBs
To image the MBs in small vessels, the 
tissue signals need to be removed to 
facilitate generation of MB-specific 
images. While it is possible to use a 
high-pass filter, with a cut-off frequen-
cy between the fundamental and sec-
ond harmonic (SH) frequencies, to 
remove the signals reflected by tissues, 
this approach is fundamentally limited 
by the transducer bandwidth. In US 
imaging, a short broadband pulse is 
required as the spatial resolution is 
determined by the transmitted pulse 
length. It is difficult to completely sep-
arate the broadband fundamental sig-
nal from its harmonics within a limited 
bandwidth, reducing the contrast 
between MBs and tissue [Figure 2(h)]. 

Multipulse acquisition
Multipulse techniques such as pulse 
inversion (PI) have been developed to 
elegantly separate the MB signals from 
tissue without sacrificing spatial reso-
lution. In PI, two identical but phase-
inverted pulses, as shown in Figure 
2(d), are transmitted into the medium 
consecutively. While either echo of the 
two pulses can produce a conventional 
US image (B-mode image) [Figure 
2(g)], the sum of the two echoes is 
zero for linear scatterers (tissue) while 
for nonlinear scatterers (MB) the sum 
is nonzero; see Figure 2(e). In the fre-
quency domain shown in Figure 2(f), 
for PI, all even harmonics are pre-
served while the fundamental signal 
(3 MHz) is suppressed. Standard 
B-mode, SH-filtered, and PI approach-
es are compared on a carotid artery 
phantom in Figure 2(g)–(i), demon-
strating PI as a superior technique with 
almost complete suppression of the tis-
sue and much improved contrast 
agent-to-tissue ratio. 

FIGURE 1. The comparison of side by side CEUS contrast specific image (color) versus standard US B-mode image (grayscale) for (a) a liver arterial hem-
angioma and (b) a liver metastasis. Both lesions are clearly visible in the contrast specific images but not the standard B-mode images. In the contrast 
specific images, the haemangioma is shown to be surrounded by a ring of contrast enhancement [arrow in (a)], while the metastasis is shown as a dark 
area [arrow in (b)]. (c) CEUS image and (d) nonlinear Doppler CEUS image of a rabbit kidney vasculature (adapted from [2] with permission). Nonlinear 
Doppler shows additional information including the direction of flow (blue and red) as well as microcirculation information (green). 
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There are a number of multipulse 
techniques related to PI that employ vary-
ing pulse phase or amplitude. These can 
be summarized through a mathematical 
generalization [4]. If the transmitted US 
wave is given by 
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where p t^ h represents the basic pulse, 
P0  the amplitude of the wave, 0~  the 
US angular frequency, and 0{  the phase. 
The changes in amplitude and phase 
applied to the kth transmitted pulse are 
indicated by .bk  The kth received wave 
can then be modeled as a Taylor series 
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where an  is the weight of the nth non-
linear component and N is the model 
order. Given a sinusoidal ,p t^ h  the nth
nonlinear component contains the nth 
harmonic. After consecutive transmis-
sion and reception of K pulses in the 
medium, the postprocessing to gener-
ate contrast specific signals can be 
done by a weighted sum of the 
received pulses 

( )

( )

r t r t

b a p t

k

K

k k

n

N

k

K

k k
n

n
n

1

1 1

sum m

m

=

=

=

= =

/

/ / ,

^

c

h

m (4)

where km  is a reception coefficient that 
must be appropriately chosen depend-
ing on bk  to cancel linear components. 
The transmission and reception parame-
ters of PI, amplitude modulation (AM), 

and contrast pulse sequence (CPS) are 
given in Table 1 [4].

While multipulse transmission 
reduces the imaging frame rate, this can 
be compensated by the emerging ultra-
fast imaging techniques with up to tens 
of thousands of frames/second [5]. 

Encoded pulses
Even at moderate US amplitudes (tens to 
hundreds of kilo-Pascals), MBs can be 
disrupted. This occurs, for example, due 
to the negative pressure portion in the 
US pulse can cause the shell to expand 
until it ruptures. To mitigate this effect, 
the transmit amplitude needs to be kept 
low, with a consequent reduction in the 
SNR. Transmitting longer pulses can 
increase the signal energy and conse-
quently the SNR, without increasing the 
peak pressures and the associated risk of 

FIGURE 2. Principles of MB detection. (a) MB oscillation in response to an external US pressure field, (b) the scattered US wave, and (c) the frequency 
response. (d)–(f) illustrates the principle of PI detection: (d) depicts positive and negative transmitted pulses and (e) shows the MB responses to them; 
the sum of the two responses is shown by the solid line and the frequency spectrum in (f). (i) The PI image has better specificity in imaging MBs than (g) 
B-mode and (h) SH-filtered images.

(a) Transmitted US Pulse and MB
Behavior

(b) MB echo (c) Transmission
and MB Echo Spectra

(d) PI Transmissions (e) MB Echoes Before
and  After PI Cancellation

(f) PI Spectra Before
and After Cancellation

(g) Conventional B-Mode Image (h) SH Filtered (i) PI
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MB destruction, but this comes at the 
cost of a reduced image resolution. 
Coded transmission techniques, such as 
frequency encoding (chirp), were devel-
oped for radar systems for the conflict-
ing requirements of simultaneous high 
SNR and high-resolution performance. 
A long pulse with an embedded code is 
transmitted. After reception, the signal is 
cross-correlated with the transmitted 
pulse to detect and remove the code and 
restore the spatial resolution in a process 
called compression.

A nonlinear compression filter can 
be used to selectively extract and 

compress the SH from the received 
echo of MBs [6]. While this combina-
tion of harmonic imaging and chirp 
transmission improves the resolution 
of the technique, side lobes can appear 
due to the chirp compression and fre-
quency overlapping. The method can 
be improved by extracting the chirp 
SH component in a space between the 
time and frequency using the fractional 
Fourier transform [7]. Furthermore, 
pulse encoding is not limited to fre-
quency encoding (chirp) and other 
codes, such as Barker and Golay, can 
also be used. 

Detecting bubble motion using 
nonlinear Doppler processing
The measurement of MB motion can 
provide insight about the flow condi-
tions (fast versus slow) and is useful 
for determining whether targeted bub-
bles are bound or free flowing. Multi-
pulse sequences can be used to both 
detect the existence of MBs, as previ-
ously described, and to provide motion 
information. The Doppler equation 
describes the frequency shift given by 
the relative motion between a sound 
source and an observer. In US imag-
ing, it can be used to determine move-
ment of objects such as red blood cells 
or MBs. For the sake of simplicity, we 
focus only on motion along the US 
propagation direction. The frequency 
shift of a linear scatter moving with 
velocity v  is given by 

f
c
f v2 0T = , (5)

Table 1. Multipulse techniques.
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FIGURE 3. Imaging artefact correction: (a) PI and (b) corrected PI images of a flow phantom with two vessels containing diluted suspension of MBs 
(adapted from [9] with permission), where the yellow arrows point to the small vessel recovered by the artefact correction. An in vivo CEUS image of a 
carotid artery with (c) attenuation artefact (yellow arrow) and (d) attenuation artefact corrected (adapted from [10] with permission).
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where f0  is the fundamental frequency of 
the transmitted pulse and c  is the speed 
of sound. Continous wave Doppler has 
great velocity resolution but does not 
offer spatial information. This can be 
overcome by sending multiple pulses at a 
frequency fPRF  and measuring the rela-
tive phase shift of the responses over time 

( ),tTz  a technique known as pulsed 
Doppler. The Fourier transform of the 
Doppler signal with phase will return the 
frequency shift provided that the motion 
is slow enough to be captured at the 
given fPRF  (Nyquist constraint). 

A moving nonlinear scatter like MBs 
will generate both fundamental and har-
monic Doppler signals of different phase 
shifts (e.g., SHs have phase shifts that are 
double that of fundamental signals). This 
has been used in conjunction with PI to 
distinguish the movement of MB from 
tissue [2]. As in PI, the pulses used to 
generate the Doppler signal are sent with 

a phase shift of r  between consecutive 
pulses, so that the phase shift in the con-
secutive echoes from a moving linear 
scatterer has an additional r

,f2 0T Tz r x r= + (6)

where /v cf2 PRFTx =  is the time shift 
due to target motion. The additional r
due to pulse inversion will shift the 
spectrum of the Doppler signal for a 
linear target by a factor of / .f1 2 PRF  On 
the other hand, it does not affect the 
even harmonics emitted by a nonlinear 
target, as can be seen through decom-
posing the nonlinear signals as in (3). 
The Doppler frequency for the nth har-
monic can thus be expressed as 
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Using a low-pass filter with cut-off 
frequency at / ,f1 4 PRF  it is possible to dis-
tinguish between even harmonics emit-
ted by MBs and fundamental signals 
emitted by tissue, even if they have simi-
lar motion. This enables the specific 
imaging of both fast and slowly moving 
agents in macro- and microvessels 
[see Figure 1(d)] or potentially those tar-
geted agents adherent to a vessel. 

Artefact reduction 
for contrast detection 
CEUS suffers from various imaging 
artefacts [8], and signal processing 
algorithms have been developed to 
reduce them. One type of common 
artefact arises from the nonlinear dis-
tortion of the transmitted US pulse as 
it propagates through tissue and MB 
clouds, generating harmonics. The 
degree of the nonlinear distortion 
depends on both the US amplitude and 
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FIGURE 4. Applications of contrast enhanced US imaging: (a) left ventricle myocardium perfusion shown by CEUS at two time points and its quantifica-
tion, (b) superresolution US imaging (reproduced from [12] with permission) in vivo and (c) blood flow velocity estimation using MB tracking in a rabbit 
abdominal aorta (adapted from [13] with permission).
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the medium. These 
propagation harmon-
ics are subsequently 
reflected by tissues 
and then misclassi-
fied as MBs. This is 
commonly referred 
to as a nonlinear 
propagation artefact 
and can be observed 
below the vessel wall in Figure 3(a). 

Among the different techniques 
developed to mitigate such artefacts, 
the method in [9] uses a signal pro-
cessing approach, where the nonlinear 
tissue artefact is estimated based on 
two simultaneously acquired images: 
1) the B-mode image that contains 
mainly tissue signals and 2) the con-
trast specific image (such as PI) that 
contains both MB signals and arte-
facts. As the artefacts originate from 
tissue reflection/scattering, removing 
artefacts means estimating and remov-
ing the tissue signals (found in the 
B-mode image) from the contrast spe-
cific image. As the B-mode and the 
contrast specific images have different 
point spread functions (PSFs), direct 
subtraction does not work. In [9], the 
tissue scatterer distribution (TSD) is 
first estimated by deconvolving the 
B-mode image with the measured line-
ar PSF of the system, and the artefact 
is then estimated by convolving the 
TSD with the measured nonlinear 
PSFs. Figure 3(a) and (b) shows the 
original and corrected PI images in a 
flow phantom (i.e., an artificial model 
of human vessels embedded in tissue). 
The MB signal from a small vessel 
[indicated by arrows in Figure 3(a) and 
(b)] buried within tissue artefacts prior 
to correction has been revealed.

Another common image artefact is 
due to the attenuation of the US [8], 
especially from the probe–skin inter-
face and patient-specific, spatially het-
erogeneous attenuation, which often 
introduces a vertical shadow in the 
image [see the arrow in Figure 3(c)]. 
Correcting this attenuation is crucial 
for blood flow quantification using 
CEUS. In [10], an algorithm has been 
developed to correct attenuation arte-
facts with the prior knowledge that 

MBs are well mixed 
and homogeneous 
throughout the inte-
rior of a vessel. The 
relative attenuation 
profile in the vessel 
is estimated by low-
pass filtering the 
image. Then the 
measured attenua-

tion profile is expanded to adjacent 
regions of interest such as vessel walls 
[Figure 3(c) and (d)]. 

Image processing and analysis
CEUS data encompasses both spatial 
and temporal information. MB signals in 
US image sequences can indeed be ana-
lyzed over space and time to derive valu-
able information, e.g., arterial blood flow 
fields, microvascular morphology, or tis-
sue perfusion indices, in cardiovascular 
diseases and cancer, for instance. 

Perfusion quantification
A unique feature of MBs as contrast 
agents is that they can be deactivated 
(destroyed) by using high amplitude (but 
still safe) US pulses. It enables a well-
controlled local input function (step 
function) and offers the means to study 
local microflow dynamics through a 
technique referred to as destruction 
reperfusion analysis [11]. A high-ampli-
tude US destruction pulse is transmitted 
to wipe out MBs within a region of tis-
sue and subsequent low-amplitude US 
imaging pulses are then used to observe 
the replenishment of MB signals. Exam-
ples of myocardium reperfusion are 
shown in Figure 4(a), where the top seg-
ment of the myocardium (red line) 
shows much lower perfusion than the 
other segment (blue line), indicating a 
possible stenosis in the coronary artery. 
Such reperfusion curves [Figure 4(a)] 
can be fitted to a perfusion model, e.g., 
I A e1 t= - b-^ h, where physiologically 
relevant quantities such as blood volume 
( )A  and flow rate ( )b  can be extracted. 

Superresolution imaging
MBs provide an opportunity to reveal 
extra structural information of the vascu-
lature with far more details than what the 
diffraction limit of US might suggest. As 

previously discussed, the nonlinear prop-
erties of the MBs facilitate their detec-
tion with very high sensitivity so that an 
individual MB can scatter signals far 
above the noise floor of the US system. 
Borrowing ideas from similar approach-
es in optical superresolution microscopy, 
it has been shown that by localizing the 
detected two-dimensional signals from 
individual MB, using simple spatial fil-
tering tools, vessels <20 μm can be 
delineated; see Figure 4(b). This is much 
smaller than the diffraction limited reso-
lution of ~100 μm in this example [12].

Bubble tracking
Temporal tracking of MBs offers new 
opportunities in terms of mapping 
blood flow and vascular morphology. 
Combined with the very high frame-
rate US currently available (up to 
20,000 frames/second), it has been used 
for mapping rapid arterial flow in US 
imaging velocimetry (UIV) [also called 
echo particle image velocimetry 
(e-PIV)] [13]; see Figure 4(c). Further-
more, tracking individual MBs in per-
fused tissue can help segment small 
vessels in the CEUS images and offers 
a valuable measure of vascular density.

In the reported MB tracking tech-
niques, it is common practice to use 
cross-correlation. Depending on the 
prior knowledge of the flow, some 
applications require an iterative process 
to refine the size of the spatial window 
in which the cross-correlation is calcu-
lated. There is a significant amount of 
literature in signal processing on target 
tracking that could potentially benefit 
this area and provide more robust and 
real-time tracking of flow dynamics.  

Final remarks
US imaging with MBs offers exciting 
opportunities for revealing the struc-
ture and function of the vascular net-
work with unprecedented sensitivity 
and resolution. The ongoing demand 
for more specific detection of MBs, 
together with the rich data generated in 
both space and time by CEUS, pre-
sents significant opportunities and 
challenges for the development of sig-
nal processing tools and solutions. A 
notable recent development in US 

US imaging with 
MBs offers exciting 
opportunities for revealing 
the structure and function 
of the vascular network 
with unprecedented 
sensitivity and resolution.
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imaging is the capability of imaging at 
a frame rate of up to tens of thousands 
frames/second [5]. While such ultrafast 
imaging technology offers great 
opportunities for the improvement of 
US imaging, especially for fast moving 
objects such as a beating heart, arterial 
flow, or a shear wave within the tissue 
(based on which the tissue elasticity 
can be quantified), it also raises signif-
icant challenges. Techniques to make 
full use of the GB of data acquired per 
second are required. There are oppor-
tunities to take advantage of the prior 
knowledge in both the underlying 
imaging physics and target tissue/
organ physiology, and to generate in 
real-time clinically relevant informa-
tion that are yet to be fully exploited. 

In addition, the complex nonlinear 
signals generated by MBs provide 
another avenue for research, as the MB 
signals can be influenced by many varia-
bles related to the in vivo environment, 
such as blood pressure, proximity to ves-
sel wall, gas saturation, and the mechan-
ical properties of the surrounding tissue. 
A better understanding of the physics 
and advanced modeling and signal pro-
cessing techniques could lead to extract-
ing this clinically relevant information 
from the MB signals. Additionally, while 
most clinical US imaging is still in two 
dimensions, three-dimensional US 
imaging is arriving and will create fur-
ther opportunities and challenges for 
data postprocessing. Finally, molecular 
imaging using targeted MBs is another 
exciting area of further development, 
where more advanced signal processing 
could help detect and evaluate patholo-
gies at their earliest stage.  
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JPEG XT: A Compression Standard for HDR and WCG Images

H igh bit depth data acquisition and 
manipulation have been largely 
studied at the academic level over 

the last 15 years and are rapidly attract-
ing interest at the industrial level. An 
example of the increasing interest for 
high-dynamic range (HDR) imaging is 
the use of 32-bit floating point data for 
video and image acquisition and manip-
ulation that allows a variety of visual 
effects that closely mimic the real-
world visual experience of the end user 
[1] (see Figure 1). At the industrial 
level, we are witnessing increasing trac-
tion toward supporting HDR and wide 
color gamut (WCG). WCG leverages 
HDR for each color channel to display 
a wider range of colors. Consumer 
cameras are currently available with a 
14- or 16-bit analog-to-digital convert-
er. Rendering devices are also appear-
ing with the capability to display HDR 
images and video with a peak bright-
ness of up to 4,000 nits and to support 
WCG (ITU-R Rec. BT.2020 [2]) rather 
than the historical ITU-R Rec. BT.709 
[3]. This trend calls for a widely accept-
ed standard for higher bit depth support 
that can be seamlessly integrated into 
existing products and applications. 

While standard formats such as the 
Joint Photographic Experts Group 
(JPEG) 2000 [5] and JPEG XR [6] offer 
support for high bit depth image repre-
sentations, their adoption requires a non-
negligible investment that may not 
always be affordable in existing imaging 
ecosystems, and induces a difficult tran-
sition, as they are not backward-compati-
ble with the popular JPEG image format. 

Instead, most digital camera and 
mobile phone manufacturers either store 
images in proprietary RAW formats or, 
more commonly, offer an HDR mode,
which produces a traditional low-dynam-
ic range (LDR) image with improved 
details. The former solution creates a 
vendor lock-in problem for consumers, 
making it difficult to efficiently use imag-
es produced by such cameras in practice 
due to a lack of interoperability between 
proprietary formats. The latter solution 
generates an LDR 8-bit JPEG version 
from the captured high bit depth image. 
In other words, visual information con-
tained in the original high bit depth digi-
tal negative is irremediably lost, which is 
not optimal for editing, creative enhance-
ments, or even viewing on HDR-capable 
display devices. 

The JPEG XT standard aims to 
overcome all these drawbacks and 
lower the entry barriers to the market. 

While offering new features such as 
lossy or lossless representation of WCG 
and HDR images, JPEG XT remains 
backward compatible with the legacy 
JPEG standard. As a result, legacy 
applications can reconstruct an 8-bit/
sample LDR image from any JPEG XT 
code stream. This LDR version of the 
image and the original HDR image are 
related by a tone-mapping process that 
is not constrained by the standard and 
can be freely defined by the encoder. 

The standards
JPEG, formally known as ISO/IEC 
JTC1/SC29/WG1, is universally recog-
nized as the leading committee for com-
pressed image formats. The JPEG 
committee began the standardization of 
JPEG XT technology in 2012. A call for 
proposals was issued in June 2012, at its 
Vienna, Austria, meeting, to which six 
organizations responded: Dolby, Ecole Digital Object Identifier 10.1109/MSP.2015.2506199

Date of publication: 7 March 2016

FIGURE 1. (a) A typical LDR image taken with default settings of a Nikon D7100 camera and (b) an 
HDR image fused from five exposures and tone mapped with drago03 [4] for display. 

(a) (b)
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Polytechnique Fédérale de Lausanne 
(EPFL), the University of Stuttgart, Trel-
lis Management, Vrije Universiteit Brus-
sel, and the University of Warwick. As a 
result, JPEG XT was initiated as a new 
work item and a set of requirements for 
its potential applications was identified. 
The JPEG XT image coding system is 
organized into nine parts that hierarchi-
cally define the baseline coding architec-
ture, known from the legacy JPEG 
standard, an extensible file format spec-
ifying a common syntax for extending 
the legacy JPEG code stream, and 
application of this syntax for coding 
integer or floating point samples 
between 8- and 16-bit precision. This 
coding architecture is then further 
refined to enable lossless and near-loss-
less coding, and is complemented by an 
orthogonal extension for representing 
opacity data, commonly known as 
alpha-channels (see Table 1). 

Technology
HDR images require more than the typi-
cal 8-bits per sample, e.g., an integer 
value in [0, 255] for a component of a 
pixel in the legacy JPEG standard, for 
faithful image representation. The origi-
nal JPEG specifications do include a 
12-bit mode and the lossless JPEG cod-
ing mode supports up to 16-bits per sam-
ple. Unfortunately, these two JPEG 
variants are incompatible with the popu-
lar 8-bit mode and, hence, are rarely 
used in practical applications, such as 
digital photography. 

JPEG XT builds on top of the widely 
adopted 8-bit mode of JPEG and extends 
it both in a forward- and backward-com-
patible way. It is a superset of the 8-bit 
mode, i.e., JPEG XT reuses existing 
JPEG technology whenever possible. As 
a result, legacy JPEG implementations 
must be able to decode an LDR image 
from a JPEG XT stream. 

Components
Generally, a standard specifies only the 
decoder side but, for the sake of clarity, 
we will briefly introduce how the HDR 
image is preprocessed at the encoder 
level to take advantage of the existing 
JPEG 8-bit mode. The input of the 
encoder is typically a pair of LDR/HDR 
images. Prior to encoding, the represen-
tation of the HDR image is prepro-
cessed using a combination of four 
elementary operations: 1) scalar nonlin-
ear functions that can be described 
either by a parameterize curve or a 
look-up table, 2) 3 3#  matrix multipli-
cation, 3) vector addition of three-
dimensional vectors, and 4) scalar 
multiplication of a vector by a scalar 
number. These operations are applied to 
each pixel independently, without taking 
the coding history or the neighborhood 
of the pixel into account. Preprocessing 
is therefore straightforward to parallel-
ize. This preprocessing step yields two 
layers, an LDR image and an extension 
image, that are both encoded with exist-
ing 8-bit mode of JPEG. While JPEG 
XT defines a unified decoder design that 

arranges these components into a work-
flow, a typical decoder or encoder would 
not implement all of these components. 
In real life, a codec is likely to only 
implement a subset of these operations. 
As will be detailed later, JPEG XT 
defines profiles that specify a subset of 
the full configuration space and, hence, 
simplify the design of codecs. 

As in JPEG, the preprocessed input 
is then decorrelated with a discrete 
cosine transform (DCT), quantized, and 
entropy coded. Since the bit-precision 
of the legacy 8-bit mode is limited, 
JPEG XT defines two alternate mecha-
nisms to improve it: refinement coding 
and residual coding. 

Refinement coding extends the cod-
ing precision in the DCT domain thanks 
to a coding mechanism that is closely 
related to the progressive coding mode 
of the legacy JPEG standard. It extends 
the coding precision to 12 bits in the spa-
tial domain. The most significant bits of 
the quantized DCT coefficients are 
encoded by a regular JPEG coding 
mode, forming the code stream that lega-
cy applications can interpret. On the 
other hand, the least significant bits are 
encoded with the so-called successive 
approximation scan, which is part of the 
progressive coding mode also defined in 
the legacy JPEG standard. However, the 
encoded coefficients are not included in 
the regular code stream. They become 
part of a side-channel (an extension 
layer) that is hidden from legacy applica-
tions. The transport of this side channel is 

Table 1. The description of the JPEG XT standard.

Title Description 
Part 1 Core Coding System Specification Definition of the core coding technology, which is the legacy JPEG specifications. Other parts of JPEG 

XT builds on top of this baseline coding system in a backward-compatible way [7]. 
Part 2 Extensions for HDR Images It supplies a legacy syntax for a subset of the tools specified in part 7 [7]. 
Part 3 Box File Format Definition of an extensible and flexible container format, called boxes, extending legacy JPEG and the 

ISO-based media format [7]. 
Part 4 Conformance Testing and Evaluation Definition of the methodology to verify that the various parts of the standard are meeting the normative 

requirements [7]. 
Part 5 Reference Software Implementation Reference software for parts 6–9 making use of the file box format specified in part 3 [7]. 
Part 6 Intermediate Dynamic Range (IDR) 

Integer Coding 
Definition of a scalable coding engine supporting all bit depths between 9 and 16 bits per sample that 
remains compatible with legacy applications [7]. 

Part 7 HDR Floating-Point Coding Definition of a coding engine for images in an HDR representation, e.g., using floating point samples [7]. 
Part 8 Lossless and Near-Lossless Coding Definition of a lossless and near-lossless coding engine for IDR and HDR image representations using 

coding technologies from parts 6 and 7 [7]. 
Part 9 Encoding of Alpha Channels Extension of the other parts of the ISO/IEC 18477 standard to support opacity information for LDR, IDR, 

and HDR images [7]. 
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discussed below in more detail. Refine-
ment coding cannot represent an arbi-
trary LDR/HDR image pair on its own. 
The LDR image is indeed implicitly 
defined by the most significant bits of the 
HDR stream, making refinement coding 
alone only suitable for simple applica-
tions. The capability to encode an HDR 
image with an independently defined 
LDR layer is granted by residual coding 
that operates entirely in the spatial 
domain. Using the four elementary oper-
ations available at preprocessing, it com-
putes from the LDR/HDR image pair an 
LDR layer that represents the base code 
stream that is visible to legacy applica-
tions, and an extension layer for the 
remaining information required to recon-
struct the HDR image. The extension 
layer is also coded by a second regular 
JPEG mode, and the resulting extension 
code stream, similarly to the refinement 
scans, becomes part of a side channel 
that is hidden for legacy applications. 
Both mechanisms, residual and refine-
ment coding, can be combined. For 
example, the bit-precision of the exten-
sion layer from residual coding could be 
increased by using refinement scans. 

Profiles
While preprocessing offers a variety of 
methods to generate an extension layer 

from a given LDR/HDR image pair, we 
restrict, for the sake of simplicity, the 
discussion to the three profiles currently 
defined in the JPEG XT standard, 
whose decoding workflow is depicted 
in Figure 2. 

Two layers, B  and ,E  are used for 
the reconstruction of the HDR image .I
B  is the base layer, which represent the 
LDR image as a JPEG image with 8-bits 
per sample in the ITU BT.601 RGB col-
orspace. E  is the extension layer, which 
includes the additional information to 
reconstruct the HDR image I  starting 
from the base layer .B  The coding tools 
of the overall JPEG XT infrastructure 
used to merge B  and E  together are 
then profile dependent. 

Profile A reconstructs the HDR image 
I  by multiplying a luminance scale n
with the base image B  after inverse 
gamma correction using the first base 
nonlinearity AU

( (

( , ) ( ( , )) · [ ( ( , ))

( , ))) ( , )],

x y x y C x y

SC x y R x y·

I E B

B E

A

A

0

o

n

U

U

+

=
=

(1)

where C  and R  are 3 3#  matrices 
implementing color transformations, 

(.)n  is a scalar function of the luma 
component of the extension layer ,E

(postscaling nonlinearity block), and E=

the extension layer projected onto the 
chroma-subspace, i.e., E  with its luma 
component set to zero. The matrix C
transforms from ITU-R BT.601 to the 
target colorspace in the extension layer. 
R  is an inverse color decorrelation trans-
formation from YCbCr to RGB in the 
extension layer to clearly separate the 
luminance component from the chroma-
ticities (YCbCr) at the encoding level. 
These matrices are also commonly used 
in the other two profiles. S  is a row-vec-
tor transforming color into luminance, 
and o  is a scalar function taking in 
input luminance values. Typically, 

( )x xo f= +  where f  is a “noise floor” 
that avoids instability in the encoder for 
very dark image regions. 

Profile B reconstructs the HDR image 
I  by computing the quotient that can be 
expressed as a difference in the logarith-
mic scale: 
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where i  is the index of the RGB color 
channels. BU  and BW  are two inverse 
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FIGURE 2. A simplified version of the JPEG XT decoder. B  is the base layer and is always represented as a JPEG code stream with 8-bit per sample. E  is 
the extension layer that used in conjunction with B  allows the reconstruction of the HDR image.
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gamma applied to the base and extension 
layers respectively. BU  has the objective 
to linearize the base layer, while BW
intends to better distribute values closer 
to zero in the extension layer. The scalar 
v  is an exposure parameter that scales 
the luminance of the output image to 
optimize the split between base and 
extension layers. 

Profile C also employs a sum to 
merge base and extension images, but 
here CU  not only approximates an 
inverse gamma transformation, but 
implements a global inverse tone-map-
ping procedure that approximates the 
(possibly local) tone-mapping operator 
(TMO) that was used to create the LDR 
image. The extension layer is encoded in 
the logarithmic domain directly, avoiding 
an additional transformation. Finally, log
and exp are substituted by piecewise lin-
ear approximations that are implicitly 
defined by reinterpreting the bit-pattern 
of the half-logarithmic IEEE representa-
tion of floating-point numbers as inte-
gers. It is then easily seen that this simple 
“casting” between number formats 
implements two functions log}  and 

exp}  that behave approximately like 
their precise mathematical counterparts, 
though they provide the additional 
advantage of being exactly invertible. 
The reconstruction algorithm for profile 
C can then be written: 

( , ) ( ( ( , ))

( , ) ( , , ) ),

expx y C x y

R x y 2 1 1 1

I B

E

C

T15

} U=

+ -

t

(3)

where ( ) ( ( )),logx xC C}U U=t  in which 
CU  is the global inverse tone-mapping 

approximation. 215  is an offset shift to 
make the extension image symmetric 
around zero. The code stream never spec-
ifies CU  directly, but rather includes a 
representation of CUt  in the form of a 
lookup-table, allowing to skip the time-
consuming computation of the logarithm. 

Lossless coding
An important feature of profile C is that it 
allows implementations operating entire-
ly with integers until the very last step, 
where the exponential generates floating-
point output. All of these operations, 
including the exponential mapping, are 

exactly invertible. Part 8 of JPEG XT 
defines now on this basis a lossless cod-
ing engine by fully specifying the DCT 
in the base layer, and by bypassing the 
DCT entirely in the extension layer. The 
reader may now verify that the entire 
operation chain has, indeed, an exact 
inverse as the coding residual the decoder 
requires for a given DCT and a given 
base image is exactly predictable by the 
encoder, and, hence, can be computed 
ahead to generate exactly the required 
sample values. 

Transport
Residual coding and refinement coding 
create additional code streams that need 
to be incorporated into the legacy JPEG 
syntax such that current decoders are 
able to see only the legacy LDR image 
and skip over the extension layers. A 
JPEG XT code stream may thus contain 
up to three side channels for image infor-
mation: 1) a refinement code stream, 2) a 
residual code stream, and 3) a residual-
refinement code stream. Accounting for 
the potential presence of an opacity layer, 
as defined in Part 9 of the standard, up to 
four additional code streams may be fur-
ther included: 1) an alpha channel, 2) a 
residual alpha channel, 3) an alpha chan-
nel refinement, and 4) a residual alpha 
channel refinement. This information is 
added to the metadata that configures the 
postprocessing chain of the decoder. 

The legacy JPEG syntax already 
includes a generic extension mechanism 
by using so-called application-specific 
(APP) markers JPEG XT reserves one of 
them. However, APP markers do not 
carry the data directly. Instead, their pay-
load consists of so-called boxes that yield 
a better and cleaner structure of its con-
tents. Boxes are not new to JPEG XT; 
they were previously introduced by the 
Moving Picture Experts Group (MPEG) 
and JPEG 2000. The payload data of a 
box is prefixed by a type and a size such 
that decoders unaware of a specific box 
type may simply ignore it. In summary, 
the JPEG XT file format is a JPEG code 
stream with APP markers whose con-
tents, when reassembled at the decoder, 
make up a single box, or a superbox con-
taining multiple other boxes (Figure 3). 
This is necessary because the capacity of 

a single APP marker is limited to 
64 Kbytes, whereas a box may be larger 
and span across several APP markers. 
Instructions describing how to assemble 
markers into boxes is included in the first 
bytes of the marker data itself. Legacy 
decoders will simply skip over the mark-
ers, and will also ignore all boxes and 
their data. 

The payload data of the boxes 
includes the metadata defining the post-
processor in the decoder or the entropy-
coded data of refinement and residual 
code streams. The decoder picks out the 
data it requires for its operation based on 
the type signaled in the header of the box. 

Testing and performances
The challenge of testing backward-com-
patible HDR compression is that the 
compression performance does not 
depend only on a single quality control 
parameter, but also on the quality settings 
for the base layer and on the choice of 
the TMO, which produces this layer. 
Therefore, the performance of JPEG XT 
needs to be evaluated using a compre-
hensive set of varying parameters and on 
a data set that covers a large set of stan-
dard’s use cases. 

The JPEG committee has carried out 
a large number of experiments, using 
both subjective and objective methodolo-
gies, to asses the capability of the JPEG 
XT. A set of 12 objective quality metrics 
were tested on 106 HDR images (resolu-
tions range from full HD to 4K) covering 
a high range of scenes typically captured 
in HDR images, including indoor, out-
door scenes, architecture, landscapes, 
portraits, frames from HDR video, and 
computer-generated images. All images 
were carefully selected by experts in 
HDR imaging from these publicly avail-
able data sets: Fairchild’s HDR Photo-
graphic Survey [8] and EPFL’s data set of 
HDR images [9]. 

Since a TMO can be freely selected 
for encoding and its selection is not part 
of JPEG XT specifications, we tested five 
different commonly used operators: 1) a 
simple gamma-based operator gamma,
2) a global logarithmic TMO [4] 
drago03, 3) a global version of the pho-
tographic operator [10] reihard02, 4) an 
operator optimized for encoding [11] 
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mai11, and 5) a local operator with 
strong contrast enhancement [12] man-
tiuk06. To fully understand the implica-
tions of the TMOs and JPEG XT 
parameters, all possible combinations 
of these parameters were tested. We 
used the combination of ten base quali-
ty levels #  ten extension layer quality 
levels #  five TMOs #  three profiles, 
which results in a total of 1,500 condi-
tions for each of the 106 images result-
ing in 159,000 tests. However, such a 
large number of conditions clearly can-
not be tested in a subjective experiment. 
Therefore, from the total 106 HDR imag-
es, a subset of 20 images was selected by 
experts for subjective evaluations and 
these images were adjusted for viewing 
on an SIM2 HDR monitor; see [13] for 
more details on the subjective evaluations. 

The results of subjective experiments 
are crucial to select the right image quali-
ty metric and to provide ground truth ref-
erence. However, a subjective experiment 
alone cannot cover the entire space of 
parameters. Due the tedious nature of 
those experiments, only a limited number 
of images can be tested, which makes the 
findings of such studies difficult to gener-
alize. For that reason, we analyzed com-
pression performances with respect to 
HDR-VDP-2 [14], the best-performing 
objective quality metric according to a 
set of evaluations. The image quality 
computed for a range of base and exten-
sion layer quality settings may result in 
arbitrary bit rates, making the results dif-
ficult to aggregate. Therefore, the predict-
ed quality values were linearly 
interpolated to find the HDR-VDP-2 
Q-scores for each desired bit rate. This 
step was necessary to determine average 
performance and confidence intervals for 
all tested profiles. 

In Figure 4, we compare the perfor-
mance of the three profiles with popular 
HDR image formats, including lossless 
OpenEXR, Radiance RGBE, lossy JPEG 
2000, and JPEG-XR (floating encoding). 
OpenEXR and Radiance offer lossless 
compression, however the loss happens 
when converting images to their internal 
pixel formats: 8-bit RGB channels and 
shared 8-bit mantissa (E) for Radiance 
RGBE; and 16-bit half-float (sign, 
5-bit exponent, 10-bit mantissa) for 

FIGURE 3. The JPEG XT file format: APP markers contain the boxes structure. Blue syntax elements were defined 
in the legacy JPEG standard, yellow elements were defined in later parts. The green Exif marker is defined outside 
of JPEG. The red APP11 markers are not part of the legacyJPEG standard and will thus be ignored by legacy JPEG 
readers. In contrast, JPEG XT readers will be able to interpret the payload data in the boxes that contain relevant JPEG 
XT information. Since the size of an APP marker is limited to 64 kB, a single box may extend over several markers; the 
RESI box carrying the residual code stream is a typical example. Otherwise, an APP marker or a series of APP mark-
ers contains a single box. This box may be, however, a superbox whose payload again consists of boxes. The SPEC
box defining the instructions how to reassemble the HDR image from base and exension image is a typical example.
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OpenEXR. Note that our reference imag-
es were stored in 32-bit per-color chan-
nel, uncompressed PFM files. JPEG 
2000 employs a lossy wavelet-based 
compression while JPEG-XR uses a two-
stage frequency transform, combining 
the features of both DCT and wavelet 
transforms. We can notice differences in 
quality performances between profiles, 
i.e., C versus A and B; however, these 
differences are above the predicted mean-
opinion-score (MOS) value of 4.6 and 
are unlikely to be noticeable [15]. 

HDR-VDP-2 did not detect any degra-
dation in quality for all OpenEXR com-
pression formats (HDRVDP_Q 100 is the 
highest quality), while small losses in qual-
ity were detected for Radiance RGBE. All 
of those lossless formats preserve very 
high quality but require at least 27 bits/
pixel. JPEG XT performs unexpectedly 
well when compared with other lossy 
compression methods. Below 10 bits/pixel, 
JPEG XT performs better than JPEG XR. 
Below 6 bits/pixel, the performance of 
JPEG XT is comparable to JPEG 2000, 
even though the former encodes an addi-
tional tone-mapped image and employs a 
standard DCT-based JPEG codec, rather 
than a more advanced compression algo-
rithms found in both JPEG 2000 and 
JPEG XR, which are newer. 

The additional precision of these for-
mats may be needed, however, if the con-
tent has to be edited, tone mapped, or 
further processed. Only profile C offers 
encoding at precisions matching those 
offered by OpenEXR format. The bit rate 
of profile C for the same quality is slightly 
higher. However, profile C encodes addi-
tionally a backward-compatible base layer, 
which is missing in OpenEXR images. 

Conclusions
The lack of an HDR image coding stan-
dard has caused the HDR imaging com-
munity to rely on specific vendor formats 
that are unsuitable for the exchange and 
storage of such images. This has clearly 
hampered the development of the HDR 
imaging technology so far. The new 
upcoming standard—JPEG XT, which is 
backward-compatible to the popular 8-bit 
mode of ISO/IEC 10918/ ITU Rec. T.81 
(also known as JPEG)—is the response 
to this situation. In this column, we have 

presented the design philosophy and the 
technical details of JPEG XT, followed 
by an extensive evaluation of its perfor-
mances. Objective evaluation demon-
strates the robustness of the upcoming 
standard to the influence of its parame-
ters: the quality for the base and exten-
sion layers and the tone mapping used 
for the base layer. The comparison to 
near-lossless and lossless existing for-
mats has shown that the upcoming stan-
dard is capable to encode HDR imaging 
with high MOS of 4.5 already with a bit-
rates varying from 1.1 to 1.5 bit/pixels, 
providing 23 times size reduction. 

Interestingly, some of the tools devel-
oped for JPEG XT to compress HDR 
images may also prove useful in other 
application use cases. In the future, JPEG 
will explore how to leverage on these 
new mechanisms in other contexts. For 
instance, the layered structure of JPEG 
XT is very appealing to provide images 
with privacy features. Sensitive parts 
could be obfuscated, e.g., blurred or pix-
elated, in the base layer accessible to 
everyone, whereas the extension material 
would contain these parts to which only 
individuals with necessary credentials 
could have access. Alternately, the lay-
ered structured of JPEG XT could also 
provide a means to record the editing his-

tory of a particular image file. The base 
layer would contain the latest version of 
the image, whereas the extension layers 
would enable the ability to travel back in 
time and get access to earlier versions of 
the image. Finally, the box structure of 
JPEG XT makes it a natural candidate to 
become part of JPEG 2000 Interactive 
Protocol, known as JPIP, an interactive 
image browsing protocol similar in 
essence to the proprietary Google Maps. 
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Adaptation, Detection, Estimation, and Learning 
Distributed detection and estimation 
Distributed adaptation over networks
Distributed learning over networks
Distributed target tracking 
Bayesian learning; Bayesian signal processing
Sequential learning over networks 
Decision making over networks 
Distributed dictionary learning 
Distributed game theoretic strategies
Distributed information processing 
Graphical and kernel methods 
Consensus over network systems 
Optimization over network systems 

Communications, Networking, and Sensing 
Distributed monitoring and sensing 
Signal processing for distributed communications and 
networking
Signal processing for cooperative networking 
Signal processing for network security 
Optimal network signal processing and resource 
allocation 

Modeling and Analysis 
Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
Wireless/mobile multimedia 

Data Analysis 
Processing, analysis, and visualization of big data 
Signal and information processing for crowd 
computing 
Signal and information processing for the Internet of 
Things 
Emergence of behavior 

Emerging topics and applications 
Emerging topics 
Applications in life sciences, ecology, energy, social 
networks, economic networks, finance, social 
sciences, smart grids, wireless health, robotics, 
transportation, and other areas of science and 
engineering 
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IEEE TRANSACTIONS ON

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:

Editor-in-
-ieee 

Now accepting paper submissions

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org/
https://mc.manuscriptcentral.com/tsipn-ieee
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [6]  MARCH 2016

Over the past few decades, online social networks such as  and  have significantly changed the way 
people communicate and share information with each other. The opinion and behavior of each individual are heavily 
influenced through interacting with others. These local interactions lead to many interesting collective phenomena 
such as herding, consensus, and rumor spreading. At the same time, there is always the danger of mob mentality of 
following crowds, celebrities, or gurus who might provide misleading or even malicious information. Many efforts 
have been devoted to investigating the collective behavior in the context of various network topologies and the 
robustness of social networks in the presence of malicious threats. On the other hand, activities in social networks 
(clicks, searches, transactions, posts, and tweets) generate a massive amount of decentralized data, which is not only 
big in size but also complex in terms of its structure. Processing these data requires significant advances in accurate 
mathematical modeling and computationally efficient algorithm design. 
Many modern technological systems such as wireless sensor and robot networks are virtually the same as social 
networks in the sense that the nodes in both networks carry disparate information and communicate with constraints. 
Thus, investigating social networks will bring insightful principles on the system and algorithmic designs of many 
engineering networks. An example of such is the implementation of consensus algorithms for coordination and 
control in robot networks. Additionally, more and more research projects nowadays are data-driven. Social networks 
are natural sources of massive and diverse big data, which present unique opportunities and challenges to further 
develop theoretical data processing toolsets and investigate novel applications. This special issue aims to focus on 
addressing distributed information (signal, data, etc.) processing problems in social networks and also invites 
submissions from all other related disciplines to present comprehensive and diverse perspectives. 
Topics of interest include, but are not limited to: 

Dynamic social networks: time varying network topology, edge weights, etc. 
Social learning, distributed decision-making, estimation, and filtering 
Consensus and coordination in multi-agent networks 
Modeling and inference for information diffusion and rumor spreading 
Multi-layered social networks where social interactions take place at different scales or modalities 
Resource allocation, optimization, and control in multi-agent networks 
Modeling and strategic considerations for malicious behavior in networks 
Social media computing and networking 
Data mining, machine learning, and statistical inference frameworks and algorithms for handling big data 
from social networks 
Data-driven applications: attribution models for marketing and advertising, trend prediction, 
recommendation systems, crowdsourcing, etc. 
Other topics associated with social networks: graphical modeling, trust, privacy, engineering applications, 
etc. 

Manuscript submission due: September 15, 2016
First review completed: November 1, 2016 
Revised manuscript due: December 15, 2016 
Second review completed:  February 1, 2017 
Final manuscript due: March 15, 2017 
Publication: June 1, 2017 

Zhenliang Zhang, Qualcomm Corporate R&D (zhenlian@qti.qualcomm.com)
Wee Peng Tay, Nanyang Technological University (wptay@ntu.edu.sg)
Moez Draief, Imperial College London (m.draief@imperial.ac.uk)
Xiaodong Wang, Columbia University (xw2008@columbia.edu)
Edwin K. P. Chong, Colorado State University (edwin.chong@colostate.edu)
Alfred O. Hero III, University of Michigan (hero@eecs.umich.edu)
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CALL FOR PAPERS
IEEE/ACM Transactions on Audio, Speech and Language Processing 

Special issue on Sound Scene and Event Analysis

It is still difficult for a machine listening system to demonstrate the same capabilities as human
listeners in the analysis of realistic acoustic scenes. Besides speech and music, the analysis of other
types of sounds, generally referred to as environmental sounds, is the subject of growing interest 
from the community and is targeting an ever increasing set of audio categories. In realistic 
environments, multiple sources are often present simultaneously, and in reverberant conditions, 
which makes the computational scene analysis challenging.

Typical tasks on audio scene analysis are audio-based scene classification and audio event detection 
and recognition targeting categories such as “door knocks”, “gunshots”, “crowds”, “car engine
noise”, as well as marine mammal and bird species, etc. The wide heterogeneity of possible sounds
means that novel types of signal processing and machine learning methods should be developed 
including novel concepts for audio source segmentation and separation. Beyond recognizing sound
scenes and sources of interest, a key task of complex audio scene analysis is sound-source 
localization.

Further, most of the methods developed until now are probably not tractable on big data so there is 
also a need for new approaches that are, by design, efficient on large scale problems. Acquiring large
scale labelled databases is still problematic and such datasets are most likely collected on
heterogeneous sets of acoustic conditions (mobile phone recordings, urban/domestic audio,…) most 
of which are usually offering a degraded version of the signal of interest with potential variable 
annotation strategies. Therefore methods to tackle large scale problems also have to be robust against 
signal degradation, acoustic variability, and annotation variability.

We invite papers on various topics on Sound Scene and Event Analysis, including but not limited to :

* Audio scene classification; * Big data in environmental audio;
* Sound event detection and classification                    * Environmental sound recognition;
* Large-scale environmental audio data sets; * Computational auditory scene analysis;
* Acoustic features for environmental sound analysis;
* Source localization methods for environmental audio scene analysis
* Source separation for environmental audio scene analysis

The authors are required to follow the Author’s Guide for manuscript submission to the IEEE
/ACM Transactions on Audio, Speech, and Language Processing at
http://www.signalprocessingsociety.org/publications/periodicals/taslp/

Important Dates:
Manuscript submission due: July 1st, 2016
First review completed: Sept. 30th 2016 
Revised manuscript due: October 20th, 2016 
Second review completed: Dec. 1st, 2016
Final manuscript due: Dec. 31st, 2016
Publication date: February 2017

Guest Editors:
Gaël Richard, Télécom ParisTech, France (lead guest editor) 
Tuomas Virtanen, Tampere University of Technology, Finland 
Juan Pablo Bello, New York University, USA
Nobutaka Ono, National Institute of Informatics, Japan
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PAPERS
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yang, B. Price, X. Shen, Z. Lin, and J. Yuan 503

Sub-Markov Random Walk for Image Segmentation http://dx.doi.org/10.1109/TIP.2015.2505184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Dong, J. Shen, L. Shao, and L. Van Gool 516

GMM Estimation of 2D-RCA Models With Applications to Texture Image Classification http://dx.doi.org/10.1109/TIP.2015.2494740 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Boulemnadjel, F. Hachouf, and S. Kharfouchi 528

Removal of Vesicle Structures From Transmission Electron Microscope Images http://dx.doi.org/10.1109/TIP.2015.2504901 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. H. Jensen, F. J. Sigworth, and S. S. Brandt 540

Detecting Densely Distributed Graph Patterns for Fine-Grained Image Categorization http://dx.doi.org/10.1109/TIP.2015.2502147 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhang, Y. Yang, M. Wang, R. Hong, L. Nie, and X. Li 553

Quaternionic Local Ranking Binary Pattern: A Local Descriptor of Color Images http://dx.doi.org/10.1109/TIP.2015.2507404 . . . . . . . . . . . . . . .
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IEEE TRANSACTIONS ON

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

W. Clem Karl
Boston University
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Service Experiences and Analysis
Smart Cities, Smart Public Places, Smart Home/Building Automation
e-Health, e-Wellness, Automotive, Intelligent Transport
Smart Grid, Energy Management
Consumer Electronics, Assisted Living, Rural Services and Production
Industrial IoT Service Creation and Management Aspects
Crowd-sensing, human centric sensing
Big data and IoT Data Analytics
Internet Applications Naming and Identifiers
Semantic Technologies, Collective Intelligence
Cognitive and Reasoning about Things and Smart Objects
Mobile Cloud Computing (MCC) and IoT
IoT Multimedia

IoT Societal Impacts
Human Role in the IoT, Social Aspects and Services
Value Chain Analysis and Evolution Aspects
New Human-Device Interactions for IoT, Do-It-Yourself
Social Models and Networks
Green IoT: Sustainable Design and Technologies
Urban Dynamics and crowdsourcing services
Metrics, Measurements, and Evaluation of IoT Sustainability and ROI
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MMSP 2016 is the 18th International Workshop on Multimedia Signal Processing. The 
workshop is organized by the Multimedia Signal Processing Technical Committee of the IEEE 
Signal Processing Society. This year’s event has a theme of ‘

.’ 

The multimedia communications industry is going through a phase of rapid development and 
new services are emerging continuously, such as multimedia telepresence, augmented and 
virtual reality, immersive gaming, multimedia human-computer interfaces, and novel sensory 
interfaces, to name a few. Moreover, traditional multimedia content (e.g., audio, video, images)
is increasingly being delivered over heterogeneous networks and consumed in a wide variety 
of formats, bit and compression rates, and display sizes. Ultimately, the success or failure of an 
emerging multimedia service will rely on the end-user's perception of quality and quality-of-
experience. As such, in order to remain competitive, service providers have to ensure that end-
users are delivered media content that is fulfilling, engaging, and, of course, of high quality. 
This is not a simple task and requires insights from multiple disciplines, such as engineering, 
computer science, psychology, and cognitive science, to name a few. The goal of the 2016 
International Workshop on Multimedia Signal Processing will be to bring experts from such 
interdisciplinary domains to discuss ways of Enhancing the Multimedia Experience in the 21st 
Century.

Papers are solicited in (but not limited to) the following areas, covering not only the 
workshop’s theme, but also the general scope of multimedia signal processing:

1. Augmented, mixed and virtual reality
2. Multiple sensorial media (mulsemedia) and multimedia environments
3. Multimedia signal processing in immersive gaming
4. Multimedia enhancement
5. Human-centric multimedia signal processing
6. Affective computing and cross-media sentiment analysis
7. Media algorithm optimization and complexity analysis
8. Multimedia applications in the humanities (finance, business analytics), health, and 

consumer domains
9. Image/video coding and processing
10. Speech/audio coding and processing
11. Multimedia traffic, communications and heterogeneous interactions

Proposals for Special Sessions: March 15, 2016
Submission of Papers: 
Notification of Acceptance: June 30, 2016
Camera Ready Deadline: July 10, 2016
Conference Dates: September 21-23, 2016

General Co-Chairs
Christine GUILLEMOT, INRIA, France
Douglas O’SHAUGHNESSY, INRS-EMT, 

Canada

Technical Program Co-Chairs
Ricardo DE QUEIROZ, Universidade de 

Brasilia, Brazil;
Tiago H. FALK, INRS-EMT, Canada
Shrikanth NARAYANAN, University of 

Southern California, USA.

Plenary and Panel Co-Chairs
Zhou WANG, University of Waterloo, 

Canada
Dong XU, Nanyang Technological 

University, Singapore.

Local Arrangements Chair:
Jean-Charles GRÉGOIRE, INRS-EMT, 

Canada.

Finance Chair
Fabrice LABEAU, McGill University,

Canada.

Publicity Chair
Alexandros POTAMIANOS, National 

Technical University of Athens, Greece.

Publications Chair
Xiaokang YANG, Shanghai Jiao Tong 

University, China.

Special Sessions Co-Chairs:
Alain APRIL École de Technologie 

Supérieure (ETS), Canada.
Mohamed CHÉRIET, École de 

Technologie Supérieure (ETS), Canada.

Demo/industry Co-Chairs
Stéphane COULOMBE, École de 

Technologie Supérieure (ETS), Canada
Sebastian MÖLLER, TU Berlin, Germany.

Europe Liaison
Benoit MACQ, Université catholique de 

Louvain, Belgium.
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Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.    
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 
  engineering—digital

10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 
  management
5. Design engineering management
  —analog
6. Design engineering management
  —digital
7. Research and development
  engineering
8. Design/development engineering
  —analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2016 IEEE MEMBERSHIP APPLICATION  

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone

Primary E-mail

Secondary Address

Company Name Department/Division

Street Address  City State/Province

Postal Code Country

Secondary Phone  

Secondary E-mail

 Home  Business  (All IEEE mail sent here)  

 Home  Business  

(continued on next page)
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IEEE Aerospace and Electronic Systems AES010 25.00 12.50

IEEE Antennas and Propagation AP003 15.00 7.50

IEEE Broadcast Technology BT002 15.00 7.50

IEEE Circuits and Systems CAS004 22.00 11.00

IEEE Communications C0M019 30.00 15.00

IEEE Components, Packaging, & Manu. Tech. CPMT021 15.00 7.50

IEEE Computational Intelligence CIS011 29.00 14.50

IEEE Computer C016 56.00 28.00

IEEE Consumer Electronics CE008 20.00 10.00

IEEE Control Systems CS023 25.00 12.50

IEEE Dielectrics and Electrical Insulation DEI032 26.00 13.00

IEEE Education E025 20.00 10.00

IEEE Electromagnetic Compatibility EMC027 31.00 15.50

IEEE Electron Devices ED015 18.00 9.00

IEEE Engineering in Medicine and Biology EMB018 40.00 20.00

IEEE Geoscience and Remote Sensing GRS029 19.00 9.50

IEEE Industrial Electronics IE013 9.00 4.50

IEEE Industry Applications IA034 20.00 10.00

IEEE Information Theory IT012 30.00 15.00

IEEE Instrumentation and Measurement IM009 29.00 14.50

IEEE Intelligent Transportation Systems ITSS038 35.00 17.50

IEEE Magnetics MAG033 26.00 13.00

IEEE Microwave Theory and Techniques MTT017 17.00 8.50

IEEE Nuclear and Plasma Sciences NPS005 35.00 17.50

IEEE Oceanic Engineering OE022 19.00 9.50

IEEE Photonics PHO036 34.00 17.00

IEEE Power Electronics PEL035 25.00 12.50

IEEE Power & Energy PE031 35.00 17.50

IEEE Product Safety Engineering PSE043 35.00 17.50

IEEE Professional Communication PC026 31.00 15.50

IEEE Reliability RL007 35.00 17.50

IEEE Robotics and Automation RA024 9.00 4.50

IEEE Signal Processing SP001 22.00 11.00

IEEE Social Implications of Technology SIT030 33.00 16.50

IEEE Solid-State Circuits SSC037 22.00 11.00

IEEE Systems, Man, & Cybernetics SMC028 12.00 6.00

IEEE Technology & Engineering Management TEM014 35.00 17.50

IEEE Ultrasonics, Ferroelectrics, & Frequency Control UFFC020 20.00 10.00

IEEE Vehicular Technology VT006 18.00 9.00

PROMO CODECAMPAIGN CODE

 Yes     No     If yes, provide the following:

Member Recruiter Name ___________________________________

IEEE Recruiter’s Member Number (Required) ______________________

Credit Card Number

Name as it appears on card

Signature

Proceedings of the IEEE ................... print $47.00 or online $41.00
Proceedings of the IEEE (print/online combination) ..................$57.00
IEEE Standards Association (IEEE-SA) ................................................$53.00
IEEE Women in Engineering (WIE) .....................................................$25.00

Please total the Membership dues, Society dues, and other amounts 
from this page:
IEEE Membership dues    ............................................................. $_______
IEEE Society dues (optional)     ................................................. $_______
IEEE-SA/WIE dues (optional)    .................................................. $_______
Proceedings of the IEEE (optional)    ....................................... $_______
Canadian residents pay 5% GST or appropriate HST (BC—12%; NB, NF,
ON-13%;NS-15%) on Society payments & publications only.....................TAX $_______

AMOUNT PAID ................................................................................TOTAL $_______

Payment Method
All prices are quoted in US dollars. You may pay for IEEE membership 
by credit card (see below), check, or money order payable to IEEE, 
drawn on a US bank.

6

CARDHOLDER’S 5-DIGIT ZIPCODE

(BILLING STATEMENT ADDRESS) USA ONLY

MONTH                   YEAR
EXPIRATION DATE

5

7

7

Check

Please reprint your full name here

BETWEEN
1 MAR 2016-
15 AUG 2016

PAY

BETWEEN
 16 AUG 2015-
28 FEB 2016

PAY

Complete both sides of this form, sign, and return to:
IEEE MEMBERSHIP APPLICATION PROCESSING
445 HOES LN, PISCATAWAY, NJ 08854-4141 USA
or fax to +1 732 981 0225
or join online at www.ieee.org/join

Add IEEE Society Memberships (Optional)5 2016 IEEE Membership Rates 
(student rates available online)

6

More Recommended Options7

Payment Amount8

Were You Referred to IEEE?9

1
5

-M
EM

-3
8

5
 P

 6
/1

5

Minimum Income or Unemployed Provision
Applicants who certify that their prior year income did not exceed US$14,700
(or equivalent) or were not employed are granted 50% reduction in: full-year dues,
regional assessment and fees for one IEEE Membership plus one Society Membership. 
If applicable, please check appropriate box and adjust payment accordingly. Student 
members are not eligible.

I certify I earned less than US$14,700 in 2015
I certify that I was unemployed in 2015

The 39 IEEE Societies support your technical and professional interests.
Many society memberships include a personal subscription to the core journal, 
magazine, or newsletter of that society. For a complete list of everything 
included with your IEEE Society membership, visit www.ieee.org/join. 
All prices are quoted in US dollars.

Please check the appropriate box.

One or more Society publications

Society newsletter

Legend—Society membership includes:
Online access to publication

CD-ROM of selected society 
publications

IEEE member dues and regional assessments are based on where 
you live and when you apply. Membership is based on the calendar 
year from 1 January through 31 December. All prices are quoted 
in US dollars.

Please check  the appropriate box.

RESIDENCE
United States .................................................................$197.00 ............. $98.50
Canada (GST)*.............................................................$173.35 ............... $86.68
Canada (NB, NF and ON HST)*...........................$185.11 ............... $92.56
Canada (Nova Scotia HST)*...................................$188.05 ............... $94.03
Canada (PEI HST)*.....................................................$186.58 ............... $93.29

Canada (GST and QST Quebec)..........................$188.01 ............... $94.01
Africa, Europe, Middle East......................................$160.00 ............... $80.00
Latin America.................................................................$151.00 ............... $75.50
Asia, Pacific .....................................................................$152.00 ............... $76.00
*IEEE Canada Business No. 125634188

Auto Renew my Memberships and Subscriptions (available when paying by credit card).
I agree to the Terms and Conditions located at www.ieee.org/autorenew

BETWEEN
16 AUG 2015-
28 FEB 2016
PAY

BETWEEN
1 MAR 2016-
15 AUG 2016

PAY
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