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[from the EDITOR]
Min Wu

Editor-in-Chief 
minwu@umd.edu

T
 wenty years ago I joined the 
IEEE and the IEEE Signal Pro-
cessing Society (SPS) as a Stu-
dent Member. I still remember 
my excitement when I received 

my copy of IEEE Signal Processing Maga-
zine (SPM) in the mail, which was a big deal 
for an undergraduate student! I probably 
only had the background to understand part 
of the content in the magazine, but still, it 
was valuable exposure to this exciting field. 

Jack Deller was the editor-in-chief of the 
very first issue of SPM I received. It was only 
last year that I had the opportunity to meet 
him in person, but his leadership effort 
paved a foundation for the critical growth of 
SPM in 1991–1997. SPM was attractive to 
many young people, including me, to pur-
sue signal processing.

My graduate study years coincided 
mostly with Aggelos Katsaggelos’ term as 
editor-in-chief (1997–2002). SPM has 
served as an important reference for gradu-
ate students like me. I remember reading 
the wonderful series of overviews reflecting 
the past, present, and future of a number of 
technical areas in celebration of the 50th 
anniversary of SPS. Under the transforma-
tive leadership of K.J. Ray Liu (2003–2005), 
SPM reformed its operation with openness 
and diversity, expanded its content cover-
age, modernized its design, and topped the 
citation impact ranking. Since then, I was 
fortunate to have opportunities to become a 
part of the SPM team and work closely with 
three recent editors-in-chief, Shih-Fu 
Chang (2006–2008), Li Deng (2009–2011), 
and Abdelhak Zoubir (2012–2014). 
Through their collective efforts, these col-
leagues before me have brought about a 
high reputation for the magazine.

Given the depth and breadth of SPM 
articles, it is not surprising that this maga-
zine contributes to the technical growth and 
enrichment of graduate students and 
researchers. Still, I can’t help but recalling 
where I first started reading the magazine—
as an undergraduate. What can SPM do to 
serve and engage undergraduate students, 
the future generation of our Society? Here 
are a few highlights. 

This year, we engaged in active discus-
sions with the magazine team and many 
readers on how to make articles accessible, 
particularly for students and practitioners. 
We reached a consensus to uphold SPM’s 
tradition in keeping the number of mathe-
matical equations to the minimum 
amount necessary; combined with other 
practices on presentation styles, the goal is 
to make articles appealing to the majority 
of our readership. It’s easier said than 
done, and this may take some time for 
authors to work on their articles. We 
appreciate their cooperation. 

We have also been soliciting articles and 
special issues on timely topics that can draw 
readers’ attention and stimulate their inter-
ests. Signal processing for computational 
photography and smart vehicles are two 
such examples that students and other 
readers can relate to their everyday lives. We 
look forward to sharing these with you in 
the coming year.

In parallel, we are bringing in-depth 
coverage of student activities. The July, Sep-
tember, and November 2015 issues of the 
magazine have featured a series of articles 
on the SP Cup competition, the Society’s 
new initiative to engage undergraduate stu-
dents. Special thanks to the past and cur-
rent Student Service Directors Kenneth 
Lam and Patrizio Campisi, respectively,  and 
the competition organizers, Carlos Sorzano 
and Zhilin Zhang, for their informative arti-
cles about the first two SP Cup competi-

tions. The SP Cup is now open for the third 
edition. You can find more information in 
the “SP Education” column on page 113 in 
this issue.

We have also opened up the prestigious 
platform of the magazine to the students’ 
voices and thoughts so that the magazine is 
not just a passive one-way communication 
to these burgeoning minds. For the first 
time, articles in the magazine included 
reflections in the students’ own words as 
they participated in (and won) the SP Cup 
competition. Invitations have also been 
extended to the broad community to share 
their thoughts about career perspectives 
and signal processing in everyday life. In 
addition, we have been working with a 
group of volunteers to gather and compile 
contributions from undergraduate students 
and educators on exciting undergraduate 
design projects related to signal and infor-
mation processing. Stay tuned for this con-
tent, and please encourage undergraduate 
students to contribute by answering the call 
for contributions that are open. 

Beyond pursuing cutting-edge research, 
many undergraduate and graduate students 
with signal processing training usually join 
industry workforces. Students need to stay 
current, track the technical trends, gather 
practical tips and know-how, and build and 
extend their professional network. We are 
working on shaping timely, accessible, and 
informative content to meet their needs. It 
is a privilege for SPM to welcome under-
graduates at the beginning of their careers 
and stay by their sides to offer them a help-
ing hand. Please do not hesitate to give us 
feedback on how we are doing and sugges-
tions on what we can do to serve you better.

[SP]

Engaging Undergraduate Students
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Alex Acero 
2014–2015 SPS President

a.acero@ieee.org

Signal Processing: The Science Behind Our Digital Life

S
ignal processing is found in 
almost every modern gadget. 
Smartphones allow a user to 
input text with his/her voice,
take high-quality photos, and 

authenticate him/herself through finger-
print analysis. Wearable devices reveal 
heart rate and calories burned during a 
run. Consumers’ TV experiences include 
access to content in 3D and 4K, with 
conveniences such as pause and rewind. 
Game consoles let users interact with 
the game by tracking their arm motions. 
Hearing aids improve millions of lives. 
Ultrasound machines and medical scans 
are life-saving advances in health care. 
These are just a few of the benefits we 
gain from signal processing.

While signal processing is a key tech-
nology in most consumer devices, the term 
remains invisible—or irrelevant—to most 
people. If we want our gadgets to continue 
to expand the range of features powered by 
signal processing, we need a higher num-
ber of engineers trained in this field com-
ing out of engineering schools. But many 
college freshmen don’t know what signal 
processing is and thus may decide to pur-
sue other fields. If we want to advance the 
field of signal processing, we also need con-
tinued research funding—yet decision 
makers in funding government agencies 
don’t necessarily understand that, to build 
such new capabilities, you need more than 
just computer scientists.

To tackle our visibility challenge, the 
Board of Governors of the IEEE Signal 
Processing Society (SPS) set up a com-
mittee to investigate this issue with the 
help of a public relations firm. The stra-
tegic awareness plan focused on creating 
excitement for signal processing and 
spurring a desire for students to pursue 
the field as a viable career path. The first 
outcome of this plan was the tagline 
“Signal Processing: The Science Behind 
Our Digital Life.” This message empha-
sizes the criticality of signal processing 
in daily life and is flexible, allowing us to 
create a variety of stories that relate to 
students, professionals, and grant writers 
while maintaining a consistent brand.

In addition, SPS President-Elect Rabab 
Ward has been leading the development of 
short videos that explain what signal pro-
cessing is and, at the same time, motivate 
viewers to learn more. A two-minute 
video, “What Is Signal Processing?,” with 
an overview of the field [1] was uploaded 
in September 2014. The next step was 
videos focused on areas within signal pro-
cessing, with a six-minute video [2]  “Sig-
nal Processing and Machine Learning,” 
which was uploaded in July 2015. I 
encourage you to watch both of them. 
And stay tuned for more videos!

We are also working on other initia-
tives to address the needs of the four 
constituencies we’ve identified: stu-
dents, practicing engineers, academics, 
and the general public. Initiatives 
include a new website, to go live soon, 
and social media efforts to build on the 
Society’s existing Facebook, LinkedIn, 

and Twitter presence. We have set up an 
IT committee led by Rony Ferzli to 
oversee the computing infrastructure 
needed to support our website, as well 
as mobile apps for Society conferences.

This process starts by creating and 
driving a focused dialogue among indus-
try influencers, publishers, other compa-
nies, and customers. We have identified 
lead spokespeople, academic and industry 
contributors, and social engagement driv-
ers to help us in this quest. Some of the 
things we’ll be doing include: proactive 
media outreach, launch and promote 
monthly Twitter chats, promote SPS 
Technical Committee demonstration vid-
eos, upload a series of whiteboard videos 
on signal processing applications, and cre-
ate a toolkit for SPS Chapters to engage 
students and industry members locally.

If you have any suggestions on how 
to improve the visibility of signal pro-
cessing, please contact me at a.acero@
ieee.org or SPS Membership and Content 
Administrator Jessica Perry at jessica.
perry@ieee.org. 

REFERENCES
[1] YouTube.com. “What is signal processing?” 
[Online]. Available: https://youtu.be/EErkgr1MWw0

[2] YouTube.com. “Signal processing and machine 
learning.” [Online]. Available: https://youtu.be/
EmexN6d8QF9o
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Opening the Door to Innovative Consumer Technologies

F
or decades, signal processing has 
played a key role in the develop-
ment of sophisticated consumer 
products. From personal audio 
and video systems to cameras to 

smartphones to satellite navigation sys-
tems and beyond, signal processing has 
helped manufacturers worldwide develop 
a wide range of innovative and affordable 
consumer devices.

Now, consumer electronics manufactur-
ers are entering fresh areas, including new 
types of personal entertainment, diet man-
agement, and health-monitoring devices. 
As products in these and other emerging 
fields are designed, tested, and brought to 
market, signal processing continues to play 
essential roles in advancing device innova-
tion, performance, and efficiency.

MUSIC THAT KNOWS YOU
The Internet is awash with millions upon 
millions of songs, more melodies than 
anyone could ever listen to in several life-
times. As the sea of Internet music ex-
pands and deepens, finding new songs that 
matches one’s personal tastes and prefer-
ences is becoming increasingly more diffi-
cult and time-consuming.

Back in 2006, Gert Lanckriet (Figure 1), 
a professor of electrical and computer engi-
neering at the University of California, San 
Diego (UCSD), recognized this problem 
and began designing algorithms and relat-
ed coding that would enable computers to 
automatically analyze and annotate musi-
cal content. Working with researchers at 
the UCSD Computer Audition Laboratory, 
Lanckriet started assembling the founda-
tion for a new breed of Internet music 
search and recommendation engines that 

would automate discovery and play-listing 
for online music platforms.

“We decided to use signal processing 
and machine learning to build a system 
and a technology that ingested audio wave-
forms, basically songs, and then automati-
cally associated those songs with tags,” 
Lanckriet says. “We built this technology 
where a computer listens to millions of 
songs—with signal processing and ma-
chine learning—to associate them with the 
appropriate tags, and one could then search 
for music by entering certain semantic de-
scriptions.” Such descriptions could be al-
most anything related to a musical style, 
genre, instrument, or mood, such as “cool 
jazz” or “romantic soprano opera aria.”

The research led to the development of 
a prototype music search engine that 
Lanckriet describes as a “Google for Mu-
sic.” To give the pattern recognition tech-
nology enough examples to work with, the 
researchers placed a crowdsourcing game 
called Herd It on Facebook. “The person 
who was playing the game would listen to 
a song, and then would provide feedback 
as to which tags are applicable to that 
song,” Lanckriet says.

“You take all these examples and our al-
gorithms will process them using signal 
processing, and then pattern recognition, 
to figure out what audio patterns associated 
with some tags have in common,” Lanckri-
et says. Once enough sample tagged songs 
are collected, the algorithms are able to 
work at maximum effectiveness and effi-
ciency to apply relevant tags to any music 
their host computer encounters. “We need 
this type of automation, since even people 
manually tagging songs all day long could 
never keep pace with the number of songs 
now being uploaded to the Internet.”

The researchers then moved to im-
prove the technology by giving users the 
ability to find songs that are similar to 

tunes that they already know and listen to 
regularly. “We were able to also create al-
gorithms where users would create a que-
ry not with a semantic question, but with 
five or ten songs they like, and we would 
generate playlists of similar songs,” Lanck-
riet explains. “Again, it uses signal pro-
cessing and machine learning to do that.”

Now, Lanckriet and his team are plan-
ning to break new ground by giving peo-
ple the ability to listen to music that 
matches their current mood, environ-
ment, and activity via the various sensors 
built into mobile phones, smart watches, 
and other wearable devices. “These devices 
are literally jam-packed with things like 
accelerometers, gyroscopes, microphones, 
light sensors, temperature sensors, heart 
rate monitors, and so on,” Lanckriet says. 
“We can use all of these sensors to detect 
the wearer’s current activity and mood 
and then deliver the most appropriate mu-
sic for that situation.”

Lanckriet admits that, as the project 
moves forward, he and his coresearchers 
are facing a complex challenge. “What fea-
tures or descriptors will allow us to extract 
the most meaningful information from 
each of these sensor signals?” he asks. 
“You have all of these different types of sig-
nals, and you can’t process every signal in 
the same way; an audio signal is not the 
same as an accelerometer signal.” With 
many mobile devices now incorporating as 
many as a dozen sensors, the task is 
daunting. “That is one very specific chal-
lenge on the signal processing level that 
we will have to address,” Lanckriet says.

Although the project is still in its early 
stages, Lanckriet is already looking toward 
potential consumer applications. “Eventu-
ally, we hope that there will be personal-
ized radio stations that select songs for you 
that are adapted to your mood or activity at 
various times during the day,” he says. 

John Edwards
[special REPORTS]
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“The system, for example, would know you 
like to listen to a certain type of music 
while you are waking up or working out 
and play it automatically at those times.”

HONESTY IN EATING
Obesity is one of the world’s major health 
concerns. Compounding the problem 
and its treatment is the fact that people 
are not always honest with themselves 
when it comes to tracking what they eat 
and then reporting that information to 
physicians, nutritionists, and other 
health professionals.

Edward Sazonov, an associate professor 
of electrical and computer engineering at 
the University of Alabama (Figure 2), wants 
to increase diet data accuracy with a sensor 
device that is worn unobtrusively around 
its user’s ear. The unit would silently and 
automatically track meals, giving both 
consumers and health professionals hon-
est, accurate information. “The sensor 
could provide objective data, helping us 
better understand patterns of food intake 
associated with obesity and eating disor-
ders,” he says. Sazonov is the lead on a 
US$1.8 million, five-year grant from the 
National Institutes of Health to test the 
practical accuracy of the wearable sensor 
in tracking diet.

According to Sazonov, the Automatic 
Ingestion Monitor (AIM) records its user’s 
food intake by automatically capturing 
food images and then estimating the mass 
and the energy content of ingested food. 
The sensor feels vibrations from move-
ment in the jaw during food intake, and 

the device is designed to filter out jaw mo-
tions, such as speaking, that are not relat-
ed to either drinking or eating. “Through 
signal processing and pattern recognition, 
we are able to recognize this jaw motion 
on top of other activities such as speaking, 
or physical activity such as walking, and 
differentiate these,” Sazonov explains.

The current prototype (Figure 3) is 
based on an earpiece with a camera that is 
mounted on the top of the unit and a 
piezoelectric jaw motion sensor located on 
the bottom. Collected data is relayed wire-
lessly via Bluetooth technology to an appli-
cation running on a smartphone or tablet.

An earlier lanyard-worn prototype used 
a custom-built electronic circuit powered 
by a Li-polymer 3.7 V 680 mA h battery. The 
circuit incorporated an MSP430F2417 pro-
cessor with an eight-channel, 12-bit analog-
to-digital converter that was used to sample 
analog sensor signals. Also included were an 
RN-42 Bluetooth module with a serial port 
profile, a preamplifier for the jaw motion 
sensor (sampled at 1 kHz), a radio-frequen-
cy receiver for the hand-to-mouth gesture 
sensor (sampled at 10 Hz), a low-power 
three-axis accelerometer for capturing body 
acceleration (sampled at 100 Hz), and a self-
report push button (sampled at 10 Hz) that 
was used in tests for pattern recognition al-
gorithm development and validation and is 
not required in current models.

Signal processing plays a critical role in 
the device’s operation. “We use a number 
of different techniques, particularly filter-
ing and noise cancellation techniques,” Sa-
zonov says. Because AIM’s sensors register 

information from multiple sources, inde-
pendent component analysis is used to dif-
ferentiate the sources. “We want to hear 
the chewing but eliminate the other physi-
cal activity in the signal,” Sazonov says.

As with any wearable device, it is impor-
tant to find ways of speeding performance 
while minimizing power consumption and 
overall device size and weight. “We are ac-
tually looking at signal processing methods 
that have lower computational intensity,” 
Sazonov says. “For example, if you can sub-
stitute one feature that requires a lot of 
processing power with a similar feature 
that can do the job in recognizing food in-
take events but requires maybe hundreds 
or thousands time less computing power, 
that is what we are doing.”

The information AIM generates could 
be used to improve behavioral weight- 
loss strategies or to develop new kinds of 
weight-loss interventions. In addition, 
the AIM could also provide an objective 
method of assessing the effectiveness of 
pharmacological and behavioral inter-
ventions for eating disorders.

BREATHING EASIER
Helping people determine the quality of 
the air they are breathing was the goal of a 
team of Carnegie Mellon University robot-
ics researchers four years ago as they began 
developing the technology that would ulti-
mately be known as Speck. The research-
ers, led by Illah Nourbakhsh, a Carnegie 
Mellon professor of robotics, envisioned 
Speck as a personal air pollution monitor 
that would enable users to monitor the 

[FIG1] Gert Lanckriet, a professor of electrical and computer 
engineering at UCSD, records a sample melody. (Photo 
courtesy of Gert Lanckriet, UCSD.)

[FIG2] Edward Sazonov, an associate professor of electrical 
and computer engineering at the University of Alabama,
working at his test bench. (Photo courtesy of Edward 
Sazonov, University of Alabama.)
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[special REPORTS]continued

level of fine particulate matter suspended 
in the air inside their homes, helping them 
assess if their health is at risk.

With Speck now completed and avail-
able for sale (Figure 4), the researchers feel 
that they have reached their planned goal. 
Speck offers consumers insights into expo-
sure to particulates known as PM2.5. PM2.5 
particles are air pollutants with a diameter 
of 2.5 μm or lower, small enough to invade 
even the smallest airways. These particles 
generally come from activities that burn fos-
sil fuels, such as traffic, as well as industrial 
activities such as smelting and metal pro-
cessing. Knowledge of current particulate 
levels can help people to reduce exposure by 
opening or closing windows, altering activi-
ties, or taking action such as using high-ef-
ficiency particulate air filters. “It is designed 
to be used by your average, everyday citizen 
as well as scientists,” says Mike Taylor, a 
Carnegie Mellon Ph.D. student who worked 
on Speck’s signal processing.

“The device is more than just a sensor; 
it is a complete data system,” observes 
Taylor. With a display screen that shows 
whether unhealthy levels of particulates 
are present, Speck users can view the cur-
rent estimate of 2 μm particle concentra-
tion as well as a scaled estimate of PM2.5 
in μg/m3. The interface can also graph the 
past hour or past 12 hours of data on 
screen, allowing for quick access to histor-
ical data. Speck contains onboard signal 
processing and storage in addition to a 
color LCD touchscreen for the user inter-
face. Power is supplied via a USB cable, 
and data can be downloaded directly to 
any Macintosh or Windows computer.

Speck is also Wi-Fi-enabled, which al-
lows monitoring data to be uploaded to a 
user-controlled database for future refer-
ence. A companion website stores the data 
and provides analytical tools, including 
links to readings from federal air monitor-
ing stations. Users are given free access to 
the site and can decide whether to share 
their monitoring data. Speck data can also 
integrate vital signs and other personal 
data recorded by personal fitness monitor-
ing devices, such as Fitbit and Jawbone.

Inexpensive particulate sensor prod-
ucts tend to be relatively inaccurate, pro-
ducing readings that sometimes do not 
even match the readings of identical mod-
els. The researchers claim they were able 
to achieve substantially higher accuracy by 
employing machine-learning algorithms 
that learn to recognize and compensate for 
the spurious noise in the sensor signals 
while maintaining affordability.

To reduce costs, Speck uses a common-
ly available, inexpensive DSM501a dust 
sensor instead of custom optics. The dust 
sensor’s output is a digital pin that is 
pulled low when particles are detected in 
the optical chamber. The duty cycle is ap-
proximately proportional to the number of 
detected particles. The period of the sensor 
varies greatly, however, especially at low 
particle concentrations. While the dura-
tion of a low pulse (indicating detected 
particles) rarely exceeds 100 ms, the dura-
tion between pulses can last from under 
one second to more than one minute. “We 
observe that single-cycle readings are too 
noisy to be used directly,” Taylor says. “In-
stead, our algorithm samples the sensor 

10,000 times per second and uses the 
number of low samples each second as an 
input to an asymmetric filtering function.”

Ultimately, the researchers plan to 
have the Speck measure particle counts as 
well as mass concentration in μg/m3, the 
most common reporting method for 
PM2.5 among state and federal monitor-
ing stations. This would allow users to 
compare their indoor air quality with the 
outdoor air quality of their local region, 
Taylor says.

This goal raises some new challenges, 
however, since the current inexpensive 
sensor is optical rather than mass based, 
which would be needed for accurate mass 
concentration reporting. In the current 
model, mass readings are estimated using 
a linear scale factor generated by applying 
Speck particle count data to that of a colo-
cated tapered element oscillating micro-
balance monitor owned by the Allegheny 
County (Pennsylvania) Health Depart-
ment. Other, less challenging, planned im-
provements include onboard humidity 
and temperature measurements that will 
refine both the particle count accuracy as 
well as the mass estimate.

Speck was developed over a period of 
four years in Carnegie Mellon’s Community 
Robotics, Education, and Technology Em-
powerment Lab, and Nourbakhsh has estab-
lished a spinoff company, Airviz Inc., to 
market the device.

AUTHOR
John Edwards (jedwards@johnedwards
media.com) is a technology writer based 
in the Phoenix, Arizona, area. [SP]

[FIG3] Edward Sazonov, an associate professor of electrical 
and computer engineering at the University of Alabama, holds 
a prototype AIM. (Photo courtesy of Edward Sazonov, 
University of Alabama.)

[FIG4] The Speck air-quality monitor allows users to view the 
level of fine particulate matter suspended in the air inside 
their homes. (Photo courtesy of Airviz, Inc.)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_______________

mailto:jedwards@johnedwards.media.com
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


[society NEWS]

IEEE SIGNAL PROCESSING MAGAZINE [11] NOVEMBER 2015

2016 IEEE Technical Field Award Recipients Announced

E
ach year, the IEEE recognizes 
individuals who have made out-
standing contributions or exer-
cised leadership within IEEE-
designated technical areas. The 

IEEE Signal Processing Society is hon-
ored to announce five of its members as 
recipients of the 2016 IEEE Technical 
Field Awards:

I E E E  J a m e s  L . 
Flanagan Speech and 
Audio Processing 
Award: presented to 
Takehiro Moriya “for 
c o n t r i b u t i o n s  t o 
speech and audio cod-

ing algorithms and standardization”

IEEE Fourier Award 
for Signal Processing: 
presented to Bede Liu
“for foundational 
 contributions to the 
 analysis, design, and 
implementation of digi-

tal signal processing systems”

IEEE Gustav Robert 
Kirchhof f  Award: 
 presented to P.P. 
Vaidyanathan “for fun-
damental contribu-
tions to digital signal 
processing”

I E E E  L e o n  K . 
Kirchmayer Graduate 
Teaching Award: pre-
sented to K.J. Ray Liu
“for exemplary teaching 
and curriculum devel-
opment, inspirational 

mentoring of graduate students, and 

broad educational impact in signal pro-
cessing and communications”

IEEE Kiyo Tomiyasu 
Award: presented to 
Yonina Eldar “for devel-
opment of the theory 
and implementation of 
sub-Nyquist sampling 
with applications to 

radar, communications, and ultrasound.”
Congratulations to all of the recipients! 

The full list of 2016 IEEE Technical Field 
Awards recipients can be found in [1].

REFERENCE
[1] [Online]. Available: http://www.ieee.org/about/
awards/2016_ieee_tfa_recipients_and_citations_
list.pdf

[SP]
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CONGRATULATIONS TO 
ALL OF THE RECIPIENTS! 
THE FULL LIST OF 2016 
IEEE TECHNICAL FIELD 
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E
uclidean distance matrices (EDMs) are matrices of the 
squared distances between points. The definition is 
deceivingly simple; thanks to their many useful proper-
ties, they have found applications in psychometrics, 
crystallography, machine learning, wireless sensor net-

works, acoustics, and more. Despite the usefulness of EDMs, they 
seem to be insufficiently known in the signal processing commu-
nity. Our goal is to rectify this mishap in a concise tutorial. We 
review the fundamental properties of EDMs, such as rank or 
(non)definiteness, and show how the various EDM properties can 
be used to design algorithms for completing and denoising dis-
tance data. Along the way, we demonstrate applications to micro-
phone position calibration, ultrasound tomography, room 
reconstruction from echoes, and phase retrieval. By spelling out 
the essential algorithms, we hope to fast-track the readers in 
applying EDMs to their own problems. The code for all of the 
described algorithms and to generate the figures in the article is 
available online at http://lcav.epfl.ch/ivan.dokmanic. Finally, we 
suggest directions for further research.

INTRODUCTION
Imagine that you land at Geneva International Airport with the 
Swiss train schedule but no map. Perhaps surprisingly, this may 
be sufficient to reconstruct a rough (or not so rough) map of 
the Alpine country, even if the train times poorly translate to 
distances or if some of the times are unknown. The way to do it 

is by using EDMs; for an example, see “Swiss Trains (Swiss Map 
Reconstruction).” 

We often work with distances because they are convenient to 
measure or estimate. In wireless sensor networks, for example, the 
sensor nodes measure the received signal strengths of the packets 
sent by other nodes or the time of arrival (TOA) of pulses emitted 
by their neighbors [1]. Both of these proxies allow for distance esti-
mation between pairs of nodes; thus, we can attempt to reconstruct 
the network topology. This is often termed self-localization [2]–[4]. 
The molecular conformation problem is another instance of a dis-
tance problem [5], and so is reconstructing a room’s geometry 
from echoes [6]. Less obviously, sparse phase retrieval [7] can be 
converted to a distance problem and addressed using EDMs.

Sometimes the data are not metric, but we seek a metric 
representation, as it happens commonly in psychometrics [8]. As a 
matter of fact, the psychometrics community is at the root of the 
development of a number of tools related to EDMs, including 
multidimensional scaling (MDS)—the problem of finding the best 
point set representation of a given set of distances. More abstractly,  
we can study EDMs for objects such as images, which live in high-
dimensional vector spaces [9].

EDMs are a useful description of the point sets and a starting 
point for algorithm design. A typical task is to retrieve the original 
point configuration: it may initially come as a surprise that this 
requires no more than an eigenvalue decomposition (EVD) of a 
symmetric matrix. In fact, the majority of Euclidean distance 
problems require the reconstruction of the point set but always 
with one or more of the following twists:

1) The distances are noisy. 
2) Some distances are missing.

[Ivan Dokmanić, Reza Parhizkar, Juri Ranieri, and Martin Vetterli]

[Essential theory, algorithms,

  and applications]

Euclidean 
Distance Matrices

Digital Object Identifier 10.1109/MSP.2015.2398954
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3) The distances are unlabeled.
For examples of applications requiring solutions of EDM problems 
with different complications, see Figure 1. 

There are two fundamental problems associated with distance 
geometry [10]: 1) given a matrix, determine whether it is an EDM 
and 2) given a possibly incomplete set of distances, determine 
whether there exists a configuration of points in a given embed-
ding dimension—the dimension of the smallest affine space com-
prising the points—that generates the distances.

LITERATURE REVIEW
The study of point sets through pairwise distances, and that of 
EDMs, can be traced back to the works of Menger [11], Schoen-
berg [12], Blumenthal [13], and Young and Householder [14]. An 
important class of EDM tools was initially developed for the pur-
pose of data visualization. In 1952, Torgerson introduced the 
notion of MDS [8]. He used distances to quantify the dissimilari-
ties between pairs of objects that are not necessarily vectors in a 
metric space. Later, in 1964, Kruskal suggested the notion of 
stress as a measure of goodness of fit for nonmetric data [15], 
again representing experimental dissimilarities between objects.

A number of analytical results on EDMs were developed by 
Gower [16], [17]. In 1985 [17], he gave a complete characteriza-
tion of the EDM rank. Optimization with EDMs requires adequate 
geometric intuitions about matrix spaces. In 1990, Glunt et al. 
[18] and Hayden et al. [19] provided insights into the structure of 
the convex cone of EDMs. An extensive treatise on EDMs with 
many original results and an elegant characterization of the EDM 
cone is provided by Dattorro [20].

In the early 1980s, Williamson, Havel, and Wüthrich developed 
the idea of extracting the distances between pairs of hydrogen 
atoms in a protein using nuclear magnetic resonance (NMR). The 
extracted distances were then used to reconstruct three-dimen-
sional (3-D) shapes of molecules [5]. (Wüthrich received the Nobel 
Prize for chemistry in 2002.) The NMR spectrometer (together 
with some postprocessing) outputs the distances between the 
pairs of atoms in a large molecule. The distances are not specified 
for all atom pairs, and they are uncertain—i.e., given only up to an 
interval. This setup lends itself naturally to EDM treatment; for 
example, it can be directly addressed using MDS [21]. Indeed, the 
crystallography community also contributed a large number of 
important results on distance geometry. In a different biochemical 
application, comparing distance matrices yields efficient algo-
rithms for comparing proteins from their 3-D structure [22].

In machine learning, one can learn manifolds by finding an 
EDM with a low embedding dimension that preserves the local 
geometry. Weinberger and Saul use it to learn image manifolds [9]. 
Other examples of using Euclidean distance geometry in machine 
learning are the results by Tenenbaum, De Silva, and Langford [23] 
on image understanding and handwriting recognition; Jain and 

Saul [24] on speech and music; and Demaine et al. [25] on music 
and musical rhythms.

With the increased interest in sensor networks, several EDM-
based approaches were proposed for sensor localization [2]–[4], 
[20]. The connections between EDMs, multilateration, and sem-
idefinite programming are expounded in depth in [26], especially 
in the context of sensor network localization (SNL).

SWISS TRAINS (SWISS MAP RECONSTRUCTION)
Consider the following matrix of the time in minutes it 
takes to travel by train between some Swiss cities (see 
Figure S1):

B
0
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40
66

33
0
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158
0
88
56

40
64
88
0
34

66
101
56
34
0

L
Lausanne
Geneva
Zurich
Neucha
Bern

tel

NG Z

.p

t

J

L

K
K
K
K
KK

N

P

O
O
O
O
OO

The numbers were taken from the Swiss railways timeta-
ble. The matrix was then processed using the classical MDS 
algorithm (Algorithm 1), which is basically an EVD. The 
obtained city configuration was rotated and scaled to align 
with the actual map. Given all of the uncertainties 
involved, the fit is remarkably good. Not all trains drive 
with the same speed, they have varying numbers of stops, 
and railroads are not straight lines (i.e., because of lakes 
and mountains). This result may be regarded as anecdotal, 
but, in a fun way, it illustrates the power of the EDM tool-
box. Classical MDS could be considered the simplest of the 
available tools, yet it yields usable results with erroneous 
data. On the other hand, it might be that Swiss trains are 
just that good.

Geneva

Lausanne

Neuchâtel
Bern

Zürich

Switzerland

[FIGS1] A map of Switzerland with the true locations of 
five cities (red) and their locations estimated by using 
classical MDS on the train schedule (black).
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Position calibration in ad hoc microphone arrays is often done 
with sources at unknown locations, such as hand claps, finger 
snaps, or randomly placed loudspeakers [27]–[29]. This gives us 
the distances (possibly up to an offset time) between the micro-
phones and the sources and leads to the problem of multidimen-
sional unfolding (MDU) [30].

All of the mentioned applications work with labeled distance 
data. In certain TOA-based applications, one loses the labels, i.e., 
the correct permutation of the distances. This issue arises when 
reconstructing the geometry of a room from echoes [6]. Another 
example of unlabeled distances is in sparse phase retrieval, where 
the distances between the unknown nonzero lags in a signal are 
revealed in its autocorrelation function (ACF) [7]. Recently, moti-
vated by problems in crystallography, Gujarahati et al. published an 
algorithm for the reconstruction of Euclidean networks from unla-
beled distance data [31].

OUR MISSION
We were motivated to write this tutorial after realizing that 
EDMs are not common knowledge in the signal processing com-
munity, perhaps for the lack of a compact introductory text. This 
is effectively illustrated by the anecdote that, not long before 
writing this article, one of the authors of this article had to add 
the (rather fundamental) rank property to the Wikipedia page on 
EDMs (search for “Euclidean distance matrix”). (We are working 
on improving that page substantially.) In a compact tutorial, we 
do not attempt to be exhaustive; much more thorough literature 
reviews are available in longer exposés on EDMs and distance 
geometry [10], [32], [33]. Unlike these works, which take the 
most general approach through graph realizations, we opt to 
show simple cases through examples and explain and spell out a 

set of basic algorithms that anyone can use immediately. Two big 
topics that we discuss are not commonly treated in the EDM lit-
erature: localization from unlabeled distances and MDU (applied 
to microphone localization). On the other hand, we choose to 
not explicitly discuss the SNL problem as the relevant literature 
is abundant.

Implementations of all of the algorithms in this article are 
available online at http://lcav.epfl.ch/ivan.dokmanic. Our hope is 
that this will provide a solid starting point for those who wish to 
learn much more while inspiring new approaches to old problems.

FROM POINTS TO EDMs AND BACK
The principal EDM-related task is to reconstruct the original point 
set. This task is an inverse problem to the simpler forward problem of 
finding the EDM given the points. Thus, it is desirable to have an 
analytic expression for the EDM in terms of the point matrix. Beyond 
convenience, we can expect such an expression to provide interesting 
structural insights. We will define the notation as it becomes neces-
sary—a summary is provided in Table 1.

Consider a collection of n  points in a d-dimensional Euclidean 
space, ascribed to the columns of matrix ,X Rd n! #

[ , , , ], .X x x x x Rn i
d

1 2 g !=  Then the squared distance between 
xi  and x j  is given as 

,x xdij i j
2= - (1)

where ·  denotes the Euclidean norm. Expanding the norm 
yields 

( ) ( ) .x x x x x x x x x xd 2ij i j i j i i i j j j= - - = - +< < << (2)

From here, we can read out the matrix equation for [ ]D dij=

( ) ( ) ( ) ,X X X X X X X21 1edm diag diag
def
= - +< < < << (3)

where 1  denotes the column vector of all ones and ( )Adiag  is the 
column vector of the diagonal entries of .A  We see that ( )Xedm  is 
in fact a function of .X X<  For later reference, it is convenient to 
define an operator ( )GK  similar to ( ),Xedm  which operates 
directly on the Gram matrix G X X= <

( ) ( ) ( ) .G G G G21 1diag diagK
def
= - +< < (4)

The EDM assembly formula (3) or (4) reveals an important 
property: because the rank of X  is at most d  (i.e., it has d  rows), 
then the rank of X X<  is also at most .d  The remaining two sum-
mands in (3) have rank one. By rank inequalities, the rank of a sum 
of matrices cannot exceed the sum of the ranks of the summands. 
With this observation, we proved one of the most notable facts 
about EDMs:

Theorem 1 (Rank of EDMs): The rank of an EDM correspond-
ing to points in Rd is at most .d 2+

This is a powerful theorem; it states that the rank of an EDM is 
independent of the number of points that generate it. In many 

[FIG1] Two real-world applications of EDMs. (a) SNL from 
estimated pairwise distances is illustrated with one distance 
missing because the corresponding sensor nodes are too far apart 
to communicate. (b) In the molecular conformation problem, we 
aim to estimate the locations of the atoms in a molecule from their 
pairwise distances. Here, because of the inherent measurement 
uncertainty, we know the distances only up to an interval. 

?

?

x1

x1x2

x2

x3

x4

x4

x3

[d12, min, d12, max]

(a) (b)
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applications, d  is three or less while n  can be in the thousands. 
According to Theorem 1, the rank of such practical matrices is at 
most five. The proof of this theorem is simple, but, to appreciate 
that the property is not obvious, you may try to compute the rank 
of the matrix of nonsquared distances.

What really matters in Theorem 1 is the affine dimension of 
the point set, i.e., the dimension of the smallest affine subspace 
that contains the points, which is denoted by .( )dim Xaff  For 
example, if the points lie on a plane (but not on a line or a cir-
cle) in ,R3  the rank of the corresponding EDM is four, not five. 
This will be made clear from a different perspective in the sec-
tion “Essential Uniqueness,” as any affine subspace is just a 
translation of a linear subspace. An illustration for a one-dimen-
sional (1-D) subspace of R2  is provided in Figure 2. Subtracting 
any point in the affine subspace from all of its points translates 
it to the parallel linear subspace that contains the zero vector.

ESSENTIAL UNIQUENESS
When solving an inverse problem, we need to understand what 
is recoverable and what is forever lost in the forward problem. 
Representing sets of points by distances usually increases the 
size of the representation. For most interesting n  and ,d  the 
number of pairwise distances is larger than the size of the coor-
dinate description, ( / ) ( ) ,n n nd1 2 1 2-  so an EDM holds more 
scalars than the list of point coordinates. Nevertheless, some 
information is lost in this encoding such as the information 
about the absolute position and orientation of the point set. 
Intuitively, it is clear that rigid transformations (including 
reflections) do not change the distances between the fixed 
points in a point set. This intuitive fact is easily deduced from 
the EDM assembly formula (3). We have seen in (3) and (4) that 

( )Xedm  is in fact a function of the Gram matrix .X X<

This makes it easy to show algebraically that rotations and 
reflections do not alter the distances. Any rotation/reflection 
can be represented by an orthogonal matrix Q Rd d! #  acting 
on the points .xi  Thus, for the rotated point set ,X QXr =  we 
can write

( ) ( ) ,X X QX QX X Q QX X Xr r = = =< < < << (5)

where we invoked the orthogonality of the rotation/reflection mat-
rix .Q Q I=<

Translation by a vector b Rd!  can be expressed as

.X X b1t = + < (6)

Using ( ) ( ) ,X X X X X b b2 1diag diagt t
2= + +< <<  one can directly 

verify that this transformation leaves (3) intact. In summary,

( ) ( ) ( ) .QX X b X1edm edm edm= + =< (7)

The consequence of this invariance is that we will never be able 
to reconstruct the absolute orientation of the point set using only 
the distances, and the corresponding degrees of freedom will be 
chosen freely. Different reconstruction procedures will lead to dif-
ferent realizations of the point set, all of them being rigid 

transformations of each other. Figure 3 illustrates a point set 
under a rigid transformation; it is clear that the distances between 
the points are the same for all three shapes.

RECONSTRUCTING THE POINT SET FROM DISTANCES
The EDM equation (3) hints at a procedure to compute the point 
set starting from the distance matrix. Consider the following 
choice: let the first point x1  be at the origin. Then, the first col-
umn of D  contains the squared norms of the point vectors

.x x x xd 0i i i i1 1
2 2 2= - = - = (8)

[TABLE 1] A SUMMARY OF THE NOTATIONS.

SYMBOL MEANING

n NUMBER OF POINTS (COLUMNS) IN [ , , ]X x xn1 f=

d DIMENSIONALITY OF THE EUCLIDEAN SPACE

aij ELEMENT OF A MATRIX A  ON THE iTH  ROW AND
THE jTH COLUMN

D AN EDM

( )Xedm AN EDM CREATED FROM THE COLUMNS IN X

( , )X Yedm A MATRIX CONTAINING THE SQUARED DISTANCES
BETWEEN THE COLUMNS OF X  AND Y

( )GK AN EDM CREATED FROM THE GRAM MATRIX G

J A GEOMETRIC CENTERING MATRIX 

AW RESTRICTION OF A  TO NONZERO ENTRIES IN W

W MASK MATRIX, WITH ONES FOR OBSERVED ENTRIES

Sn
+ A SET OF REAL SYMMETRIC POSITIVE-SEMIDEFINITE

(PSD) MATRICES IN Rn n#

( )Xdimaff AFFINE DIMENSION OF THE POINTS LISTED IN X

A B% HADAMARD (ENTRYWISE) PRODUCT OF A  AND B

ijf NOISE CORRUPTING THE ( , )i j DISTANCE

e i iTH VECTOR OF THE CANONICAL BASIS 

A F FROBENIUS NORM OF ,A a
/

ijij
2 1 2` j/

x1 x1
x2 x2

x3 x3

x4

xc

x x

y y

x1′

x1′′ x2′′

x3′′

x4′

x4′′

(a) (b)

x4

x2′

x3′

[FIG2] An illustration of the relationship between an affine subspace 
and its parallel linear subspace. The points [ , , ]X x x1 4f=  live in an 
affine subspace—a line in R2 that does not contain the origin. In (a), 
the vector x1 is subtracted from all the points, and the new point 
list is [ , , , ] .X x x x x x x0 2 1 3 1 4 1= - - -l  While the columns of X
span ,R2  the columns of X l only span a 1-D subspace of R2—the 
line through the origin. In (b), we subtract a different vector from 
all points: the centroid / .X1 4 1^ h The translated vectors 

[ , , ]X x x1 4f=m m m  again span the same 1-D subspace. 
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Consequently, we can construct the term ( )X X1 diag <  and its 
transpose in (3), as the diagonal of X X<  contains exactly the 
norms squared .xi

2  Concretely,

( ) ,X X d1 1diag 1= << (9)

where d De1 1=  is the first column of .D  We thus obtain the 
Gram matrix from (3) as 

( ) .G X X D d d2
1 1 11 1= =- - -< << (10)

The point set can then be found by an EVD, ,G U UK= <  where 
( , , )diag n1 fm mK =  with all eigenvalues im  nonnegative and U

orthonormal, as G is a symmetric positive-semidefinite (PSD) matrix. 
Throughout this article, we assume that the eigenvalues are sorted in 
the order of decreasing magnitude, .n1 2 g$ $ $m m m  We can 
now set [ ( , , ), ] .X U0diag ( )d d n d1

def
fm m= #

<
-

X  Note that we 
could have simply taken U/1 2K < as the reconstructed point set, but if 
the Gram matrix really describes a d-dimensional point set, the trail-
ing eigenvalues will be zeroes, so we choose to truncate the corre-
sponding rows.

It is straightforward to verify that the reconstructed point set 
XX  generates the original EDM, ( );D Xedm=  as we have learned, 
XX  and X  are related by a rigid transformation. The described 
procedure is called the classical MDS, with a particular choice of 
the coordinate system: x1  is fixed at the origin.

In (10), we subtract a structured rank-2 matrix ( )d d1 11 1+ <<

from .D  A more systematic approach to the classical MDS is to use 
a generalization of (10) by Gower [16]. Any such subtraction that 
makes the right-hand side of (10) PSD, i.e., that makes G  a Gram 
matrix, can also be modeled by multiplying D  from both sides by a 
particular matrix. This is substantiated in the following result.

Theorem 2 (Gower [16]): D is an EDM if and only if

( ) ( )I s D I s2
1 1 1- - - << (11)

is PSD for any s  such that s 11 =<  and .s D 0!<

In fact, if (11) is PSD for one such ,s  then it is PSD for all of 
them. In particular, define the geometric centering matrix as

.J I n
1 11

def
= - < (12)

Then, / JDJ1 2-^ h  being PSD is equivalent to D  being an EDM. 
Different choices of s  correspond to different translations of the 
point set.

The classical MDS algorithm with the geometric centering 
matrix is spelled out in Algorithm 1. Whereas so far we have 
assumed that the distance measurements are noiseless, 
Algorithm 1 can handle noisy distances too as it discards all but 
the d  largest eigenvalues.

It is straightforward to verify that (10) corresponds to .s e1=

Think about what this means in terms of the point set: Xe1

selects the first point in the list, .x1  Then, ( )X X I e 10 1= - <

translates the points so that x1  is translated to the origin. Multi-
plying the definition (3) from the right by ( )I e 11- <  and from 
the left by ( )I e1 1- <  will annihilate the two rank-1 matrices, 

( )G 1diag <  and ( ) .G1 diag <  We see that the remaining term has 
the form ,X X2 0 0- <  and the reconstructed point set will have the 
first point at the origin.

On the other hand, setting /s n1 1= ^ h  places the centroid of the 
point set at the origin of the coordinate system. For this reason, the 
matrix /J I n1 11= - <^ h  is called the geometric centering matrix.
To better understand why, consider how we normally center a set of 
points given in :X  first, we compute the centroid as the mean of all 
the points,

.x x Xn n
1 1 1c i

i

n

1
= =

=

/ (13)

Second, we subtract this vector from all the points in the set

( ) .X X x X X X In n
1 11 11 11c c= - = - = -< << (14)

In complete analogy with the reasoning for ,s e1=  we can see 
that the reconstructed point set will be centered at the origin.

ORTHOGONAL PROCRUSTES PROBLEM
Since the absolute position and orientation of the points are lost 
when going over to distances, we need a method to align the 
reconstructed point set with a set of anchors, i.e., points whose 
coordinates are fixed and known.

[FIG3] An illustration of a rigid transformation in 2-D. Here, the point 
set is transformed as .RX b1+ < The rotation matrix [ ; ]R 0 1 1 0= -
(MATLAB notation) corresponds to a counterclockwise rotation 
of 90°. The translation vector is [ , ] .b 3 1= < The shape is drawn 
for visual reference.

y
2

2

1 2 3 x

b

R π

Algorithm 1: The classical MDS.

1: function ClassicalMDS , )(D d
2: /J I n1 1 1! - <^ h q  Geometric centering matrix 
3: /G JDJ1 2!-^ h q  Compute the Gram matrix 
4: , [ ] ( )U GEVDi i

n
1 !m =

5: return [ ( , , ), ]U0diag ( )d d n d1 fm m #
<

-

6: end function
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This can be achieved in two steps, sometimes called Procrustes 
analysis. Ascribe the anchors to the columns of ,Y  and suppose that 
we want to align the point set X  with the columns of .Y  Let Xa

denote the submatrix (a selection of columns) of X  that should be 
aligned with the anchors. We note that the number of anchors (the 
columns in )Xa  is typically small compared with the total number of 
points (the columns in ) .X

In the first step, we remove the means yc  and x ,a c  from matri-
ces Y  and ,Xa  obtaining the matrices ,Y  and .X a  In the second 
step, termed orthogonal Procrustes analysis, we are searching for 
the rotation and reflection that best maps X a  onto Y

.arg min QX YR
:Q QQ I

a F
2= -

=<
(15)

The Frobenius norm · F  is simply the 2, -norm of the matrix 
entries, ( ) .A A Aa traceF ij

2 2def
= = </

The solution to (15), found by Schönemann in his Ph.D. thesis 
[34], is given by the singular value decomposition (SVD). Let 

;X Y U Va R= <<  then, we can continue computing (15) as follows:

( )

( ),

arg min

arg min

R QX Y Y QX

Q

trace

trace
:

:

Q QQ I

Q Q Q I

a F F a
2 2

R

= + -

=

<

=

=

<

<

LMMM (16)

where Q V QU
def
= <L  and we used the orthogonal invariance of the 

Frobenius norm and the cyclic invariance of the trace. The last 
trace expression in (16) is equal to 

q .i iii
n

1
v

=
K/  Noting that QL is also an 

orthogonal matrix, its diagonal 
entries cannot exceed 1. Therefore, 
the maximum is achieved when 
q 1ii =K  for all ,i  meaning that the 
optimal QL  is an identity matrix. It 
follows that .R VU= <

Once the optimal rigid transformation has been found, the 
alignment can be applied to the entire point set as

( ) .R X x y1 1,a c c- + << (17)

COUNTING THE DEGREES OF FREEDOM
It is interesting to count how many degrees of freedom there are in 
different EDM-related objects. Clearly, for n  points in ,Rd  we have

# n dX #= (18)

degrees of freedom: if we describe the point set by the list of coor-
dinates, the size of the description matches the number of degrees 
of freedom. Going from the points to the EDM (usually) increases 
the description size to / ( ),n n1 2 1-^ h  as the EDM lists the dis-
tances between all the pairs of points. By Theorem 1, we know that 
the EDM has rank at most .d 2+

Let us imagine for a moment that we do not know any other 
EDM-specific properties of our matrix except that it is symmetric, 
positive, zero-diagonal (or hollow), and that it has rank .d 2+  The 
purpose of this exercise is to count the degrees of freedom associated 
with such a matrix and to see if their number matches the intrinsic 

number of the degrees of freedom of the point set, # .X  If it did, then 
these properties would completely characterize an EDM. We can 
already anticipate from Theorem 2 that we need more properties: a 
certain matrix related to the EDM—as given in (11)—must be PSD. 
Still, we want to see how many degrees of freedom we miss.

We can do the counting by looking at the EVD of a symmetric 
matrix, .D U UK= <  The diagonal matrix K  is specified by d 2+
degrees of freedom because D  has rank .d 2+  The first eigenvec-
tor of length n  takes up n 1-  degrees of freedom due to the nor-
malization; the second one takes up ,n 2-  as it is in addition 
orthogonal to the first one; for the last eigenvector, number 
( ),d 2+  we need ( )n d 2- +  degrees of freedom. We do not need 
to count the other eigenvectors because they correspond to zero 
eigenvalues. The total number is then

# ( ) ( ) [ ( )]

( ) ( ) ( ) .

d n n d n

n d
d d

2 1 2

1 2
1 2

DOF

Eigenvalues Eigenvectors Hollowness

#
#

g= + + - + + - + -

= + -
+ +

1 2 34444444 4444444> 5

For large n  and fixed ,d  it follows that

#
# ~ .d

d 1
X

DOF + (19)

Therefore, even though the rank property is useful and we will show 
efficient algorithms that exploit it, it is still not a tight property (with 

symmetry and hollowness included).
For ,d 3=  the ratio (19) is / ,4 3^ h  so 
loosely speaking, the rank property 
has 30% too many determining sca-
lars, which we need to set consistently. 
In other words, we need 30% more 
data to exploit the rank property than 

we need to exploit the full EDM structure. We can assert that, for the 
same amount of data, the algorithms perform at least .30% worse if 
we only exploit the rank property without EDMness.

The one-third gap accounts for various geometrical constraints 
that must be satisfied. The redundancy in the EDM representation 
is what makes denoising and completion algorithms possible, and 
thinking in terms of degrees of freedom gives us a fundamental 
understanding of what is achievable. Interestingly, the previous dis-
cussion suggests that for large n  and large ( ),d o n=  little is lost 
by only considering rank.

Finally, in the previous discussion, for the sake of simplicity we 
ignored the degrees of freedom related to absolute orientation. 
These degrees of freedom, which are not present in the EDM, do 
not affect the large n  behavior.

SUMMARY
Let us summarize what we have achieved in this section: 

■ We explained how to algebraically construct an EDM given 
the list of point coordinates.
■ We discussed the essential uniqueness of the point set; 
information about the absolute orientation of the points is 
irretrievably lost when transitioning from points to an EDM.

MISSING ENTRIES ARISE BECAUSE
OF THE LIMITED RADIO RANGE
OR BECAUSE OF THE NATURE

OF THE SPECTROMETER.
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■ We explained classical MDS—a simple EVD-based algorithm 
(Algorithm 1) for reconstructing the original points—along 
with discussing parameter choices that lead to different cen-
troids in reconstruction.
■ Degrees of freedom provide insight into scaling behavior. 
We showed that the rank property is satisfactory, but there is 
more to it than just rank.

EDMs AS A PRACTICAL TOOL
We rarely have a perfect EDM. Not only are the entries of the 
measured matrix plagued by errors, but often we can measure 
just a subset. There are various sources of error in distance meas-
urements: we already know that in NMR spectroscopy, we get 
intervals instead of exact distances. Measuring the distance using 
received powers or TOAs is subject to noise, sampling errors, and 
model mismatch.

Missing entries arise because of the limited radio range or 
because of the nature of the spectrometer. Sometimes the nodes 
in the problem at hand are asymmetric by definition; in micro-
phone calibration, we have two types: microphones and calibra-
tion sources. This results in a particular block structure of the 
missing entries (see Figure 4 for an illustration).

It is convenient to have a single statement for both EDM 
approximation and EDM completion as the algorithms described 
in this section handle them at once.

Problem 1: Let ( ) .D Xedm= We are given a noisy observa-
tion of the distances between ( / ) ( )n np 1 2 1# - pairs of points 
from .X  That is, we have a noisy measurement of p2 entries in D

d ,dij ij ijf= +K (20)

for ( , ) ,i j E!  where E  is some index set and ijf  absorbs all 
errors. The goal is to reconstruct the point set XX  in the given 
embedding dimension, so that the entries of ( )Xedm X  are close in 
some metric to the observed entries .dijK

To concisely write down completion problems, we define the 
mask matrix W  as follows:

, ( , )
, .

w
i j E1

0 otherwiseij
def !
= ' (21)

This matrix then selects elements of an EDM through a Hadamard 
(entrywise) product. For example, to compute the norm of the dif-
ference between the observed entries in A  and ,B  we write 

( ) .W A B% -  Furthermore, we define the indexing AW  to mean 
the restriction of A  to those entries where W  is nonzero. The 
meaning of B AW W!  is that we assign the observed part of A  to 
the observed part of .B

EXPLOITING THE RANK PROPERTY
Perhaps the most notable fact about EDMs is the rank property 
established in Theorem 1: the rank of an EDM for points living 
in Rd  is at most .d 2+  This leads to conceptually simple algo-
rithms for EDM completion and denoising. Interestingly, these 
algorithms exploit only the rank of the EDM. There is no 
explicit Euclidean geometry involved, at least not before recon-
structing the point set.

We have two pieces of information: a subset of potentially 
noisy distances and the desired embedding dimension of the 
point configuration. The latter implies the rank property of the 
EDM that we aim to exploit. We may try to alternate between 
enforcing these two properties and hope that the algorithm pro-
duces a sequence of matrices that converges to an EDM. If it 
does, we have a solution. Alternatively, it may happen that we 
converge to a matrix with the correct rank that is not an EDM 
or that the algorithm never converges. The pseudocode is listed 
in Algorithm 2.

A different, more powerful approach is to leverage algorithms 
for low-rank matrix completion developed by the compressed sens-
ing community. For example, OptSpace [35] is an algorithm for 
recovering a low-rank matrix from noisy, incomplete data. Let us 
take a look at how OptSpace works. Denote by M Rm n! #  the 
rank-r  matrix that we seek to recover, by Z Rm n! #  the measure-
ment noise, and by W Rm n! #  the mask corresponding to the 

Algorithm 2: The alternating rank-based EDM completion.

1: function RankCompleteEDM ( , , )W D dM
2: D DW W!M q  Initialize observed entries 
3: D W11 ! n-< q  Initialize unobserved entries 
4: repeat
5: ( , )D D d 2EVThreshold! +

6: D DW W!M q  Enforce known entries 
7: D 0I ! q  Set the diagonal to zero 
8: ( )D D! + q  Zero the negative entries 
9: until Convergence or MaxIter 
10: return D
11: end function

12: function EVThreshold , )(D r
13: , [ ] ( )U DEVDi i

n
1 !m =

14: ( , , , , , )0 0diag r

n r

1

times

! f fm mR
-
>

15: D U U! R <

16: return D
17: end function

[FIG4] The microphone calibration as an example of MDU. We 
can measure only the propagation times from acoustic sources at 
unknown locations to microphones at unknown locations. The 
corresponding revealed part of the EDM has a particular off-
diagonal structure, leading to a special case of EDM completion.
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measured entries; for simplicity, we chose .m n#  The measured 
noisy and incomplete matrix is then given as

( ) .M W M Z%= +O (22)

Effectively, this sets the missing (nonobserved) entries of 
the matrix to zero. OptSpace aims to minimize the following 
cost function:

( , , ) ( ) ,A S B W M ASBF 2
1

F
2def

%= - <O (23)

where ,S Rr r! # A Rm r! #  and ,B Rn r! #  such that A A =<

.B B I=<  Note that S  need not be diagonal.
The cost function (23) is not convex, and minimizing it is a 

priori difficult [36] because of many local minima. Nevertheless, 
Keshavan, Montanari, and Oh [35] show that using the gradient 
descent method to solve (23) yields the global optimum with high 
probability, provided that the descent is correctly initialized.

Let M a bi i ii
m

1
v= <

=
O /  be the SVD of .MO  Then, we define the 

scaled rank-r  projection of MO  as .M a br i i ii
r1

1

def
a v= <-

=
O /  The 

fraction of observed entries is denoted by a  so that the scaling fac-
tor compensates the smaller average magnitude of the entries in 
MO  in comparison with .M  The SVD of M rO  is then used to initial-

ize the gradient descent, as detailed in Algorithm 3.

Two additional remarks are due in the description of OptSpace. 
First, it can be shown that the performance is improved by zeroing 
the overrepresented rows and columns. A row (respectively, col-
umn) is overrepresented if it contains more than twice the average 
number of observed entries per row (respectively,  column). These 
heavy rows and columns bias the corresponding singular vectors 
and values, so (perhaps surprisingly) it is better to throw them 
away. We call this step “Trim” in Algorithm 3.

Second, the minimization of (23) does not have to be per-
formed for all variables at once. In [35], the authors first solve 
the easier, convex minimization for ,S  and then with the opti-
mizer S  fixed, they find the matrices A  and B  using the gra-
dient descent. These steps correspond to lines 6 and 7 of 
Algorithm 3. For an application of OptSpace in the calibration 
of ultrasound measurement rigs, see “Calibration in Ultra-
sound Tomography.” 

Algorithm 3: OptSpace [35].

1: function OptSpace , )(M rO
2: ( )M MTrim!O O
3: , , ( )A MB SVD 1! aR -M M M O
4: A0 !  First r  columns of AM
5: B0 !  First r  columns of BM
6: ( , , )argminS A S BF

S
0 0 0

Rr r
!

! #
q  Eq. (23) 

7: , ( , , )argminA B A S BF
A A B B I

0!
= =<<

q See the note below 

8: return AS B0
<

9: end function
2  Line 7: gradient descent starting at ,A B0 0

CALIBRATION IN ULTRASOUND TOMOGRAPHY
The rank property of EDMs, introduced in Theorem 1, can be 
leveraged in the calibration of ultrasound tomography 
devices. An example device for diagnosing breast cancer is a 
circular ring with thousands of ultrasound transducers 
placed around the breast [37]. The setup is shown in 
Figure S2(a).

Because of manufacturing errors, the sensors are not 
located on a perfect circle. This uncertainty in the positions 
of the sensors negatively affects the algorithms for imaging 
the breast. Fortunately, we can use the measured distances 
between the sensors to calibrate their relative positions. 
We can estimate the distances by measuring the times of 
flight (TOF) between pairs of transducers in a homoge-
neous environment, e.g., in water.

We cannot estimate the distances between all pairs of 
sensors because the sensors have limited beamwidths. (It is 
hard to manufacture omnidirectional ultrasonic sensors.) 
Therefore, the distances between the neighboring sensors 
are unknown, contrary to typical SNL scenarios where only 
the distances between nearby nodes can be measured. 
Moreover, the distances are noisy and some of them are 
unreliably estimated. This yields a noisy and incomplete 
EDM whose structure is illustrated in Figure S2(b).

Assuming that the sensors lie in the same plane, the origi-
nal EDM produced by them would have a rank less than five. 
We can use the rank property and a low-rank matrix com-
pletion method, such as OptSpace (Algorithm 3), to com-
plete and denoise the measured matrix [38]. Then, we can 
use the classical MDS in Algorithm 1 to estimate the relative 
locations of the ultrasound sensors.

For the reasons mentioned previously, SNL-specific algo-
rithms are suboptimal when applied to ultrasound calibra-
tion. An algorithm based on the rank property effectively 
solves the problem and enables one to derive upper 
bounds on the performance error calibration mechanism, 
with respect to the number of sensors and the measure-
ment noise. The authors in [38] show that the error van-
ishes as the number of sensors increases.

[FIGS2] (a) Ultrasound transducers lie on an approximately 
circular ring. The ring surrounds the breast and after each 
transducer fires an ultrasonic signal, the sound speed 
distribution of the breast is estimated. A precise knowledge 
of the sensor locations is needed to have an accurate 
reconstruction of the enclosed medium. (b) Because of the 
limited beamwidth of the transducers, noise, and imperfect 
TOF estimation methods, the measured EDM is incomplete and 
noisy. The gray areas show the missing entries of the matrix.

D =

S

(a) (b)
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MULTIDIMENSIONAL SCALING
MDS refers to a group of techniques that, given a set of noisy 
distances, find the best fitting point conformation. It was orig-
inally proposed in psychometrics [8], [15] to visualize the (dis)
similarities between objects. Initially, MDS was defined as the 
problem of representing distance 
data, but now the term is com-
monly used to refer to methods for 
solving the problem [39].

Various cost functions were pro-
posed for solving MDS. In the sec-
tion “Reconstructing the Point Set 
from Distances,” we already encoun-
tered one method: the classical MDS. This method minimizes 
the Frobenius norm of the difference between the input Gram 
matrix and the Gram matrix of the points in the target embed-
ding dimension.

The Gram matrix contains inner products, but it is better to 
work directly with the distances. A typical cost function represents 
the dissimilarity of the observed distances and the distances 
between the estimated point locations. An essential observation is 
that the feasible set for these optimizations is not convex (i.e., 
EDMs with embedding dimensions smaller than n 1-  lie on the 
boundary of a cone [20], which is a nonconvex set).

A popular dissimilarity measure is raw stress [40], defined as 
the value of

( ) ,X dminimize edm
( , )X

ij ij
i j E

2

Rd n
-

! !
#

^ hK/ (24)

where E  defines the set of revealed elements of the distance 
matrix .D  The objective function can be concisely written as 

( ( ) ) ;W X Dedm F
2

% - M  a drawback of this cost function is 
that it is not globally differentiable. The approaches described in 
the literature comprise iterative majorization [41], various meth-
ods using convex analysis [42], and steepest descent methods [43].

Another well-known cost function, first studied by Takane, 
Young, and De Leeuw [44], is termed s-stress,

( ) .X dminimize edm
( , )X

ij ij
i j E

2

Rd n
-

! !
#

^ hK/ (25)

Again, we write the objective concisely as ( ( ) ) .W X Dedm F
2

% -M
Conveniently, the s-stress objective is globally differentiable, but a 
disadvantage is that it puts more weight on errors in larger dis-
tances than on errors in smaller ones. Gaffke and Mathar [45] 
propose an algorithm to find the global minimum of the s-stress 
function for embedding dimension .d n 1= -  EDMs with this 
embedding dimension exceptionally constitute a convex set [20], 
but we are typically interested in embedding dimensions much 
smaller than .n  The s-stress minimization in (25) is not convex 
for .d n 11 -  It was analytically shown to have saddle points 
[46], but interestingly, no analytical nonglobal minimizer has 
been found [46].

Browne proposed a method for computing s-stress based on 
Newton–Raphson root finding [47]. Glunt reports that the method 

by Browne converges to the global minimum of (25) in 90% of the 
test cases in his data set [48]. (While the experimental setup of 
Glunt [48] is not detailed, it was mentioned that the EDMs were 
produced randomly.) 

The cost function in (25) is separable across points i  and 
across coordinates ,k  which is con-
venient for distributed implementa-
tions. Parhizkar [46] proposed an 
alternating coordinate descent 
method that leverages this separabil-
ity by updating a single coordinate of 
a particular point at a time. The 
s-stress function restricted to the 

kth  coordinate of the ith  point is a fourth-order polynomial

( ; ) ,f x x( , ) ( , )i k i k

0

4

a a= ,
,

,

=

/ (26)

where ( , )i ka  lists the polynomial coefficients for the ith  point and 
the kth  coordinate. For example, ,w4( , )i k

ijj0a = /  that is, four 
times the number of points connected to point .i  Expressions for 
the remaining coefficients are given in [46]; in the pseudocode 
(Algorithm 4), we assume that these coefficients are returned by 
the function “GetQuadricCoeffs,” given the noisy incomplete 
matrix ,DM  the observation mask ,W  and the dimensionality .d  The 
global minimizer of (26) can be found analytically by calculating 
the roots of its derivative (a cubic). The process is then repeated 
over all coordinates k  and points i  until convergence. The result-
ing algorithm is remarkably simple yet empirically converges fast. It 
naturally lends itself to a distributed implementation. We spell it out 
in Algorithm 4.

When applied to a large data set of random, noiseless, and 
complete distance matrices, Algorithm 4 converges to the global 
minimum of (25) in more than 99% of the cases [46].

SEMIDEFINITE PROGRAMMING
Recall the characterization of EDMs (11) in Theorem 2. It states 
that D  is an EDM if and only if the corresponding geometrically 
centered Gram matrix / JDJ1 2-^ h  is PSD. Thus, it establishes a 

Algorithm 4: Alternating descent [46].

1: function AlternatingDescent ( , , )D W dM
2: X X 0Rd n

0!! =# q  Initialize the point set 
3: repeat
4: for { , , }i n1 g! do q  Points 
5: for { , , }k d1 g! do q  Coordinates 
6: ( , , )W D dGetQuadricCoeffs( , )i k !a M
7: ( ; )argminx f x,

( , )
i k x

i k! a q  Eq. (26) 
8: end for
9: end for
10: until Convergence or MaxIter 
11: return X
12: end function

THE S-STRESS OBJECTIVE
IS EVERYWHERE DIFFERENTIABLE, 

BUT A DISADVANTAGE IS
THAT IT FAVORS LARGE

OVER SMALL DISTANCES.
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one-to-one correspondence between the cone of EDMs, denoted 
by EDMn  and the intersection of the symmetric positive-sem-
idefinite cone Sn

+  with the geometrically centered cone .Sc
n  The 

latter is defined as the set of all symmetric matrices whose col-
umn sum vanishes,

| , .G G G G 1 0S Rc
n n n!= = =# <" , (27)

We can use this correspondence to cast EDM completion and 
approximation as semidefinite programs. While (11) describes an 
EDM of an n-point configuration in any dimension, we are often 
interested in situations where .d n%  It is easy to adjust for this 
case by requiring that the rank of the centered Gram matrix be 
bounded. One can verify that 

( )
( ) ( ) ,

D X
X

JDJ

JDJd d
2
1 0edm

affdim rank
,

#
*

#

= -*3 (28)

when .n d$  That is, EDMs with a particular embedding dimen-
sion d  are completely characterized by the rank and definiteness 
of .JDJ

Now we can write the following rank-constrained semidefinite 
program for solving Problem 1:

( )

( )

.

W D

G
G

G

d

minimize

subject to rank
S S

K
G

F

n
c
n

2

+

%

#

!

-

+

^ hM
(29)

The second constraint is just shorthand for writing ,G 0*
.G1 0=  We note that this is equivalent to MDS with the s-stress 

cost function thanks to the rank characterization (28).
Unfortunately, the rank property makes the feasible set in (29) 

nonconvex, and solving it exactly becomes difficult. This makes 
sense, as we know that s-stress is not convex. Nevertheless, we may 
relax the hard problem by simply omitting the rank constraint and 
hope to obtain a solution with the correct dimensionality:

( )

.

W D

G

Gminimize

subject to S S

K
G

F

n
c
n

2
%

+!

-

+

^ hM
(30)

We call (30) a semidefinite relaxation (SDR) of the rank-con-
strained program (29).

The constraint ,G Sc
n!  or equivalently, ,G1 0=  means that 

there are no strictly positive definite solutions. (G  has a nullspace, 
so at least one eigenvalue must be zero.) In other words, there 
exist no strictly feasible points [32]. This may pose a numerical 
problem, especially for various interior point methods. The idea is 
then to reduce the size of the Gram matrix through an invertible 
transformation, somehow removing the part of it responsible for 
the nullspace. In what follows, we describe how to construct this 
smaller Gram matrix.

A different, equivalent way to phrase the multiplicative charac-
terization (11) is the following statement: a symmetric hollow 
matrix D  is an EDM if and only if it is negative semidefinite on 

1 =" ,  (on all vectors t  such that ) .t 01 =<  Let us construct an 

orthonormal basis for this orthogonal complement—a subspace 
of dimension ( )n 1- —and arrange it in the columns of matrix 

.V R ( )n n 1! # -  We demand 

.
V
V V I

1 0=
=<

<

(31)

There are many possible choices for ,V  but all of them obey that 
/ .VV I Jn1 11= - =< <^ h  The following choice is given in [2]:

,V

p
q

q

q

p
q

q

q

p
q
q

q

1
1

1
h g

g

g

g

j

g

h

=

+

+

+

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

(32)

where /( )p n n1=- +  and / .q n1=-

With the help of the matrix ,V  we can now construct the 
sought Gramian with reduced dimensions. For an EDM 

,D Rn n! #

( )D V DV2
1G

def
=- < (33)

is an ( ) ( )n n1 1#- -  PSD matrix. This can be verified by substi-
tuting (33) in (4). Additionally, we have that

( ( ) ) .V D V DK G =< (34)

Indeed, ( )H VHVK7 <  is an invertible mapping from Sn 1
+
-  to 

EDMn  whose inverse is exactly .G  Using these notations, we can 
write down an equivalent optimization program that is numeric-
ally more stable than (30) [2],

( )

.

W D

H

VHVminimize

subject to S

K
H

F

n

2

1

%

!

- <

+
-

u^ h

(35)

On the one hand, with the previous transformation, the constraint 
G1 0=  became implicit in the objective, as VHV 1 0/<  by (31); 
on the other hand, the feasible set is now the full semidefinite 
cone .Sn 1

+
-

Still, as Krislock and Wolkowicz mention [32], by omitting the 
rank constraint, we allow the points to move about in a larger 
space, so we may end up with a higher-dimensional solution even 
if there is a completion in dimension .d

There exist various heuristics for promoting lower rank. One 
such heuristic involves the trace norm—the convex envelope of 
rank. The trace or nuclear norm is studied extensively by the com-
pressed sensing community. In contrast to the common wisdom in 
compressed sensing, the trick here is to maximize the trace norm, 
not to minimize it. The mechanics are as follows: maximizing the 
sum of squared distances between the points will stretch the con-
figuration as much as possible, subject to available constraints. But 
stretching favors smaller affine dimensions (e.g., imagine pulling 
out a roll of paper or stretching a bent string). Maximizing the sum 
of squared distances can be rewritten as maximizing the sum of 
norms in a centered point configuration—but that is exactly the 
trace of the Gram matrix /G JDJ1 2=-^ h  [9]. This idea has been 
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successfully put to work by Weinberger and Saul [9] in manifold 
learning and by Biswas et al. in SNL [49].

Noting that ( ) ( )H Gtrace trace=  because ( )JDJtrace =

( ),V DVtrace <  we write the following SDR:

( ) (

.

( ))DH W

H

VHVmaximize trace

subject to S

K
H

F

n 1

%

!

m- - <

+
-

M
(36)

Here, we opted to include the data fidelity term in the Lagrangian 
form, as proposed by Biswas et al. [49], but it could also be moved 
to constraints. Finally, in all of the above relaxations, it is straight-
forward to include upper and lower bounds on the distances. 
Because the bounds are linear constraints, the resulting programs 
remain convex; this is particularly useful in the molecular confor-
mation problem. A MATLAB/CVX [50], [51] implementation of the 
SDR (36) is given in Algorithm 5.

MULTIDIMENSIONAL UNFOLDING: 
A SPECIAL CASE OF COMPLETION
Imagine that we partition the point set into two subsets and that 
we can measure the distances between the points belonging to dif-
ferent subsets but not between the points in the same subset. MDU 
[30] refers to this special case of EDM completion.

MDU is relevant for the position calibration of ad hoc sensor 
networks, particularly of microphones. Consider an ad hoc 
array of m  microphones at unknown locations. We can meas-
ure the distances to k  point sources, also at unknown loca-
tions, for example, by emitting a pulse. (We assume that the 
sources and the microphones are synchronized.) We can 
always permute the points so that the matrix assumes the 

structure shown in Figure 4, with the unknown entries in two 
diagonal blocks. This is a standard scenario described, for 
example, in [27].

One of the early approaches to metric MDU is that of Schöne-
mann [30]. We go through the steps of the algorithm and then 
explain how to solve the problem using the EDM toolbox. The goal 
is to make a comparison and emphasize the universality and sim-
plicity of the introduced tools.

Denote by [ , , ]R r rm1 f=  the unknown microphone loca-
tions and by [ , , ]S s sk1 f=  the unknown source locations. The 
distance between the ith  microphone and the jth  source is

,r sij i j
2d = - (37)

so that, in analogy with (3), we have

( , ) ( ) ( ),R S R R R S S S21 1edm diag diagD = = - +< < << (38)

where we overloaded the edm  operator in a natural way. We use 
D  to avoid confusion with the standard Euclidean .D  Consider 
now two geometric centering matrices of sizes m  and ,k  denoted 
as Jm  and .Jk  Similar to (14), we have

, .RJ R r S J S s1 1cm c k= - = - << (39)

This means that

R S GJ Jm k
def

D = =
<M L M (40)

is a matrix of the inner products between vectors riJ  and .s jJ  We 
used tildes to differentiate this from the real inner products 
between ri  and sj  because in (40), the points in RM  and SL  are ref-
erenced to different coordinate systems. The centroids rc  and sc

generally do not coincide. There are different ways to decompose 
GM  into a product of two full rank matrices, call them A  and B

.G A B= <M (41)

We could, for example, use the SVD, G U VR= <M  and set A U=<

and .B VR= <  Any two such decompositions are linked by some 
invertible transformation T Rd d! #

.G R SA B T T1= =
<< -M M L (42)

We can now write down the conversion rule from what we can 
measure to what we can compute

( ) ,
R T A r
S T B s

1
1

c

c
1

= +

= +

<

< <

<

- (43)

where A  and B  can be computed according to (41). Because we 
cannot reconstruct the absolute position of the point set, we can 
arbitrarily set ,r 0c =  and .s ec 1a=  Recapitulating, we have that

, ( ) ,T A T B e 1edm 1
1aD = +< << -^ h (44)

Algorithm 5: SDR (MATLAB/CVX).

1: function EDM = sdr_complete_edm(D, W, lambda) 
2: 
3: n = size(D, 1); 
4: x = −1/(n + sqrt(n)); 
5: y = −1/sqrt(n); 
6: V = [y*ones(1, n − 1); x*ones(n − 1) + eye(n − 1)]; 
7: e = ones(n, 1); 
8:
9: cvx_begin sdp 

10:    variable G(n − 1, n − 1) symmetric; 
11: B = V*G*V’; 
12:    E = diag(B)*e’ + e*diag(B)’ − 2*B; 
13:    maximize trace(G) − lambda * norm(W .* (E − D), ’fro’); 
14: subject to 
15: G >= 0; 
16: cvx_end 
17: 
18: EDM = diag(B)*e’ + e*diag(B)’ − 2*B; 
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and the problem is reduced to computing T  and a  so that (44) 
holds, or in other words, so that the right-hand side is consist-
ent with the data .D  We reduced MDU to a relatively small 
problem: in 3-D, we need to compute only ten scalars. Schöne-
mann [30] provides an algebraic method to find these parame-
ters and mentions the possibility of least squares, while Crocco, 
Del Bue, and Murino [27] propose a different approach using 
nonlinear least squares.

This procedure seems quite convoluted. Rather, we see MDU as 
a special case of matrix completion, with the structure illustrated 
in Figure 4.

More concretely, represent the microphones and the sources by 
a set of n k m= +  points ascribed to the columns of matrix 

[ ] .X R S=  Then, ( )Xedm  has a special structure as seen in 
Figure 4,

( )
( )

( , )
( , )

( )
.X

R
S R

R S
S

edm
edm

edm
edm

edm
= ; E (45)

We define the mask matrix for MDU as

.W
0
1

1
0

m m

k m

m k

k k
MDU

def
=

#

#

#

#
; E (46)

With this matrix, we can simply invoke the SDR in Algorithm 5. 
We could also use Algorithm 2 or Algorithm 4. The performance 
of different algorithms is compared in the next section.

It is worth mentioning that SNL-specific algorithms that exploit 
the particular graph induced by limited range communication do 
not perform well on MDU. This is because the structure of the miss-
ing entries in MDU is in a certain sense opposite to the one of SNL.

PERFORMANCE COMPARISON OF ALGORITHMS
We compare the described algorithms in two different EDM com-
pletion settings. In the first experiment (Figures 5 and 6), the 
entries to delete are chosen uniformly at random. The second 
experiment (Figures 7 and 8) tests the performance in MDU, 
where the nonobserved entries are highly structured. In Figures 5 
and 6, we assume that the observed entries are known exactly, and 
we plot the success rate (percentage of accurate EDM reconstruc-
tions) against the number of deletions in the first case and the 
number of calibration events in the second case. Accurate recon-
struction is defined in terms of the relative error. Let D  be the 
true and DX  the estimated EDM. The relative error is then 

/ ,D D DF F-X  and we declare success if this error is below 1%.
To generate Figures 6 and 8, we varied the amount of random, 

uniformly distributed jitter added to the distances, and for each jit-
ter level, we plotted the relative error. The exact values of interme-
diate curves are less important than the curves for the smallest 
and largest jitter and the overall shape of the ensemble.

A number of observations can be made about the performance of 
algorithms. Notably, OptSpace (Algorithm 3) does not perform well 
for randomly deleted entries when ;n 20=  it was designed for larger 
matrices. For this matrix size, the mean relative reconstruction error 
achieved by OptSpace is the worst of all algorithms (Figure 6). In fact, 
the relative error in the noiseless case was rarely below the success 

threshold (set to 1%), so we omitted the corresponding near-zero 
curve from Figure 5. Furthermore, OptSpace assumes that the pat-
tern of missing entries is random; in the case of a blocked deter-
ministic structure associated with MDU, it never yields a 
satisfactory completion.

On the other hand, when the unobserved entries are ran-
domly scattered in the matrix, and the matrix is large—in the 
ultrasonic calibration example, the number of sensors n  was 200
or more—OptSpace is a very fast and attractive algorithm. To 
fully exploit OptSpace, n  should be even larger, in the thousands 
or tens of thousands.

SDR (Algorithm 5) performs well in all scenarios. For both the 
random deletions and the MDU, it has the highest success rate and 
it behaves well with respect to noise. Alternating coordinate 
descent (Algorithm 4) performs slightly better in noise for a small 
number of deletions and a large number of calibration events, but 
Figures 5 and 7 indicate that, for certain realizations of the point 
set, it gives large errors. If the worst-case performance is critical, 
SDR is a better choice. We note that, in the experiments involving 
the SDR, we have set the multiplier m  in (36) to the square root of 
the number of missing entries. This simple choice was empirically 
found to perform well.

The main drawback of SDR is the speed; it is the slowest among 
the tested algorithms. To solve the semidefinite program, we used 
CVX [50], [51], a MATLAB interface to various interior point meth-
ods. For larger matrices (e.g., , ),n 1 000=  CVX runs out of mem-
ory on a desktop computer, and essentially never finishes. MATLAB 
implementations of alternating coordinate descent, rank alterna-
tion (Algorithm 2), and OptSpace are all much faster.

[FIG5] A comparison of different algorithms applied to 
completing an EDM with random deletions. For every number 
of deletions, we generated 2,000 realizations of 20 points 
uniformly at random in a unit square. The distances to delete 
were chosen uniformly at random among the resulting 
( ) * * ( )/ 20 20 1 1901 2 - =  pairs; 20 deletions correspond to .
10% of the number of distance pairs and to 5% of the 
number of matrix entries; 150 deletions correspond to .  80% 
of the distance pairs and to .  38% of the number of matrix 
entries. Success was declared if the Frobenius norm of the 
error between the estimated matrix and the true EDM was 
less than 1% of the Frobenius norm of the true EDM.
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The microphone calibration algorithm by Crocco [27] performs 
equally well for any number of acoustic events. This may be 
explained by the fact that it always reduces the problem to ten 
unknowns. It is an attractive choice for practical calibration prob-
lems with a smaller number of calibration events. The algorithm’s 
success rate can be further improved if one is prepared to run it for 
many random initializations of the nonlinear optimization step.

Interesting behavior can be observed for the rank alternation in 
MDU. Figures 7 and 8 show that, at low noise levels, the perfor-
mance of the rank alternation becomes worse with the number of 
acoustic events. At first glance, this may seem counterintuitive, as 
more acoustic events means more information; one could simply 
ignore some of them and perform at least equally well as with fewer 
events. But this reasoning presumes that the method is aware of the 
geometrical meaning of the matrix entries; on the contrary, rank 
alternation is using only rank. Therefore, even if the percentage of 
the observed matrix entries grows until a certain point, the size of 
the structured blocks of unknown entries grows as well (and the 
percentage of known entries in columns/rows corresponding to 
acoustic events decreases). This makes it harder for a method that 
does not use geometric relationships to complete the matrix. A 
loose comparison can be made to image inpainting: If the pixels are 
missing randomly, many methods will do a good job, but if a large 
patch is missing, we cannot do much without additional structure 
(in our case geometry) no matter how large the rest of the image is.

[FIG6] A comparison of different algorithms applied to completing an EDM with random deletions and noisy distances. For every 
number of deletions, we generated 1,000 realizations of 20 points uniformly at random in a unit square. In addition to the number 
of deletions, we varied the amount of jitter added to the distances. Jitter was drawn from a centered uniform distribution, with the 
level increasing in the direction of the arrow, from [ , ]0 0U  (no jitter) for the darkest curve at the bottom, to [ . , . ]0 15 0 15U -  for the 
lightest curve at the top, in 11 increments. For every jitter level, we plotted the mean relative error /D D DF F-t  for all algorithms. 
(a) OptSpace (Algorithm 3). (b) Alternating descent (Algorithm 4). (c) The rank alternation (Algorithm 2). (d) SDR (Algorithm 5).
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[FIG7] A comparison of different algorithms applied to MDU
with a varying number of acoustic events .k  For every number 
of acoustic events, we generated 3,000 realizations of m 20=
microphone locations uniformly at random in a unit cube. 
The percentage of the missing matrix entries is given as 
( )/( )k m k m2 2 2+ +  so that the ticks on the abscissa correspond 
to [ , , , , , ]%68 56 51 50 51 52  (nonmonotonic in k  with the 
minimum for ) .k m 20= =  Success was declared if the Frobenius 
norm of the error between the estimated matrix and the true 
EDM was less than 1% of the Frobenius norm of the true EDM.
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To summarize, for smaller and moderately sized matrices, the 
SDR seems to be the best overall choice. For large matrices, the 
SDR becomes too slow and one should turn to alternating coordi-
nate descent, rank alternation, or OptSpace. Rank alternation is 
the simplest algorithm, but alternating coordinate descent per-
forms better. For very large matrices (n  on the order of thousands 
or tens of thousands), OptSpace becomes the most attractive solu-
tion. We note that we deliberately refrained from making detailed 
running time comparisons due to the diverse implementations of 
the algorithms.

SUMMARY
In this section, we discussed: 

■ the problem statement for EDM completion and denoising 
and how to easily exploit the rank property (Algorithm 2)
■ standard objective functions in MDS, raw stress and 
s-stress, and a simple algorithm to minimize s-stress (Algo-
rithm 4)
■ different SDRs that exploit the connection between EDMs 
and PSD matrices
■ MDU and how to solve it efficiently using EDM completion
■ performance of the introduced algorithms in two very dif-
ferent scenarios: EDM completion with randomly unobserved 
entries and EDM completion with a deterministic block 
structure of unobserved entries (MDU).
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[FIG8] A comparison of different algorithms applied to MDU with a varying number of acoustic events k  and noisy distances. For 
every number of acoustic events, we generated 1,000 realizations of m 20=  microphone locations uniformly at random in a unit cube. 
In addition to the number of acoustic events, we varied the amount of random jitter added to the distances, with the same parameters 
as in Figure 6. For every jitter level, we plotted the mean relative error /D D DF F-X  for all algorithms. (a) Crocco’s method [27]. 
(b) Alternating descent (Algorithm 4). (c) Rank alternation (Algorithm 2) and SDR (Algorithm 5).
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[FIG9] An illustration of the uniqueness of EDMs for unlabeled 
distances. A set of unlabeled distance (a) is distributed in two 
different ways in a tentative EDM with embedding dimension 
two (b) and (c). The correct assignment yields the matrix with the 
expected rank (c), and the point set is easily realized in the plane 
(e). On the contrary, swapping just two distances [the hatched 
squares in (b) and (c)] makes it impossible to realize the point set in 
the plane (d). Triangles that do not coincide with the swapped 
edges can still be placed, but in the end, we are left with a hanging 
orange stick that cannot attach itself to any of the five nodes.
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UNLABELED DISTANCES
In certain applications, we can measure the distances between the 
points, but we do not know the correct labeling. That is, we know 
all the entries of an EDM, but we do not know how to arrange 
them in the matrix. As illustrated in Figure 9(a), we can imagine 
having a set of sticks of various lengths. The task is to work out the 
correct way to connect the ends of different sticks so that no stick 
is left hanging open-ended.

In this section, we exploit the fact that, in many cases, distance 
labeling is not essential. For most point configurations, there is no 
other set of points that can generate the corresponding set of dis-
tances up to a rigid transformation.

Localization from unlabeled distances is relevant in various 
calibration scenarios where we cannot tell apart distance meas-
urements belonging to different points in space. This can occur 
when we measure the TOAs of echoes, which correspond to the 
distances between the microphones and the image sources (ISs) 
(see Figure 10) [6], [29]. Somewhat surprisingly, the same 

problem of unlabeled distances appears in sparse phase retrieval; 
see “EDM Perspective on Sparse Phase Retrieval (the Unexpected 
Distance Structure).”

No efficient algorithm currently exists for localization from 
unlabeled distances in the general case of noisy distances. We 
should mention, however, a recent polynomial-time algorithm 
(albeit of a high degree) by Gujarathi et al. [31] that can recon-
struct relatively large point sets from unordered, noiseless dis-
tance data.

At any rate, the number of assignments to test is sometimes 
small enough that an exhaustive search does not present a prob-
lem. We can then use EDMs to find the best labeling. The key to 
the unknown permutation problem is the following fact.

Theorem 3: Draw , , ,x x x Rn
d

1 2 g !  independently from 
some absolutely continuous probability distribution (e.g., uni-
formly at random) on .Rd3X  Then, with probability 1, the 
obtained point configuration is the unique (up to a rigid 

EDM PERSPECTIVE ON SPARSE PHASE RETRIEVAL 
(THE UNEXPECTED DISTANCE STRUCTURE)
In many cases, it is easier to measure a signal in the Fourier 
domain. Unfortunately, it is common in these scenarios that we 
can only reliably measure the magnitude of the Fourier transform 
(FT). We would like to recover the signal of interest from just the 
magnitude of its FT, hence the name phase retrieval. X-ray crystal-
lography [54] and speckle imaging in astronomy [55] are classic 
examples of phase retrieval problems. In both of these applica-
tions, the signal is spatially sparse. We can model it as

( ) ( ),x x xf ci
i

n

i
1

d= -
=

/ (S1)

where ci  are the amplitudes and xi  are the locations of the 
n  Dirac deltas in the signal. In what follows, we discuss the 
problem on 1-D domains, that is, for ,x R!  knowing that a 
multidimensional phase retrieval problem can be solved by 
solving multiple 1-D problems [7].

Note that measuring the magnitude of the FT of ( )xf  is equiv-
alent to measuring its ACF. For a sparse ( ),xf  the ACF is also 
sparse and is given as

( ) ( ( )),x x x xa c ci
j

n

i

n

j i j
11

d= - -
==

// (S2)

where we note the presence of differences between the 
locations xi  in the support of the ACF. As ( )xa  is symmetric, 
we do not know the order of xi  and so we can only know 
these differences up to a sign, which is equivalent to know-
ing the distances x xi j-  (Figure S3).

For the following reasons, we focus on the recovery of the sup-
port of the signal ( )xf  from the support of the ACF ( ):xa  1) in cer-
tain applications, the amplitudes ci  may be all equal, thus limiting 
their role in the reconstruction and 2) knowing the support of 

( )xf  and its ACF is sufficient to exactly recover the signal ( )xf  [7].
The recovery of the support of ( )xf  from the one of ( )xa

corresponds to the localization of a set of n  points from their
unlabeled distances: we have access to all the pairwise distances 
but we do not know which pair of points corresponds to any 
given distance. This can be recognized as an instance of the
turnpike problem, whose computational complexity is believed 
not to be NP-hard but for which no polynomial time algorithm 
is known [56]. 

From an EDM perspective, we can design a reconstruction 
algorithm recovering the support of the signal ( )xf  by labe-
ling the distances obtained from the ACF such that the result-
ing EDM has a rank that is less than or equal to three. This can 
be regarded as unidimensional scaling with unlabeled dis-
tances, and the algorithm to solve it is similar to echo sorting 
(Algorithm 6).

a (x ) f (x )

x x

(a) (b)

[FIGS3] A graphical representation of the phase retrieval 
problem for 1-D sparse signals. (a) We measure the ACF of the 
signal and we recover a set of distances (sticks in Figure 9) 
from its support. (b) These are the unlabeled distances 
between all the pairs of Dirac deltas in the signal ( ) .xf  We 
exactly recover the support of the signal if we correctly 
label the distances.
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transformation) point configuration in X  that generates the 
set of distances , .x x i j n1i j 1# #-" ,

This fact is a simple consequence of a result by Boutin and 
Kemper [52] who provide a characterization of point sets recon-
structable from unlabeled distances. Figure 9(b) and (c) shows two 
possible arrangements of the set of distances in a tentative EDM; 
the only difference is that the two hatched entries are swapped. But 
this simple swap is not harmless: there is no way to attach the last 
stick in Figure 9(d) while keeping the remaining triangles consist-
ent. We could do it in a higher embedding dimension, but we insist 
on realizing it in the plane.

What Theorem 3 does not tell us 
is how to identify the correct labeling. 
But we know that for most sets of dis-
tances, only one (correct) permuta-
tion can be realized in the given 
embedding dimension. Of course, if 
all the labelings are unknown and we 
have no good heuristics to trim the 
solution space, finding the correct labeling is difficult, as noted in 
[31]. Yet there are interesting situations where this search is feasi-
ble because we can augment the EDM point by point. We describe 
one such situation next. 

HEARING THE SHAPE OF A ROOM
An important application of EDMs with unlabeled distances is 
the reconstruction of the room shape from echoes [6]. An acous-
tic setup is shown in Figure 10(a), but one could also use radio 
signals. Microphones pick up the convolution of the sound emit-
ted by the loudspeaker with the room impulse response (RIR), 
which can be estimated by knowing the emitted sound. An 
example RIR recorded by one of the microphones is illustrated 
in Figure 10(b), with peaks highlighted in green. Some of these 
peaks are first-order echoes coming from different walls, and 
some are higher-order echoes or just noise.

Echoes are linked to the room geometry by the image source 
(IS) model [53]. According to this model, we can replace echoes by 
ISs—mirror images of the true sources across the corresponding 
walls. The position of the IS of s  corresponding to wall i  is 
computed as

s , ,s p s n n2i i i i= + -J (47)

where pi  is any point on the ith  wall and ni  is the unit normal 
vector associated with the ith  wall [see Figure 10(a)].

A convex room with planar walls is completely determined by 
the locations of first-order ISs [6], so by reconstructing their loca-
tions, we actually reconstruct the room’s geometry.

We assume that the loudspeaker and the microphones are syn-
chronized so that the times at which the echoes arrive directly 
correspond to distances. The challenge is that the distances—the 
green peaks in Figure 10(b)—are unlabeled: it might happen that 
the kth  peak in the RIR from microphone 1 and the kth  peak in 
the RIR from microphone 2 come from different walls, especially 

for larger microphone arrays. Thus, we have to address the prob-
lem of echo sorting to group peaks corresponding to the same IS 
in RIRs from different microphones.

Assuming that we know the pairwise distances between the 
microphones [ , , ],R r rm1 f=  we can create an EDM corre-
sponding to the microphone array. Because echoes correspond to 
ISs, and ISs are just points in space, we attempt to grow that EDM 
by adding one point—an IS—at a time. To do that, we pick one 
echo from every microphone’s impulse response, augment the 
EDM based on echo arrival times, and check how far the aug-
mented matrix is from an EDM with embedding dimension three, 
as we work in 3-D space. The distance from an EDM is measured 

with the s-stress cost function. It 
was shown in [6] that a variant of 
Theorem 3 applies to ISs when 
microphones are positioned at ran-
dom. Therefore, if the augmented 
matrix satisfies the EDM properties, 
almost surely we have found a good 
IS. With probability 1, no other com-

bination of points could have generated the used distances.
The main reason for using EDMs and s-stress instead of, for 

instance, the rank property is that we get robust algorithms. The 
echo arrival times are corrupted with various errors, and relying 
on the rank is too brittle. It was verified experimentally [6] that 
EDMs and s-stress yield a very robust filter for the correct combi-
nations of echoes.

Thus, we may try all feasible combinations of echoes and 
expect to get exactly one “good” combination for every IS that is 

si

s r

ni

nj

sj sij

(a)

(b)

[FIG10] (a) An illustration of the IS model for first- and second-
order echoes. Vector ni  is the outward-pointing unit normal 
associated with the ith wall. The stars denote the IS, and sijJ  is the 
IS corresponding to the second-order echo. The sound rays 
corresponding to first reflections are shown in purple, and the ray 
corresponding to the second-order reflection is shown in green. 
(b) The early part of a typical recorded RIR.

AN IMPORTANT APPLICATION
OF EDMs WITH UNLABELED

DISTANCES IS THE
RECONSTRUCTION OF THE

ROOM SHAPE FROM ECHOES.
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“visible” in the impulse responses. In this case, as we are only add-
ing a single point, the search space is small enough to be rapidly 
traversed exhaustively. Geometric considerations allow for a fur-
ther trimming of the search space: because we know the diameter 
of the microphone array, we know that an echo from a particular 
wall must arrive at all the microphones within a temporal window 
corresponding to the array’s diameter.

The procedure is as follows: collect all echo arrival times 
received by the ith  microphone in the set Ti  and fix t T1 1!  cor-
responding to a particular IS. Then, Algorithm 6 finds echoes in 
other microphones’ RIRs that correspond to this same IS. Once 
we group all the peaks corresponding to one IS, we can determine 
its location by multilateration (e.g., by running the classical MDS) 
and then repeat the process for other echoes in .T1

To get a ballpark idea of the number of combinations to test, 
suppose that we detect 20 echoes per microphone and that the 
diameter of the five-microphone array is 1 m. (We do not need to 
look beyond early echoes corresponding to at most three 
bounces; this is convenient as echoes of higher orders are chal-
lenging or impossible to isolate.) Thus, for every peak time 

,t T1 1!  we have to look for peaks in the remaining four micro-
phones that arrived within a window around t1  of length 

/ ,2 1 343m /m s# ^ h  where 343 m/s is the speed of sound. This is 
approximately 6 ms, and in a typical room, we can expect about 
five early echoes within a window of that duration. Thus, we have 
to compute the s-stress for ,20 5 12 5004# =  matrices of size 

,6 6#  which can be done in a matter of seconds (or less) on a 
desktop computer. In fact, once we assign an echo to an IS, we 
can exclude it from further testing, so the number of combina-
tions can be further reduced.

Algorithm 6 was used to reconstruct rooms with centimeter 
precision [6] with one loudspeaker and an array of five micro-
phones. The same algorithm also enables a dual application: indoor 
localization of an acoustic source using only one microphone—a 
feat not possible if we are not in a room [57].

SUMMARY
To summarize this section: 

■ We explained that for most point sets, the distances they 
generate are unique; there are no other point sets generating 
the same distances.
■ In room reconstruction from echoes, we need to identify 
the correct assignment of the distances to ISs. EDMs act as a 
robust filter for echoes coming from the same IS.
■ Sparse phase retrieval can be cast as a distance problem, 
too. The support of the ACF gives us the distances between 
the deltas in the original signal. Echo sorting can be adapted 
to solve the problem from the EDM perspective.

IDEAS FOR FUTURE RESEARCH
Even problems that at first glance seem to have little to do with 
EDMs sometimes reveal a distance structure when you look 
closely. A good example is sparse phase retrieval.

The purpose of this article is to convince the reader that EDMs 
are powerful objects with a multitude of applications (Table 2 lists 
various flavors) and that they should belong to any practitioner’s 
toolbox. We have an impression that the power of EDMs and the 
associated algorithms has not been sufficiently recognized in the 
signal processing community, and our goal is to provide a good 
starting reference. To this end, and perhaps to inspire new 
research directions, we list several EDM-related problems that we 
are curious about and believe are important. 

DISTANCE MATRICES ON MANIFOLDS
If the points lie on a particular manifold, what can be said about 
their distance matrix? We know that if the points are on a circle, 
the EDM has a rank of three instead of four, and this generalizes to 
hyperspheres [17]. But what about more general manifolds? Are 
there invertible transforms of the data or of the Gram matrix that 
yield EDMs with a lower rank than the embedding dimension sug-
gests? What about different distances, e.g., the geodesic distance 
on the manifold? The answers to these questions have immediate 
applications in machine learning, where the data can be approxi-
mately assumed to be on a smooth surface [23].

PROJECTIONS OF EDMs ON 
LOWER-DIMENSIONAL SUBSPACES
What happens to an EDM when we project its generating points to a 
lower-dimensional space? What is the minimum number of 

Algorithm 6: Echo sorting [6].

1: function EchoSort , , , )(R t Tm1 f

2: ( )D Redm!

3: s Infbest !+

4: for all [ , , ],t t t t Tsuch thatm i i2 f != do
5: [ , ]d tc t1! $ << q c  is the sound speed 

6: D
D
d

d
0aug ! <= G

7: if ( )D ss-stress aug best1 then
8: ( )Ds s-stressbest aug!

9: d dbest !

10: end if
11: end for
12: return dbest

13: end function

[TABLE 2] APPLICATIONS OF EDMs WITH DIFFERENT TWISTS.

APPLICATION
MISSING
DISTANCES

NOISY
DISTANCES

UNLABELED 
DISTANCES

WIRELESS SENSOR NETWORKS ✔ ✔ #

MOLECULAR CONFORMATION ✔ ✔ #

HEARING THE SHAPE OF A 
ROOM

# ✔ ✔

INDOOR LOCALIZATION # ✔ ✔

CALIBRATION ✔ ✔ #

SPARSE PHASE RETRIEVAL # ✔ ✔
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projections that we need to be able to reconstruct the original point 
set? The answers to these questions have a significant impact on 
imaging applications such as X-ray crystallography and seismic 
imaging. What happens when we only have partial distance observa-
tions in various subspaces? What are the other useful low-dimen-
sional structures on which we can observe the high-dimensional 
distance data?

EFFICIENT ALGORITHMS FOR DISTANCE LABELING
Without application-specific heuristics to trim down the search 
space, identifying correct labeling of the distances quickly becomes 
an arduous task. Can we identify scenarios for which there are effi-
cient labeling algorithms? What happens when we do not have the 
labeling, but we also do not have the complete collection of sticks? 
What can we say about the uniqueness of incomplete unlabeled dis-
tance sets? Some of the questions have been answered by Gujarathi 
et al. [31], but many remain. The quest is on for faster algorithms 
as well as algorithms that can handle noisy distances.

In particular, if the noise distribution on the unlabeled dis-
tances is known, what can we say about the distribution of the 
reconstructed point set (taking in some sense the best reconstruc-
tion over all labelings)? Is it compact, or can we jump to totally 
wrong assignments with positive probability?

ANALYTICAL LOCAL MINIMUM OF S-STRESS
Everyone agrees that there are many, but, to the best of our 
knowledge, no analytical minimum of s-stress has yet been found.

CONCLUSIONS
We hope that we have succeeded in showing how universally useful 
EDMs are and that readers will be inspired to dig deeper after com-
ing across this material. Distance measurements are so common 
that a simple, yet sophisticated tool like EDMs deserves attention. A 
good example is the SDR: even though it is generic, it is the best-
performing algorithm for the specific problem of ad hoc micro-
phone array localization. Continuing research on this topic will 
bring new revolutions like it did in the 1980s in crystallography. 
Perhaps the next one will be fueled by solving the labeling problem.
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O
ptimization methods are at 
the core of many prob-
lems in signal/image pro-
cessing, computer vision, 
and machine learning. For a 

long time, it has been recognized that 
looking at the dual  of an optimization 
problem may drastically simplify its solu-
tion. However, deriving efficient strategies 
that jointly bring into play the primal and 
dual problems is a more recent idea that 
has generated many important new contri-
butions in recent years. These novel devel-
opments are grounded in the recent 
advances in convex analysis, discrete opti-
mization, parallel processing, and nons-
mooth optimization with an emphasis on 
sparsity issues. In this article, we aim to 
present the principles of primal–dual 
approaches while providing an overview of 
the numerical methods that have been 
proposed in different contexts. Last but not 
least, primal–dual methods lead to algo-
rithms that are easily parallelizable. Today, 
such parallel algorithms are becoming 
increasingly important for efficiently han-
dling high-dimensional problems.

INTRODUCTION
Optimization is an extremely popular para-
digm that constitutes the backbone of many 
branches of applied mathematics and engi-
neering, such as signal processing, com-
puter vision, machine learning, inverse 
problems, and network communications, to 
mention just a few [1]. The popularity of 

optimization approaches often stems from 
the fact that many problems from the fields 
mentioned are typically characterized by a 
lack of closed-form solutions and by uncer-
tainties. In signal and image processing, for 
instance, uncertainties can be introduced 
due to noise, sensor imperfection, or ambi-
guities that are often inherent in the visual 
interpretation. As a result, perfect or exact 
solutions hardly exist, whereas one aims at 
inexact but optimal (in a statistical or appli-
cation-specific sense) solutions and their 
efficient computation. At the same time, one 
important characteristic that today is shared 
by an increasingly large number of optimi-
zation problems encountered in the men-
tioned areas is the fact that these problems 
are often very large scale. A good example is 
the field of computer vision, where one often 
needs to solve low-level problems that 
require associating at least one (and typically 
more than one) variable to each pixel of an 
image (or even worse of an image sequence 
as in the case of a video) [2]. This leads to 
problems that can easily contain millions of 
variables, which are the norm rather than 
the exception in this context.

Similarly, in fields such as machine 
learning [3], [4], because of the great ease 
with which data can now be collected and 
stored, quite often one has to cope with 
truly massive data sets and train very large 
models, which naturally leads to optimiza-
tion problems of very high dimensionality 
[5]. Of course, a similar situation arises in 
many other scientific domains, including 
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application areas such as inverse problems (e.g., medical image 
reconstruction or satellite image restoration) or telecommunica-
tions (e.g., network design and provisioning) and industrial engi-
neering. Because of this fact, computational efficiency constitutes 
a major issue that needs to be thoroughly addressed. This, there-
fore, makes mandatory the use of tractable optimization tech-
niques that are able to properly exploit the problem structures and 
remain applicable to as many problems as possible.

There have been many important advances in recent years con-
cerning a particular class of optimization approaches known as pri-
mal–dual methods. As their name implies, these approaches 
proceed by concurrently solving a primal problem (corresponding 
to the original optimization task) as well as a dual formulation of 
this problem. As it turns out, in doing so, they are able to more effi-
ciently exploit the problem-specific properties, thus offering in 
many cases important computational advantages, some of which 
are briefly mentioned in the following sections for two very broad 
classes of problems: convex and discrete optimization problems.

CONVEX OPTIMIZATION
Primal–dual methods have primarily been employed in convex 
optimization problems [6]–[8] where strong duality holds. They 
have been successfully applied to various types of nonlinear and 
nonsmooth cost functions that are prevalent in the previously 
mentioned application fields.

Many such applied problems can essentially be expressed as a 
minimization of a sum of terms, where each term is given by the 
composition of a convex function with a linear operator. One first 
advantage of primal–dual methods pertains to the fact that they can 
yield very efficient splitting optimization schemes, according to 
which a solution to the original problem is iteratively computed 
through solving a sequence of easier subproblems, each one involv-
ing only one of the terms appearing in the objective function.

The resulting primal–dual splitting schemes can also handle 
both differentiable and nondifferentiable terms, the former by 
the use of gradient operators (i.e., through explicit steps) and the 
latter by the use of proximity operators (i.e., through implicit 
steps) [9], [10]. Depending on the target functions, either explicit 
or implicit steps may be easier to implement. Therefore, the 
derived optimization schemes exploit the properties of the input 
problem in a flexible manner, thus leading to very efficient first-
order algorithms.

Even more importantly, primal–dual techniques are able to 
achieve what is known as full splitting in the optimization literature, 
meaning that each of the operators involved in the problem (i.e., not 
only the gradient or proximity operators but also the involved linear 
operators) is used separately [11]. As a result, no call to the inversion 
of a linear operator, which is an expensive operation for large-scale 
problems, is required during the optimization process. This is an 
important feature that gives these methods a significant computa-
tional advantage over all other splitting-based approaches.

Last but not least, primal–dual methods lead to algorithms 
that are easily parallelizable. Today, such parallel algorithms are 
becoming increasingly important for efficiently handling high-
dimensional problems.

DISCRETE OPTIMIZATION
In addition to convex optimization, another important area where 
primal–dual methods play a prominent role is discrete optimiza-
tion. This is of particular significance given that a large variety of 
tasks, such as signal processing, computer vision, and pattern rec-
ognition, are formulated as discrete labeling problems, where one 
seeks to optimize some measure related to the quality of the labe-
ling [12]. This includes image analysis tasks such as image seg-
mentation, optical flow estimation, image denoising, and stereo 
matching, to mention a few. The resulting discrete optimization 
problems are not only of very large size, but they also typically 
exhibit highly nonconvex objective functions, which are generally 
intricate to optimize.

Similarly to the case of convex optimization, primal–dual 
methods again offer many computational advantages, often lead-
ing to very fast graph-cut or message-passing-based algorithms, 
which are also easily parallelizable, thus providing in many cases a 
very efficient way to handle discrete optimization problems that 
are encountered in practice [13]–[16]. Besides being efficient, they 
are also successful in making small compromises regarding the 
quality of the estimated solutions. Techniques such as the so-
called primal–dual schema are known to provide a principled way 
for deriving powerful approximation algorithms to solve difficult 
combinatorial problems, thus allowing primal–dual methods to 
often exhibit theoretical (i.e., worst-case) approximation proper-
ties. Furthermore, apart from the aforementioned worst-case 
guaranties, primal–dual algorithms also provide for free per-
instance approximation guaranties. This is essentially made possi-
ble by the fact that these methods are estimating not only primal 
but also dual solutions.

Convex optimization and discrete optimization rely on differ-
ent background theories. Convex optimization may appear to be 
the most tractable topic in optimization for which many efficient 
algorithms have been developed, allowing a broad class of prob-
lems to be solved. By contrast, combinatorial optimization prob-
lems are generally NP-hard. However, many convex relaxations of 
certain discrete problems can provide good approximate solu-
tions to the original ones [17], [18]. The problems encountered 
in discrete optimization, therefore, constitute a source of inspira-
tion for developing novel convex optimization techniques.

OUR OBJECTIVES
Based on the previous observations, our objectives are

1) provide a thorough introduction that intuitively explains 
the basic principles and ideas behind primal–dual approaches
2) describe how these methods can be employed both in the 
context of continuous and discrete optimization
3) explain some of the recent advances that have taken place 
concerning primal–dual algorithms for solving large-scale 
optimization problems
4) detail useful connections between primal–dual methods 
and some widely used optimization techniques such as the 
alternating direction method of multipliers (ADMM) [19], [20]
5) provide examples of useful applications in the context of 
image analysis and signal processing. 
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OPTIMIZATION BACKGROUND
In this section, we introduce the necessary mathematical defini-
tions and concepts used for introducing primal–dual algorithms 
in later sections. Although the following framework holds for gen-
eral Hilbert spaces, for simplicity, we will focus on the finite-
dimensional case.

NOTATION
In this article, we will consider functions from RN  to , .3 3- +@ @
The fact that we allow functions to take 3+  value is useful in 
modern optimization to discard some “forbidden part” of the space 
when searching for an optimal solution. (For example, in image 
processing problems, the components of the solution are often 
intensity values, which must be nonnegative.) The domain of a 
function : ,f RN " 3 3- +@ @ is the subset of RN  where this func-
tion takes finite values, i.e., . ( )f x f xdom <RN 3!= +" , A
function with a nonempty domain is said to be proper. A function 
f  is said to be convex if 

( ( , ) ( ) ) ( [ , ]) ( ( ) )

( ) ( ) ( ) .

x y f x y

f x f y

0 1 1

1

RN 26 6! !

#

m m m

m m

+ -

+ - (1)

The class of functions for which most of the main results in con-
vex analysis have been established is ( ),RN

0C  the class of proper, 
convex, lower-semicontinuous functions from RN  to , .3 3- +@ @
Recall that a function : ,f RN " 3 3- +@ @ is lower semicontinu-
ous if its epigraph {( , )f xepi dom!g=  |  ( ) }f f xR# # g  is a 
closed set (see Figure 1).

If C  is a nonempty subset of ,RN  the indicator function of 
C  is defined as

( ) ( )x x
x C0 if

otherwise.
RN

C6
3

!
!

k =
+
) (2)

This function belongs to ( )RN
0C  if and only if C  is a nonempty 

closed convex set.
The Moreau subdifferential of a function : ,f RN " 3 3- +@ @

at x RN!  is defined as

( ) { | ( ) ( ) ( ) ( )} .f x u y f y f x u y xR RN N2 6! ! $= + -< (3)

Any vector u  in ( )f x2  is called a subgradient of f  at x  (see 
Figure 2).

Fermat’s rule states that zero is a subgradient of f  at x  if and 
only if x  belongs to the set of global minimizers of .f  If f  is a 
proper convex function that is differentiable at ,x  then its subdif-
ferential at x  reduces to the singleton consisting of its gradient, 
i.e., ( ) { ( )} .f x f x2 d=  Note that, in the nonconvex case, extended 
definitions of the subdifferential, such as the limiting subdifferen-
tial [21], may be useful, but this one reduces to the Moreau subdif-
ferential when the function is convex.

PROXIMITY OPERATOR
A concept that has been of growing importance in recent devel-
opments in optimization is the concept of proximity operator. It 
must be pointed out that the proximity operator was introduced 

in the early work by Moreau [9]. The proximity operator of a 
function ( )f RN

0! C  is defined as

: ,: ( )argminx f y y x2
1prox R R

y
f

N N 2

RN
" 7 + -

!

(4)

where $  denotes the Euclidean norm. For every ,x RN!

xprox f  can thus be interpreted as the result of a regularized 
minimization of f  in the neighborhood of .x  Note that the mini-
mization to be performed to calculate xprox f  always has a 
unique solution. Figure 3 shows the variations of the prox f  func-
tion when : :f x xR R p" 7  with .p 1$  In the case when 

,p 1=  the classical soft-thesholding operation is obtained.

x x

f (x ) f (x )

(b)(a)

[FIG1] An illustration of the lower-semicontinuity property.

yx yx

f (y )
f (x ) + u (y – x)

f (y )
f (x ) + u (y – x)

(a) (b)

[FIG2] Examples of subgradients u  of a function f  at .x
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p = 1 p = 2
p = 3
p = 4

p = 4/3
p = 3/2

[FIG3] Graph of .prox| | p$ This power p  function is often used to 
regularize inverse problems.
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In the case when f  is equal to the indicator function of a 
nonempty closed convex set ,C RN1  the proximity operator of 
f  reduces to the projection PC  onto this set, i.e., ( )x RN6 !

.argminP x y xC y C= -!  This shows that proximity opera-
tors can be viewed as extensions of projections onto convex 
sets. The proximity operator enjoys many properties of the pro-
jection, particularly its nonexpansiveness. The firm nonexpan-
siveness can be viewed as a generalization of the strict 
contraction property, which is the engine behind the Banach–
Picard fixed-point theorem. This property makes the proximity 
operator successful in ensuring the convergence of fixed-point 
algorithms grounded on its use. For more details about prox-
imity operators and their rich properties, see the tutorial 
papers in [5], [10], and [22]. The definition of the proximity 
operator can be extended to nonconvex lower-semicontinuous 
functions, which are lower bounded by an affine function, but 

xprox f  is no longer guaranteed to be uniquely defined at any 
given point .x

CONJUGATE FUNCTION
A fundamental notion when dealing with duality issues is the 
notion of conjugate function. The conjugate of a function 

: ,f RN " 3 3- +@ @ is the function f *  defined as

: , : ( ( )) .supf u x u f xR* N

x RN
" 73 3- + -<

!

@ @ (5)

This concept was introduced by Legendre in the one-variable 
case, and it was generalized by Fenchel. A graphical illustration of 
the conjugate function is provided in Figure 4. In particular, for 
every vector x RN!  such that the supremum in (5) is attained, 
u  is a subgradient of f  at .x

It must be emphasized that, even if f  is nonconvex, f *  is a 
(not necessarily proper) lower-semicontinuous convex function. 
In addition, when ( ),f RN

0! C  then ( ),f R* N
0! C  and also the 

biconjugate of f  (that is, the conjugate of its conjugate) is 
equal to .f  This means that we can express any function f  in 

( )RN
0C  as

( ) ( ) ( ( )) .supx f x u x f uR *N

u RN
6 ! = -<

!

(6)

A geometrical interpretation of this result is that the epigraph 
of any proper lower-semicontinuous convex function is always 
an intersection of closed half spaces.

As we have seen, the subdifferential plays an important role 
in the characterization of the minimizers of a function. A natu-
ral question, therefore, regards the relations existing between 
the subdifferential of a function : ,f RN " 3 3- +@ @ and the sub-
differential of its conjugate function. An answer is provided by 
the following important properties:

( ) ( )u f x x f u fif is proper*&2 2! !

( ) ( ) ( ) .u f x x f u fif R* N
0+2 2! ! ! C (7)

Another important property is Moreau’s decomposition for-
mula, which links the proximity operator of a function 

( )f RN
0! C  to the proximity operator of its conjugate

( ) ( , )

( ) .

x

x x x

0

prox prox

RN

f f
1*1

6 6 3! !c

c c=

+

+c c
-

-

6@
(8)

Other useful properties of the conjugation operation are listed in 
Table 1 (throughout the article, int S  denotes the interior of a 
set ),S  where a parallel is drawn with the multidimensional Fou-
rier transform, which is a more familiar tool in signal and image 
processing. Conjugation also makes it possible to build an insight-
ful bridge between the main two kinds of nonsmooth convex func-
tions encountered in signal and image processing problems, which 
are indicator functions of feasibility constraints and sparsity meas-
ures (see “Conjugates of Support Functions”).

DUALITY RESULTS
A wide array of problems in signal and image processing can be 
expressed under the following variational form:

( ) ( ),f x g Lxminimize
x RN

+
!

(9)

where : , ,f RN " 3 3- +@ @ : , ,g RK " 3 3- +@ @  and .L RK N! #

Equation (9) is usually referred to as the primal problem, which is 
associated with the following dual problem [6], [8], [26]:

( ) ( ) .f L v g vminimize * *

v RK
- +<

!

(10)

(see “Consensus and Sharing Are Dual Problems”).
The latter problem may be easier to solve than the former 

one, especially when K  is much smaller than .N
A question, however, is whether solving the dual problem 

may provide information for the solution of the primal one. The 
Fenchel–Rockafellar duality theorem first answers this question 
by basically stating that solving the dual problem provides a 
lower bound on the minimum value that can be obtained in the 
primal one. More precisely, if f  and g  are proper functions and 
if n  and *n  denote the infima of the functions minimized in 
the primal and dual problems, respectively, then weak duality
holds, which means that .*$n n-  If n  is finite, *n n+  is 
called the duality gap. In addition, if ( )f RN

0! C  and 
( ),g RK

0! C  then, under appropriate qualification conditions 
(for example, this property is satisfied if the intersection of the 
interior of the domain of g  and the image of the domain of f
by L  is nonempty), there always exists a solution to the dual [FIG4] A graphical interpretation of the conjugate function.

x x

– f ∗(u )

– f ∗(u )

f (x ) f (x )
u x

u x

(a) (b)
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problem and the duality gap vanishes. When the duality gap is 
equal to zero, it is said that strong duality holds.

Another useful result follows from the fact that, by using the 
definition of the conjugate function of ,g  (9) can be re-expressed 
as the following saddle-point problem:

( ( ) ( )) .inf sup f x Lx gFind *

x RRN K
y y+ -<

! !y

(11)

To find a saddle point ( , ) ,x R RN K#!yt t  it thus appears natural 
to impose the inclusion relations

( ), ( ) .xL f Lx g*2 2! !y y- < t t tt (12)

A pair ( , )x yt t  satisfying these conditions is called a Kuhn–
Tucker point. Actually, under a technical assumption, by using 
Fermat’s rule and (7), it can be proved that, if ( , )x yt t  is a Kuhn–
Tucker point, xt  is a solution to the primal problem and yt  is a 

[TABLE 1] THE PARALLELISM BETWEEN THE PROPERTIES OF THE LEGENDRE–FENCHEL CONJUGATION [10]
AND OF THE FOURIER TRANSFORM.

CONJUGATION FOURIER TRANSFORM

PROPERTY ( )h x ( )h u* ( )h x h ot ^ h

I INVARIANT FUNCTION / x1 2 2^ h / u1 2 2^ h ( )exp x 2r- ( )exp 2
r o-

II TRANSLATION c RN! ( )f x c- ( )f u c u* + < ( )f x c- ( ) ( )exp c fx2. r o- < t

III DUAL TRANSLATION c RN! ( )f x c x+ < ( )f u c* - ( ) ( )exp c x f x c2. r -< f co -t^ h

IV SCALAR MULTIPLICATION
,0 3!a + 6@ ( )f xa f u*a

a
c m ( )f xa f oa t^ h

V INVERTIBLE LINEAR TRANS-
FORM L RN N! #

( )f Lx (( ) )f L u* 1 <- ( )f Lx
| |det

f
L

L1 1 o
<-t^

^ ^ h
h h

VI SCALING R*!a f x
a
c m ( )f u* a f x

a
c m ( )fa oat

VII REFLECTION ( )f x- ( )f u* - ( )f x- ( )f o-t

VIII SEPARABILITY ,( )x( )

j

N

j
j

1

{
=

/ ( )x x( )j
j N1= # # ,( )u* ( )

j

N

j
j

1

{
=

/ ( )u u( )j
j N1= # # ,x( )

j

N

j
j

1

{
=

^ h% x x( )j
j N1= # #^ h ,j

j

j

N

1

{ o
=

t ^ ^ hh% ( )( )j
j N1o o= # #

IX ISOTROPY x}^ h u*} ^ h x}^ h ( )} ou

X INF-CONVOLUTION/
CONVOLUTION

( ) ( )f g x4 ( ) ( )inf f y g x y
y RN

= + -
!

( ) ( )f u g u* *+ ( ) ( )f g x* ( ) ( )f y g x y dy
RN

= -# ( ) ( )f go ot t

XI SUM/PRODUCT ( ) ( ),f x g x+ ( ),f RN
0! C ( )g RN

0! C
( )intf gdom dom+ Q!

f g u* *4^ ^h h ( ) ( )f x g x ( ) ( )f g* ot t

XIII IDENTITY ELEMENT
OF CONVOLUTION

( )x{ }0k 0 ( )xd 1

XIV IDENTITY ELEMENT
OF ADDITION/PRODUCT

0 ( )u{ }0k 1 ( )d o

XIV OFFSET R!a ( )f x a+ ( )f u* a- ( )f x a+ ( ) ( )f ado o+t

XV INFINUM/SUM ( )inf f x
m M

m
1# #

( )sup f u*

m M
m

1# # ( )f x
m

M

m
1=

/ ( )f
m

M

m
1

o
=

t/

XVI VALUE AT ZERO ( ) inff f0* =- ( ) ( )f f x dx0
RN

=t #

f  is a function defined on ,RN f*  denotes its conjugate, and ft  is its Fourier transform such that ( ) ( ) ( )expf f x x dx2
RN

.=o r o- <t #  where RNo !  and .  is the imaginary unit (a similar 
notation is used for other functions); ,h ,g  and ( )fm 1 m M# #  are functions defined on RN; ( )1j j N{ # #  are functions defined on R; }  is an even function defined on R; }u  is defined as 

( )} t =u ( ) ( ) ,r J r r dr2 2(2 )/2 /2
( 2)/2

0

N N
Nrt r t }

3-
-

+#  where R!t  and J( 2)/2N-  is the Bessel function of order ;N( 2) /2-  and d  denotes the Dirac distribution. (Some properties of the Fourier
transform may require some technical assumptions.)

CONJUGATES OF SUPPORT FUNCTIONS
The support function of a set C RN1  is defined as

( ) ( ) .supu u x uRN
C

x C
6 ! v = <

!

(S1)

In fact, a function f  is the support function of a nonempty closed 
convex set C  if and only if it belongs to ( )RN

0C  and it is positively 
homogeneous [8], i.e., 

( ) ( , ) ( ) ( ) .x f x f x0RN6 6 3! !a a a=+ 6@
Examples of such functions are norms, e.g., the 1, -norm

( ( ) ,) ( ) xx x f x xR( ) jj
j N

N

j

N

1 1
1

6 != = =# #

=

^ h/

which is a useful convex sparsity-promoting measure in Lasso 
estimation [23] and compressive sensing [24]. Another famous 
example is the total variation seminorm [25], which is popular in 
image processing for retrieving constant areas with sharp con-
tours. An important property is that, if C  is a nonempty closed 
convex set, the conjugate of its support function is the indicator 
function of .C  For example, the conjugate function of the 1,

-norm is the indicator function of the hypercube [ , ] .1 1 N- This 
shows that using sparsity measures is equivalent in the dual 
domain to imposing some constraints.
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solution to the dual one. This property especially holds when 
( )f RN

0! C  and ( ) .g RK
0! C

DUALITY IN LINEAR PROGRAMMING
In linear programming (LP) [27], we are interested in convex 
optimization problems of the form

: ,c x Lx bPrimal-LP minimize s.t.
[ , [x 0 N

$<

3! +

(13)

where ( ) ,L L R( , )
,

i j
i K j N

K N
1 1 != #
# # # # ,b b R( )i K

Ki1 != # #^ h
and .c c R( )j N

j N1 != # #^ h  The vector inequality in (13) means 
that , .Lx b 0 K3!- +6 6  This formulation can be viewed as a 
special case of (9) where 

( ) ( ) ( ) .z g z z bR

[ , [

[ , [

N

K

0

0

N

K6 ! k= -

<
3

3

+

+

( ) ( ) ( ),x f x c x xR6 ! k= +

(14)

By using the properties of the conjugate function and by setting 
,y y=-  it is readily shown that the dual equation (10) can be 

re-expressed as

.b y L y cDual-LP: maximize s.t.
[ , [y 0 K

#< <

3! +

(15)

Since f  is a convex function, strong duality holds in LP. If 
( )x x( )j

j N1= # #t t  is a solution to Primal-LP, a solution ( )y y( )i
i K1= # #t t

to Dual-LP can be obtained by the primal complementary 
slackness condition

( { , , }) , ,x yj N L c1 0such that >( ) ( , ) ( ) ( )j i j i j

i

K

1
6 f! =

=

t t/ (16)

whereas, if yt  is a solution to Dual-LP, a solution xt  to Primal-LP 
can be obtained by the dual complementary slackness condition

( { , , }) , .y xi K L b1 0such that >( ) ( , ) ( ) ( )i i j j i

j

N

1
6 f! =

=

t t/
(17)

CONVEX OPTIMIZATION ALGORITHMS
In this section, we present several primal–dual splitting meth-
ods for solving convex optimization problems, starting from the 
basic to the more sophisticated highly parallelized forms. 

PROBLEM
A wide range of convex optimization problems can be formu-
lated as follows:

( ) ( ) ( ),f x g Lx h xminimize
x RN

+ +
!

(18)

where ( ),f RN
0! C ( ),g RK

0! C ,L RK N! #  and ( )h RN
0! C  is 

a differentiable function having a Lipschitzian gradient with a 
Lipschitz constant , .0 3!b + 6@  The latter assumption means 
that the gradient hd  of h  is such that

( ( , ) ( ) ) ( ) ( ) .x y h x h y x yRN 26 d d! # b- - (19)

For example, the functions , ,f g L%  and h  may model various 
data fidelity terms and regularization functions encountered in 
the solution of inverse problems. In particular, the Lipschitz differ-
entiability property is satisfied for the least-squares criteria.

With respect to (9), we have introduced an additional smooth 
term .h  This may be useful in offering more flexibility for taking 
into account the structure of the problem of interest and the prop-
erties of the involved objective function. We will, however, see that 
not all algorithms are able to take advantage of the fact that h  is a 
smooth term.

Based on the results in the “Duality Results” section and 
property (XI) in Table 1, the dual optimization problem reads

( ) ( ) * ( ) .f h L gminimize * *

RK
4 y y- +<

!y
(20)

Note that, in the particular case when ,h 0=  the inf-
convolution f h* *4  [see the definition of property (X) in 

CONSENSUS AND SHARING ARE DUAL PROBLEMS
Suppose that our objective is to minimize a composite function 

,gmm

M

1=
/  where the potential : ,g Rm

N " 3 3- +@ @  is com-
puted at the vertex of index { , , }m M1 f!  of a graph. A classi-
cal technique to perform this task in a distributed or parallel 
manner [20] consists of reformulating this problem as a consen-
sus problem, where a variable is assigned to each vertex and 
the defined variables , ,x xM1 f  are updated so as to reach a 
consensus: .x xM1 f= = This means that, in the product space 
( ,)RN M  the original optimization problem can be rewritten as

,( ) ( )x g xminimize
, ,

( )

x x
D m m

m

M

g x

1x Rm
N M

1

k +
f != =^ ^h h

1 2 3444 444
/

where D  is the vector space defined as { ( , , )xD x xM1 f != =

( )  |  } .x xRN M
M1 f= =

By noticing that the conjugate of the indicator function of a 
vector space is the indicator function of its orthogonal 

complement, it is easy to see that the dual of this consensus 
problem has the following form: 

( ) ( ),gminimize
, ,

*

( )

D m m
m

M

g

1R

*

M
N M

1

yk y+
f !y

y

y y= =

=

^ ^h h
1 2 3444 444
/

where { ( , , ) ( ) }D 0RM
N M

M1 1f g!y y y y y= = =+ +=  is the 
orthogonal complement of .D By making the variable change 
( { , , })m M16 f! / ,u u Mm my = -  where u  is some given vec-
tor in ,RN  and by setting ( ) ( / ),h u g u u M*

m m m m=- -  the latter 
minimization can be re-expressed as 

imize ( ) .max h u
, ,u u

u u u

m m
m

M

1R RN
M

N

M

1

1 g

f! !

+ + =
=

/

This problem is known as a sharing problem, where one wants 
to allocate a given resource u  between M  agents while maxi-
mizing the sum of their welfares evaluated through their indi-
vidual utility functions ( ) .hm m M1# #
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Table 1] of the conjugate functions of f  and h  reduces to f *

and we recover the basic form (10) of the dual problem.
The common trick used in the algorithms, which will be pre-

sented in this section, is to jointly solve (18) and (20) instead of 
focusing exclusively on either (18) or (20). More precisely, these 
algorithms aim at finding a Kuhn–Tucker point ( , )x R RN K#!yt t

such that 

( ) ( ) ( ) .x xL h f Lx gand *d 2 2! ! yy- -< t t t tt (21)

It has to be mentioned that some specific forms of (18) (e.g., 
when )g 0=  can be solved in a quite efficient manner by simpler 
proximal algorithms (see [10]) than those described in the following.

ADMM
The celebrated ADMM can be viewed as a primal–dual algorithm. 
This algorithm belongs to the class of augmented Lagrangian 
methods since a possible way of deriving this algorithm consists of 
looking for a saddle point of an augmented version of the classical 
Lagrange function [20]. This augmented Lagrangian is defined as

( ( , , )

,

( ) )

( , , ) ( ) ( ) ( ) ( )

x y z

x y z f x h x g y z Lx y Lx y2

R R

L

N K 2

2

#6 !

c
c

= + + + - + -<u

(22)

where ,0 3!c + 6@  and zc  corresponds to a Lagrange multiplier. 
ADMM simply splits the step of minimizing the augmented Lagran-
gian with respect to ( , )x y  by alternating between the two varia-
bles, while a gradient ascent is performed with respect to the 
variable .z  The resulting iterations are given in Algorithm 1.

This algorithm has been known for a long time [19], [28], 
although it has recently attracted much interest in the signal and 
image processing communities (see, e.g., [29]–[34]). A condition for 
the convergence of ADMM is shown in “Convergence of ADMM.”

A convergence rate analysis is conducted in [35]. It must be 
emphasized that ADMM is equivalent to the application of the 
Douglas–Rachford algorithm [36], [37], another famous algo-
rithm in convex optimization, to the dual problem. Other primal–
dual algorithms can be deduced from the Douglas–Rachford 
iteration [38] or an augmented Lagrangian approach [39].

Although ADMM was observed to have a good numerical per-
formance in many problems, its applicability may be limited by 

the computation of xn  at each iteration ,n N!  which may be 
intricate due to the presence of matrix ,L  especially when this 
matrix is high dimensional and has no simple structure. In 
addition, functions f  and h  are not dealt with separately, and so 
the smoothness of h  is not exploited here in an explicit manner.

METHODS BASED ON A 
FORWARD–BACKWARD APPROACH
The methods presented here are based on a forward–backward 
approach [40]: they combine a gradient descent step (forward step) 
with a computation step involving a proximity operator. The latter 
computation corresponds to a kind of subgradient step performed in 
an implicit (or backward) manner [10]. A deeper justification of this 
terminology is provided by the theory of monotone operators [8], 
which allows us to highlight the fact that a pair ( , )x R RN K#!yt t

satisfying (21) is a zero of a sum of two maximally monotone opera-
tors. We will not go into detail, which can become rather technical, 
but we can mention that the algorithms presented in this section can 
then be viewed as offspring of the forward–backward algorithm for 
finding such a zero [8]. Like ADMM, this algorithm is an instantiation 
of a recursion converging to a fixed point of a nonexpansive mapping.

One of the most popular primal–dual methods within this class 
is provided in Algorithm 2. In the case when ,h 0=  this algorithm 
can be viewed as an extension of the Arrow–Hurwitz method, 
which performs alternating subgradient steps with respect to the 
primal and dual variables to solve the saddle-point problem (11) 
[41]. Two step sizes x  and v  and relaxation factors ( )n n Nm !  are 
involved in Algorithm 2, which can be adjusted by the user so as to 
get the best convergence profile for a given application.

Note that when L 0=  and ,g 0=  the basic form of the for-
ward–backward algorithm (also called the proximal gradient 
algorithm) is recovered, a popular example of which is the itera-
tive soft-thresholdi ng algorithm [42].

Algorithm 1: ADMM.

Set y RK
0 !  and z RK

0 !

Set ] , [0 3!c +

For , ,n 0 1 f=

( ( ) ( ))

.

argminx Lx y z f x h x

s Lx
y z s

z z s y

2
1 1

prox

n n n

n n

n
g

n n

n n n n

x

2

1

1 1

RN c
= - + + +

=

= +

= + -

!

c
+

+ +

^ h

CONVERGENCE OF ADMM
Under the assumptions that

rank ( )L N=
equation (18) admits a solution

( ) ( )int g L fdom dom+ Q!  or ( ( )) ,intg L fdom dom+ Q!

(more general qualification conditions involving the rela-
tive interiors of the domain of g  and ( )L fdom  can be 
obtained [10]),

( )xn n N!  converges to a solution to the primal problem (18) and 
( )zn n Nc !  converges to a solution to the dual problem (20).

Algorithm 2: FB-based primal–dual algorithm.

Set x RN
0 !  and RK

0 !y

Set ( , ) ,0 23!x v + 6@
For , ,n 0 1 f=

( ( ( ) ))
( ( ))

,
( , ) ( , ) (( , ) ( , )) .

p x h x L
q L p x

x x p q x

2
0

pro
prox

Set

xn f n n n

n g n n n

n

n n n n n n n n n1 1

*

d

3!

x

v

m

m y

y

y

y

y

= - +

= + -

+

= + -

v

x
S

+ +

6@
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A rescaled variant of the primal–dual method (see 
Algorithm 3) is sometimes preferred, which can be deduced from 
the previous algorithm by using Moreau’s decomposition (8) and 
by making the variable changes /q qn n/ vl  and / .n n/y y vl

Under this form, it can be seen that, when ,N K= ,L Id=
,h 0=  and ,1xv =  the algorithm reduces to the Douglas–Rach-

ford algorithm (see [43] for the link existing with extensions of 
the Douglas–Rachford algorithm).

Also, by using the symmetry existing between the primal and 
dual problems, another variant of Algorithm 2 can be obtained 
(see Algorithm 4), which is often encountered in the literature. 
When L L Idn=<  with , ,0 3!n + 6@ ,h 0= ,1xvn =  and 

,1n /m  Algorithm 4 reduces to ADMM by setting ,c v=  and 
/zn n/ vy  in Algorithm 1.

Convergence guarantees were established in [44] and for a 
more general version of this algorithm in [45] (see “Conver-
gence of Algorithms 2 and 4”).

Algorithm 2 also constitutes a generalization of [46]–[48] [desig-
nated by some authors as the primal–dual hybrid gradient (PDHG)

algorithm]. Preconditioned or adaptive versions of this algorithm 
were proposed in [49]–[52], which may accelerate its convergence. 
Convergence rate results were also recently derived in [53].

Another primal–dual method (see Algorithm 5) was 
proposed in [54] and [55], which also results from a forward–
backward approach [52]. This algorithm is restricted to the case 
when f 0=  in (18) (see “Convergence of Algorithm 5”).

As shown by the next convergence result, the conditions on 
the step sizes x  and v  are less restrictive than for Algorithm 2.

Note also that the dual forward–backward approach that was 
proposed in [56] for solving (18) in the specific case when 

/h r 22$= -  with r RN!  belongs to the class of primal–dual 
forward–backward approaches.

It must be emphasized that Algorithms 2–5 present two inter-
esting features that are very useful in practice. At first, they allow 
us to deal with the functions involved in the optimization problem 
at hand either through their proximity operator or through their 
gradient. Indeed, for some functions, especially nondifferentiable or 
nonfinite ones, the proximity operator can be a very powerful tool 
[57], but, for some smooth functions (e.g., the Poisson–Gauss neg-
log-likelihood [58]), the gradient may be easier to handle. Second, 
these algorithms do not require us to invert any matrix but only to 
apply L  and its adjoint. This advantage is of main interest when 
large-size problems have to be solved for which the inverse of L  (or 

)L L<  does not exist or has a no tractable expression.

METHODS BASED ON A 
FORWARD–BACKWARD–FORWARD APPROACH
Primal–dual methods based on a forward–backward–forward 
(FBF) approach were among the first primal–dual proximal 
methods proposed in the optimization literature, inspired from 

CONVERGENCE OF ALGORITHMS 2 AND 4
Under the following sufficient conditions:

/ ,L 21 2
S $x v b--  where L S  is the spectral norm of L

( )n n Nm !  is a sequence in ] , [0 d  such that nn N
m

!
/

( )n# 3d m =- +  where ( ) / [ , [L2 2 1 21 2 1
S !d b x v= - -- -

equation (18) admits a solution
) ( )int g L f(dom dom+ Q!  or ( ( )) ,intg L fdom dom+ Q!

the sequences ( )xn n N!  and ( )vn n N!  are such that the former 
converges to a solution to the primal problem (18) and the lat-
ter converges to a solution to the dual problem (20).

Algorithm 3: The rescaled variant of Algorithm 2.

Set x RN
0 !  and RK

0 !yl

Set ( , ) ,0 23!x v + 6@
For , ,n 0 1 f=

( ( ( ) ))
( ( ( ))

,
( , ) ( , ) (( , ) ( , )) .

) L p x
p x h x L
q

x x p q x

2
0

pro
Id

Set

x
prox /g n n n

n f n n n

n

n

n n n n n n n n n1 1

d

3!

x v y

y

m

y y m y

= - +

= - + -

+

= + -

v

x
S

+ +

l

l

l l l l

6@

Algorithm 4: The symmetric form of Algorithm 2.

Set x RN
0 !  and RK

0 !y

Set ( , ) ,0 23!x v + 6@
For , ,n 0 1 f=

( ))
( ( ( ) ( )))

,
( , ) ( , ) (( , ) ( , )) .

x h x L q

q

q Lx
p

x x p x

2
0

prox
prox

Set

g

f n n n n

n

n

n n n

n

n n n n n n n n1 1

d

3!

y v

x y

m

y y m y

= +

= - + -

+

= + -

<

v

x

+ +

)

6@

Algorithm 5: FBF-based primal–dual algorithm.

Set x RN
0 !  and v RK

0 !

Set ( , ) ,0 23!x v + 6@
For , ,n 0 1 f=

( )

,
( , ) ( , ) (( , ) ( , )) .

( )s x h x
y s L
q Ly
p s L q

x x p q x
0

prox

set

n n n

n n n

n g n n

n n n

n

n n n n n n n n n1 1

*

3

d

!

x

x y

y v

x

m

y y m y

= -

= -

= +

= -

+

= + -

<

v

S

+ +

6@

CONVERGENCE OF ALGORITHM 5
Under the assumptions that

L 1<2
Sxv  and /2<x b

( )n n Nm !  is a sequence in ] , ]0 1  such that inf 0>n nNm!

equation (18) admits a solution
( ) ( ) ,int g Ldom ran+ Q!

the sequence ( )xn n N!  converges to a solution to the primal 
problem (18) (where )f 0=  and ( )n n Ny !  converges to a solu-
tion to the dual problem (20).
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the seminal work in [59]. They were first developed in the case 
when h 0=  [60], then extended to more general scenarios in 
[11] (see also [61] and [62]).

The convergence of the algorithm is guaranteed by the 
result shown in “Convergence of Algorithm 6.” 

Algorithm 6 is often referred to as the Monotone + Lipschitz  
FBF (M+LFBF) algorithm. It enjoys the same advantages as the 
FB-based primal–dual algorithms we have seen before. It, how-
ever, makes it possible to compute the proximity operators of 
scaled versions of functions f  and g*  in parallel. In addition, 
the choice of its parameters to satisfy convergence conditions 
may appear more intuitive than for Algorithms 2–4. With 
respect to FB-based algorithms, an extra forward step needs to 
be performed. This may lead to a slower convergence if, for 
example, the computational cost of the gradient is high and an 
iteration of a FB-based algorithm is at least as efficient as an 
iteration of Algorithm 6.

A PROJECTION-BASED PRIMAL–DUAL ALGORITHM
Another primal–dual algorithm was recently proposed in [63], 
which relies on iterative projections onto half spaces including 
the set of Kuhn–Tucker points (see Algorithm 7).

We then have the convergence result shown in “Conver-
gence of Algorithm 7.” Although few numerical experiments 
have been performed with this algorithm, one of its potential 
advantages is that it introduces few constraints on the choice of 
the parameters ,nc ,nn  and nm  at iteration n  and that it does 
not require any knowledge on the norm of the matrix .L  None-
theless, the use of this algorithm does not allow us to exploit 
the fact that h is a differentiable function.

EXTENSIONS
More generally, one may be interested in more challenging con-
vex optimization problems of the form

( ) ( ) ( ) ( ),f x g L x h xminimize m m m
m

M

x 1RN
,4+ +

! =

/ (23)

where ( ),f RN
0! C ( ),h RN

0! C  and, for every { , , },m M1 f!

( ),g Rm
K

0
m! C ( ),Rm

K
0

m, ! C  and .L Rm
K Nm! #  The dual prob-

lem then reads

1
( ) ( ( ) ( )) .f h L gminimize * * * *

, ,
m m

m

M

m m m m
m

M

1 1R RmK K1
,4 y y y- + +<

f y! !y = =M
e o/ /

(24)

Some comments can be made on this general formulation. At first, 
one of its benefits is to split an original objective function in a sum 
of a number of simpler terms. Such a splitting strategy is often the 
key to efficient resolution of difficult optimization problems. For 
example, the proximity operator of the global objective function 
may be quite involved, while the proximity operators of the 

Algorithm 6: FBF-based primal–dual algorithm.

Set x RN
0 !  and RK

0 !y

For , ,n 0 1 f=
,

( ( ) )

( ( ) )

( , ) ( , ) .

y x h x L
y Lx
p y
p y
q p h p L p
q p Lp
x x y q y q

0Set

prox
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, ,

, , , ,
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1 1
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c
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y
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c
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CONVERGENCE OF ALGORITHM 6
Under the following assumptions:

( )n n Nc !  is a sequence in [ , ( ) / ]1f f n-

where ] , /0 1!f ( ) [1 n+  and L Sn b= +

equation (18) admits a solution
( ) ( )int g L fdom dom+ Q!  or ( ( )) ,int fg Ldom dom+ Q!

the sequence ( , )xn n n Ny !  converges to to a pair of primal–dual 
solutions.

Algorithm 7: Projection based primal–dual algorithm.

Set x RN
0 !  and RK

0 !y

For , ,n 0 1 f=

( ,
( )

( )
( ) ( )

( )

,

( ) /

.

) ,

x

a x L
l Lx
b l
s x a L l b
t b La

s t

a

l b

x a l b

x x s

v t

0

0

0Set
prox

prox

if

return
else

Set

( )

n n

n f h n n n

n n

n g n n n

n n n n n n n

n n n

n n n

n

n

n n n n

n

n n n n n n n n n

n n n n

n n n n

1 1

1

1 2 1 2

1

1

2 2

n

n
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3

!

!c n

c y

n y
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CONVERGENCE OF ALGORITHM 7
Assume that

( )n n Nc !  and ( )n n Nn !  are sequences such that ,inf 0>n nNc!

,sup <n nN 3c +! ,inf 0>n nNn! sup <n nN 3n +!

( )n n Nm !  is a sequence in R  such that inf 0>n nNm!  and 
sup 2<n nNm!

equation (18) admits a solution
( ) ( )g L fnt dom domI + Q!  or ( ( )) ,intg L fdom dom+ Q!

then, either the algorithm terminates in a finite number of iter-
ations at a pair of primal–dual solutions ( , ),x yt t  or it generates a 
sequence ( , )xn n n Ny !  converging to such a point.
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individual functions may have an explicit form. A second point is 
that we have now introduced in the formulation additional func-
tions ( ) .m m M1, # #  These functions may be useful in some models 
[64], but they also present the conceptual advantage to make the 
primal problem and its dual form quite symmetric. For instance, 
this fact accounts for the symmetric roles played by Algorithms 2 
and 4. An assumption that is commonly adopted is to assume that, 
whereas h  is Lipschitz differentiable, the functions ( )m m M1, # #  are 
strongly convex, i.e., their conjugates are Lipschitz differentiable. A 
last point to be emphasized is that such split forms are amenable to 
efficient parallel implementations (see “How to Parallelize Primal–
dual Methods”). Using parallelized versions of primal–dual algo-
rithms on multicore architectures may render these methods even 
more successful for dealing with large-scale problems.

DISCRETE OPTIMIZATION ALGORITHMS

BACKGROUND ON DISCRETE OPTIMIZATION
As already mentioned in the “Introduction” section, another 
common class of problems in signal processing and image anal-
ysis are discrete optimization problems, for which primal–dual 
algorithms also play an important role. Problems of this type 
are often stated as integer linear programs (ILPs), which can be 
expressed under the following form:

:

, ,

c x

Lx b x

Primal-ILP minimize

s.t. NN
x

N
RN

$ ! 1

<

!

where ( )L L( , )
,

i j
i K j N1 1= # # # #  represents a matrix of size ,K N#

and ( ) ,b b( )i
i K1= # # ( )c c( )j

j N1= # #  are column vectors of size 

K  and ,N  respectively. Note that the ILP provides a very general 
formulation suitable for modeling a very broad range of problems 
and will, thus, form the setting that we will consider hereafter. 
Among the problems encountered in practice, many of them lead 
to a Primal-ILP that is NP-hard to solve. In such cases, a princi-
pled approach for finding an approximate solution is through the 
use of convex relaxations (see “Relaxations and Discrete Optimi-
zation”), where the original NP-hard problem is approximated 
with a surrogate one (the so-called relaxed problem), which is 
convex and, thus, much easier to solve. The premise is the follow-
ing: to the extent that the surrogate problem provides a reasona-
bly good approximation to the original optimization task, one can 
expect to obtain an approximately optimal solution for the latter 
by essentially making use of or solving the former.

The type of relaxations that are typically preferred in large-scale 
discrete optimization are based on LP, involving the minimization 
of a linear function subject to linear inequality constraints. These 
can be naturally obtained by simply relaxing the integrality con-
straints of Primal-ILP, thus leading to the relaxed primal problem 
(13) as well as its dual (15). It should be noted that the use of LP-
relaxations is often dictated by the need for maintaining a reasona-
ble computational cost. Although more powerful convex 
relaxations do exist in many cases, these may become intractable as 
the number of variables grows larger, especially for semidefinite 
programming or second-order cone programming relaxations.

Based on these observations, in the following, we aim to pre-
sent some very general primal–dual optimization strategies that 
can be used in this context, focusing a lot on their underlying 
principles, which are based on two powerful techniques: the so-
called primal–dual schema and dual decomposition. We will see 

HOW TO PARALLELIZE PRIMAL–DUAL METHODS
Two main ideas can be used to put a primal–dual method under 
a parallel form. Let us first consider the following simplified form 
of (23):

( ) .g L xminimize m m
m

M

x 1RN! =

/ (S2)

A possibility consists of reformulating this equation in a higher-
dimensional space as

( ) ( ),yf g yminimize
, ,y

m m
m

M

y 1R RK K
M

M

+
f! ! =1

1

/ (S3)

where [ , , ]y y y RM
K

1 f != < < <  with ,K K KM1 g= + +  and f  is the 
indicator function of ( ),Lran  where [ , , ] .L L L RM

K N
1 f != #< < <

Function f  serves to enforce the constraint: ( { , , })m M16 f!

.y L xm m= By defining the separable function : yg 7 ( ),g ym mm

M

1=
/

we are, thus, led to the minimization of f g+  in the space .RK

This optimization can be performed by the various primal–dual 
methods that we have described. The proximity operator of f
reduces to the linear projection onto ( ),Lran  whereas the separa-
bility of g  ensures that its proximity operator can be obtained by 
computing in parallel the proximity operators of the functions 
( ) .gm m M1# #  Note that, when ,L L IdM1 f= = =  we recover a 
consensus-based approach that we have already discussed. This 

technique can be used to derive parallel forms of the Douglas–
Rachford algorithm: the parallel proximal algorithm (PPXA) [65] 
and PPXA+ [66], as well as parallel versions of ADMM (simultane-
ous direction method of multipliers) [67].

The second approach is even more direct since it requires no 
projection onto ( ) .Lran  For simplicity, let us consider the follow-
ing instance of (23): 

( ) ( ) ( ) .f x g L x h xminimize m m
m

M

x 1RN
+ +

! =

/ (S4)

By defining the function g  and the matrix L  as in the previous 
approach, the problem can be recast as 

( ) ( ) ( ) .Lf x g x h xminimize
x RN

+ +
!

(S5)

Once again, under appropriate assumptions on the involved func-
tions, this formulation allows us to employ the algorithms pro-
posed in the sections “Methods Based on a Forward–Backward 
Approach,” “Methods Based on a Forward–Backward–Forward 
Approach,” and “A Projection-Based Primal–Dual Algorithm,” and 
we still have the ability to compute the proximity operator of g  in 
a parallel manner.
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that to estimate an approximate solution to Primal-ILP, both 
approaches make heavy use of the dual of the underlying LP relax-
ation, i.e., (15). However, their strategies for doing so are quite dif-
ferent: the second essentially aims at solving this Dual-LP (and 
then converting the fractional solution into an integral one, trying 
not to increase the cost too much in the process), whereas the 
first simply uses it in the design of the algorithm.

THE PRIMAL–DUAL SCHEMA FOR ILPs
The primal–dual schema is a well-known technique in the combi-
natorial optimization community that has its origins in LP duality 
theory. It is worth noting that it started as an exact method for 
solving linear programs. As such, it had initially been used in 
deriving exact polynomial-time algorithms for many cornerstone 
problems in combinatorial optimization that have a tight LP relax-
ation. Its first use probably goes back to Edmond’s famous Blos-
som algorithm for constructing maximum matchings on graphs, 
but it has also been applied to many other combinatorial problems 
including max flow (e.g., Ford and Fulkerson’s augmenting path-
based techniques for max flow can essentially be understood in 
terms of this schema), shortest path, minimum branching, and 
minimum spanning tree [70]. In all of these cases, the primal–
dual schema is driven by the fact that optimal LP solutions should 
satisfy the complementary slackness conditions [see (16) and 
(17)]. Starting with an initial primal–dual pair of feasible solu-
tions, it therefore iteratively steers them toward satisfying these 
complementary slackness conditions (by trying at each step to 
minimize their total violation). Once this is achieved, both solu-
tions (the primal and the dual) are guaranteed to be optimal. 
Moreover, since the primal is always chosen to be updated inte-
grally during the iterations, it is ensured that an integral optimal 
solution is obtained at the end. A notable feature of the 

primal–dual method is that it often reduces the original LP, which 
is a weighted optimization problem, to a series of purely combina-
torial unweighted ones (related to minimizing the violation of 
complementary slackness conditions at each step).

Interestingly, today the primal–dual schema is no longer 
used for providing exact algorithms. Instead, its main use con-
cerns deriving approximation algorithms to NP-hard discrete 
problems that admit an ILP formulation, for which it has proved 
to be a very powerful and widely applicable tool. As such, it has 
been applied to many NP-hard combinatorial problems until now, 
including set cover, Steiner-network, scheduling, Steiner tree, 
feedback vertex set, and facility location, to mention only a few 
[17], [18]. With regard to problems from the domains of computer 
vision and image analysis, the primal–dual schema was recently 
introduced in [13] and [71] and has been used for modeling a 
broad class of tasks from these fields.

It should be noted that for NP-hard ILPs, an integral solution 
is no longer guaranteed to satisfy the complementary slackness 
conditions (since the LP-relaxation is not exact). How could it 
then be possible to apply this schema to such problems? It turns 
out that the answer to this question consists of using an appropri-
ate relaxation of the previously described conditions. To under-
stand exactly how we need to proceed in this case, let us consider 
the problem Primal-ILP. As already explained, the goal is to com-
pute an optimal solution to it, but, due to the integrality con-
straints ,x N!  this is assumed to be NP-hard, and so we can 
only estimate an approximate solution. To achieve this, we will 
first need to relax the integrality constraints, thus giving rise to 
the relaxed primal problem in (13) as well as its dual (15). A pri-
mal–dual algorithm attempts to compute an approximate solu-
tion to Primal-ILP by relying on the following principle (see 
“Explanation of the Primal–Dual Principle in the Discrete Case”).

RELAXATIONS AND DISCRETE OPTIMIZATION
Relaxations are very useful for solving approximately dis-
crete optimization problems. Formally, given a problem 

( ): ( ),f xminimizeP
x C!

where C  is a subset of ,RN  we say that 

( ): ( )f xminimizeP
x C!

l l
l

with C RN1l  is a relaxation of ( )P  if and only if (i) ,C C1 l  and 
(ii) ( )x C6 ! l ( ) ( ) .f x f x$ l

For instance, let us consider the ILP defined by ( )x RN6 !

( )f x c x= <  and ,C S ZN+=  where \ { }c 0RN!  and S  is a non-
empty closed polyhedron defined as 

{ | }S x Lx bRN! $=

with L RK N! #  and .b RK!  One possible LP relaxation of ( )P  is 
obtained by setting f f=l  and ,C S=l  which is typically much 
easier than ( )P  (which is generally NP-hard). The quality of ( )Pl
is quantified by its so-called integrality gap defined as 

( ) ( )/inf inff C f C 1$l l  (provided that ( ) ) .inf f C 0<3 !- l l

Hence, for approximation purposes, LP relaxations are not all of 
equal value. If 

imize( ): min c xP
x C

<

!
m

m

is another relaxation of ( )P  with ,C C1m l  then relaxation ( )Pm
is tighter. Interestingly, ( )P  always has a tight LP relaxation (with 
integrality gap 1) given by ( ),C Sconv ZN+=m  where ( )Cconv  is 
the convex hull polyhedron of .C  Note, however, that if ( )P  is 
NP-hard, polyhedron ( )Sconv ZN+  will involve exponentially 
many inequalities.

The relaxations in all of the previous examples involve expand-
ing the original feasible set. But, as mentioned previously, we can 
also derive relaxations by modifying the original objective func-
tion. For instance, in so-called submodular relaxations [68], [69], 
one uses as a new objective a maximum submodular function 
that lower bounds the original objective. More generally, convex 
relaxations allow us to make use of the well-developed duality 
theory of convex programming for dealing with discrete noncon-
vex problems.
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PRIMAL–DUAL PRINCIPLE IN THE DISCRETE CASE
Let x RN! and y RK! be integral-primal and dual feasible 
solutions (i.e., x N! and ,Lx b$  and [ , [y 0 K3! +  and 

) .L y c#<  Assume that there exists [ , [1 3!o +  such that 

.c x b y# o< < (25)

Then, x  can be shown to be a o-approximation to an unknown 
optimal integral solution ,xt  i.e., 

.x xc c x c# # o< < <t t (26)

Although this principle lies at the heart of many primal–dual 
techniques (i.e., in one way or another, primal–dual methods 
often try to fulfill the assumptions imposed by this principle), it 
does not directly specify how to estimate a primal–dual pair of 
solutions ( , )x y  that satisfies these assumptions. This is where 
the so-called relaxed complementary slackness conditions come 
into play, as they typically provide an alternative and more con-
venient (from an algorithmic viewpoint) way for generating 
such a pair of solutions. These conditions generalize the com-
plementary slackness conditions associated with an arbitrary 
pair of primal–dual linear programs (see the section “Duality in 
Linear Programming”). The latter conditions apply only in cases 
when there is no duality gap, such as between Primal-LP and 
Dual-LP, but they are not applicable to cases like Primal-ILP and 

Dual-LP when a duality gap exists as a result of the integrality 
constraint imposed on variable .x  As in the exact case, two 
types of relaxed complementary slackness conditions exist, 
depending on whether the primal or dual variables are checked 
for being zero.

RELAXED PRIMAL COMPLEMENTARY SLACKNESS
CONDITIONS WITH RELAXATION FACTOR 1primal #o

For given ( ) ,x x R( )j
j N

N
1 != # # ( ) ,y y R( )i

i K
K

1 != # #  the fol-
lowing conditions are assumed to hold: 

( ) ,j J c L y c( ) ( , ) ( ) ( )
x

j i j i j

i

K

1
primal6 ! # #o

=

/ (27)

where { { , , } } .J j N x1 0>( )
x

jf!=

RELAXED DUAL COMPLEMENTARY SLACKNESS
CONDITIONS WITH RELAXATION FACTOR 1dual $o

For given ( ) ,y y R( )i
i K

K
1 != # # ( ) ,x x R( )j

j N
N

1 != # #  the fol-
lowing conditions are assumed to hold:

( ) ,i I b L x b( ) ( , ) ( ) ( )
y

i i j j i

j

N

1
dual6 ! # # o

=

/ (28)

where { { , , } } .I i K y1 0>( )
y

if!=

When both 1primalo =  and ,1dualo =  we recover the exact 
complementary slackness conditions in (16) and (17). The use 
of these conditions in the context of a primal–dual approxima-
tion algorithm becomes clear by the following result: If

( )x x( )j
j N1= # # and ( )y y( )i

i K1= # # are feasible with respect to 
Primal-ILP and Dual-LP, respectively, and satisfy the relaxed com-
plementary slackness conditions (27) and (28), then the pair 
( , )x y  satisfies the primal–dual principle in the discrete case with 

/ .dual primalo o o=  Therefore, x  is a o-approximate solution to 
Primal-ILP. 

This result simply follows from the inequalities:

.

c x c x L y x

L x y b y b y

1

1

( ) ( )
( )

( , ) ( ) ( )

( , ) ( ) ( )
( )

( ) ( )

j j

j

N
i j i

i

K
j

j

N

i j j

j

N

i

K
i i i

i

K
1 11

11 1

27

28

primal primal primal

dual

primal

dual

#

#

o

o o
o

o
o

=

= =

<

<

= ==

== =

e

e

o

o/ //

// /
(29)

Based on this result, iterative schemes can be devised, yielding a 
primal–dual o-approximation algorithm. For example, we can 
employ the following algorithm:

Note that, in this scheme, primal solutions are always 
updated integrally. Also note that, when applying the primal–
dual schema, different implementation strategies are possible. 
The strategy described in Algorithm 8 is to maintain feasible 
primal–dual solutions ( , )x yn n  at iteration ,n  and iteratively 
improve how tightly the (primal or dual) complementary slack-
ness conditions get satisfied. This is performed through the 
introduction of slackness variables ( )q( )i

i Iyn!  and ( ) ,r( )j
j Jxn!  the 

sums of which measure the degrees of violation of each relaxed 

EXPLANATION OF THE PRIMAL–DUAL PRINCIPLE IN THE 
DISCRETE CASE
Essentially, the proof of this principle relies on the fact that 
the sequence of optimal costs of problems Dual-LP, Primal-
LP, and Primal-ILP is increasing.

Specifically, by weak LP duality, the optimal cost of Dual-LP is 
known to not exceed the optimal cost of Primal-LP. As a result 
of this fact, the cost xc< t  (of an unknown optimal integral solu-
tion )xt  is guaranteed to be at least as large as the cost b y<  of 
any dual feasible solution .y  On the other hand, by definition, 

xc< t  cannot exceed the cost c x<  of an integral-primal feasible 
solution .x Therefore, as can be seen in Figure S1, if the gap 

( , )y xD  between the costs of y  and x  is small (e.g., it holds 
),c x b y# o< <  the same will be true for the gap ( , )x xD t

between the costs of xt  and x  (i.e., ),xc x c# o< < t  thus proving 
that x  is a o-approximation to optimal solution .xt

Δ(y, x)

Δ(x, x)
∧

∧
b y c x c x

Dual Cost of
Solution y ∧

Primal Cost of
Optimal Integral

Solution x

Primal Cost of
Integral

Solution x

[FIGS1] A visual illustration of the primal–dual principle.
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slackness condition and, thus, have to be minimized. Alterna-
tively, for example, we can opt to maintain solutions ( , ),x yn n

which satisfy the relaxed complementary slackness conditions 
but may be infeasible, and iteratively improve the feasibility of 
the generated solutions. For instance, if we start with a feasible 
dual solution but with an infeasible primal solution, such a 
scheme would result in improving the feasibility of the primal 
solution as well as the optimality of the dual solution at each 
iteration, ensuring that a feasible primal solution is obtained at 
the end. No matter which one of the two strategies we choose to 
follow, the end result will be to gradually bring the primal and 
dual costs c xn

<  and b yn
<  closer together so that asymptoti-

cally the primal–dual principle is satisfied with the desired 
approximation factor. Essentially, at each iteration, through the 
coupling by the complementary slackness conditions, the cur-
rent primal solution is used to improve the dual, and vice versa.

Three remarks are worth making at this point: the first one 
relates to the fact that the two processes, i.e., the primal and the 
dual, make only local improvements to each other. Yet, in the end, 
they manage to yield a result that is almost globally optimal. The 
second point to emphasize is that, for computing this approxi-
mately optimal result, the algorithm requires no solution to the 
Primal-LP or Dual-LP to be computed, which are replaced by sim-
pler optimization problems. This is an important advantage from a 
computational standpoint since, for large-scale problems, solving 
these relaxations can often be quite costly. In fact, in most cases 
where we apply the primal–dual schema, purely combinatorial 
algorithms can be obtained, which contain no sign of LP in the 
end. A last point to be noted is that these algorithms require 
appropriate choices of the relaxation factors primalo  and ,dualo

which are often application guided.

APPLICATION TO THE SET COVER PROBLEM
For a simple illustration of the primal–dual schema, let us con-
sider the problem of set cover, which is known to be NP-hard. In 
this problem, we are given as input a finite set V  of K  ele-
ments ( ) ,( )i

i K1y # #  a collection of (nondisjoint) subsets 
{ }SS j j N1= # #  where, for every { , , },j N1 f! ,S Vj 1  and 

.S Vjj

N

1
=

=
'  Let : RS "{  be a function that assigns a cost 

( )c Sj j{=  for each subset .S j  The goal is to find a set cover 
(i.e., a subcollection of S  that covers all elements of )V  that 
has minimum cost (see Figure 5).

This problem can be expressed as the following ILP: 

( )S xminimize ( )

( )
j

j

j

N

x x 1( )j
{

= =j N1# #

/ (31)

( { , , }) , { , } ,i K x x1 1 0 1s.t. ( )

{ , , }

j N

j N

S

1
( )i j

6 f! $ !
f!

!y

/ (32)

where indicator variables ( )x( )j
j N1# #  are used for determining if a 

set in S  has been included in the set cover or not, and (32) 
ensures that each one of the elements of V  is contained in at least 
one of the sets that were chosen for participating to the set cover.

An LP-relaxation for this problem is obtained by simply replacing 
the Boolean constraint with the constraint [ , [ .x 0 N3! +  The 
dual of this LP relaxation is given by the following linear program: 

ymaximize ( )

[ , [y

i

i

K

y 10( )i
i K

K
1 3!= =+# #` j

/ (33)

( { , , }) ( ) .j N y S1s.t. ( )

{ , , }

i
j

i K

S

1
( )i j

6 f! # {
f!

!y

/ (34)

Let us denote by Fmax  the maximum frequency of an element in 
,V  where by the term frequency we mean the number of sets to 

which this element belongs. In this case, we will use the primal–
dual schema to derive an Fmax-approximation algorithm by choos-
ing ,1primalo = .Fmaxdualo =  This results in the following 
complementary slackness conditions, which we will need to satisfy:

Primal complementary slackness conditions: 

( { , , }) .( )j N x y S1 0if then>( ) ( )

{ , , }

j i
j

i K

S

1
( )i j

6 f! {=
f!

!y

/ (35)

Relaxed dual complementary slackness conditions (with relaxa-
tion factor ):Fmax

( { , , }) .i K y x F1 0if then>( ) ( )

{ , , }
max

i j

j N

S

1
( )i j

6 f! #
f!

!y

/ (36)

S1 S2

S3

[FIG5] A toy set-cover instance with K 4=  and ,N 3=  where 
/( ) ,S 1 21{ = ^ h ( ) ,S 12{ =  and ( ) .S 23{ =  In this case, the optimal 

set-cover is { , }S S1 2  and has a cost of / .3 2^ h

Algorithm 8: The primal–dual schema.

Generate a sequence ( , )x yn n n N!  of elements of R RN K#  as 
follows: 

[ , [

, ,

{

( ) ,

{ [ , [  |  }

( ) , .

 |  }

y L y c

n

x x Lx b

q

i I L x b q q

y y L y c

r

j J L y r c r

0

0 1

0

0

0

1 1Set

Set such that

For

Find

s.t.

Find minimizing

s.t.

and

minimizingN
( )

( , ) ( ) ( ) ( ) ( )

( )

( , ) ( ) ( ) ( ) ( )

K

n

i
i I

y
i j j i i i

j
N

n
K

j
j J

x
i j i j j j

i
K

0 0

1

1

1

dual

primal

primal dual

y

n

x

n

n

n

3

f

6

3

6

! #

! !

! # $

! ! #

! $ $

# $

$

o o

o

o

+

=

+

+

+

<

<

!

!

=

+

=

/
/

/
/ (30)
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A set S j  with { , , }j N1 f!  for which { , , }i K S1 f! !y:
y( )i

( )i j
=/

( )S j{  will be called packed. Based on this definition, and given 
that the primal variables ( )x( )j

j N1# #  are always kept integral 
(i.e., either 0 or 1) during the primal–dual schema, (35) basi-
cally says that only packed sets can be included in the set cover 
[note that overpacked sets are already forbidden by feasibility 
constraints (34)]. Similarly, (36) requires that an element ( )iy

with { , , }i K1 f!  associated with a nonzero dual variable y( )i

should not be covered more than Fmax  times, which is, of 
course, trivially satisfied given that Fmax  represents the maxi-
mum frequency of any element in .V

Based on the previous observations, the iterative method 
whose pseudocode is shown in Algorithm 9 emerges naturally 
as a simple variant of Algorithm 8. Upon its termination, both x
and y  will be feasible given that there will be no uncovered ele-
ment and no set that violates (34). Furthermore, given that the 
final pair ( , )x y  satisfies the relaxed complementary slackness 
conditions with ,1primalo = ,Fmaxdualo =  the set cover defined 
by x  will provide an Fmax-approximate solution.

DUAL DECOMPOSITION
We will next examine a different approach for discrete optimization 
based on the principle of dual decomposition [1], [14], [72]. The 
core idea behind this principle essentially follows a divide-and-
conquer strategy: i.e., given a difficult or high-dimensional optimi-
zation problem, we decompose it into smaller, easy-to-handle 
subproblems and then extract an overall solution by cleverly com-
bining the solutions from these subproblems.

To explain this technique, we will consider the general prob-
lem of minimizing the energy of a discrete Markov random field 
(MRF), which is an ubiquitous problem in the fields of computer 
vision and image analysis (applied with great success on a wide 
variety of tasks from these domains such as stereo matching, 

image segmentation, optical flow estimation, image restoration, 
inpainting, and object detection) [2]. This problem involves a 
graph G  with vertex set V  and edge set E  [i.e., ( , )]G V E=

plus a finite label set .L  The goal is to find a labeling 
( )z z L( ) | |p

p V
V!= !  for the graph vertices that has minimum 

cost, i.e., 

,( ) ( )zminimize z( ) ( )
p

p

p
e

e

ez V EL|V|
{ {+

! !!

/ / (37)

where, for every p V!  and ,e E! : ,Lp " 3 3{ - + 6@  and 
: ,Le

2 " 3 3{ - + 6@  represent the unary and pairwise costs (also 
known connectively as MRF potentials ,{ } , { }p p e eV E{ { {= ! ! h" ,
and z( )e  denotes the pair of components of z  defined by the varia-
bles corresponding to vertices connected by e  (i.e., ( , )z zz( ) ( ) ( )e p q=

for ( , ) ) .e p q E!=

This problem is NP-hard, and much of the recent work on MRF 
optimization revolves around the following equivalent ILP formu-
lation of (37) [73], which is the one that we will also use here:

( ; ) ( ) ( )

( ) ( ),

f x z x zminimize

z x z

( ) ( )

,
( ) ( )

,

p
p

p
p

p z

e
e

e
e

e

x C

z

V L

LE

( )

( )

p

e 2

{ {

{

=

+

! !

! !

! G
/

/ (38)

where the set CG  is defined for any graph ( , ),G V E=  as shown 
(39) in the box at the bottom of this page. 

In (39), for every p V!  and ,e E!  the unary binary func-
tion ( )xp $  and the pairwise binary function ( )xe $  indicate the 
labels assigned to vertex p  and to the pair of vertices connected 
by edge ( , ),e p q= l l  respectively, i.e., 

( ) ( )z x z

p z

1

is assigned label

L( ) ( )

( )

p
p

p

p+

6 ! =

(40)

( ( , ) ) ( )

,

, .

z z

p q

z z

1z x z

are assigned

labels

L( ) ( ) ( ) ( )

( ) ( )

e p q
e

e

p q

2

+

6 != =

l l

l l

l l (41)

Minimizing with respect to the vector x  regrouping all these 
binary functions is equivalent to searching for an optimal binary 
vector of dimension .N V L LE 2

= +  The first con-
straints in (39) simply encode the fact that each vertex must be 
assigned exactly one label, whereas the rest of the constraints 
enforces consistency between unary functions ( ),xp $ ( ),xq $  and 
the pairwise function ( )xe $  for edge ( , ),e p q=  ensuring essen-
tially that if ( ) ( ) ,x z x z 1( ) ( )

p
p

q
q= =  then ( , ) .z z 1x ( ) ( )

e
p q =

Algorithm 9: The primal–dual schema for the set cover.

Set ,x y0 00 0! !

Declare all elements in V  as uncovered
While V  contains uncovered elements

Select an uncovered element ( )iy  with { , , }i K1 f!  and 
increase y( )i  until some set becomes packed
For every packed set jS  with { , , },j N x1 1set ( )j !f!

(include all the sets that are packed in the cover)
Declare all the elements belonging to at least one set jS  with 
x 1( )j =  as covered.

{{ } , { } }

( ) ( )

( ( , ) ) ( ) ( ) ( )

( ( , ) ) ( ) ( ) ( )

( ) ( ): { , }
( ) ( ): { , }

.C x x

p x z

e p q z x z

e p q z x z

p x
e

1

0 1
0 1

x

x z

x z

x
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E L

E L

V L
E L

,
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( ) ( ) ( )
{ }

( ) ( ) ( )
{ }
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z

z
G p p z e e
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p

z
q

e
e

q
q

z
p

e
e

p
p

z

p

e
2
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e p
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As mentioned previously, our goal will be to decompose the 
MRF problem (38) into easier subproblems (called slaves), 
which, in this case, involve optimizing MRFs defined on sub-
graphs of .G  More specifically, let { ( , )}G V Em m m m M1= # #  be a 
set of subgraphs that form a decomposition of ( , )G V E=  (i.e., 

,V Vm
M

m1, == ) .E Em
M

m1, ==  On each of these subgraphs, we 
define a local MRF with corresponding (unary and pairwise) poten-
tials { } , { } ,m

p
m

p e
m

eV Em m{ { {= ! !" ,  whose cost function ( ; )f xm m{   
is thus given by 

+
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Moreover, the sum (over )m  of the potential functions m{  is 
ensured to give back the potentials {  of the original MRF on ,G  i.e., 

( ) ( ) ,

.

p eV E
{1, , }:

{1, }:

m M p

m , M e
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m

p

e
m

e
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=
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/ (43)

[To ensure (43), we can simply set: ( { , , }) ( ) /m M1 p
m

p6 f! { {=

( | ),| { } |m p Vm!l l  and ( ) / ( )| { | } | .]m e Ee
m

e m!{ {= l l This guar-
antees that ,f f m

m
M

1
=

=
/  thus allowing us to re-express (38) 

as follows:

( ; ) .f xminimize m m

m

M

x C 1G
{

! =

/ (44)

An assumption that often holds in practice is that minimizing sep-
arately each of the f m  (over )x  is easy, but minimizing their sum 
is hard. Therefore, to leverage this fact, we introduce, for every 

{ , , },m M1 f!  an auxiliary copy x Cm
Gm!  for the variables of 

the local MRF defined on ,Gm  which are thus constrained to coin-
cide with the corresponding variables in vector ,x  i.e., it holds 

,x x |
m

Gm=  where x |Gm  is used to denote the subvector of x  con-
taining only those variables associated with vertices and edges of 
subgraph .Gm  In this way, (44) can be transformed into 

( ; )f xminimize
, { }

m m m

m

M

x C x C 1G G
m m M1

{
! ! =# #m

/

( { , , }) .m M x x1s.t. |
m

Gm6 f! = (45)

By considering the dual of (45), using a technique similar to the 
one described in “Consensus and Sharing Are Dual Problems,” 
and noticing that

( { , , }) ,x C m M x C1G
m

Gm+ 6 f! ! ! (46)

we finally end up with the following problem:

( ),hmaximize
( )

m m

m

M

1
m m M1

y
!y K =# #
/ (47)

where, for every { , , },m M1 f!  the dual variable my  consists 
of { } , { }vp

m
p e

m
eV Em my ! !" , similarly to ,m{  and function hm  is 

related to the following optimization of a slave MRF on :Gm

( ) ( ; ) .minh v f x vm m

x C

m m m m
m

Gm

{= +
!

(48)

The feasible set K  is given by (49), shown in the box at the 
bottom of this page. This dual problem provides a relaxation to 
the original problem (38)–(39). Furthermore, note that this relaxa-
tion leads to a convex optimization problem [to see this, notice 
that ( )hm my  is equal to a pointwise minimum of a set of linear 
functions of ,my  and, thus, it is a concave function], although the 
original one is not. As such, it can always be solved in an optimal 
manner. A possible way of doing this consists of using a projected 
subgradient method. Exploiting the form of the projection onto 
the vector space K  yields Algorithm 10, where ( )n n Nc !  is a sum-
mable sequence of positive step-sizes and { } , { }x x, ,p n

m
p e n

m
e EVm m! !t t$ .

corresponds to a subgradient of function hm  with { , , }m M1 f!

computed at iteration n  [14]. Note that this algorithm requires 
only solutions to local subproblems to be computed, which is, of 
course, a much easier task that furthermore can be executed 
in a parallel manner. The solution to the master MRF is filled 
in from local solutions { } , { }x x, ,p n

m
p e n

m
e m M1EVm m! !

# #
t t$ .  after con-

vergence of the algorithm. 
For a better intuition for the updates of the variables { },p n

m{"
, { },p e n

m
Vm {! ,e m M n1 NEm # # !! ,  in Algorithm 10, we should note 

that their aim is essentially to bring a consensus among the solu-
tions of the local subproblems. In other words, they try to adjust 
the potentials of the slave MRFs so that, in the end, the corre-
sponding local solutions are consistent with each other, i.e., all 
variables corresponding to a common vertex or edge are assigned 
the same value by the different subproblems. If this condition is 
satisfied (i.e., there is a full consensus), then the overall solution 
that results from combining the consistent local solutions is 
guaranteed to be optimal. In general, though, this might not 
always be true given that the aforementioned  procedure is solv-
ing only a relaxation of the original NP-hard problem. (See also 
“Master-Slave Communication” for another interpretation of the 
updates of Algorithm 10.)
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Interestingly, if we choose to use a decomposition consisting 
only of subgraphs that are trees, then the resulting relaxation 
can be shown to actually coincide with the standard LP-relaxa-
tion of linear integer program (38) (generated by replacing the 
integrality constraints with nonnegativity constraints on the 
variables). This also means that when this LP-relaxation is tight, 
an optimal MRF solution is computed. This, for instance, leads 
to the result that dual decomposition approaches can estimate a 
globally optimal solution for binary submodular MRFs 
[although it should be noted that much faster graph-cut-based 

techniques exist for submodular problems of this type (see 
“Graph Cuts and MRF Optimization”)]. Furthermore, when 
using subgraphs that are trees, a minimizer to each slave prob-
lem can be computed efficiently by applying the belief propaga-
tion algorithm [74], which is a message-passing method. 
Therefore, in this case, Algorithm 10 essentially reduces to a 
continuous exchange of messages between the nodes of graph 

.G  Such an algorithm relates to or generalizes various other 
message-passing approaches [15], [75]–[79]. In general, besides 
tree-structured subgraphs, other types of decompositions or 
subproblems can be used as well (such as binary planar 
problems, or problems on loopy subgraphs with small tree-
width, for which MRF optimization can still be solved effi-
ciently), which can lead to even tighter relaxations (see 
“Decompositions and Relaxations”) [80]–[85].

Furthermore, besides the projected subgradient method, one 
can alternatively apply an ADMM scheme for solving relaxation 
(47) (see the “ADMM” section). The main difference, in this case, 
is that the optimization of a slave MRF problem is performed by 
solving a (usually simple) local quadratic problem, which can 
again be solved efficiently for an appropriate choice of the decom-
position (see the “Extensions” section). This method again penal-
izes disagreements among slaves, but it does so even more 
aggressively than the subgradient method since there is no 
longer a requirement for step-sizes ( )n n Nc !  converging to zero. 
Furthermore, alternative smoothed accelerated schemes exist 
and can be applied as well [88]–[90].

APPLICATIONS
Although the presented primal–dual algorithms can be applied vir-
tually to any area where optimization problems have to be solved, 

we now mention a few common applications 
of these techniques.

INVERSE PROBLEMS
For a long time, convex optimization 
approaches have been successfully used for 
solving inverse problems such as signal resto-
ration, signal reconstruction, or interpolation 
of missing data. Most of the time, these prob-
lems are ill posed, and to recover the signal of 
interest in a satisfactory manner, some prior 
information needs to be introduced. To do 
this, an objective function can be minimized, 
which includes a data fidelity term modeling 
knowledge about the noise statistics and pos-
sibly involves a linear observation matrix (e.g., 
a convolutive blur), and a regularization (or 
penalization) term, which corresponds to the 
additional prior information. This formulation 
can also often be justified statistically as the 
determination of a maximum a posteriori 
(MAP) estimate. In early developed methods, 
in particular, in Tikhonov regularization, a 
quadratic penalty function is employed. 

Algorithm 10: The dual decomposition for MRF optimization.

Choose a decomposition { ( , )}G GofV Em m m m M1= # #

Initialize potentials of slave MRFs:
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MASTER–SLAVE COMMUNICATION
As shown in Figure S2, during dual decomposition, a communication between a 
master process and the slaves (local subproblems) can be thought of as taking 
place, which can also be interpreted as a resource allocation/pricing stage.

Resource allocation: At each iteration, the master assigns new MRF potentials (i.e., 
resources) ( )m

m M1{ # #  to the slaves based on the current local solutions ( ) .xm
m M1# #t

Pricing: The slaves respond by adjusting their local solutions ( )xm
m M1# #t  (i.e., 

the prices) so as to maximize their welfares based on the newly assigned 
resources ( ) .xm

m M1# #t

Resource Allocation Pricing

Master Master

1 2 M. . . 1 2 M. . .

Slave MRFs Slave MRFs

ϕ1

ϕ2 ϕM x1^

x 2^ xM^

[FIGS2] Dual decomposition as pricing and resource allocation.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [47] NOVEMBER 2015

Alternatively, hard constraints can be imposed on the solution (for 
example, bounds on the signal values), leading to signal feasibility 
problems. Today, a hybrid regularization [91] may be preferred so as 
to combine various kinds of regularity measures, possibly computed 
for different representations of the signal (Fourier, wavelets, etc.), 
some of them like total variation [25] and its nonlocal extensions 
[92] being tailored for preserving discontinuities such as image 
edges. In this context, constraint sets can be translated into penali-
zation terms being equal to the indicator functions of these sets [see 
(2)]. Altogether, these lead to global cost functions which can be 
quite involved, often with many variables, for which the splitting 
techniques described in the “Extensions” section are very useful. An 
extensive literature exists on the use of ADMM methods for solving 
inverse problems (e.g., see [29]–[33]). With the advent of more 
recent primal–dual algorithms, many works have been mainly 
focused on image recovery applications [46]–[49], [51], [54], [55], 
[58], [62], [64], [93]–[97]. Two examples are given next. 

In [98], a generalization of the total variation is defined for 
an arbitrary graph to address a variety of inverse problems. For 
denoising applications, the optimization problem to be solved is 
of the form (18) with

, , : ,f g h x x y0 2
1

C
27v= = - (50)

where x  is a vector of variables associated with each vertex of a 
weighted graph, and y RN!  is a vector of data observed at each 
vertex. The matrix L RK N! #  is equal to ( , , ) ,ADiag K1 f ~~

where ( , ) ,0K
K

1 f 3!~ ~ +6 6  is the vector of edge weights and 
A RK N! #  is the graph incidence matrix playing a role similar to a 
gradient operator on the graph. The set C  is defined as an intersec-
tion of closed semiballs in such a way that its support function Cv

[see (S1)] allows us to define a class of functions extending the total 
variation seminorm (see [98] for more details). Good image denois-
ing results can be obtained by building the graph in a nonlocal 

GRAPH CUTS AND MRF OPTIMIZATION
For certain MRFs, optimizing their cost is known to be equiva-
lent to solving a polynomial mincut problem [86], [87]. These 
are exactly all the binary MRFs ( )2L =  with submodular pair-
wise potentials such that, for every e E!

( , ) ( , ) ( , ) ( , ) .0 0 1 1 0 1 1 0e e e e#{ { { {+ + (S6)

Because of (S6), the cost ( )f x  of a binary labeling 
( ) { , }x x 0 1( )

|
| |

|
p

p1
V

V != # #  for such MRFs can always be written 
(up to an additive constant) as 

( ) ( ) ( ),f x a x a x a x x1 1( ) ( ) ( )
,

( ) ( )

( , )
p

p

p

p p

p
p q

p q

p qV EVP N

= + - + -
! ! !

/ / /
(S7)

where all coefficients ( )ap p V!  and ( )a , ( , )p q p q E!  are nonnega-
tive ( ,  ) .V V V VP N1 1

In this case, we can associate to f  a capacitated network that 
has vertex set { , } .s tV Vf ,=  A source vertex s  and a sink one 

t  have thus been added. The new edge set Ef  is deduced from 
the one used to express f

{( , ) | } {( , ) | } ,p t p s p pE V V Ef P N, ,! !=

and its edge capacities are defined as ( )p V VP N,6 ! c c, ,p t s p= =

ap  and ( ( , ) )p q E6 ! .c a, ,p q p q=

A one-to-one correspondence between s t-  cuts and MRF 
labelings then exists

{ , } ( ) { } { | },x x s p x0 1 1cut| ( )| pV ) ,! = =

for which it is easy to see that 

( ) ( ) .f x c xcost of cut,
( ), ( )

u
u x xcut cut

= =
"!

y

y

/

Computing a mincut, in this case, solves the LP relaxation of 
(38), which is tight, whereas computing a max-flow solves 
the dual LP.

DECOMPOSITIONS AND RELAXATIONS
Different decompositions can lead to different relaxations 
and/or can affect the speed of convergence. For instance, we 
show in Figure S3 three possible decompositions for an MRF 
assumed to be defined on a 5 5#  image grid.

Decompositions { }, { }, { }G G Gandm m m
1 2 3  consist, respectively, of 

one suproblem per row and column, one subproblem per edge, 
and one subproblem per 2 2#  subgrid of the original 5 5#  grid. 
Both { }Gm

1  and { }Gm
2  (due to using solely subgraphs that are 

trees) lead to the same LP relaxation of (37), whereas { }Gm
3  leads 

to a relaxation that is tighter (due to containing loopy subgraphs).
On the other hand, decomposition { }Gm

1  leads to faster con-
vergence compared with { }Gm

2  due to using larger subgraphs 
that allow a faster propagation of information during mes-
sage passing.

[FIGS3] Different decompositions can lead to different 
relaxations and also affect the speed of convergence.
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manner following the strategy in [92]. Results obtained for the 
“Barbara” image are displayed in Figure 6. Interestingly, the ability 
of methods such as those presented in the section “Methods Based 
on a Forward–Backward–Forward Approach” to circumvent matrix 
inversions leads to a significant decrease of the convergence time 
for irregular graphs in comparison with algorithms based on the 
Douglas–Rachford iteration or ADMM (see Figure 7).

Another application example of primal–dual proximal algo-
rithms is parallel magnetic resonance imaging reconstruction. 
A set of measurement vectors ( )z j j J1# #  is acquired from J
coils. These observations are related to the original full-field-of-
view image x CN!  corresponding to a spin density. An esti-
mate of x  is obtained by solving the following problem:

imize ( ) ( ) ,min f x g Lx FS x z

( )

j j
j

J

h x

x 1

2

CN j
1R+ + -

!
K

=

-

1 2 344444 44444
/ (51)

where ( { , , })j J16 f! ( ) ( ),H
j

2 1
j

1$ $ $K=K
-

- jK  is the noise 
covariance matrix for the jth  channel, S Cj

N N! #  is a diagonal 
matrix modeling the sensitivity of the coil, F CN N! #  is a two-
dimensional (2-D) discrete Fourier transform, { , }0 1 /N R N!R #6 @  is 
a subsampling matrix, ( )g CK

0! C  is a sparsity measure (e.g., a 
weighted 1, -norm), L CK N! #  is a (possibly redundant) frame 
analysis operator, and f  is the indicator function of a vector sub-
space of CN  serving to set to zero the image areas corresponding 
to the background [( ) H$  denotes the transconjugate operation and 
$6 @ designates the lower rounding operation]. Combining suitable 

subsampling strategies in the k-space with the use of an array of 
coils allows us to reduce the acquisition time while maintaining a 
good image quality. The subsampling factor R 1>  thus corre-
sponds to an acceleration factor. For a more detailed account on 
the considered approach, see [99] and [100] and the references 
therein. The reconstruction results are shown in Figure 8. Figure 9 
also allows us to evaluate the convergence time for various algo-
rithms. It can be observed that smaller differences between the 
implemented primal–dual strategies are apparent in this example. 
Because of the form of the subsampling matrix, the matrix inver-
sion involved at each iteration of ADMM requires us to make use of 
a few subiterations of a linear conjugate gradient method.

Note that convex primal–dual proximal optimization algo-
rithms have been applied to other fields besides image recovery, 
in particular, to machine learning [5], [101], system identifica-
tion [102], audio processing [103], optimal transport [104], 
empirical mode decomposition [105], seismics [106], database 
management [107], and data streaming over networks [108].

COMPUTER VISION AND IMAGE ANALYSIS
The great majority of problems in computer vision involve image 
observation data that are of very high dimensionality, inherently 
ambiguous, noisy, incomplete, and often only provide a partial 
view of the desired space. Hence, any successful model that aims to 
explain such data usually requires a reasonable regularization, a 
robust data measure, and a compact structure between the varia-
bles of interest to efficiently characterize their relationships. 

(a) (b) (c)

[FIG6] Nonlocal denoising (additive white zero-mean Gaussian noise with variance ):202v =  (a) original image, (b) noisy signal-to-
noise ratio (SNR) = 14.47 dB, and (c) nonlocal TV SNR = 20.78 dB.

[FIG7] A comparison of the convergence speed of a Douglas–
Rachford-based algorithm (PPXA [65]) (blue) and an FBF-based 
primal–dual algorithm (red) for image denoising using a 
nonregular graph. The MATLAB implementation was done on an 
Intel Xeon 2.5-GHz, eight-core system.
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Probabilistic graphical models, and, in particular, discrete MRFs, 
have led to a suitable methodology for solving such visual percep-
tion problems [12], [16]. These types of models offer great repre-
sentational power, and are able to take into account dependencies 
in the data, encode prior knowledge, and model (soft or hard) con-
textual constraints in a very efficient and modular manner. Fur-
thermore, they offer the important ability to make use of very 
powerful data likelihood terms consisting of arbitrary nonconvex 
and noncontinuous functions that are often crucial for accurately 
representing the problem at hand. As a result, a MAP inference for 
these models leads to discrete optimization problems that are (in 
most cases) highly nonconvex (NP-hard) and also of very large 
scale [109], [110]. These discrete problems take the form (37), 
where typically the unary terms ( )p ${  encode the data likelihood 
and the higher-order terms ( )e ${  encode problem-specific priors.

Primal–dual approaches can offer important computational 
advantages when dealing with such problems. One such characteris-
tic example is the FastPD algorithm [13], which currently provides 
one of the most efficient methods for solving generic MRF optimiza-
tion problems of this type, also guaranteeing at the same time the 
convergence to solutions that are approximately optimal. The theo-
retical derivation of this method relies on the use of the primal–dual 
schema described in the section “Discrete Optimization Algorithms,” 
which results, in this case, in a very fast graph-cut-based inference 
scheme that generalizes previous state-of-the-art approaches such as 
the a-expansion algorithm [111] (see Figure 10). More generally, 
because of the very wide applicability of MRF models to computer 
vision or image analysis problems, primal–dual approaches can be 
and have been applied to a broad class of both low- and high-level 
problems from these domains, including image segmentation [112]–
[115], stereo matching and three-dimensional (3-D) multiview 
reconstruction [116], [117], graph-matching [118], 3-D surface track-
ing [119], optical flow estimation [120], scene understanding [121], 
image deblurring [122], panoramic image stitching [123], category-
level segmentation [124], and motion tracking [125]. In the follow-
ing, we mention very briefly just a few examples.

A primal–dual based optimization framework has been 
recently proposed in [127] and [128] for the problem of deforma-
ble registration/fusion, which forms one of the most central and 

challenging tasks in medical image analysis. This problem con-
sists of recovering a nonlinear dense deformation field that aligns 
two signals that have, in general, an unknown relationship both 
in the spatial and intensity domain. In this framework, toward 
dimensionality reduction on the variables, the dense registration 
field is first expressed using a set of control points (registration 
grid) and an interpolation strategy. Then, the registration cost is 
expressed using a discrete sum over image costs projected on the 
control points and a smoothness term that penalizes local devia-
tions on the deformation field according to a neighborhood sys-
tem on the grid. One advantage of the resulting optimization 
framework is that it is able to encode even very complex similarity 
measures (such as normalized mutual information and Kullback–
Leibler divergence) and, therefore, can be used even when seeking 
transformations between different modalities (interdeformable 
registration). Furthermore, it admits a broad range of regulariza-
tion terms and can also be applied to both 2-D–2-D and 3-D–3-D 
registration, as an arbitrary underlying graph structure can be 
readily employed (see Figure 11 for the result on 3-D intersubject 
brain registration).

[FIG8] (a) The effects of the sensitivity matrices in the spatial domain in the absence of subsampling: the moduli of the images 
corresponding to ( )S xj j2 3# #  are displayed for two channels out of 32. (b) The reconstruction quality: moduli of the original slice x  and 
the reconstructed one with SNR .20 03=  dB (from left to right) using polynomial sampling of order 1 with ,R 5=  a wavelet frame, and 
an 1, -regularization.

(a) (b)

[FIG9] The SNR as a function of the computation time using 
ADMM and FB- or FBF-based primal–dual methods for a given 
slice. The MATLAB implementation was done on a 2.9-GHz Intel 
i7-3520M central processing unit (CPU).
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Another application of primal–dual methods is in stereo 
reconstruction [130], where given as input a pair of left and 
right images ,IL ,IR  we seek to estimate a function :u "X C
representing the depth ( )u s  at a point s  in the domain R21X
of the left image (here [ , ]m min axy yC =  denotes the allowed 

depth range). To accomplish this, the following variational 
problem is proposed in [130]:

imize ( ( ), ) ( ) ,min dsf u s s ds u s
u

d+
X X
# # (52)
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Left Image of “Tsukuba” Stereo Pair

[FIG10] The FastPD [126] results for (a) an image denoising and (b) a stereomatching problem. Each plot in (a) and (b) compares the 
corresponding running time per iteration of the above primal–dual algorithm with the a-expansion algorithm, which is a primal-based 
method (experiments conducted on a 1.6-GHz CPU). 
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[FIG11] A color-coded visualization of the surface distance between the warped and expert segmentation after (a) affine, (b) free-form 
deformation (FFD)-based [129], and (c) primal–dual-based registration for the Brain 1 data set. The color range is scaled to a maximum 
and minimum distance of 3 mm. The average surface distance (ASD) after registration for the gray matter is 1.66, 1.14, and 1.00 mm for 
the affine, FFD-based, and primal–dual method, respectively. For the white matter, the resulting ASD is 1.92, 1.31, and 1.06 mm for the 
affine, FFD-based, and primal–dual method, respectively. Note also that the FFD-based method is more than 30 times slower than the 
primal–dual approach. 
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where ( ( ), )f u s s  is a data term favoring different depth values by 
measuring the absolute intensity differences of respective patches 
projected in the two input images, and the second term is a total 
variation regularizer that promotes spatially smooth depth fields. 
Criterion (52) is nonconvex (due to the use of the data term ),f
but it turns out that there exists an equivalent convex formulation 
obtained by lifting the original problem to a higher-dimensional 
space, in which u  is represented in terms of its level sets 

imize ( , ) ( , ) ( , ) .min s f s s dsd
D

d 2z y y z y y+
!

y
z R

^ h# (53)

In this formulation, ,#R X C= : { , }0 1"z R  is a binary 
function such that ( , )sz y  equals one if ( )u s > y  and zero oth-
erwise, and the feasible set is defined as : { , }D 0 1"z R= "

.| ( ) ( , ) , ( , )s s s1 0min max6 ! z y z yX = = ,  A convex relaxation of 
the latter problem is obtained by using { : [ , ]D 0 1"z R=l

| ( ) ( , ) , ( , ) }s s s1 0min max6 ! z y yzX = =  instead of .D  A discre-
tized form of the resulting optimization problem can be solved 
with the algorithms described in the section “Methods Based on a 
Forward–Backward Approach.” Figure 12 shows a sample result of 
this approach.

Recently, primal–dual approaches have also been developed for 
discrete optimization problems that involve higher-order terms 
[131]–[133]. They have been applied successfully to various tasks, 
for instance, in stereo matching [131]. In this case, apart from a data 
term that measures the similarity between the corresponding pixels 
in two images, a discontinuity-preserving smoothness prior of the 
form ( , , ) ,mins s s s s s21 2 3 1 2 3z l= - +^ h with ,0 3!l + 6@  has 
been employed as a regularizer that penalizes depth surfaces of high 
curvature. Indicative stereo matching results from an algorithm 
based on the dual decomposition principle described in the section 
“Dual Decomposition” are shown in Figure 13.

It should be also mentioned that an advantage of all primal–dual 
algorithms (which is especially important for NP-hard problems) is 
that they also provide (for free) per-instance approximation bounds, 
specifying how far the cost of an estimated solution can be from the 
unknown optimal cost. This directly follows from the fact that these 
methods are computing both primal and dual solutions, which (in 
the case of a minimization task) provide, respectively, upper and 
lower limits to the true optimum. These approximation bounds are 
continuously updated throughout an algorithm’s execution and, 
thus, can be directly used for assessing the performance of a pri-
mal–dual method with respect to any particular problem instance 
(and without essentially any extra computational cost). Moreover, 
often in practice, these sequences converge to a common value, 
which means that the corresponding estimated solutions are almost 
optimal (see, e.g., the charts in Figure 13).

CONCLUSIONS
In this article, we reviewed a number of primal–dual optimiza-
tion methods, which can be employed for solving signal and 
image processing problems. The links existing between convex 
approaches and discrete ones were little explored in the litera-
ture, and one of the goals of this article is to put them in a uni-
fying perspective. Although the presented algorithms have 

proved to be quite effective in numerous problems, there 
remains much room for extending their scope to other appli-
cation fields and also for improving them so as to accelerate 
their convergence. In particular, the parameter choices in 
these methods may have a strong influence on the conver-
gence speed, and it would be interesting to design automatic 
procedures for setting these parameters. Various techniques 
can also be devised for designing faster variants of these methods 
(e.g., preconditioning, activation of blocks of variables, combi-
nation with stochastic strategies, and distributed implementa-
tions). Another issue is the robustness to numerical errors, 
although it can be mentioned that most of the existing proximal 
algorithms are tolerant to summable errors. Concerning dis-
crete optimization methods, we have shown that the key to suc-
cess lies in tight relaxations of combinatorial NP-hard problems. 
Extending these methods to more challenging problems, e.g., 
those involving higher-order Markov fields or extremely large 

(a)

(b)

[FIG12] (a) An estimated depth map for a large aerial stereo data 
set of Graz using the primal–dual approach in [130]. (b) One of 
the images of the corresponding stereoscopic pair (of size 
1,500 #  1,400). 
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label sets, appears to be of main interest in this area. More gen-
erally, developing primal–dual strategies that further bridge the 
gap between continuous and discrete approaches and solve 
other kinds of nonconvex optimization problems, such as those 
encountered in phase reconstruction or blind deconvolution, 
opens the way to appealing investigations. So, the floor is yours 
now to play with duality!
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[FIG13] The stereo matching results for (a) “Teddy” and 
(b) “Cones” when using a higher-order discontinuity preserving 
the smoothness prior. We show plots for the corresponding 
sequences of upper and lower bounds generated during the 
primal–dual method. Notice that these sequences converge to 
the same limit, meaning that the estimated solution converges to 
the optimal value.
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I
n the context of singing voice synthesis, expression control manipu-
lates a set of voice features related to a particular emotion, style, or 
singer. Also known as performance modeling, it has been 
approached from different perspectives and for different purposes, 
and different projects have shown a wide extent of applicability. The 

aim of this article is to provide an overview of approaches to expression 
control in singing voice synthesis. We introduce some musical applica-
tions that use singing voice synthesis techniques to justify the need for 
an accurate control of expression. Then, expression is defined and 
related to speech and instrument performance modeling. Next, we pres-
ent the commonly studied set of voice parameters that can change 
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perceptual aspects of synthesized voices. After that, we provide an 
up-to-date classification, comparison, and description of a selec-
tion of approaches to expression control. Then, we describe how 
these approaches are currently evaluated and discuss the benefits 
of building a common evaluation framework and adopting per-
ceptually-motivated objective measures. Finally, we discuss the 
challenges that we currently foresee.

SINGING VOICE SYNTHESIS SYSTEMS
In recent decades, several applications have shown how singing voice 
synthesis technologies can be of interest for composers [1], [2]. Tech-
nologies for the manipulation of voice features have been increas-
ingly used to enhance tools for music creation and postprocessing, 
singing a live performance, to imitate a singer, and even to generate 

voices that are difficult to produce naturally (e.g., castrati). 
More examples can be found with pedagogical purposes or as 
tools to identify perceptually relevant voice properties [3]. 
These applications of the so-called music information 
research field may have a great impact on the way we inter-
act with music [4]. Examples of research projects using sing-
ing voice synthesis technologies are listed in Table 1.

The generic framework of these systems is represented 
in Figure 1, based on [5]. The input may consist of the 
score (e.g., the note sequence, contextual marks related to 
loudness, or note transitions), lyrics, and the intention 
(e.g., the style or emotion). The intention may be derived 
from the lyrics and score content (shown by the dashed 
line). The input may be analyzed to get the phonetic tran-
scription, the alignment with a reference performance, or 
contextual data. The expression control generation block 
represents the implicit or explicit knowledge of the system 
as a set of reference singing performances, a set of rules, 
or statistical models. Its output is used by the synthesizer 
to generate the sound, which may be used iteratively to 
improve the expression controls.

A key element of such technologies is the singer voice 
model [1], [2], [6], although due to space constraints, it is not 
described here in detail. For the purpose of this article, it is more 
interesting to classify singing synthesis systems with respect to the 
control parameters. As shown in Table 2, those systems are classified 
into model-based and concatenative synthesizers. While, in signal 
models, the control parameters are mostly related to a perception 
perspective, in physical models, these are related to physical aspects 
of the vocal organs. In concatenative synthesis, a cost criterion is 
used to retrieve sound segments (called units) from a corpus that are 
then transformed and concatenated to generate the output utter-
ance. Units may cover a fixed number of linguistic units, e.g., 
diphones that cover the transition between two phonemes or a more 
flexible and wider scope. In this case, control parameters are also 
related to perceptual aspects.

[TABLE 1] RESEARCH PROJECTS USING  
SINGING VOICE SYNTHESIS TECHNOLOGIES.

PROJECT WEBSITE

CANTOR HTTP://WWW.VIRSYN.DE

CANTOR DIGITALIS HTTPS://CANTORDIGITALIS.LIMSI.FR/

CHANTER HTTPS://CHANTER.LIMSI.FR

FLINGER HTTP://WWW.CSLU.OGI.EDU/TTS/FLINGER

LYRICOS HTTP://WWW.CSLU.OGI.EDU/TTS/DEMOS

ORPHEUS HTTP://WWW.ORPHEUS-MUSIC.ORG/V3

SINSY HTTP://WWW.SINSY.JP

SYMPHONIC CHOIRS
VIRTUAL INSTRUMENT

HTTP://WWW.SOUNDSONLINE.COM/SYMPHONIC-CHOIRS

VOCALISTENER HTTPS://STAFF.AIST.GO.JP/T.NAKANO/VOCALISTENER

VOCALISTENER
(PRODUCT VERSION)

HTTP://WWW.VOCALOID.COM/LINEUP/VOCALIS

VOCALISTENER2 HTTPS://STAFF.AIST.GO.JP/T.NAKANO/VOCALISTENER2

VOCALOID HTTP://WWW.VOCALOID.COM

VOCAREFINER HTTPS://STAFF.AIST.GO.JP/T.NAKANO/VOCAREFINER

VOCAWATCHER HTTPS://STAFF.AIST.GO.JP/T.NAKANO/VOCAWATCHER

Score

Lyrics

Intention

Analysis

Adaptation
Process

Expression-
Control

Generation
Synthesizer Sound

ModelsRulesSinging
Performances

[FIG1] Generic framework blocks for expression control.
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Within the scope of this review, we focus on the perceptual 
aspects of the control parameters, which are used to synthesize 
expressive performances by taking a musical score, lyrics, or an 
optional human performance as the input. However, this article  
does not discuss voice conversion and morphing in which input 
voice recordings are analyzed and transformed [7], [8].

EXPRESSION IN MUSICAL PERFORMANCE AND SINGING
Expression is an intuitive aspect of a music performance, but it is 
complex to define. In [5, p. 2], it is viewed as “the strategies and 
changes which are not marked in a score but which performers 
apply to the music.” In [9, p. 1], expression is “the added value of a 
performance and is part of the reason that music is interesting to 
listen to and sounds alive.” A complete definition is given in 
[10, p. 150], relating the liveliness of a score to “the artist’s under-
standing of the structure and ‘meaning’ of a piece of music, and 
his/her (conscious or unconscious) expression of this understand-
ing via expressive performance.” From a psychological perspective, 
Juslin [11, p. 276] defines it as “a set of perceptual qualities that 
reflect psychophysical relationships between ‘objective’ properties 
of the music, and ‘subjective’ impressions of the listener.”

Expression has a key impact on the perceived quality and natu-
ralness. As pointed out by Ternström [13], “even a single sine wave 
can be expressive to some degree if it is expertly controlled in 
amplitude and frequency.” Ternström says that musicians care 
more about instruments being adequately expressive than sound-
ing natural. For instance, in Clara Rockmore’s performance of 
Vocalise by Sergei Vasilyevich Rachmaninoff, a skillfully controlled 
Theremin expresses her intentions to a high degree (all cited 
sounds have been collected and shown online; see [51]), despite 
the limited degrees of freedom.

In the case of the singing voice, achieving a realistic sound syn-
thesis implies controlling a wider set of parameters than just the 
amplitude and frequency. These parameters can be used by a singing 
voice synthesizer or to transform a recording. From a psychological 
perspective, pitch contour, vibrato features, intensity contour, trem-
olo, phonetic timing, and others related to timbre are the main con-
trol parameters that are typically used to transmit a message with a 
certain mood or emotion [12] and shaped by a musical style [14]. 
These are described in detail in the section “Singing Voice Perfor-
mance Features.”

Nominal values for certain parameters can be inferred from 
the musical score through the note’s pitch, dynamics, and 
duration as well as its articulation, such as staccato or legato 

marks. However, these values are not intrinsically expressive per 
se. In other words, expression contributes to the differences 
between these values and a real performance. Different strategies 
for generating expression controls are explained in the section 
“Expression-Control Approaches.”

It is important to note that there is more than one acceptable 
expressive performance for a given song [1], [3], [15]. Such vari-
ability complicates the evaluation and comparison of different 
expression-control approaches. This issue is tackled in the “Eval-
uation” section. Besides singing, expression has been studied in 
speech and instrumental music performance.

CONNECTION TO SPEECH AND INSTRUMENTAL 
MUSICAL PERFORMANCE
There are several common aspects of performing expressively 
through singing voice, speech, and musical instruments. In 
speech, the five acoustic attributes of prosody have been widely 
studied [16], for instance, to convey emotions [17]. The most stud-
ied attribute is the fundamental frequency (F0) of the voice source 
signal. Timing is the acoustic cue of rhythm, and it is a rather 
complex attribute given the number of acoustic features to which 
it is related [16, p. 43]. Other attributes are intensity, voice quality 
(related to the glottal excitation), and articulation (largely deter-
mined by the phonetic context and speech rate).

Expressive music performance with instruments has also 
been widely studied. Several computational models are reviewed 
in [18, p. 205], such as the KTH model, which is based “on per-
formance rules that predict the timing, dynamics, and articula-
tion from local musical context.” The Todd model links the 
musical structure to a performance with simple rules like mea-
surements of human performances. The Mazzola model ana-
lyzes musical structure features such as tempo and melody and 
iteratively modifies the expressive parameters of a synthesized 
performance. Finally, a machine-learning model discovers pat-
terns within a large amount of data; it focuses, for instance, on 
timing, dynamics, and more abstract structures like phrases and 
manipulates them via tempo, dynamics, and articulation. In [5], 
30 more systems are classified into nonlearning methods, linear 
regression, artificial neural networks, and rule-/case-based 
learning models, among others.

In this review, we adopt a signal processing perspective to focus 
on the acoustic cues that convey a certain emotion or evoke a 
singing style in singing performances. As mentioned in [12, 
p. 799], “vocal expression is the model on which musical 

[TABLE 2] SINGING VOICE SYNTHESIS SYSTEMS AND CONTROL PARAMETERS.

SINGING SYNTHESIS SYSTEMS

MODEL-BASED SYNTHESIS CONCATENATIVE SYNTHESIS

SIGNAL MODELS PHYSICAL MODELS FIXED LENGTH
UNITS

NONUNIFORM
LENGTH UNITS

PARAMETERS F0, RESONANCES (CENTER FREQUENCY
AND BANDWIDTH), SINUSOID FREQUENCY,
PHASE, AMPLITUDE, GLOTTAL PULSE
SPECTRAL SHAPE, AND PHONETIC TIMING

VOCAL APPARATUS-RELATED PARAMETERS
(TONGUE, JAW, VOCAL TRACT LENGTH
AND TENSION, SUBGLOTTAL AIR PRESSURE,
AND PHONETIC TIMING)

F0, AMPLITUDE, TIMBRE,
AND PHONETIC TIMING
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expression is based,” which highlights the topic relevance for both 
the speech and the music performance community. Since there is 
room for improvement, the challenges that we foresee are 
described in the “Challenges” section.

SINGING VOICE PERFORMANCE FEATURES
In the section “Expression in Musical Performance and Singing,” 
we introduced a wide set of low-level parameters for singing voice 
expression. In this section, we relate them to other musical ele-
ments. Then, the control parameters are described, and finally, we 
illustrate them by analyzing a singing voice excerpt.

FEATURE CLASSIFICATION
As in speech prosody, music can also be decomposed into various 
musical elements. The main musical elements, such as melody, 
dynamics, rhythm, and timbre, are built on low-level acoustic 
features. The relationships between these elements and the 
acoustic features can be represented in several ways [19, p. 44]. 
Based on this, Table 3 relates the commonly modeled acoustic 
features of the singing voice to the elements to which they 
belong. Some acoustic features spread transversally over several 
elements. Some features are instantaneous, such as F0 and 
intensity frame values, some span over a local time window, such 
as articulation and attack, and others have a more global tempo-
ral scope, such as F0 and intensity contours or vibrato and trem-
olo features.

Next, for each of these four musical elements, we provide 
introductory definitions to their acoustic features. Finally, these 
are related to the analysis of a real singing voice performance.

MELODY-RELATED FEATURES
The F0 contour, or the singer’s rendition of the melody (note 
sequence in a score), is the sequence of F0 frame-based values [20]. 
F0 represents the “rate at which the vocal folds open and close 
across the glottis,” and acoustically it is defined as “the lowest 
periodic cycle component of the acoustic waveform” [12, p. 790]. 
Perceptually, it relates to the pitch, defined as “the aspect of audi-
tory sensation whose variation is associated with musical melodies” 
[21, p. 2]. In the literature, however, the pitch and F0 terms are 
often used indistinctly to refer to F0.

The F0 contour is affected by microprosody [22], i.e., fluctua-
tions in pitch and dynamics due to phonetics (not attributable to 
expression). While certain phonemes such as vowels may have sta-
ble contours, other phonemes such as velar consonants may fluc-
tuate because of articulatory effects.

A skilled singer can show expressive ability through the mel-
ody rendition and modify it more expressively than unskilled 
singers. Pitch deviations from the theoretical note can be inten-
tional as an expressive resource [3]. Moreover, different articula-
tions, i.e., the F0 contour in a transition between consecutive 
notes, can be used expressively. For example, in staccato, short 
pauses are introduced between notes. In the section “Transverse 
Features,” the use of vibrato is detailed.

DYNAMICS-RELATED FEATURES
As summarized in [12, p. 790], the intensity (related to the per-
ceived loudness of the voice) is a “measure of energy in the acous-
tic signal” usually from the waveform amplitude. It “reflects the 
effort required to produce the speech” or singing voice and is 
measured by energy at a frame level. A sequence of intensity val-
ues provides the intensity contour, which is correlated to the 
waveform envelope and the F0 since the energy increases with 
the F0 so as to produce a similar auditory loudness [23]. Acousti-
cally, vocal effort is primarily related to the spectrum slope of the 
glottal sound source rather than the overall sound level. Tremolo 
may also be used, as detailed in the section “Transverse Features.”

Microprosody also has an influence on intensity. The phonetic 
content of speech may produce intensity increases as in plosives or 
reductions like some unvoiced sounds.

RHYTHM-RELATED FEATURES
The perception of rhythm involves cognitive processes such as “move-
ment, regularity, grouping, and yet accentuation and differentiation” 
[24, p. 588], where it is defined as “the grouping and strong/weak rela-
tionships” among the beats or “the sequence of equally spaced phe-
nomenal impulses which define a tempo for the music.” The tempo 
corresponds to the number of beats per minute. In real-life perfor-
mances, there are timing deviations from the nominal score [12].

Similar to the role of speech rate in prosody, phoneme onsets 
are also affected by singing voice rhythm. Notes and lyrics are 
aligned so that the first vowel onset in a syllable is synchronized 
with the note onset and any preceding phoneme in the syllable is 
advanced [3], [25].

TIMBRE-RELATED FEATURES
The timbre mainly depends on the vocal tract dimensions and on 
the mechanical characteristics of the vocal folds, which affect the 
voice source signal [23]. Timbre is typically characterized by an 
amplitude spectrum representation and is often decomposed into 
source and vocal tract components.

[TABLE 3] CLASSIFICATION OF SINGING VOICE EXPRESSION FEATURES.

MELODY DYNAMICS RHYTHM TIMBRE

VIBRATO AND TREMOLO (DEPTH AND RATE) PAUSES VOICE SOURCE

ATTACK AND RELEASE PHONEME TIME LAG SINGER’S FORMANT

ARTICULATION PHRASING SUBHARMONICS

F0 CONTOUR INTENSITY CONTOUR NOTE/PHONEME ONSET/DURATION FORMANT TUNING

F0 FRAME VALUE INTENSITY FRAME VALUE TIMING DEVIATION APERIODICITY
SPECTRUMDETUNING TEMPO
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The voice source can be described in terms of its F0, ampli-
tude, and spectrum (i.e., vocal loudness and mode of phona-
tion). In the frequency domain, the spectrum of the voice 
source is generally approximated by an average slope of −12 dB/
octave, but it typically varies with vocal loudness [23]. The voice 
source is relevant for expression and is used differently among 
singing styles [14].

The vocal tract filters the voice source, emphasizing certain 
frequency regions or formants. Although formants are affected by 
all vocal tract elements, some have a higher effect on certain for-
mants. For instance, the first two formants are related to the pro-
duced vowel, with the first formant being primarily related to the 
jaw opening and the second formant to the tongue body shape. 
The next three formants are related to timbre and voice identity, 
with the third formant being particularly influenced by the 
region under the tip of the tongue and the fourth to the vocal 
tract length and dimensions of the larynx [23]. In western male 
operatic voices, the third, fourth, and fifth formants typically 
cluster, producing a marked spectrum envelope peak around 

3 kHz, the so-called singer’s formant cluster [23]. This makes it 
easier to hear the singing voice over a loud orchestra. The 
affected harmonic frequencies (multiples of F0) are radiated most 
efficiently toward the direction where the singer is facing, nor-
mally the audience.

Changing modal voice into other voice qualities can be used 
expressively [26]. A rough voice results from a random modulation 
of the F0 of the source signal (jitter) or of its amplitude (shimmer). 
In a growl voice, subharmonics emerge because of half-periodic 
vibrations of the vocal folds, and, in breathy voices, the glottis does 
not completely close, increasing the presence of aperiodic energy.

TRANSVERSE FEATURES
Several features from Table 3 can be considered transversal given 
that they are spread over several elements. In this section, we 
highlight the most relevant ones.

Vibrato is defined [23] as a nearly sinusoidal fluctuation of F0. In 
operatic singing, it is characterized by a rate that tends to range 
from 5.5 to 7.5 Hz and a depth around ±0.5 or 1 semitones. 
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[FIG2] The expression analysis of a singing voice sample: (a) score, (b) modified score, (c) waveform, (d) note onsets and pitch, 
(e) extracted pitch and labeled notes, and (f) extracted energy.
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Tremolo [23] is the vibrato counterpart observed in intensity. It is 
caused by the vibrato oscillation when the harmonic with the greatest 
amplitude moves in frequency, increasing and decreasing the distance 
to a formant, thus making the signal amplitude vary. Vibrato may be 
used for two reasons [23, p. 172]. Acoustically, it prevents harmonics 
from different voices from falling into close regions and producing 
beatings. Also, vibratos are difficult to produce under phonatory diffi-
culties such as pressed phonation. Aesthetically, vibrato shows that the 
singer is not running into such problems when performing a difficult 
note or phrase such as a high-pitched note.

Attack is the musical term to describe the pitch and intensity 
contour shapes and duration at the beginning of a musical note or 
phrase. Release is the counterpart of attack, referring to the pitch 
and intensity contour shapes at the end of a note or phrase.

As summarized in [27], grouping is one of the mental struc-
tures that are built while listening to a piece that describes the 
hierarchical relationships between different units. Notes, the low-
est-level units, are grouped into motifs, motifs are grouped into 
phrases, and phrases are grouped into sections. The piece is the 
highest-level unit.  Phrasing is a transversal aspect that can be rep-
resented as an “arch-like shape” applied to both the tempo and 
intensity during a phrase [15, p. 149]. For example, a singer may 
increase the tempo at the beginning of a phrase or decrease it at 
the end for classical music.

SINGING VOICE PERFORMANCE ANALYSIS
To illustrate the contribution of the acoustic features to expression, 
we analyze a short excerpt from a real singing performance (an 
excerpt from the song “Unchain My Heart;” see [51]). It contains 
clear expressive features such as vibrato in pitch, dynamics, timing 
deviations in rhythm, and growl in timbre. The result of the analy-
sis is shown in Figures 2 and 3. (The dashed lines indicate har-
monic frequencies, and the circle is placed at the subharmonics.) 
The original score and lyrics are shown in Figure 2(a), where each 
syllable corresponds to one note except for the first and last ones, 

which correspond to two notes. The singer introduces some 
changes, such as ornamentation and syncopation, which are repre-
sented in Figure 2(b). In (c), the note pitch is specified by the 
expected frequency in cents, and the note onsets are placed at the 
expected time using the note figures and a 120-beats/minute 
tempo. Figure 2(d) shows the extracted F0 contour in blue and the 
notes in green. The microprosody effects can be observed, for 
example, in a pitch valley during the attack to the word “heart.” At 
the end, vibrato is observed. The pitch stays at the target pitch for a 
short period of time, especially in the ornamentation notes.

In a real performance, the tempo is not generally constant 
throughout a score interpretation. In general, beats are not equally 
spaced through time, leading to tempo fluctuation. Consequently, 
note onsets and rests are not placed where expected with respect to 
the score. In Figure 2(d), time deviations can be observed between 
the labeled notes and the projection colored in red from the score. 
Also, the note durations differ from the score.

The recording’s waveform and energy, which are aligned to the 
estimated F0 contour, are shown in Figure 2(e) and (f), respectively. 
The intensity contour increases/decays at the beginning/end of each 
segment or note sequence. Energy peaks are especially prominent at 
the beginning of each segment since a growl voice is used, and 
increased intensity is needed to initiate this effect.

We can take a closer look at the waveform and spectrum of a win-
dowed frame, as shown in Figure 3. In the former, we can see the 
pattern of a modulation in the amplitude or macroperiod, which 
spans over several periods. In the latter, we can see that, for the win-
dowed frame, apart from the frequency components related to F0 
around 320 Hz, five subharmonic components appear between F0 
harmonics, which give the growl voice quality. Harmonics are 
marked with a dashed line and subharmonics between the second 
and the third harmonics with a red circle.

If this set of acoustic features is synthesized appropriately, the 
same perceptual aspects can be decoded. Several approaches that 
generate these features are presented next.

Corpus-Based Methods

Expression-Control
Approaches

Performance
Driven

Noniterative Iterative
Analysis by
Synthesis

Corpus
Derived

Rule
Based

Statistical Modeling
of Expression

Controls

Unit Selection
of Expression

Controls

[FIG4] Classification of expression-control methods in singing voice synthesis.
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EXPRESSION-CONTROL APPROACHES
In the section “Singing Voice Performance Features,” we defined 
the voice acoustic features and related them to aspects of music 
perception. In this section, we focus on how different approaches 
generate expression controls. First, we propose a classification of 
the reviewed approaches and then we compare and describe them. 
As will be seen, acoustic features generally map one to one to 
expressive controls at the different temporal scopes, and the syn-
thesizer is finally controlled by the lowest-level acoustic features 
(i.e., F0, intensity, and spectral envelope representation).

CLASSIFICATION OF APPROACHES
To see the big picture of the reviewed works on expression control, 
we propose a classification in Figure 4. Performance-driven 
approaches use real performances as the control for a synthesizer, 
taking advantage of the implicit rules that the singer has applied 
to interpret a score. Expression controls are estimated and applied 
directly to the synthesizer. Rule-based methods derive a set of 
rules that reflect the singers’ cognitive process. In analysis by syn-
thesis, rules are evaluated by synthesizing singing voice 

performances. Corpus-derived, rule-based approaches generate 
expression controls from the observation of singing voice contours 
and imitating their behavior. Statistical approaches generate sing-
ing voice expression features using techniques such as hidden 
Markov models (HMMs). Finally, unit selection-based approaches 
select, transform, and concatenate expression contours from 
excerpts of a singing voice database (DB). Approaches using a 
training database of expressive singing have been labeled as cor-
pus-based methods. The difficulties of the topic reviewed in this 
article center on how to generate control parameters that are per-
ceived as natural. The success of conveying natural expression 
depends on a comprehensive control of the acoustic features 
introduced in the section “Singing Voice Performance Features.” 
Currently, statistical approaches are the only type of system that 
jointly model all of the expression features.

COMPARISON OF APPROACHES
In this article, we review a set of works that model the features 
that control singing voice synthesis expression. Physical modeling 
perspective approaches can be found, for instance, in [28].

[TABLE 4] A COMPARISON OF APPROACHES FOR EXPRESSION CONTROL IN SINGING VOICE SYNTHESIS.

TYPE REFERENCE CONTROL FEATURES SYNTHESIZER STYLE OR EMOTION INPUT LANGUAGE

PERFORMANCE
DRIVEN

[29] TIMING, F0, INTENSITY,
SINGER’S FORMANT CLUSTER

UNIT SELECTION OPERA SCORE,
SINGING VOICE

GERMAN

[30] TIMING, F0, INTENSITY, VIBRATO SAMPLE BASED GENERIC LYRICS, MIDI NOTES, 
SINGING VOICE

SPANISH

[31] TIMING, F0, INTENSITY SAMPLE BASED POPULAR MUSIC
(RWC-MDB)1

LYRICS, SINGING
VOICE

JAPANESE

[32] TIMING, F0, INTENSITY, TIMBRE SAMPLE BASED MUSIC GENRE
(RWC-MDB)2

LYRICS, SINGING
VOICE

JAPANESE

[33] TIMING, F0, SINGER FORMANT RESYNTHESIS
OF SPEECH

CHILDREN’S
SONGS

SCORE, TEMPO,
SPEECH

JAPANESE

RULE
BASED

[3] TIMING, CONSONANT DURATION,
VOWEL ONSET, TIMBRE CHANGES,
FORMANT TUNING, OVERTONE
SINGING, ARTICULATION SILENCE
TO NOTE

FORMANT
SYNTHESIS

OPERA SCORE, MIDI,
OR KEYBOARD

NOT SPECIFIED

[37] TIMING, MICROPAUSES, TEMPO
AND PHRASING, F0, INTENSITY,
VIBRATO AND TREMOLO,
TIMBRE QUALITY

SAMPLE BASED ANGRY, SAD,
HAPPY

SCORE, LYRICS,
TEMPO, EXPRESSIVE
INTENTIONS

SWEDISH,
ENGLISH

[40] TIMBRE (MANUAL), PHONETICS,
TIMING, F0,
INTENSITY, MUSICAL
ARTICULATION, SUSTAINS,
VIBRATO AND TREMOLO
(RATE AND DEPTH)

SAMPLE BASED GENERIC SCORE, LYRICS,
TEMPO

JAPANESE,
ENGLISH,
SPANISH

STATISTICAL
MODELING

[25] TIMING, F0, TIMBRE HMM BASED CHILDREN’S
SONGS

SCORE AND LYRICS JAPANESE

[42] TIMING, F0, VIBRATO
AND TREMOLO,
TIMBRE, SOURCE

HMM BASED CHILDREN’S
SONGS

MUSICXML2

SCORE
JAPANESE,
ENGLISH

[22] BASELINE F0 (RELATIVE
TO NOTE), VIBRATO RATE
AND DEPTH (NOT TREMOLO),
INTENSITY

SAMPLE BASED CHILDREN’S
SONGS

SCORE (NO
LYRICS TO
CREATE MODELS)

JAPANESE

UNIT
SELECTION

[43] F0, VIBRATO, TREMOLO,
INTENSITY

SAMPLE BASED JAZZ STANDARDS SCORE LANGUAGE
INDEPENDENT

1 Real World Computing (RWC) Music Database: https://staff.aist.go.jp/m.goto/RWC-MDB/
2 MUSICXML: http://www.musicxml.com
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Within each type of approach in Figure 4, there are one or more 
methods for expression control. In Table 4, we provide a set of 
items that we think can be useful for comparison. The “Type” col-
umn refers to the type of expression control from Figure 4 to 
which the reference belongs. In the “Control Feature” column, we 
list the set of features addressed by the approach. The “Synthesizer” 
column provides the type of synthesizer used to generate the sing-
ing voice, and the “Style or Emotion” column provides the emo-
tion, style, or sound to which the expression is targeted. The 
“Input” column details the input to the system (e.g., the score, lyr-
ics, tempo, and audio recording). The “Language” column lists the 
language dependency of each method, if any.

We have collected samples in [51] as examples of the results of 
the reviewed expression-control approaches. Listeners will observe 
several differences among them. First, some samples consist of a cap-
pella singing voices, and others are presented with background 
music, which may mask the synthesized voice and complicate the 
perception of the generated expression. Second, the samples corre-
spond to different songs, making it difficult to compare approaches. 
Athough the lyrics in most cases belong to a particular language, in 
some samples, they are made by repeating the same syllable, such as 
/la/. We believe that the evaluation of a synthesized song can be 

performed more effectively in a language spoken by the listener. 
Finally, the quality of the synthetic voice is also affected by the type of 
synthesizer used in each sample. The difficulties in comparing them 
and the subsequent criticisms are discussed in the “Evaluation” and 
“Challenges” sections. 

PERFORMANCE-DRIVEN APPROACHES
Performance-driven approaches use a real performance to control 
the synthesizer. The knowledge applied by the singer, implicit in 
the extracted data, can be used in two ways. In the first one, control 
parameters such as F0, intensity, and timing from the reference 
recording are mapped to the input controls of the synthesizer so 
that the rendered performance follows the input signal expression. 
Alternatively, speech audio containing the target lyrics is trans-
formed to match the pitch and timing of the input score. Figure 5 
summarizes the commonalities of these approaches on the inputs 
(reference audio, lyrics, and, possibly, the note sequence) and inter-
mediate steps (phonetic alignment, acoustic feature extraction, and 
mapping) that generate internal data such as timing information, 
acoustic features, and controls used by the synthesizer. 

In Table 5, we summarize the correspondence between the 
extracted acoustic features and the synthesis parameters for each of 

Notes

Lyrics

Recording

Phonetic
Alignment

Notes and Lyrics

Extract Acoustic
Features

Timing Mapping Controls Synthesizer Sound

Extract Acoustic
Features

Update
Parameters

F0, Dynamics,
Timbre, Vibrato (Rate

and Depth)

(Only Iterative Approaches)

[FIG5] The general framework for performance-driven approaches.

[TABLE 5] MAPPING FROM ACOUSTIC FEATURES TO SYNTHESIZER CONTROLS.

MAPPED SYNTHESIS PARAMETERS

ACOUSTIC 
FEATURES [29] [30] [31] [32] [33]

F0 F0 SMOOTHED AND
CONTINUOUS PITCH

MIDI NOTE NUMBER,
PITCH BEND AND
SENSITIVITY

MIDI NOTE NUMBER,
PITCH BEND AND
SENSITIVITY

F0

VIBRATO INCLUDED IN F0
IMPLICITLY

VIBRATOS FROM INPUT
OR FROM DB SINGER

INCLUDED IN F0
IMPLICITLY

INCLUDED IN F0
IMPLICITLY

INCLUDED IN F0
IMPLICITLY

ENERGY DYNAMICS DYNAMICS DYNAMICS DYNAMICS DYNAMICS

PHONETIC
ALIGNMENT

PHONEME TIMING ONSETS OF VOWELS
OR VOICED PHONEMES

NOTE ONSET AND
DURATION

NOTE ONSET AND
DURATION

PHONEME TIMING

TIMBRE SINGER’S FORMANT
CLUSTER AMPLITUDE

NOT USED NOT USED MIXING DIFFERENT
VOICE QUALITY dBs

SINGER’S FORMANT CLUSTER
AMPLITUDE AND AMPLITUDE
MODULATION OF THE
SYNTHESIZED SIGNAL
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these works. The extracted F0 can be mapped directly into the F0 
control parameter, processed into a smoothed and continuous ver-
sion, or split into the Musical Instrument Digital Instrument 
(MIDI) note, pitch bend, and its sensitivity parameters. Vibrato can 
be implicitly modeled in the pitch contour, extracted from the 
input, or selected from a database. Energy is generally mapped 
directly into dynamics. From the phonetic alignment, note onsets 
and durations are derived, mapped directly to phoneme timing, or 
mapped either to onsets of vowels or voiced phonemes. Concerning 
timbre, some approaches focus on the singer’s formant cluster, 
and, in a more complex case, the output timbre comes from a mix-
ture of different voice quality databases.

Approaches using estimated controls achieve different levels of 
robustness depending on the singing voice synthesizers and voice 
databases. In the system presented in [29], a unit selection frame-
work is used to create a singing voice synthesizer from a particular 
singer’s recording in a nearly automatic procedure. In comparison 
to a sample-based system, where the design criterion is to mini-
mize the size of the voice database with only one possible unit sam-
ple (e.g., diphones), the criterion in unit selection is related to 
redundancy to allow the selection of consecutive units in the data-
base at the expense of having a larger database. The system auto-
matically segments the recorded voice into phonemes by aligning 
it to the score and feeding the derived segmentation constraints to 
an HMM recognition system. Units are selected to minimize a cost 
function that scores the amount of time, frequency, and timbre 
transformations. Finally, units are concatenated. In this approach, 
the main effort is put on the synthesis engine. Although it uses a 
unit selection-based synthesizer, the expression controls for pitch, 
timing, dynamics, and timbre, like the singer’s formant, are 
extracted from a reference singing performance of the target score. 
These parameters are directly used by the synthesizer to modify the 
selected units with a combination of sinusoidal modeling (SM) 
with time domain pitch synchronous overlap add (TD-PSOLA) 
called SM-PSOLA. Editing is allowed by letting the user participate 
in the unit selection process, change some decisions, and modify 
the unit boundaries. Unfortunately, this approach only manipulates 
the singer’s formant feature of timbre so that other significant tim-
bre-related features in the opera singing style are not handled.

In [30], the steps followed are: extraction of acoustic features 
such as energy, F0, and automatic detection of vibrato sections; 
mapping into synthesis parameters; and phonetic alignment. The 
mapped controls and the input score are used to build an internal 
score that matches the target timing, pitch, and dynamics, and 
minimizes the transformation cost of samples from a database. 
However, this approach is limited since timbre is not handled and 
also because the expression features of the synthesized perfor-
mance are not compared to the input values. Since this approach 
lacks a direct mapping of acoustic features to control parameters, 
these differences are likely to happen. On the other hand, the possi-
bility of using a singer DB to produce vibratos other than the 
extracted ones from the reference recording provides a new degree 
of freedom to the user.

Toward a more robust methodology to estimate the parameters, 
in [31], the authors study an iterative approach that takes the 

target singing performance and lyrics as input. The musical score 
or note sequence is automatically generated from the input. The 
first iteration provides an initialization of the system similar to the 
previous approach [30]. At this point, these controls can be manu-
ally edited by applying pitch transposition, correction, vibrato mod-
ifications, and pitch and intensity smoothing. The iterative process 
continues by analyzing the synthesized waveform and adjusting the 
control parameters so that, in the next iteration, the results are 
closer to the expected performance. In [32], the authors extend this 
approach by including timbre. Using different voice quality data-
bases from the same singer, the corresponding versions of the tar-
get song are synthesized as in the previous approach. The system 
extracts the spectral envelopes of each one to build a three-dimen-
sional (3-D) voice timbre space. Next, a temporal trajectory in this 
space is estimated from the reference target performance to repre-
sent its spectral timbre changes. Finally, singing voice synthesis 
output is generated using the estimated trajectory to imitate the 
target timbre change. Although expression control is more robust 
than the previous approach, thanks to iteratively updating the 
parameters and by allowing a certain degree of timbre control, 
these approaches also have some limitations. First, it cannot be 
assured that the iterative process will converge to the optimal set of 
parameter values. Second, the timbre control is limited to the vari-
ability within the set of available voice quality databases. 

In [33], naturally spoken readings of the target lyrics are trans-
formed into a singing voice by matching the target song properties 
described in the musical score. Other input data are the phonetic 
segmentation and the synchronization of phonemes and notes. 
This approach first extracts acoustic features such as F0, spectral 
envelope, and the aperiodicity index from the input speech. Then, a 
continuous F0 contour is generated from discrete notes, phoneme 
durations are lengthened, and the singer’s formant cluster is gener-
ated. The fundamental frequency contour takes into account four 
types of fluctuations: 1) overshoot (F0 exceeds the target note after 
a note change), 2) vibrato, 3) preparation (similar to overshoot 
before the note change), and 4) fine fluctuations. The first three 
types of F0 fluctuations are modeled by a single second-order trans-
fer function that depends mainly on a damping coefficient, a gain 
factor, and a natural frequency. A rule-based approach is followed 
for controlling phoneme durations by splitting consonant-to-vowel 
transitions into three parts. First, the transition duration is not 

[TABLE 6] SINGING VOICE-RELATED KTH RULES’ DEPENDENCIES.

ACOUSTIC FEATURE DEPENDENCIES
CONSONANT DURATION PREVIOUS VOWEL LENGTH
VOWEL ONSET SYNCHRONIZED WITH TIMING
FORMANT FREQUENCIES VOICE CLASSIFICATION
FORMANT FREQUENCIES PITCH, IF OTHERWISE F0 WOULD EXCEED

THE FIRST FORMANT
SPECTRUM SLOPE DECREASE WITH INCREASING INTENSITY
VIBRATO INCREASE DEPTH WITH INCREASING

INTENSITY
PITCH IN COLORATURA
PASSAGES

EACH NOTE REPRESENTED AS A VIBRATO
CYCLE

PITCH PHRASE ATTACK
(AND RELEASE)

AT PITCH START (END) FROM (AT) 11 
SEMITONES BELOW TARGET F0
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modified for singing. Then, the consonant part is transformed 
based on a comparative study of speech and singing voices. Finally, 
the vowel section is modified so that the duration of the three parts 
matches the note duration. With respect to timbre, the singer’s for-
mant cluster is handled by an emphasis function in the spectral 
domain centered at 3 kHz. Amplitude modulation is also applied to 
the synthesized singing voice according to the generated vibrato’s 
parameters. Although we have classified this approach as perfor-
mance-driven since the core data are found in the input speech 
recording, some aspects are modeled, such as the transfer function 
for F0, rules for phonetic duration, and a filter for the singer’s for-
mant cluster. Similarly to [29], in this approach, timbre control is 
limited to the singer formant, so the system cannot change other 
timbre features. However, if the reference speech recording con-
tains voice quality variations that fit the target song, this can add 
some naturalness to the synthesized singing performance.

Performance-driven approaches achieve a highly expressive con-
trol since performances implicitly contain knowledge naturally 
applied by the singer. These approaches are especially convenient for 
creating parallel database recordings, which are used in voice con-
version approaches [8]. On the other hand, the phonetic segmenta-
tion may cause timing errors if not manually corrected. The 
noniterative approach lacks robustness because the differences 
between the input controls and the controls extracted from the syn-
thesized sound are not corrected. In [32], timbre control is limited 
by the number of available voice qualities. We note that a human 
voice input for natural singing control is required for these 
approaches, which can be considered a limitation since it may not 
be available in most cases. When such a reference is not given, other 
approaches are necessary to derive singing control parameters from 
the input musical score.

RULE-BASED APPROACHES
Rules can be derived from work with synthesizing and analyzing 
sung performances. Applying an analysis-by-synthesis method, an 
ambitious rule-based system for western music was developed at 
KTH in the 1970s and improved over the last three decades [3]. By 

synthesizing sung performances, this method aims at identifying 
acoustic features that are perceptually important, either individually 
or jointly [15]. The process of formulating a rule is iterative. First, a 
tentative rule is formulated and implemented and the resulting syn-
thesis is assessed. If its effect on the performance needs to be 
changed or improved, the rule is modified and the effect of the 
resulting performance is again assessed. On the basis of parameters 
such as phrasing, timing, metrics, note articulation, and intonation, 
the rules modify pitch, dynamics, and timing. Rules can be combined 
to model emotional expressions as well as different musical styles. 
Table 6 lists some of the acoustic features and their dependencies.

The rules reflect both physical and musical phenomena. Some 
rules are compulsory and others optional. The consonant duration
rule, which lengthens consonants following short vowels, also 
applies to speech in some languages. The vowel onset rule corre-
sponds to the general principle that the vowel onset is synchro-
nized with the onset of the accompaniment, even though lag and 
lead of onset are often used for expressive purposes [34]. The spec-
trum slope rule is compulsory as it reflects the fact that vocal 
loudness is controlled by subglottal pressure and an increase of 
this pressure leads to a less steeply sloping spectrum envelope. 
The pitch in coloratura passages rule implies that the fundamental 
frequency makes a rising–falling gesture around the target fre-
quency in legato sequences of short notes [35]. The pitch phrase 
attack, in lab jargon referred to as bull’s roaring onset, is an orna-
ment used in excited moods and would be completely out of place 
in a tender context. Interestingly, results close to the KTH rules 
have been confirmed by machine-learning approaches [36].

A selection of the KTH rules [15] has been applied to the Voca-
loid synthesizer [37]. Features are considered at the note level 
(start and end times), intra- and internote (within and between 
note changes), and to timbre variations (not related to KTH 
rules). The system implementation is detailed in [38] along with 
the acoustic cues, which are relevant for conveying basic emo-
tions such as anger, fear, happiness, sadness, and love/tenderness 
[12]. The rules are combined in expressive palettes indicating to 
what degree the rules need to be applied to convey a target 

[TABLE 7] THE SELECTION OF RULES FOR SINGING VOICE: LEVEL OF APPLICATION AND AFFECTED ACOUSTIC FEATURES.

LEVEL RULES AFFECTED ACOUSTIC FEATURES
NOTE DURATION CONTRAST DECREASE DURATION AND INTENSITY OF SHORT NOTES PLACED NEXT TO LONG NOTES

PUNCTUATION INSERT MICROPAUSES IN CERTAIN PITCH INTERVAL AND DURATION COMBINATIONS
TEMPO CONSTANT VALUE FOR THE NOTE SEQUENCE (MEASURED IN BEATS/min)
INTENSITY SMOOTH/STRONG ENERGY LEVELS, HIGH PITCH NOTES INTENSITY INCREASES 3 dB/OCTAVE
TRANSITIONS LEGATO, STACCATO (PAUSE IS SET TO MORE THAN 30% OF INTERONSET INTERVAL)
PHRASING ARCH INCREASE/DECREASE TEMPO AT PHRASE BEGINNING/END, SAME FOR ENERGY
FINAL RITARDANDO DECREASE TEMPO AT THE END OF A PIECE

INTRA-/INTERNOTE ATTACK PITCH SHAPE FROM STARTING PITCH UNTIL TARGET NOTE, ENERGY INCREASES SMOOTHLY
NOTE ARTICULATION PITCH SHAPE FROM THE STARTING TO THE ENDING NOTE, SMOOTH ENERGY
RELEASE ENERGY DECREASES SMOOTHLY TO ZERO, DURATION IS MANUALLY EDITED

VIBRATO
AND TREMOLO

MANUAL CONTROL OF POSITION, DEPTH, AND RATE (COSINE FUNCTION AND RANDOM
FLUCTUATIONS)

TIMBRE BRIGHTNESS INCREASE HIGH FREQUENCIES DEPENDING ON ENERGY
ROUGHNESS SPECTRAL IRREGULARITIES
BREATHINESS MANUAL CONTROL OF NOISE LEVEL (NOT INCLUDED IN EMOTION PALETTES)
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emotion. The relationship between application level, rules, and 
acoustic features is shown in Table 7. As an example of the com-
plexity of the rules, the punctuation rule at the note level inserts 
a 20-millisecond micropause if a note is three tones lower than 
the next one and its duration is 20% larger. Given that this work 
uses a sample-based synthesizer, voice quality modifications are 
applied to the retrieved samples. In this case, the timbre varia-
tions are limited to rules affecting brightness, roughness, and 
breathiness and, therefore, do not cover the expressive possibili-
ties of a real singer.

Apart from the KTH rules, in corpus-derived rule-based sys-
tems, heuristic rules are obtained to control singing expression 
by observing recorded performances. In [6], expression controls 
are generated from high-level performance scores where the 
user specifies the note articulation, pitch, intensity, and vibrato 
data that are used to retrieve templates from recorded samples. 
This work, used in the Vocaloid synthesizer [39], models the 
singer’s performance with heuristic rules [40]. The parametric 
model is based on anchor points for pitch and intensity, which 
are manually derived from the observation of a small set of 
recordings. At synthesis, the control contours are obtained by 
interpolating the anchor points generated by the model. The 
number of points used for each note depends on its absolute 
duration. The phonetics relationship with timing is handled by 
synchronizing the vowel onset with the note onset. Moreover, 
manual editing is permitted for the degree of articulation appli-
cation as well as its duration, pitch and dynamics contours, pho-
netic transcription, timing, vibrato and tremolo depth and rate, 
and timbre characteristics.

The advantage of these approaches is that they are relatively 
straightforward and completely deterministic. Random variations 
can be easily introduced so that the generated contours are differ-
ent for each new synthesis of the same score, resulting in distinct 
interpretations. The main drawbacks are that either the models 
are based on few observations that do not fully represent a given 
style or they are more elaborate but become unwieldy due to the 
complexity of the rules.

STATISTICAL MODELING APPROACHES
Several approaches have been used to statistically model and 
characterize expression-control parameters using HMMs. They 
have a common precedent in speech synthesis [41], where the 
parameters such as spectrum, F0, and state duration are jointly 
modeled. Compared to unit selection, HMM-based approaches tend 
to produce lower speech quality, but they need a smaller data set to 
train the system without needing to cover all combinations of con-
textual factors. Modeling a singing voice with HMMs amounts to 
using similar contextual data as those used for speech synthesis, 
adapted to singing voice specificities. Moreover, new voice charac-
teristics can be easily generated by changing the HMM parameters.

These systems operate in two phases: training and synthesis. 
In the training part, acoustic features are first extracted from the 
training recordings, such as F0, intensity, vibrato parameters, and 
Mel-cepstrum coefficients. Contextual labels, i.e., the relation-
ships of each note, phoneme, or phrase with the preceding and 
succeeding values, are derived from the corresponding score and 
lyrics. Contextual labels vary in their scope at different levels, 
such as phoneme, note, or phrase, according to the approach, as 
summarized in Table 8. This contextual data are used to build the 
HMMs that relate how these acoustic features behave according 
to the clustered contexts. The phoneme timing is also modeled in 
some approaches. These generic steps for the training part in 
HMM-based synthesis are summarized in Figure 6. The figure 
shows several blocks found in the literature, which might not be 
present simultaneously in each approach. We refer to [41] for the 
detailed computations that HMM training involves.

In the synthesis part, given a target score, contextual labels are 
derived as in the training part from the note sequence and lyrics. 
Models can be used in two ways. All necessary parameters for singing 
voice synthesis can be generated from them; therefore, state dura-
tions, F0, vibrato, and Mel-cepstrum observations are generated to 
synthesize the singing voice. On the other hand, if another synthe-
sizer is used, only control parameters, such as F0, vibrato depth and 
rate, and dynamics need to be generated, which are then used as 
input of the synthesizer.

[TABLE 8] CONTEXTUAL FACTORS IN HMM-BASED SYSTEMS.

HMM-BASED APPROACHES LEVELS CONTEXTUAL FACTORS

[25]
PHONEME P/C/N PHONEMES
NOTE P/C/N NOTE F0, DURATIONS, AND POSITIONS WITHIN THE MEASURE

[42] PHONEME FIVE PHONEMES (CENTRAL AND TWO PRECEDING AND SUCCEEDING)
MORA NUMBER OF PHONEMES IN THE P/C/N MORA

POSITION OF THE P/C/N MORA IN THE NOTE
NOTE MUSICAL TONE, KEY, TEMPO, LENGTH, AND DYNAMICS OF THE P/C/N NOTE

POSITION OF THE CURRENT NOTE IN THE CURRENT MEASURE AND PHRASE
TIES AND SLURRED ARTICULATION FLAG
DISTANCE BETWEEN CURRENT NOTE AND NEXT/PREVIOUS ACCENT AND STACCATO
POSITION OF THE CURRENT NOTE IN THE CURRENT CRESCENDO OR DECRESCENDO

PHRASE NUMBER OF PHONEMES AND MORAS IN THE P/C/N PHRASE
SONG NUMBER OF PHONEMES, MORAS, AND PHRASES IN THE SONG

[22] NOTE REGION MANUALLY SEGMENTED BEHAVIOR TYPES (BEGINNING, SUSTAINED, ENDING)
NOTE MIDI NOTE NUMBER AND DURATION (IN 50-MILLISECOND UNITS)

DETUNING: MODEL F0 BY THE RELATIVE DIFFERENCE TO THE NOMINAL NOTE

P/C/N: PREVIOUS, CURRENT, AND NEXT.
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As introduced in the section “Classification of Approaches,” statis-
tical methods jointly model the largest set of expression features 
among the reviewed approaches. This gives them a better generaliza-
tion ability. As long as singing recordings for training involve differ-
ent voice qualities, singing styles or emotions, and the target 
language phonemes, these will be reproducible at synthesis given the 
appropriate context labeling. Model interpolation allows new models 
to be created as a combination of existing ones. New voice qualities 
can be created by modifying the timbre parameters. However, this 
flexibility is possible at the expense of having enough training record-
ings to cover the combinations of the target singing styles and voice 
qualities. In the simplest case, a training database of a set of songs 
representing a single singer and style in a particular language would 
be enough to synthesize it. As a drawback, training HMMs with large 
databases tends to produce smoother time series than the original 
training data, which may be perceived as unnatural.

In [25], a corpus-based singing voice synthesis system based 
on HMMs is presented. The contexts are related to phonemes, 
note F0 values, and note durations and positions, as we show in 
Table 8 (dynamics are not included). Also, synchronization 
between notes and phonemes needs to be handled adequately, 
mainly because phoneme timing does not strictly follow the score 
timing, and phonemes might be advanced with respect to the 
nominal note onsets (negative time lag).

In this approach, the training part generates three models: 1) for 
the spectrum and excitation (F0) parts extracted from the train-
ing database, 2) for the duration of context-dependent states, and 3) 

to model the time lag. The second and third model note timing and 
phoneme durations of real performances, which are different than 
what can be inferred from the musical score and its tempo. Time 
lags are obtained by forced alignment of the training data with con-
text-dependent HMMs. Then, the computed time lags are related to 
their contextual factors and clustered by a decision tree.

The singing voice is synthesized in five steps: 1) the input score 
(note sequence and lyrics) is analyzed to determine note duration 
and contextual factors, 2) a context-dependent label sequence of 
contextual factors as shown in Table 8 is generated, 3) the song 
HMM is generated, 4) its state durations are jointly determined 
with the note time lags, and 5) spectral and F0 parameters are gen-
erated, which are used to synthesize the singing voice. The authors 
claim that the synthesis performance achieves a natural singing 
voice, which simulates expression elements of the target singer 
such as voice quality and singing style (i.e., F0 and time lag).

In [25], the training database consists of 72 minutes of a male 
voice singing 60 Japanese children’s songs in a single voice quality. 
These are the characteristics that the system can reproduce in a 
target song. The main limitation of this approach is that the con-
textual factors scope is designed to only cover phoneme and note 
descriptors. Longer scopes than just the previous and next note 
are necessary to model higher-level expressive features such as 
phrasing. Although we could not get samples from this work, an 
evolved system is presented next.

The system presented in [25] has been improved and is publicly 
available as Sinsy, an online singing voice synthesizer [42]. The new 

Score
Singing Voice
Recordings

Feature
Extraction

Context-Dependent
Label Extraction

Preprocessing

F0 Vib Pow
Mel-

Cepstrum
F0, MFCC

Models

State Duration
Models

HMM Training

Forced Alignment

Phoneme Timing
(Time Lags)

Clustering
Time Lags
Generation

Models

[FIG6] Generic blocks for the training part of HMM-based approaches.
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characteristics of the system include reading input files in 
MusicXML format with F0, lyrics, tempo, key, beat, and dynamics  as 
well as extended contextual factors used in the training part, vibrato 
rate and depth modeling, and a reduction of the computational cost. 
Vibrato is jointly modeled with the spectrum and F0 by including 
the depth and rate in the observation vector in the training step.

The new set of contexts automatically extracted from the musical 
score and lyrics used by the Sinsy approach are also shown in Table 8. 
These factors describe the context such as previous, current, and next 
data at different hierarchical levels: phoneme, mora (the sound unit 
containing one or two phonemes in Japanese), note, phrase, and the 
entire song. Some of them are strictly related to musical expression 
aspects, such as musical tone, key, tempo, length and dynamics of 
notes, articulation flags, or distance to accents and staccatos.

Similar to [25], in this case, the training database consists of 
70 minutes of a female voice singing 70 Japanese children’s songs 
in a single voice quality. However, it is able to reproduce more 
realistic expression control since vibrato parameters are also 
extracted and modeled. Notes are described with a much richer 
set of factors than the previous work. Another major improve-
ment is the scope of the contextual factors shown in Table 8, 
which spans from the phoneme level to the whole song and is, 
therefore, able to model phrasing.

In [22], a statistical method is able to model singing styles. 
This approach focuses on baseline F0; vibrato features such as its 
extent, rate, and evolution over time, not tremolo; and dynamics. 
These parameters control the Vocaloid synthesizer, and so the tim-
bre is not controlled by the singing style modeling system but is 
dependent on the database.

A preprocessing step is introduced after extracting the acous-
tic features such as F0 and dynamics to get rid of the micropros-
ody effects on such parameters by interpolating F0 in unvoiced 
sections and flattening F0 valleys of certain consonants. The 
main assumption here is that expression is not affected by 

phonetics, which is reflected in erasing such dependencies in the 
initial preprocessing step and also in training note HMMs instead 
of phoneme HMMs. Also, manual checking is done to avoid errors 
in F0 estimation and MIDI events such as note on and note off 
estimated from the phonetic segmentation alignment. A novel 
approach estimates the vibrato shape and rate, which at synthesis 
is added to the generated baseline melody parameter. The shape is 
represented with the low-frequency bins of the Fourier transform 
of single vibrato cycles. In this approach, context-dependent 
HMMs model the expression parameters summarized in Table 8. 
Feature vectors contain melody, vibrato shape and rate, and 
dynamics components.

This last HMM-based work focuses on several control features 
except for timbre, which is handled by the Vocaloid synthesizer.  
This makes the training database much smaller in size. It consists 
of 5 minutes of five Japanese children’s songs since there is no 
need to cover a set of phonemes. Contextual factors are rich at 
the note level since the notes are divided into three parts (begin, 
sustain, and end), and the detuning is also modeled relative to the 
nominal note. On the other hand, this system lacks the modeling 
of wider temporal aspects such as phrasing.

UNIT SELECTION APPROACHES
The main idea of unit selection [29] is to use a database of singing 
recordings segmented into units that consist of one or more pho-
nemes or other units such as diphones or half phones. For a target 
score, a sequence of phonemes with specific features such as pitch 
or duration is retrieved from the database. These are generally 
transformed to match the exact required characteristics.

An important step in this kind of approach is the definition of 
the target and concatenation cost functions as the criteria on which 
unit selection is built. The former is a distance measure of the unit 
transformation in terms of a certain acoustic feature such as pitch or 
duration. Concatenation costs measure the perceptual consequences 

Source Unit A
F0 Contour

Source Unit B
F0 Contour

Target Note
Sequence

Labeled Note
F0 Source Unit A
F0 Source Unit B
Generated Target F0

Source Unit A

Source Unit B

Transformed Source Unit B
Transformed Source Unit A

Time

[FIG7] The performance feature (F0) generated by unit selection.
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of joining nonconsecutive units. These cost functions’ contributions 
are weighted and summed to get the overall cost of the unit sequence. 
The goal is then to select the sequence with the lowest cost.

Unit selection approaches present the disadvantages of requir-
ing a large database, which needs to be labeled, and the subcost 
weights need to be determined. On the other hand, the voice qual-
ity and naturalness are high because of the implicit rules applied by 
the singer within the units.

A method to model pitch, vibrato features, and dynamics based 
on selecting units from a database of performance contours has 
recently been proposed [43]. We illustrate it in Figure 7 for the F0 
contour showing two selected source units for a target note sequence 
where units are aligned at the transition between the second and 
third target notes. The target note sequence is used as input to gen-
erate the pitch and dynamics contours. A reference database is used  
that contains extracted pitch, vibrato features, and dynamics from 
expressive recordings of a single singer and style. In addition to these 
features, the database is labeled with the note pitches, durations, and 
strength as well as the start and end times of note transitions. This 
approach splits the task of generating the target song expression con-
tours into first finding similar and shorter note combinations (source 
units A and B in Figure 7), and then transforming and concatenating 
the corresponding pitch and dynamics contours to match the target 
score (the dashed line in Figure 7). These shorter contexts are the so-
called units, defined by three consecutive notes or silences, so that 
consecutive units overlap by two notes. The contour of dynamics is 
generated similarly from the selected units.

With regard to unit selection, the cost criterion consists of the 
combination of several subcost functions, as summarized in 
Table 9. In this case, there are four functions and unit selection is 
implemented with the Viterbi algorithm. The overall cost function 
considers the amount of transformation in terms of note durations 
(note duration cost) and pitch interval (pitch interval cost) to pre-
serve as much as possible the contours as originally recorded. It 
also measures how appropriate it is to concatenate two units (con-
catenation cost) as a way of penalizing the concatenation of units 
from different contexts. Finally, the overall cost function also favors 
the selection of long sequences of consecutive notes (continuity 
cost), although the final number of consecutive selected units 
depends on the resulting cost value. This last characteristic is rele-
vant to be able to reflect the recorded phrasing at synthesis.

Once a sequence is retrieved, each unit is time scaled and pitch 
shifted. The time scaling is not linear; instead, most of the trans-
formation is applied in the sustain part and keeping the transition 
(attacks and releases) durations as close to the original as possible. 
Vibrato is handled with a parametric model, which allows the orig-
inal rate and depth contour shapes to be kept.

The transformed unit contours are overlapped and added after 
applying a cross-fading mask, which mainly keeps the shape of 
the attack to the unit central note. This is done separately for the 
intensity, baseline pitch and vibrato rate, and vibrato depth con-
tours. The generated baseline pitch is then tuned to the target 
note pitches to avoid strong deviations. Then, vibrato rate and 
depth contours are used to compute the vibrato oscillations, 
which are added to the baseline pitch.

The expression database contains several combinations of 
note durations, pitch intervals, and note strength. Such a data-
base can be created systematically [44] to cover a relevant portion 
of possible units. Notes are automatically detected and then man-
ually checked. Vibrato sections are manually segmented, and the 
depth and rate contours are estimated. An important characteris-
tic of such a database is that it does not contain sung text, only 
sung vowels to avoid microprosody effects when extracting pitch 
and dynamics.

This approach controls several expression features except for 
timbre aspects of the singing voice. In our opinion, a positive char-
acteristic is that it can generate expression features without suffer-
ing from smoothing as is the case in HMMs. The selected units 
contain the implicit rules applied by the singer to perform a vibrato, 
an attack, or a release. In addition, the labeling and cost functions 
for unit selection are designed in a way that favors the selection of 
long sequences of consecutive notes in the database to help the 
implicit reproduction of high expression features such as phrasing. 
Similarly to the KTH rules, this approach is independent of phonet-
ics since this is handled separately by the controlled synthesizer, 
which makes it convenient for any language. The lack of an explicit 
timbre control could be addressed in the future by adding control 
features such as the degree of breathiness or brightness.

WHEN TO USE EACH APPROACH
The use of each approach has several considerations: the limitations 
of each one; whether singing voice recordings are available since 
these are needed in model training or unit selection; the reason for 
synthesizing a song, which could be for database creation or rule 
testing; or flexibility requirements such as model interpolation. In 
this section, we provide brief guidelines on the suitability of each 
type of approach.

Performance-driven approaches are suitable to be applied, by 
definition, when the target performance is available, since the 
expression of the singer is implicit in the reference audio and it 
can be used to control the synthesizer. Another example of appli-
cability is the creation of parallel databases for different purposes 
such as voice conversion [8]. An application example for the case 
of speech to singing synthesis is the generation of singing 

[TABLE 9] UNIT SELECTION COST FUNCTIONS.

COST DESCRIPTION COMPUTATION
NOTE DURATION COMPARE SOURCE AND TARGET UNIT NOTE DURATIONS OCTAVE RATIO (SOURCE/TARGET UNIT NOTES)
PITCH INTERVAL COMPARE SOURCE AND TARGET UNIT NOTE INTERVALS OCTAVE RATIO (SOURCE/TARGET UNIT INTERVALS)
CONCATENATION FAVOR COMPATIBLE UNITS FROM THE DB ZERO IF CONSECUTIVE UNITS
CONTINUITY FAVOR SELECTION OF CONSECUTIVE UNITS PENALIZE SELECTION OF NONCONSECUTIVE UNITS
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performances for untrained singers, whose timbre is taken from 
the speech recording and the expression for pitch and dynamics 
can be obtained from a professional singer.

Rule-based approaches are suitable to be applied to verify the 
defined rules and also to see how these are combined, for example, 
to convey a certain emotion. If no recordings are available, rules 
can still be defined with the help of an expert so that these 
approaches are not fully dependent on singing voice databases. 

Statistical modeling approaches are also flexible, given that it is 
possible to interpolate models and create new voice characteristics. 
They have the advantage that, in some cases, these are part of complete 
singing voice synthesis systems, i.e., those that have the score as input 
and that generate both the expression parameters and output voice.

Similarly to rule-based and statistical modeling approaches, 
unit selection approaches do not need the target performance, 
although they can benefit from it. On the other hand, unit selec-
tion approaches share a common characteristic with performance-
driven approaches. The implicit knowledge of the singer is 
contained in the recordings, although in unit selection it is 
extracted from shorter audio segments. Unlike statistical models, 
no training step is needed, so the expression databases can be 
improved just by adding new labeled singing voice recordings. 

EVALUATION
In the beginning of this article, we explained that a score can be 
interpreted in several acceptable ways, making expression a 

subjective aspect to rate. However, “procedures for systematic and 
rigorous evaluation do not seem to exist today” [1, p. 105], espe-
cially if there is no ground truth to compare with. In this section, 
we first summarize typical evaluation strategies. Then, we propose 
the initial ideas to build a framework that solves some detected 
issues, and finally, we discuss the need for automatic measures to 
rate expression.

CURRENT EVALUATION STRATEGIES
Expression control can be evaluated from subjective or objective 
perspectives. The former typically consists of listening tests where 
participants perceptually evaluate some psychoacoustic charac-
teristic such as voice quality, vibrato, and overall expressiveness of 
the generated audio files. A common scale is the mean opinion 
score (MOS), with a range from one (bad) to five (good). In pair-
wise comparisons, using two audio files obtained with different 
system configurations, preference tests rate which option 
achieves a better performance. Objective evaluations help to com-
pare how well the generated expression controls match a refer-
ence real performance by computing an error.

Within the reviewed works, subjective tests outnumber the 
objective evaluations. The evaluations are summarized in 
Table 10. For each approach, several details are provided such as a 
description of the evaluation (style, voice quality, naturalness, 
expression, and singer skills), the different rated tests, and infor-
mation on the subjects if available. Objective tests are done only 

[TABLE 10] CONDUCTED SUBJECTIVE AND OBJECTIVE EVALUATIONS PER APPROACH.

TESTS

TYPE APPROACH METHOD DESCRIPTION SUBJECTS

PERFORMANCE
DRIVEN

[29] SUBJECTIVE RATE VOICE QUALITY WITH PITCH MODIFICATION OF
TEN PAIRS OF SENTENCES (SM-PSOLA VERSUS TD-PSOLA)

10 SUBJECTS

[30] SUBJECTIVE INFORMAL LISTENING TEST NOT SPECIFIED

[31] OBJECTIVE TWO TESTS: LYRICS ALIGNMENT AND MEAN ERROR
VALUE OF EACH ITERATION FOR F0 AND INTENSITY
COMPARED TO TARGET

NO SUBJECTS

[32] OBJECTIVE TWO TESTS: 3-D VOICE TIMBRE REPRESENTATION
AND EUCLIDEAN DISTANCE BETWEEN REAL AND
MEASURED TIMBRE

NO SUBJECTS

[33] SUBJECTIVE PAIRED COMPARISONS OF DIFFERENT CONFIGURATIONS
TO RATE NATURALNESS OF SYNTHESIS IN A SEVEN-STEP
SCALE (−3 TO 3)

10 STUDENTS WITH NORMAL
HEARING ABILITY

RULE
BASED

[3] SUBJECTIVE LISTENING TESTS OF PARTICULAR ACOUSTIC FEATURES 15 SINGERS OR
SINGING TEACHERS

[37] NONE NONE NONE

[40] SUBJECTIVE LISTENING TESTS RATINGS (1–5) 50 SUBJECTS WITH DIFFERENT
LEVELS OF MUSICAL TRAINING

STATISTICAL
MODELING

[25] SUBJECTIVE LISTENING TEST (1–5 RATINGS) OF 15 MUSICAL PHRASES.
TWO TESTS: WITH AND WITHOUT TIME-LAG MODEL

14 SUBJECTS

[42] SUBJECTIVE NOT DETAILED (BASED ON [25]) NOT SPECIFIED

[22] SUBJECTIVE RATE STYLE AND NATURALNESS LISTENING TESTS
RATINGS (1–5) OF TEN RANDOM PHRASES PER SUBJECT

10 SUBJECTS

UNIT
SELECTION

[43] SUBJECTIVE RATE EXPRESSION, NATURALNESS, AND SINGER SKILLS
LISTENING TESTS RATINGS (1–5)

17 SUBJECTS WITH DIFFERENT
LEVELS OF MUSICAL TRAINING
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for performance-driven approaches, i.e., when a ground truth is 
available. In the other approaches, no reference is directly used 
for comparison, so only subjective tests are carried out. However, 
in the absence of a reference of the same target song, the gener-
ated performances could be compared to the recording of another 
song, as is done in the case of speech synthesis.

In our opinion, the described evaluation strategies are devised 
for evaluating a specific system and, therefore, focus on a concrete 
set of characteristics that are particularly relevant for that system. 
For instance, the evaluations summarized in Table 10 do not 
include comparisons to other approaches. This is due to the sub-
stantial differences between systems, which make the evaluation 
and comparison between them a complex task. These differences 
can be noted in the audio excerpts of the accompanying Web site 
to this article, which were introduced in the section “Comparison 
of Approaches.” At this stage, it is difficult to decide which method 
more efficiently evokes a certain emotion or style, performs better 
vibratos, changes the voice quality in a better way, or has a better 
timing control. There are limitations in achieving such a compre-
hensive evaluation and comparing the synthesized material.

TOWARD A COMMON EVALUATION FRAMEWORK
The evaluation methodology could be improved by building the 
systems under similar conditions to reduce the differences among 
performances and by sharing the evaluation criteria. Building a 
common framework would help to easily evaluate and compare 
the singing synthesis systems.

The main blocks of the reviewed works are summarized in 
Figure 8. For a given target song, the expression parameters are 
generated to control the synthesis system. To share as many com-
monalities as possible among systems, these could be built under 
similar conditions and tested by a shared evaluation criterion. 
Then, the comparison would benefit from focusing on the tech-
nological differences and not on other aspects such as the target 
song and singer databases.

Concerning the conditions, several aspects could be shared 
among approaches. Currently, there are differences in the target 
songs synthesized by each approach, the set of controlled expres-
sion features, and the singer recordings (e.g., singer gender, style, 
or emotion) used to derive rules, train models, build expression 
databases, and build the singer voice models.

A publicly available data set of songs, with scores (e.g., in 
MusicXML format) and reference recordings, could be helpful if 
used as target songs to evaluate how expression is controlled by 
each approach. In addition, deriving the expression controls and 
building the voice models from a common set of recordings would 
have a great impact on developing this evaluation framework. If all 
approaches shared such a database, it would be possible to com-
pare how each one captures expression and generates the control 
parameters since the starting point would be the same for all of 
them. Additionally, both sample- and HMM-based synthesis systems 
would derive from the same voice. Thus, it would be possible to 
test a single expression-control method with several singing voice 
synthesis technologies. The main problem we envisage is that 
some approaches are initially conceived for a particular synthesis 
system. This might not be a major problem for the pitch contour 
control, but it would be more difficult to apply the voice timbre 
modeling of HMM-based systems to sample-based systems.

The subjective evaluation process is worthy of particular note. 
Listening tests are time-consuming tasks, and several aspects need 
to be considered in their design. The different backgrounds related 
to singing voice synthesis, speech synthesis, technical skills, and 
the wide range of musical skills of the selected participants can be 
taken into consideration by grouping the results according to 
such expertise, and clear instructions have to be provided on what 
to rate, e.g., which specific acoustic features of the singing voice to 
focus on, and how to rate using pairwise comparisons or MOS.  
Moreover, uncontrolled biases in the rating of stimuli due to the 
order in which these are listened to can be avoided by presenting 
them using pseudorandom methods such as Latin squares, and 
the session duration has to be short enough so as not to decrease 
the participant’s level of attention. However, often, the reviewed 
evaluations are designed differently and are not directly compara-
ble. Next, we introduce a proposal to overcome this issue.

PERCEPTUALLY MOTIVATED OBJECTIVE MEASURES
The constraints in the section “Toward a Common Evaluation Frame-
work” make it unaffordable to extensively evaluate different configu-
rations of systems by listening to many synthesized performances. 
This can be solved if objective measures that correlate with perception 
are established. Such perceptually motivated objective measures can 
be computed by learning the relationship between MOS and extracted 

features at a local or global scope. The mea-
sure should be ideally independent from the 
style and the singer, and it should provide 
ratings for particular features such as timing, 
vibrato, tuning, voice quality, or the overall 
performance expression. These measures, 
besides helping to improve the systems’ per-
formance, would represent a standard for 
evaluation and allow for scalability.

The development of perceptually moti-
vated objective measures could benefit from 
approaches in the speech and audio pro-
cessing fields. Psychoacoustic and cognitive 
models have been used to build objective [FIG8] The proposed common evaluation framework.
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metrics for assessing audio quality and speech intelligibility [45], 
and its effectiveness has been measured by its correlation to MOS 
ratings. Interestingly, method-specific measures have been com-
puted in unit selection cost functions for speech synthesis [46]. 
Other approaches for speech quality prediction are based on a log-
likelihood measure as a distance between a synthesized utterance 
and an HMM model built from features based on MFCCs and F0 of 
natural recordings [47]. This gender-dependent measure is corre-
lated to subjective ratings such as naturalness. For male data, it 
can be improved by linearly combining it with parameters typically 
used in narrow-band telephony applications, such as noise or 
robotization effects. For female data, it can be improved by linearly 
combining it with parameters related to signal-like duration, for-
mants, or pitch. The research on automatic evaluation of expres-
sive performances is considered an area to exploit, although it is 
still not mature enough [48]; e.g., it could be applied to develop 
better models and training tools for both systems and students.

Similar to the speech and instrumental music performance com-
munities, the progress in the singing voice community could be 
incentivized through evaluation campaigns. These types of evalua-
tions help to identify the aspects that need to be improved and can 
be used to validate perceptually motivated objective measures. 
Examples of past evaluation campaigns are the Synthesis Singing 
Challenge [52] and the Performance Rendering Contest (Rencon) 
http://renconmusic.org/ [48]. In the first competition, one of the tar-
get songs was compulsory and the same for each team. The perfor-
mances were rated by 60 participants with a five-point scale 
involving the quality of the voice source, quality of the articulation, 
expressive quality, and the overall judgment. The organizers con-
cluded that “the audience had a difficult task, since not all systems 
produced both a baritone and a soprano version, while the quality of 
the voices used could be quite different (weaker results for the 
female voice)” [52]. Rencon’s methodology is also interesting. 
Expressive performances are generated from the same Disklavier 
grand piano so that the differences among approaches are only due 
to the performance and are subjectively evaluated by an audience 
and experts. In 2004, voice synthesizers were also invited. Favorable 
reviews were received but not included in the ranking.

CHALLENGES
While expression control has advanced in recent years, there are 
many open challenges. In this section, we discuss some specific chal-
lenges and consider the advantages of hybrid approaches. Next, we 
discuss important challenges in approaching a more human-like 
naturalness in the synthesis. Then, requirements for intuitive and 
flexible singing voice synthesizers’ interfaces are analyzed, along with 
the importance of associating a synthetic voice with a character.

TOWARD HYBRID APPROACHES
Several challenges have been identified in the described 
approaches. Only one of the performance-driven approaches deals 
with timbre, and it depends on the available voice quality data-
bases. This approach would benefit from techniques for the analy-
sis of the target voice quality, its evolution over time, and 
techniques for voice quality transformations so to be able 

to synthesize any type of voice quality. The same analysis and 
transformation techniques would be useful for the unit selection 
approaches. Rule-based approaches would benefit from machine-
learning techniques that learn rules from singing voice recordings 
to characterize a particular singer and explore how these are com-
bined. Statistical modeling approaches currently do not utilize 
comprehensive databases that cover a broad range of styles, emo-
tions, and voice qualities. If we could take databases that efficiently 
cover different characteristics of a singer in such a way, it would 
lead to interesting results such as model interpolation.

We consider the combination of existing approaches to have 
great potential. Rule-based techniques could be used as a prepro-
cessing step to modify the nominal target score so that it contains 
variations such as ornamentations and timing changes related to the 
target style or emotion. The resulting score could be used as the 
target score for statistical and unit selection approaches where 
the expression parameters would be generated.

MORE HUMAN-LIKE SINGING SYNTHESIS
One of the ultimate goals of singing synthesis technologies is to 
synthesize human-like singing voices that cannot be distinguished 
from human singing voices. Although the naturalness of synthe-
sized singing voices has been increasing, perfect human-like natu-
ralness has not yet been achieved. Singing synthesis technologies 
will require more dynamic, complex, and expressive changes in 
the voice pitch, loudness, and timbre. For example, voice quality 
modifications could be related to emotions, style, or lyrics.

Moreover, automatic context-dependent control of those 
changes will also be another important challenge. The current tech-
nologies synthesize words in the lyrics without knowing their mean-
ings. In the future, the meanings of the lyrics could be reflected in 
singing expressions as human singers do. Human-like singing syn-
thesis and realistic expression control may be a very challenging 
goal, given how complex this has been proven for speech.

When human-like naturalness increases, the “Uncanny Valley” 
hypothesis [49] states that some people may feel a sense of creepi-
ness. Although the Uncanny Valley is usually associated with robots 
and computer graphics, it is applicable even to singing voices. In 
fact, when a demonstration video by VocaListener [31] first 
appeared in 2008, the Uncanny Valley was often mentioned by lis-
teners to evaluate its synthesized voices. An exhibition of a singer 
robot driven by VocaWatcher [50] in 2010 also elicited more reac-
tions related to the Uncanny Valley. However, we believe that such a 
discussion of this valley should not discourage further research. 
What this discussion means is that the current technologies are in 
a transitional stage towards future technologies that will go beyond 
the Uncanny Valley [50] and that it is important for researchers to 
keep working toward such future technologies.

Note, however, that human-like naturalness is not always 
demanded. As sound synthesis technologies are often used to provide 
artificial sounds that cannot be performed by natural instruments, 
synthesized singing voices that cannot be performed by human sing-
ers are also important and should be pursued in parallel, sometimes 
even for aesthetic reasons. Some possible examples are extremely fast 
singing or singing with pitch or timbre quantization.
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MORE FLEXIBLE INTERFACES FOR SINGING SYNTHESIS
User interfaces for singing synthesis systems will play a more 
important role in the future. As various score- and performance-
driven interfaces are indispensable for musicians in using general 
sound synthesizers, singing synthesis interfaces have also had 
various options such as score-driven interfaces based on the 
piano-roll or score editor and performance-driven interfaces in 
which a user can just sing along with a song and a synthesis sys-
tem then imitates him or her (as mentioned in the section “Per-
formance-Driven Approaches”). More intuitive interfaces that do 
not require time-consuming manual adjustment will be an 
important goal for ultimate singing interfaces. So far, direct 
manipulator-style interfaces, such as the aforementioned score- 
or performance-driven interfaces, are used for singing synthesis 
systems, but indirect producer-style interfaces, such as those that 
enable users to verbally communicate with and ask a virtual 
singer to sing in different ways, will also be attractive to help 
users focus on how to express the user’s message or intention 
through a song, although such advanced interfaces have yet to be 
developed. More flexible expression control of singing synthesis in 
real time is also another challenge.

MULTIMODAL ASPECTS OF SINGING SYNTHESIS
Attractive singing synthesis itself must be a necessary condition for 
its popularity, but it is not a sufficient condition. The most famous 
virtual singer, Hatsune Miku, has shown that having a character 
can be essential to make singing synthesis technologies popular. 
Hatsune Miku is the name of the most popular singing synthesis 
software package in the world. She is based on Vocaloid and has a 
synthesized voice in Japanese and English with an illustration of a 
cartoon girl. After Hatsune Miku originally appeared in 2007, many 
people started listening to a synthesized singing voice as the main 
vocal of music, something rare and almost impossible before Hat-
sune Miku. Many amateur musicians have been inspired and moti-
vated by her character image together with her voice and have 
written songs for her. Many people realized that having a character 
facilitated writing lyrics for a synthesized singing voice and that 
multimodality is an important aspect in singing synthesis.

An important multimodal challenge, therefore, is to generate 
several attributes of a singer, such as a voice, face, and body. The face 
and body can be realized by computer graphics or robots. An exam-
ple of simultaneous control of voice and face was shown in the com-
bination of VocaListener [31] and VocaWatcher [50], which imitates 
singing expressions of the voice and face of a human singer.

In the future, speech synthesis could also be fully integrated 
with singing synthesis. It will be challenging to develop new voice 
synthesis systems that could seamlessly generate any voice pro-
duced by a human or virtual singer/speaker.
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I
dentifying a person by his or her voice is an important human 
trait most take for granted in natural human-to-human inter-
action/communication. Speaking to someone over the tele-
phone usually begins by identifying who is speaking and, at 
least in cases of familiar speakers, a subjective verification by 

the listener that the identity is correct and the conversation can 
proceed. Automatic speaker-recognition systems have emerged as 
an important means of verifying identity in many e-commerce 
applications as well as in general business interactions, forensics, 
and law enforcement. Human experts trained in forensic speaker 
recognition can perform this task even better by examining a set 
of acoustic, prosodic, and linguistic characteristics of speech in a 
general approach referred to as structured listening. Techniques 
in forensic speaker recognition have been developed for many 
years by forensic speech scientists and linguists to help reduce any 
potential bias or preconceived understanding as to the validity of 

an unknown audio sample and a reference 
template from a potential suspect. Experienced 
researchers in signal processing and machine 
learning continue to develop automatic algo-
rithms to effectively perform speaker recogni-
tion—with ever-improving performance—to 
the point where automatic systems start to 
perform on par with human listeners. In this 
article, we review the literature on speaker rec-
ognition by machines and humans, with an 
emphasis on prominent speaker-modeling 
techniques that have emerged in the last 
decade for automatic systems. We discuss dif-
ferent aspects of automatic systems, including 
voice-activity detection (VAD), features, 
speaker models, standard evaluation data sets, 
and performance metrics. Human speaker rec-
ognition is discussed in two parts—the first 
part involves forensic speaker-recognition 
methods, and the second illustrates how a 
naïve listener performs this task from a neu-
roscience perspective. We conclude this 
review with a comparative study of human 
versus machine speaker recognition and 
attempt to point out strengths and weak-
nesses of each. 

INTRODUCTION
Speaker recognition and verification have 
gained increased visibility and significance in 
society as speech technology, audio content, 

and e-commerce continue to expand. There is an ever-increasing 
need to search for audio materials, and searching based on speaker 
identity is a growing interest. With emerging technologies such as 
Watson, IBM’s supercomputer [1], which can compete with expert 
human players in the game of “Jeopardy,” and Siri [2], Apple’s  
powerful speech-recognition-based personal assistant, it is not 
hard to imagine a future when handheld devices will be an exten-
sion of our identity—highly intelligent, sympathetic, and fully 
functional personal assistants, which will not only understand the 
meaning of what we say but also recognize and track us by our 
voice or other identifiable traits. 

As we increasingly realize how much sensitive information 
our personal handheld devices can contain, it will become critical 
that effective biometric authentication be an integral part of 
access to information and files contained on the device, with a 
potential range of public/private access. Because speech is the 
most natural means of human communication, these devices will 
unavoidably lean toward automatic voice-based authentication in 
addition to other forms of biometrics. Apple’s recent iPhone mod-
els have already introduced fingerprint scanners, reflecting the 
industry trend. The latest Intel technology on laptops employs face 
recognition as the password for access. Our digital personal assis-
tant, in theory, could also replace most forms of traditional key 
locks as well for our home and vehicles, again making security of 
such a personal device more important.

Apart from personal authentication for access control, speaker 
recognition is an important tool in law enforcement, national 
security, and forensics in general. Because of widespread availabil-
ity, cell phones have become the primary means of communica-
tion for the general public, and, unfortunately, also for criminals. 
Unlike the domain of personal authentication for personal files/
information access, these individuals usually do not want to be 
recognized. In such cases, many criminals may attempt to alter 
their voice to prevent them from being identified. This introduces 
additional challenges for developers of speaker-recognition tech-
nology—“Is the participant a willing individual in being assessed?” 
In law enforcement, any voice recorded as part of evidence may be 
disguised or even synthesized, to obscure recognition, adding to 
the difficulty of being recognized. Over a number of years, forensic 
speech scientists have devised different strategies to overcome 
these difficulties.

Interestingly, humans routinely recognize individuals by their 
voices with striking accuracy, especially when the degree of famil-
iarity with the subject is high (i.e., close acquaintances or public 
figures). Many times, even a short nonlinguistic queue, such as a 
laugh, is enough for us to recognize a familiar person [3]. On the 
other hand, it is also common knowledge that we cannot recog-
nize a once-heard voice very easily and sometimes have difficulty 
in recognizing familiar voices over the phone. With these ideas in 
mind, a naïve person may wonder what exactly makes speaker rec-
ognition difficult and why is it a topic of such rigorous research.
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From the discussion so far, it is safe to say that speaker recog-
nition can be accomplished in three ways. 

■ We can recognize familiar voices with considerable ease 
without any conscious training. This form of speaker recog-
nition can be termed naïve speaker recognition.
■ In forensic investigations, speech samples from a tele-
phone call are often compared to recordings of potential sus-
pects (i.e., from a phone threat, emergency 911 call, or 
known criminal). In these cases, trained listeners are 
involved in systematically comparing the speech samples to 
provide an informed decision concerning their similarities. 
We would classify this as forensic speaker recognition.
■ Finally, we have automatic speaker recognition, where the 
complete speech analysis and decision-making process is per-
formed using computer analysis. 

In both naïve and forensic speaker recognition, humans are 
directly involved in the process, even though some automatic or 
computer-assisted means may be used to supplement knowledge 
extraction for the purposes of comparison in the forensic scenario. 
However, it should be noted that both the forensic and automatic 
methods are highly systematic, and the procedures from both dis-
ciplines are technical in nature.

The forensic and automatic speaker-recognition research com-
munities have developed various methods more or less indepen-
dently for several decades. Conversely, naïve recognition is a 
natural ability of humans—which is, at times, very accurate and 
effective. Recent studies on brain imaging [4], [5] have revealed 
many details on how we perform cognitive-based speaker 
recognition, which may inspire new directions for both automatic 
and forensic methods.

In this article, we present a tutorial review of the automatic 
speaker-recognition methods, especially those developed in the 
last decade, while providing the reader with a perspective on how 
humans also perform speaker recognition, especially by forensics 
experts and naïve listeners. The aim is to provide a discussion on 
the three classes of speaker recognition, highlighting the impor-
tant similarities and differences among them. We emphasize how 
automatic techniques have evolved over time toward more current 
approaches. Many speech-processing techniques, such as Mel-
scale filter-bank analysis and concepts in noise masking, are 
inspired by human auditory perception. Also, there are similarities 
between the methods used by forensic voice experts and auto-
mated systems—even though, in many cases, the research com-
munities are separate. We believe that incorporating the 
perspective of speech perception by humans in this review, includ-
ing highlights of both strengths and weaknesses in speaker recog-
nition compared to machines, will help broaden the view of the 
reader and perhaps inspire new research directions in the area.

SPEAKER-RECOGNITION TASKS
First, to consider the overall research domain, it would be useful 
to clarify what is encompassed by the term speaker recognition,
which consists of two alternative tasks: speaker identification and 
verification. In speaker identification, the task is to identify an 
unknown speaker from a set of known speakers. In other words, 

the goal is to find the speaker who sounds closest to the speech 
stemming from an unknown speaker within an audio sample. 
When all speakers within a given set are known, it is called a 
closed or in-set scenario. Alternatively, if the potential input test 
subject could also be from outside the predefined known speaker 
group, this becomes an open-set scenario, and, therefore, a world 
model or universal background model (UBM) [6] is needed. This 
scenario is called open-set speaker recognition (also out-of-set 
speaker identification).

In speaker verification, an unknown speaker claims an identity, 
and the task is to verify if this claim is true. This essentially comes 
down to comparing two speech samples/utterances and deciding if 
they are spoken by the same speakers. In some methods, this is 
done by comparing the unknown sample against two alternative 
models, the claimed speaker model and a world model. In the 
forensic scenario, the general task is to identify the unknown 
speaker, who is suspected of a crime, but, in many instances, veri-
fication is also necessary.

Speaker recognition can be based on an audio stream that is 
text dependent or text independent. This is more relevant in 
authentication applications—where a claimed user says some-
thing specific, such as a password or personal identification num-
ber, to gain access to some resource/information. Throughout this 
article, the focus will be on text-independent speaker verification, 
especially in the treatment of automatic systems.

CHALLENGES IN SPEAKER RECOGNITION
Unlike other forms of biometrics (e.g., fingerprints, irises, facial 
features, gait, and hand geometry) [7], human speech is a perfor-
mance biometric. Simply put, the identity information of the 
speaker is embedded (primarily) in how speech is spoken, not nec-
essarily in what is being said (although in many voice forensic 
applications, it is also necessary to identify who said what within a 
multispeaker discussion). This makes speech signals prone to a 
large degree of variability. It is important to note that even the 
same person does not say the same words in exactly the same way 
every time (this is known as style shifting or intraspeaker variabil-
ity) [8]. Also, various recording devices and transmission methods 
commonly used exacerbate the problem. For example, we may 
find it difficult to recognize someone’s voice through a telephone 
or maybe when the person is not healthy (i.e., has a cold) or is per-
forming another task or speaking with a different level of vocal 
effort (i.e., whispering or shouting).

SOURCES OF VARIABILITY IN SPEAKER RECOGNITION
To consider variability, Figure 1 highlights a range of factors that 
can contribute to mismatch for speaker recognition. These can be 
partitioned based on three broad classes: 1) speaker based, 2) con-
versation based, and 3) technology based. Also, variability for 
speakers can be within speakers and across speakers.

■ Speaker-based variability sources: these reflect a range of 
changes in how a speaker produces speech and will affect sys-
tem performance for speaker recognition. These can be 
thought of as intrinsic or within-speaker variability and 
include the following factors.
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[FIG1] Sources of variability in speaker recognition. 

Situational task stress—the subject is performing 
some task while speaking, such as operating a vehicle 
(car, plane, truck, etc.), hands-free voice input (factory 
setting, emergency responders/fire fighters, etc.), which 
can include cognitive as well as physical task stress [9].

Vocal effort/style—the subject alters his or her speech 
production from normal phonation, resulting in whispered 
[10], [11], soft, loud, or shouted speech; the subject alters his 
or her speech production mechanism to speak effectively in 
the presence of noise [12], known as the Lombard effect; or the 
subject is singing versus speaking [13].

Emotion—the subject is communicating his or her 
emotional state while speaking (e.g., anger, sadness, happi-
ness, etc.) [14].

Physiological—the subject has some illness or is intoxi-
cated or under the influence of medication; this can 
include aging as well.

Disguise—the subject intentionally alters his or her voice to 
circumvent the system. This can be by natural means (speak-
ing in a harsh voice to avoid detection, mimicking another 
person’s voice, etc.) or using a voice-conversion system.

■ Conversation-based/higher-level mode/language of speak-
ing variability sources: these reflect different scenarios with 
respect to the voice interaction with either another person or 
technology system, or differences with respect to the specific 
language or dialect spoken, and can include

human-to-human: speech that includes two or more 
individuals interacting or one person speaking and 
addressing an audience

—language or dialect spoken

—if speech is read/prompted (through visual display or 
through headphones), spontaneous, conversational, or 
disguised speech
—monologue, two-way conversation, public speech in 
front of an audience or for TV or radio, group discussion
human-to-machine: speech produced where the subject 

is directing his or her speech toward a piece of technology 
(e.g., cell/smart/landline telephone and computer)

—prompted speech: voice input to a computer
—voice input for telephone/dialog system/computer 
input: interacting with a voice-based system.

■ Technology- or external-based variability sources: these 
include how and where the audio is captured and the follow-
ing issues:

electromechanical—transmission channel, handset 
(cell, cordless, and landline) [15]–[17] microphone

environmental—background noise [18] (stationary, 
impulsive, time-varying, etc.), room acoustics [19], rever-
beration [20], and distant microphone

data quality—duration, sampling rate, recording qual-
ity, and audio codec/compression.

These multifaceted sources of variation pose the greatest chal-
lenge in accurately modeling and recognizing a speaker, whether 
automatic algorithms are used, or if human listening/assessment 
is performed. Given that speech will contain variability, the task 
of speaker verification is deciding if the variability is due to the 
same speaker (intra {within}-speaker) or different speakers (inter 
{across}-speaker).

In current automated speaker-recognition technology, various 
mathematical tools are used to mitigate the effects of these 
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variability/degradations, especially the extrinsic ones. Additive 
noise and transmission channel variability have received much 
attention recently. Intrinsic variability in speech is very difficult to 
quantify and account/address for in automatic assessment. Higher-
level knowledge may become important in these cases. For exam-
ple, even if a person’s voice (spectral characteristics) may change 
due to his or her current health (e.g., a cold) or aging, the person’s 
accent or style of speech remains generally the same. Forensic 
experts pay special attention to these details when detecting a sub-
ject’s voice from potential suspects’ speech recordings.

CHALLENGES IN SPEAKER RECOGNITION
Early efforts in speaker recognition involving technology focused 
more on the telecommunications domain, where telephone 
handset and communication channel variation was the primary 
concern. In the United States, when telephone systems were con-
fined to handheld rotary phones in the home and public phone 
booths in public settings, technology- and telephony-based vari-
ability was an issue, but it was, to a large degree, significantly less 
important than it is today. With mobile cell phone/smartphone 
technology dominating the world’s telecommunications market, 
the diversity of telephony scenarios has expanded considerably. 
Virtually all cell phones have a speaker option, which allows voice 
interaction at a distance from the microphone, and movement of 
the device introduces a wider range of channel variability.

Voice is also a time-varying entity. Research has shown that 
intersession variability, the inherent changes present within audio 
files captured at different times, results in changes in speaker-rec-
ognition performance. Analysis of the Multisession Audio Research 
Project corpus collected using the same audio equipment in the 
same location on a monthly basis over a 36-month period showed 
measurable differences in speaker-recognition performance [21], 
[22]. However, the changes in speaker-identification performance 
seem to be independent of the time difference between training 
and testing [21], [23]. While no aging effects were noted for the 
36-month period, other research has demonstrated long-term 
changes in speech physiology and production due to aging [23]. 
More extensive research that explores the evolution of speaker 
structure for speaker recognition over a 20–60-year period (at least 
for a small subset of speakers) has shown measurable changes and 
suggested methods to address changes due to aging [24], [25].

These examples of variation point to the sensitivity of exist-
ing speaker-recognition technology. It is possible to employ 
such technology in a way that could lead to noncredible results. 
A recent example of how to wrongly use automatic speaker rec-
ognition was seen during the recent U.S. legal case involving 
George Zimmerman, who was accused of shooting Trayvon Mar-
tin during an argument [26]. In that case, a 911 emergency call 
captured a scream for help heard in the background. The 
defense team claimed that it was Zimmerman who was yelling 
while supposedly being attacked by Trayvon Martin, who was 
killed; alternatively, the prosecutors argued that it was the 
unarmed victim who was shouting. Parents of both parties testi-
fied that the voice heard on the 911 call belonged to their own 
son. Some forensic experts did attempt to use semiautomatic 

methods to compare the original scream and a simulated 
scream obtained from Zimmerman. The issue of using auto-
matic assessment schemes for scream analysis to assess identity 
was controversial, as experts from the U.S. Federal Bureau of 
Investigation (FBI) and U.S. National Institute of Standards and 
Technology (NIST) testified that these methods are unreliable. A 
brief probe analysis of scream and speaker-recognition technol-
ogy confirmed the limitations of current technology [27].

Most forensic speaker-identification scenarios, however, are not 
as complicated. When there is sufficient speech material available 
from the offender and the suspect, systematic analysis can be per-
formed to extract speaker idiosyncratic characteristics, also known 
as feature parameters, from the speech data, and a comparison 
between the samples can be made. Also, in automatic speaker-
identification systems, features designed to differentiate among 
speakers are first extracted and mathematically modeled to per-
form a meaningful comparison. Thus, in the next section, we con-
sider what traits help identify a person from his or her  speech—in 
other words, what are the feature parameters that we should con-
sider in making an assessment?

SPEAKER CHARACTERIZATION: FEATURE PARAMETERS
Every speaker has some characteristic traits in his or her voice that 
are unique. Individual speaker characteristics may not be so easily 
distinguishable but are unique mainly due to speaker vocal tract 
physiology and learned habits of articulation. Even identical twins 
have differences in their voices, though studies show they have simi-
lar vocal tract shape [28] and acoustic properties [29], and it is diffi-
cult to distinguish them from a perceptual/forensics perspective [30], 
[31]. Researchers in voice forensics have even participated in the 
National Twins Day event held in Twinsburg, Ohio, [32] in an effort 
to capture voice and other biometrics to explore the challenges in 
distinguishing closely related individuals. Thus, whether recognition 
is performed by humans (an expert or naïve listener) or by machines, 
some measurable and predefined aspects of speech need to be con-
sidered to make meaningful comparisons among voices. Generally, 
we refer to these characterizing aspects as feature parameters.

One might expect that a unique voice must have unique fea-
tures, but this is not always true. For example, two different speak-
ers may have the same speaking rate (which is a valid feature 
parameter) but differ in average pitch. This is complicated by the 
variability and degradations discussed previously, which is why 
considering multiple feature parameters is critical.

PROPERTIES OF IDEAL FEATURES
As outlined by Nolan [33], ideally a feature parameter should

1) show high between-speaker variability and low within-
speaker variability
2) be resistant to attempted disguise or mimicry
3) have a high frequency of occurrence in relevant materials
4) be robust in transmission
5) be relatively easy to extract and measure.
These properties, though mentioned in the forensic speaker-

identification context, apply in general. Interestingly, Wolf [34] dis-
cussed very similar sets of properties in the context of features for 
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automatic speaker recognition, independently, preceding Nolan 
[33]. We refer to these properties as ideal property 1–5 throughout 
this article. It should be reiterated that variability in features will 
always exist, but the important task is to determine if the origin of 
the variability is the same speaker or different speakers.

We now discuss various feature parameters used in forensic 
speaker identification, which can be and are also useful for general 
speech understanding. There is no fixed set of rules for what param-
eters should be used in forensic speaker recognition. This is largely 
dependent on the circumstances or availability [35]. Some forensic 
experts may choose parameters to compare based on the most obvi-
ous aspect of the voices under consideration. Feature parameters 
can be broadly classified into auditory versus acoustic, linguistic 
versus nonlinguistic, and short-term versus long-term features. 

AUDITORY VERSUS ACOUSTIC FEATURES
Some aspects of speech are better suited for auditory analysis (i.e., 
through listening). Auditory features are thus defined as aspects of 
speech that can “be heard and objectively described” by a trained 
listener [36]. These can be specific ways of uttering individual 
speech sounds (e.g., the pronunciation of the vowel sounds in the 
word hello can be used as auditory features).

Acoustic features, on the other hand, are mathematically 
defined parameters derived from the speech signal using auto-
matic algorithms. Clearly, these kinds of features are used in auto-
matic systems, but they are also used in computer-assisted 
forensic speaker recognition. Fundamental frequency (F0) and 
formant frequency bandwidth are examples of acoustic features. 
Automatic systems frequently use acoustic features derived from 
the short-term power spectrum of speech.

Both auditory and acoustic features have their strengths and 
weaknesses. Two speech samples may sound very similar but have 
highly variant acoustic parameters [37]. Alternatively, speech sam-
ples may sound very different yet have similar acoustic features 
[28]. It is thus generally accepted that both auditory and acoustic 
features are indispensable for forensic investigations [35]. One 
might argue that if reverse engineering of the human auditory 
system [38] is fully successful, auditory features can also be 
extracted using automatic algorithms.

LINGUISTIC VERSUS NONLINGUISTIC FEATURES
Linguistic feature parameters can provide contrast “within the 
structure of a given language or across languages or dialects” [35]. 
They can be acoustic or auditory in nature and are classified fur-
ther as phonological, morphological, and syntactic [36]. A simple 
example of a linguistic feature is whether the “r” sound at the end 
of a word, e.g., car, is pronounced or silent—in some dialects of 
English, this type of “r” sound is not pronounced (i.e., Lancashire 
versus Yorkshire dialects of U.K. English). This is different from an 
auditory analysis of how the “r” sound is pronounced, since, in this 
case, this speech sound will be compared across different words.

Nonlinguistic features include aspects of speech that are not 
related to the speech content. Typical nonlinguistic features may 
include: speech quality (nasalized, breathy, husky, etc.), fluency, 
speech pauses (frequency and type), speaking rate, average 

fundamental frequency, and nonspeech sounds (coughs, laughs, 
etc.). Again, these features can be auditory or acoustic in nature. 
Referring back to the Zimmerman case, the manner of screaming 
(i.e., loudness, pitch, and duration) could be a potential feature if it 
could be properly measured/parameterized.

SHORT-TERM VERSUS LONG-TERM FEATURES
Depending on the time span of the feature parameters, they can be 
categorized as short versus long term. Most features discussed so 
far are short term or segmental in nature. Popular automatic sys-
tems mostly use short-term acoustic features, especially the ones 
extracted from the speech spectrum. The short-term features are 
also effective in auditory forensic analysis, for example, direct com-
parison of the “r” sound and consonant–vowel transition [33].

The long-term features are usually averaged short-term param-
eters, (e.g., fundamental frequency, short-term spectrum). These 
parameters have the benefit of being insensitive to fluctuations due 
to individual speech sounds and provide a smoother measurement 
from a speech segment. The long-term features also include 
energy, pitch, and formant contours, which are measured/averaged 
over long time periods. Recent automatic systems also successfully 
used such features [39]–[41]. If a feature parameter is extracted 
from an entire speech utterance, we refer to it as an utterance-level 
feature, or utterance feature for short. This concept will become 
very useful as we proceed with the discussion to automatic systems.

FORENSIC SPEAKER RECOGNITION
While the focus in this review is on automatic machine-based 
speaker recognition, we also briefly consider both forensic and naïve 
speaker recognition. The need for forensic speaker recognition/iden-
tification arises when a criminal leaves his or her voice as evidence, 
be it as a telephone recording or speech heard by an earwitness. The 
use of technology for forensic speaker recognition has been dis-
cussed as early as 1926 [42] with speech waveforms. Later, the spec-
trographic representation of speech was developed at AT&T Bell 
Laboratories during World War II. It was popularized much later, in 
the 1970s, when it came to be known as the voiceprint [43]. As the 
name suggests, the voiceprint was presented as being analogous to 
fingerprints and with very high expectations. Later, the reliability of 
the voiceprint for voice identification, from its operating mecha-
nisms to formal procedure, was thoroughly questioned and argued 
[44], [45], even called “an idea gone wrong” [45]. It was simply not 
accurate with speech being so subject to variability. Most research-
ers today believe it to be controversial at best. A chronological his-
tory of voiceprints can be found in [46], and an overview discussion 
on forensic speaker recognition can be found in [47]. Here, we pres-
ent an overview with respect to current trends.

In the general domain of forensic science, the United States 
has recently formed the Organization of Scientific Area Commit-
tees (OSAC) (http://www.nist.gov/forensics/osac.cfm), which is 
overseen by NIST. The legacy structure before OSAC was Forensic 
Science Working Groups. The current OSAC organization was 
established to help formalize the process of best practices for stan-
dards as they relate to researchers, practitioners, legal and law 
enforcement as well as government agencies. It also allows for a 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_______________________

http://www.nist.gov/forensics/osac.cfm
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [80] NOVEMBER 2015

more transparent process in which experts and users of the vari-
ous technologies can provide feedback and help shape best prac-
tices. Currently, OSAC is establishing a number of working 
documents to build consensus among the various forensic sub-
fields. A good source of current information from OSAC is the 
NIST Forensic Science Publications website (http://www.nist.gov/
forensics/publications.cfm).

Today, forensic speaker identification is commonly performed 
by expert phoneticians who generally have backgrounds in lin-
guistics and statistics. This is a very complex procedure, and varies 
among practitioners. There is no standard set of procedures every 
practitioner agrees upon. Different aspects/features are considered 
when forensic experts make comparisons between utterances. The 
procedure is often dictated by the situation at hand—for example, 
if only a few seconds of screaming of the unknown speaker is avail-
able on the evidence tape, the only thing that can be done is to try 
to recreate a similar scream from the likely speaker (suspect) and 
compare, which is generally not feasible.

THE LIKELIHOOD RATIO
Regardless of the varying approaches by practitioners, forensic 
speaker recognition essentially entails a scientific and objective 
method of comparing voices (there are, apparently, people who 
attempt to perform this task using methods unacceptable by the 
general forensic community [48]). Forensic experts must testify in 
court concerning the similarity/dissimilarity of the speech samples 
in consideration in a meaningful way. However, they cannot make 
any categorical judgment about the voices (e.g., the two voices 
come from the same speaker). For this purpose, the likelihood 
ratio (LR) [49] measure was introduced, which forensic experts 
use to express the strength of their findings [50], [51]. This means 
that the evaluation of forensic speech samples will not yield an 
absolute identification or elimination of the suspect but instead 
provides a probabilistic confidence measure. As discussed previ-
ously, even speech samples from the same speaker will differ in 
realistic scenarios. The goal of the forensic voice comparison 
expert is thus to estimate the probability of observing the mea-
sured difference between speech samples assuming that they were 
spoken by 1) the same speaker and 2) different speakers [35]. The 
procedure for measuring the LR is given next:

X =  Speech sample recorded during a crime (evidence 
recording).

Y = Speech sample obtained from suspect (exemplar).
H0 =  The hypothesis that X  and Y  are spoken by the same 

person.
H1 =  The hypothesis that X  and Y  are spoken by different 

persons.
E =  Observed forensic evidence (e.g., average pitch from X

and Y  differ by 10 Hz).
The LR formula is

( | )
( | )

.p E H
p E H

LR
1

0
=

As an example, if the average pitch difference between two utter-
ances is considered the feature parameter, the forensic expert first 

computes the probability distribution of this feature parameter for 
speech data collected from many same-speaker (hypothesis )H0  and 
different-speaker (hypothesis )H1 pairs. In the next step, given the 
evidence E (average pitch from X  and Y  differ by 10 Hz), the con-
ditional probabilities ( | ),p E H0  and ( | ),p E H1  can be computed. 
Note that the forensic expert does not try to estimate ( | )p H E0  (i.e., 
the probability that the suspect is guilty given the observed evi-
dence). This is because this estimation is done using Bayes’ theo-
rem, which requires the prior probabilities of the hypotheses 
generally not provided to the expert (and are also difficult to esti-
mate). More discussion on this can be found in [35, Ch. 4].

APPROACHES IN FORENSIC SPEAKER IDENTIFICATION
Here, we discuss general approaches taken for forensic speaker 
recognition. The methods described are performed by human 
experts, fully or partially. While full automatic approaches are also 
considered for forensics, we discuss automatic speaker recognition 
in later sections.

AUDITORY APPROACH
This approach is practiced by auditory phoneticians and involves 
producing a detailed transcript of the evidence tape and exem-
plars. Drawing on their experience, experts listen to speech sam-
ples and attempt to detect any aspects of the voices that are 
unusual, distinctive, or noteworthy [51]. The experience of the 
expert is obviously an important factor in deciding about rarity or 
typicality. The auditory features discussed previously are used in 
this approach.

The auditory approach is fully subjective, unless it is combined 
with other approaches. Although the LR can be used to express 
the outcome of the analysis, practitioners of the auditory approach 
generally do not use it. Instead, based on their comparison of audi-
tory features, they present an evidentiary statement (a formal 
statement describing the basis of the evidence) in court.

AUDITORY-SPECTROGRAPHIC APPROACH
As discussed previously, the spectrographic approach, previously 
known as voiceprint analysis, is based on visual comparison of 
speech spectrograms. Generally, the same word or phrase is 
extracted from the known and questioned voices and their spec-
trograms are visually analyzed. Additional foil speakers’ (back-
ground speakers) spectrograms are also included to facilitate in 
understanding similarity versus typicality. It is believed that 
visual comparison using spectrograms together with listening to 
the audio reinforces the voice identification procedure [44], [45], 
which is why the approach is termed auditory-spectrographic.

Following the controversy on voiceprints, the spectrographic 
method evolved in various ways. It was not evident if forensic 
experts could differentiate between intraspeaker (changes of speech 
from the same speaker) and interspeaker (changes in speech due to 
different speakers) variation by a general visual comparison of spec-
trographs. Thus, different protocols evolved that require the foren-
sic examiner to analyze predefined aspects of the spectrographs. 
According to the American Board of Recorded Evidence (ABRE) 
protocols, the examiner is required to visually analyze and compare 
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aspects such as general formant shaping and positioning, pitch stri-
ations, energy distribution, word length, and coupling (nasality). It 
also requires auditory comparisons of pitch, stress/emphasis, 
speaking rate, disguise, mode, etc. [51], [52].

The auditory-spectrographic, similar to the auditory approach, 
is also subjective and depends heavily on the experience of the 
examiner. Courts in some jurisdictions do not accept testimony 
based on this approach. The FBI seeks advice from auditory-spec-
trographic experts during investigations but does not allow them 
to testify in court [51].

ACOUSTIC–PHONETIC APPROACH
This approach, which is commonly taken by experts trained on 
acoustic–phonetics, requires quantitative acoustic measure-
ments from speech samples, and statistical analysis of the results. 
Acoustic features discussed previously are ones that are consid-
ered. Generally, similar phonetic units are extracted from the 
known and questioned speech samples, and various acoustic 
parameters measured from these segments are compared. The 
LR can be conveniently used in this approach since it is based on 
numerical parameters [51].

Although the acoustic–phonetic approach is a more objective 
approach, it does have some subjective elements. For example, an 
acoustic–phonetician may identify speech sounds as being affected 
by stress (through listening) and then perform objective analysis. 
However, whether the speaker was actually under stress at that 
moment is a subjective quantity determined by the examiner 
through his or her experience. It is a matter of debate if having a 
human element in the forensic speaker-recognition process is 
advantageous [51].

Forensic speaker identification will continue to be an important 
research area in the coming future. As evident from the discussion, 
the methods are evolving toward mathematical and statistical 
approaches, perhaps signaling that the human element in this pro-
cess may actually be a source of error. The NIST has conducted 
studies on human-assisted speaker recognition (HASR) comparing 
human experts and state-of-the-art algorithms [20]. In these exper-
iments, a set of difficult speaker pairs (i.e., same speakers that 
sound different in two recordings or different speakers that sound 
similar) were selected. The results indicated that the state-of-the-
art fully automatic systems outperformed the human-assisted sys-
tems. We discuss these studies further in the “Man Versus Machine 
in Speaker Recognition” section.

NAÏVE SPEAKER RECOGNITION
The ability to recognize people by their voices is an acquired 
human trait. Research shows that we are able to recognize our 
mothers’ voice from as early as the fetus stage [53], [54]. We ana-
lyze many different aspects of a person’s voice to identify him or 
her, including spectral characteristics, language, prosody, and 
speaking style. We learn and remember these traits constantly 
without even putting in a conscious effort. In this section, we dis-
cuss various aspects of how a naïve listener identifies a speaker and 
what is currently known about the speaker-recognition process in 
the human brain.

IDENTIFY SPEECH SEGMENTS 
An important aspect of detecting speakers from audio samples is to 
first identify speech segments. Humans can efficiently distinguish 
between speech and nonspeech sounds from a very early age [55]. 
This is observed from highly voice-selective cerebral activity mea-
sured by functional magnetic resonance imaging (fMRI) in the 
adult human brain [4], [55], [56]. Figure 2 shows the brain regions 
that demonstrate higher neural activity with vocal and nonvocal 
stimuli. Note that in this experiment, any sound produced by a 
human is considered vocal (irrespective of being voiced or 
unvoiced), including laughs and coughs. In later sections, we dis-
cuss a very similar process required by automatic systems as a pre-
processing step before performing speaker recognition.

SPEAKER RECOGNITION VERSUS DISCRIMINATION
It is obvious that we need to be familiar with a person’s voice 
before identifying him or her. Familiarity is a subjective condition, 
but it is apparent that being familiar with a person depends on 
how much time the subject has spent in listening to that person. 
In other words, familiarity with a speaker depends on the amount 
of speech data observed by the listener. The familiar person can be 
a close acquaintance (e.g., a friend or relative) or someone famous 
(e.g., a celebrity or political leader).

Interestingly, familiar voice recognition and unfamiliar voice 
discrimination are known to be separate cognitive abilities [57]. 

VOC

(a)

(b)

Left Right125.7

VOC

10 seconds

NVOC NVOC

[FIG2] An experiment on finding voice-selective regions of the 
human brain using fMRI. (a) The experimental paradigm: 
spectrograms (0–4 kHz) and amplitude waveforms of examples of 
auditory stimuli. Vocal (VOC) and nonvocal (NVOC) stimuli are 
presented in 20-second blocks with 10-second silence intervals. 
(b) Voice-sensitive activation regions in the group average: regions 
with significantly (P < 0.001) higher response to human voices 
than to energy-matched nonvocal stimuli are shown in color scale 
(t-value) on an axial slice of the group-average MRI (center) and 
on sagittal slices (vertical plane dividing the brain into left and 
right halves) of each hemisphere. (Figure adapted from [4].)
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Familiar voice recognition is essentially a pattern-recognition 
task—humans can perform this task even if the speech signal is 
reversed [58]. These findings suggest that unfamiliar voice dis-
crimination involves analysis of speech features as well as the pat-
tern-recognition ability of the brain [57]. Forensic examiners 
heavily depend on the ability to discriminate since they are not 
usually familiar with the speakers in the speech samples involved.

The findings in [57] also imply that voice discrimination ability of 
the human brain is not a preprocessing step of voice recognition, 
since these two processes are found to be independent. For auto-
matic systems, however, this is not usually true. The same algo-
rithms can be used (usually with slight modification) to discriminate 
between speakers or identify a specific speaker. In many cases, dis-
criminative training methods are used to learn speaker models, 
which can later be used to identify speakers. We discuss automatic 
systems further in the “Automatic Speaker Recognition” section. 

FAMILIARITY WITH LANGUAGE
It is observed in [59] that humans are better at recognizing people 
who are familiar and speak a known language. Experiments 
reported in this study show that native English speakers with nor-
mal reading ability could identify voices speaking English signifi-
cantly more accurately than voices speaking Chinese. Thus, the 
voice-recognition ability of humans depends on their familiarity 
with the phonology of the particular language. Humans can still 
recognize people speaking an unknown language, but with much 
lower accuracy [59].

ABSTRACT REPRESENTATIONS OF SPEECH
The human brain forms efficient abstract representations from 
relevant audio features that contain both phonetic and speaker 
identity information. These representations aid in efficient pro-
cessing and high robustness due to noise and other forms of deg-
radations. These aspects of the brain were studied in [5], where the 
authors have shown that it is possible to decipher both speech 
content and speaker identity by observing neural activity of the 
human listener. The brain activities were measured by fMRI and it 
was found that there are certain observable patterns correspond-
ing to speech and voice stimuli elicit in the listener’s auditory cor-
tex. This is illustrated in Figure 3, where vowel (red) and speaker 
(blue) discriminative regions in the brain are shown. 

SPEAKER RECOGNITION IN THE BRAIN: FINAL REMARKS
There is still much more to discover about the human brain and 
how it processes information. From what we already know, the 
human brain performs complex spectral and temporal audio pro-
cessing [60], is sensitive to vocal stimuli [4], shows familiarity to 
the phonology of languages [59], and builds abstract representa-
tions of speech and speaker information that are robust to noise 
and other degradations [5]. Most of these abilities are highly desir-
able in automatic systems, especially the brain’s ability to process 
noisy speech. It is thus natural to attempt to mimic the human 
brain in solving these problems. Research efforts are already 
underway to reverse engineer the processes performed by the 
human auditory pathway [38].

As discussed previously, the human brain processes familiar 
speakers differently than unfamiliar ones [55], [57]. This may 
mean that faithfully comparing human and machine performance 
in a speaker-recognition task can be very difficult since it is not 
well understood how to quantify familiarity with a person from an 
automatic system’s perspective—what amount of data is enough 
for the system to be familiar with that person? Nevertheless, it will 
be interesting to be able to determine exactly how the human 
brain stores the speaker identity information of familiar speakers. 
These findings may lead to breakthrough algorithmic advances in 
the automatic speaker-recognition area.

As we conclude this section, we want to highlight the strengths 
and weaknesses of humans in the speaker-recognition task. Here, 
humans include both forensic examiners and naïve listeners.

STRENGTHS OF HUMAN LISTENERS
■ Humans (naïve listeners and experts alike) can identify 
familiar speakers with remarkable accuracy, even in chal-
lenging conditions (normal, disguised, and stressed) [61].
■ Humans are good at finding the idiosyncrasies of a speak-
er’s voice. Thus, the forensic examiner may easily identify 
where to look. For example, a speaker may cough in a specific 
manner, which a human will notice very quickly.

WEAKNESSES OF HUMAN LISTENERS
■ Humans are susceptible to contextual bias [62]. For exam-
ple, if the forensic examiner knows that a suspect already 
confessed to a crime, he is more likely to find a match 
between the exemplar and evidence recording.
■ Humans are prone to error. The reliability of voiceprints 
was questioned mostly due to human errors involved in the 
process [46].
■ Humans cannot remember a speaker’s voice for a long 
time [63]. Memory retention ability depends on the duration 
of speech heard by the listener [64].
■ For familiar speakers, the listener may confuse them with 
someone else. The subject may know that the voice is famil-
iar but may not correctly identify exactly who the speaker is.
■ Naïve listeners cannot distinguish subtle differences 
between voices. However, trained experts can. For example, 
the difference between New York and Boston accents is dis-
tinguishable by an expert but probably not by naïve 
listeners [35].
■ Humans perform better while they are attentive. However, 
the attention level drops with time, and listeners tend to 
become fatigued after a certain time.
■ The outcome of voice comparison results as LRs may not 
be consistent across multiple experts (or the same expert at 
different times).
■ Human listeners (including forensic experts) may seem to 
identify someone from a voice recording if they are expecting 
to hear that person.
Concluding the discussion on speaker recognition by humans, 

we now move forward with the main focus of this review, which is 
automatic systems for speaker recognition.
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AUTOMATIC SPEAKER RECOGNITION
In automatic speaker recognition, computer programs designed 
to operate independently with minimum human intervention 
identify a speaker’s voice. The system user may adjust the 
design parameters, but to make the comparison between speech 
segments, all the user needs to do is provide the system with the 
audio recordings. In the current discussion, we focus our atten-
tion on the text-independent scenario and the speaker-verifica-
tion task. Naturally, the challenges mentioned previously affect 
the automatic systems in the same way as they do the human 
listeners or forensic experts. Various speaker-verification 
approaches can be found in the literature that address specific 
challenges; see [65]–[74] for a comprehensive tutorial review on 
automatic speaker recognition. The research community is 
largely driven by standardized tasks set forth by NIST through 
the speaker-recognition evaluation (SRE) campaigns [75]–[78]. 
We discuss the NIST SRE tasks in more detail in later sections.

A simple block diagram representation of an automatic 
speaker-verification system is shown in Figure 4. Predefined fea-
ture parameters are first extracted from the audio recordings that 
are designed to capture the idiosyncratic characteristics of a 
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[FIG3] (a)–(c) The regions of the human brain that contribute the most in discriminating between vowels (red) and speakers (blue). 
(b) and (c) Enlarged representations of the auditory cortex (region of the brain sensitive to sounds). (d) and (e) Activation patterns of 
sounds created from the 15 most discriminative voxels (of the fMRI) for decoding (d) vowels and (e) speakers. Each axis of the polar 
plot forming a pattern displays the normalized activation level in a voxel. Note the similarity among the patterns of the same vowel 
[horizontal direction in (d)] or speaker [vertical direction in (e)]. (Figure reprinted from [5].) 
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[FIG4] An overall block diagram of a basic speaker-verification 
system.
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person’s speech in mathematical parameters. These features 
obtained from an enrollment speaker  are used to build/train 
mathematical models that summarize their speaker-dependent 
properties. For an unknown test segment, the same features are 
then extracted, and they are compared against the model of the 
enrollment/claimed speaker. The models are designed so that such 
a comparison provides a score (a scalar value) indicating whether 
the two utterances are from the same speaker. If this score is 
higher (or lower) than a predefined threshold then the system 
accepts (or rejects) the test speaker.

It should be noted that the block diagram in Figure 4 for 
speaker verification is a simplified one. As we discuss more about 
the standard speaker-recognition systems of today, features can be 
extracted from short-term segments of speech, a relatively longer 
duration of speech, or the entire utterance. The classification of 
features discussed previously also applies in this case.

In some automatic systems, the feature-extraction processes 
may be dependent on other speech utterances spoken by a diverse 
speaker population, as well as the enrollment speaker [79]. In 
short, the recent techniques make use of the general properties of 
human speech by observing many different speech recordings to 
make effective speaker-verification decisions. This is also intuitive, 
since we also learn how human speech varies across conditions 
over time. For example, if we only heard one language in our entire 
life, we would have difficulty distinguishing people speaking a dif-
ferent language [59].

FEATURE PARAMETERS IN AUTOMATIC SPEAKER-
RECOGNITION SYSTEMS
As mentioned previously, feature parameters extracted from an 
entire utterance are referred to as utterance features in this article. 
This becomes more important in the automatic speaker-recognition 

context as many common pattern-recognition algorithms operate 
on fixed dimension vectors. Because of the variable length/duration 
property of speech, acoustic/segmental features cannot be directly 
used with such classifiers. However, simple methods such as averag-
ing segmental features over time do not seem to be highly effective 
in this case, due to the time-varying nature and context dependency 
of speech [80], [81]. For example, taking speaking rate as a feature, 
it is obvious that two people may commonly have the same speak-
ing rate, so this feature by itself may not be very useful. Researchers 
noted early on that a specific speaker’s idiosyncratic features will be 
time varying and context/speech sound dependent [34], [66]. How-
ever, the high-level and long-term features such as dialect, accent, 
speaking style/rate, and prosody are also useful and can be beneficial 
when used together with low-level acoustic features [39], [82].

VAD
As noted previously, humans are good at distinguishing between 
speech and nonspeech sounds, which is also an essential part in 
auditory forensic speaker recognition. Clearly, in automatic sys-
tems it is also desirable that features be extracted only from speech 
segments of the audio waveform, which necessitates VAD [83], 
[84]. Detecting speech segments becomes critical when highly 
noisy/degraded acoustic conditions are considered. The function of 
VAD is illustrated in Figure 5(a), where speech presence/absence is 
indicated by a binary signal overlaid on the speech samples. The 
corresponding speech spectrogram is shown in Figure 5(b). The 
VAD algorithm used in this plot is presented in [83], though more 
advanced unsupervised solutions such as Combo-Speech Activity 
Detection (SAD) have recently emerged as successful in diverse 
audio conditions for speaker recognition [85].

SHORT-TERM FEATURES
These features refer to parameters extracted from short speech 
segments/frames of duration within 20–25 milliseconds. The 
most popular short-term acoustic features are the Mel-frequency 
cepstral coefficients (MFCCs) [86] and linear predictive coding 
(LPC)-based [87] features. For a review on different short-term 
acoustic features for speaker recognition, see [71] and [73]. We 
briefly discuss the MFCC features here. To obtain these coeffi-
cients from an audio recording, first the audio samples are 
divided into short overlapping segments. A typical 25-millisecond 
speech signal frame is shown in Figure 6(a). The signal obtained 
in these segments/frames is then multiplied by a window function 
(e.g., Hamming and Hanning), and the Fourier power spectrum 
is obtained. In the next step, the logarithm of the spectrum is 
computed and nonlinearly spaced Mel-space filter-bank analysis is 
performed. The logarithm operation expands the scale of the coef-
ficients and also decomposes multiplicative components to addi-
tive [88]. The filter-bank analysis produces the spectrum energy 
in each channel (also known as the filter-bank energy coeffi-
cients), representing different frequency bands.

A typical 24-channel filter bank and its outputs are shown in 
Figure 6(c) and (d), respectively. As evident here, the filter bank is 
designed so that it is more sensitive to frequency variations in the 
lower end of the spectrum, similar to the human auditory system 
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[FIG5] (a) A speech waveform with voice-activity decisions 
(1 versus 0 values indicate speech versus silence) and 
(b) a spectrogram plot of the corresponding speech waveform.
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[86]. Finally, MFCCs are obtained by performing discrete cosine 
transform (DCT) on the filter-bank energy parameters and retain-
ing a number of leading coefficients. DCT has two important 
properties: 1) it compresses the energy of a signal to a few coeffi-
cients and 2) its coefficients are highly decorrelated. For these 
reasons, removing some dimensions using DCT improves model-
ing efficiency and reduces some nuisance components. Also, the 
decorrelation property of DCT helps the models that assume fea-
ture coefficients are uncorrelated. In summary, the following 
sequence of operations—power spectrum, logarithm, and DCT—
produces the well-known cepstral representation of a signal [88]. 
Figure 6(e) shows the static MFCC parameters, retaining the first 
12 coefficients after DCT. Generally, velocity and acceleration 
parameters computed across multiple frames of speech are 
appended to the MFCCs. These parameters (known as deltas and 
double deltas, respectively) represent the dynamic properties of 
the short-term feature coefficients.

FEATURE NORMALIZATION
As stated previously, one of the desirable properties of acoustic fea-
tures (and any feature parameter in a pattern-recognition problem) 
is robustness to degradation. This is one of the desirable characteris-
tics of an ideal feature parameter [34]. In reality, it is not possible to 
design a feature parameter that will be absolutely unchanged in 
modified acoustic conditions and also provide meaningful speaker-
dependent information. However, these changes can be minimized 
in various ways using feature-normalization techniques such as ceps-
tral mean subtraction [89], feature warping [90], relative spectra 
(RASTA) processing [91], and quantile-based cepstral normalization 
[92]. It should be noted that normalization techniques are not 
designed to enhance the discriminative ability of the features (ideal 
property 3), rather they aim to modify the features so that 
they are more consistent among different speech utterances 
(ideal property 5). Popular normalization schemes include feature 
warping and cepstral mean and variance normalization.

SPEAKER MODELING
Once the audio segments are converted to feature parameters, the 
next task of the speaker-recognition process is modeling. In general 
terms, we can define modeling as a process of describing the feature 
properties for a given speaker. The model must also provide means 
of its comparison with an unknown utterance. A modeling method 
is robust when its characterizing process of the features is not sig-
nificantly affected by unwanted distortions, even though the fea-
tures are. Ideally, if features could be designed in such a way that no 
intraspeaker variation is present while interspeaker discrimination 
is maximum, the simplest methods of modeling might have suf-
ficed. In essence, the nonideal properties of the feature extraction 
stage requires various compensation techniques during the model-
ing phase so that the effect of the nuisance variations observed in 
the signal are minimized during the speaker-verification process.

Most speaker-modeling techniques make various mathematical 
assumptions on the features (Gaussian distributed, for example). If 
these properties are not met by the data, we are essentially introduc-
ing imperfections during the modeling phase as well. The 

normalization of features can alleviate these problems to some extent, 
but not entirely. Consequently, mathematical models are forced to fit 
the features and recognition scores are derived based on these models 
and test data. Thus, this process introduces artifacts in the detection 
scores, and a family of score-normalization techniques has been pro-
posed in the past to encounter this final-stage mismatch [17].

In summary, degradations in the acoustic signal affect fea-
tures, models, and scores. Thus, improving robustness of speaker-
recognition systems is important in these three domains. 
Recently, it has been observed that as speaker-modeling tech-
niques are improved, score-normalization techniques become less 

[FIG6] Steps in MFCC feature extraction from a speech frame: 
(a) 200-sample frame representing 25 milliseconds of speech 
sampled at a rate of 8 kHz, (b) DFT power spectrum showing 
first 101 points, (c) 24-channel triangular Mel-filter bank, (d) log 
filter-bank energy outputs from Mel-filter, and (e) 12 static 
MFCCs obtained by performing DCT on filter-bank energy 
coefficients and retaining the first 12 values.
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effective [93], [94]. Similarly, we can argue that if acoustic fea-
tures are improved, simple modeling techniques will be sufficient. 
However, from the speaker-recognition research trend in the last 
decade, it seems that improving feature robustness beyond a cer-
tain level (for a variety of degradations) is extremely difficult—or, 
in other words, data-driven modeling techniques have been more 
successful in improving robustness compared to new features. 
This is especially true if large data sets are used in training strong 
discriminative models. In the recent approaches for speech recog-
nition, simple filter-bank energy features are found to be more 
effective than MFCCs when large neural networks are used for 
modeling [95]. Also, modeling techniques that aim at learning the 
behavior of the degradations from example speech utterances are 
at an advantage in improving robustness. For example, an auto-
matic system that has observed several examples of speech record-
ings of different speakers in roadside noise will be better at 
distinguishing speakers in that environment.

In the following sections, we discuss how state-of-the-art sys-
tems have evolved during the last decade. We emphasize a few key 
advancements made during this time.

GAUSSIAN-MIXTURE-MODEL-BASED METHOD
A Gaussian mixture model (GMM) is a combination of Gaussian 
probability density functions (PDFs) generally used to model multi-
variate data. The GMM clusters the data in an unsupervised way 
(i.e., without any labeled data), but it provides a PDF of the data. 
Using GMMs to model a speaker’s features results in a speaker-
dependent PDF. Evaluating the PDF at different data points (e.g., 
features obtained from a test utterance) provides a probability score 
that can be used to compute the similarity between a speaker GMM 
and an unknown speaker’s data. For a simple speaker-identification 
task, a GMM, is first obtained for each speaker. During testing, the 
utterance is compared against each GMM, and the most likely 
speaker (i.e., the highest-scoring GMM) is selected.

In text-independent speaker-recognition tasks when there is 
no a priori knowledge about the speech content, using GMMs to 
model short-term features has been found to be most effective for 
acoustic modeling. This is expected since the average behavior of 
the short-term spectral features is more speaker dependent rather 
than being affected by the temporal characteristics. It was first 
used in a speaker-recognition method in [96]. Before GMMs were 
introduced, the vector quantization (VQ) method [81], [97], [98] 
was used for speaker recognition. This technique models the 
speaker using a set of prototype vectors instead of PDFs. GMMs 
have been shown to be better speaker models compared to VQ 
because of their probabilistic nature for allowing greater variabil-
ity. Therefore, even when the test utterance has a different acous-
tic condition, GMMs, being a probabilistic model, can relate to 
the data better than the more restrictive VQ model (see “GMM-
Based Speaker Recognition: Summary”).

A GMM is a mixture of Gaussian PDF parameterized by a num-
ber of mean vectors, covariance matrices, and weights of the indi-
vidual mixture components. The model is represented by a 
weighted sum of the individual PDFs. If a random vector xn  can 
be modeled by M Gaussian components with mean vectors ,gn

covariance matrices ,gR  where g = 1, 2…M indicate the compo-
nent indices, the PDF of xn  is given by

x xf Nn g n
g

M

1
m r=

=

^ ^h / , ),g gn R (1) 

where gr  indicates the weight of the gth mixture component. 
We denote the GMM model as { , , | } .g M1g g g fm r n R= =   
The likelihood of a feature vector given the GMM model can be 
evaluated using (1). Acoustic feature vectors are generally 
assumed to be independent. For a sequence of feature vectors 

{ | },x n T1X n f!=  the probability of observing these features 
given the GMM model is computed as

| | .xp pX n
n

T

1
m m=

=

^ ^h h%

Note that the order of the features is irrelevant in calculating the 
likelihood, which simplifies the computation for text-dependent 
speaker recognition. A GMM is usually trained using the expecta-
tion-maximization (EM) algorithm [99], which iteratively 
increases the likelihood of the data given the model.

ADAPTED GMMs: THE GMM–UBM 
SPEAKER-VERIFICATION SYSTEM
The GMM approach has been effective in speaker-identification 
tasks. For speaker verification, apart from the claimed speaker 
model, an alternate speaker model (representing speakers other 
than the target) is needed. In this way, these two models can be 
compared with the test data and the more likely model can be 
chosen, leading to an accept or reject decision. The alternate 
speaker model, also known as the background or world model,
initiated the idea of using a UBM that represents everyone 
except the target speaker. It is essentially a large GMM trained 
to represent the speaker-independent distribution of the speech 
features for all speakers in general. The block diagram in Figure 
4 becomes clear now since the background model is assumed to 
exist. Note that the UBM is assumed to be a “universal” model 
that serves as the alternate model for all enrolled speakers. 
Some methods have considered providing speaker-dependent 
unique background models [100], [101]. However, using a sin-
gle background model has been the most effective and mean-
ingful strategy.

The UBM was first introduced as an alternate speaker model in 
[102]. Later, in [6], the UBM was used as an initial model for the 
enrollment speaker GMMs. This concept was a significant 

GMM-BASED SPEAKER RECOGNITION: SUMMARY
First proposed  Reynolds et al. (1995) [96]
Previous methods Averaging of long-term features, 

VQ-based methods [80], [97], [98]
Proposed method  Model features using GMMs, compute 

similarity using feature likelihood
Why robust?  The probabilistic nature of GMM 

allows more variability in the data
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advancement achieved by the so-called GMM–UBM method. In this 
approach, a speaker’s GMM is adapted or derived from the UBM 
using Bayesian adaptation [103]. In contrast to performing maxi-
mum likelihood training of the GMM for an enrollment speaker, 
this model is obtained by updating the well-trained UBM parame-
ters. This relation between the speaker model and the background 
model provides better performance than independently trained 
GMMs and also lays the foundation for the speaker model adapta-
tion techniques that were developed later. We will return to these 
relations as we proceed. In the following subsections, we describe 
the formulations of this approach.

The LR Test
Given an observation O and a hypothesized speaker ,s the task of 
speaker verification can be stated as a hypothesis test between

: ,

: .

H O s

H O s

is from speaker

is no from speakert
0

1

In the GMM–UBM approach, the hypothesis H0  and H1  are repre-
sented by a speaker-dependent GMM sm  and the UBM .0m  Thus, 
for the set of observed feature vectors { | },x n T1n f!=X  the LR 
test is performed by evaluating the following ratio:

( | )
( | )

,p
p

H
H

reject
accept

<X
X s

0 0

0$
m

m

x
x'

where x  is the decision threshold. Usually, the LR test is per-
formed in the logarithmic scale, providing the so-called log-LR

( ) ( | ) ( | ) .log logp pX X Xs 0m mK = - (2)

Maximum A Posteriori Adaptation of UBM
Let { | }x n T1X n f!=  denote the set of acoustic feature vectors 
obtained from the enrollment speaker s. Given a UBM as in (1) and 
the enrollment speaker’s data X, at first the probabilistic align-
ment of the feature vectors with respect the UBM components is 
calculated as

( | , )
( | , )

( | , )
( ) .x

x

x
p g

p g

p g
gn

g n
g

M
g n

n0

0
1

0
m

r m

r m
c= =

=

/

Next, the values of ( )gnc  values are used to calculate the sufficient 
statistics for the weight, mean, and covariance parameter as

( ) ( ) ,

( ) ( ) .

( ) ( ),

F x

x x

g g

S g g

N g g

s n
n

T

n

s n
n

T

n n
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1
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c
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=

=

=

=
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/

/

/

These quantities are known as the zero-, first-, and second-order 
Baum–Welch statistics, respectively. Using these parameters, the 
posterior mean and covariance matrix of the features given the 
data vectors X  can be found as

[ | ] ( )
( )

,

[ | ] ( )
( )

.

x
F

x x
S

E N g
g

E N g
g

X

X

g n
s

s

g n n
T

s

s

=

=

The maximum a posteriori (MAP) adaptation update equations for 
weight, mean, and covariance, (3), (4), and (5), respectively, are 
proposed in [103] and used in [6] for speaker verification

[ ( ) / ( ) ] ,N g T 1g g s g gr a a r b= + -t (3)
[ | ] ( )xE 1Xg g g n gn a a= + -t ,gn (4)
[ | ] ( ) .x xE 1Xg g g n n

T
g g g g

T
g g

Ta a n n n nR R= + - + -t t t^ h (5)

The scaling factor b  in (3) is computed from all the adapted mix-
ture weights to ensure that they sum to unity. Thus, the new GMM 
parameters are a weighted summation of the UBM parameters and 
the sufficient statistics obtained from the observed data (see 
“GMM–UBM System: Summary”). The variable ga  is defined as

( )
( )

.N g r
N g

g
s

s
a =

+
(6)
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[FIG7] A schematic diagram of a GMM–UBM system using a four-mixture UBM. MAP adaptation procedure and supervector formation 
by concatenating the mean vectors are also illustrated. (a) A schematic diagram of a GMM–UBM system using a four-mixture UBM. 
(b)MAP adaptation procedure and supervector formation by concatenating the mean vectors are also illustrated.
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Here, r  is known as the relevance factor. This parameter controls 
how the adapted GMM parameter will be affected by the observed 
speaker data. In the original study [6], this parameter was defined 
differently for the model weight, mean, and covariance. However, 
since only adaptation of the mean vectors turned out to be the 
most effective, we only use one relevance factor in our discussion 
here. Figure 7 shows an example of MAP adaptation for a two-
dimensional feature space with a four-mixture UBM case.

THE GMM SUPERVECTORS
One of the issues with speaker recognition is that the training 
and test speech data can be of different durations. This requires 
the comparison of two utterances of different lengths. Thus, one 
of the efforts toward effective speaker recognition has always 
been to obtain a fixed-dimensional representation of a single 
utterance [80]. This is extremely useful since many different 
classifiers can be used on these utterance-level features from 
the machine-learning literature. One effective solution to 
obtaining a fixed-dimensional vector from a variable-duration 
utterance is the formation of a GMM supervector, which is 
essentially a large vector obtained by concatenating the parame-
ters of a GMM model. Generally, a GMM supervector is obtained 
by concatenating the GMM mean vectors of a MAP-adapted 
speaker model, as illustrated in Figure 7.

The term supervector was first used in this context for eigen-
voice speaker adaptation in speech recognition applications [104]. 
For speaker recognition, supervectors were first introduced in 
[105], motivating new model adaptation strategies involving eigen-
voice and MAP adaptation. Researchers realized that these large 
dimensional vectors are a very good platform for designing channel 
compensation methods. Various effective modeling techniques 
were proposed to operate on the supervector space. The two domi-
nating trends observed in these efforts were based on factor analy-
sis (FA) and support vector machines (SVMs). They will be 
discussed next.

GMM SUPERVECTOR SVMs
SVMs [106] are one of the most popular supervised binary classi-
fiers in machine learning. In [107], it was observed that GMM 
supervectors could be effectively used for speaker recognition/
verification using SVMs. The supervectors obtained from the 
training utterances were used as positive examples while a set of 
impostor utterances were used as negative examples. Channel 

compensation strategies were also developed in this domain, such 
as nuisance attribute projection (NAP) [108] and within-class 
covariance normalization (WCCN) [109]. Other approaches used 
SVM models for speaker recognition using short- and long-term 
features [39], [110]. However, using GMM supervectors with SVM 
and NAP provided the most effective solution (see “GMM-SVM 
System: Summary”).

SVMs
An SVM classifier aims at optimally separating multidimensional 
data points obtained from two classes using a hyperplane (a high-
dimensional plane). The model can then be used to predict the 
class of an unknown observation depending on its location with 
respect to the hyperplane. Given a set of training vectors and labels 
( , )x yn n  for { },n T1f!  where x Rn

d! and { , },y 1 1n ! - +  the 
goal of SVM is to learn the function :f R Rd " so that the class 
label of an unknown vector x can be predicted as

( ( )) .x xI fsign=^ h

For a linearly separable data set [106], a hyperplane H given by 
,w x b 0T + = can be obtained that separates the two classes, so that

( ) , .w xy b n T1 1n
T

n f$+ =

An optimal linear separator H  provides the maximum margin 
between the classes, i.e., the distance between H  and the projec-
tions of the training data from the two different classes are maxi-
mum. The maximum margin is found to be / w2  and data points 
xn for which ( ) ,w xy b 1n

T
n+ =  (i.e., points that lie on the mar-

gins, are known as support vectors). In a simple two-dimensional 
case, the operation of SVM is illustrated in Figure 8. When training 
data are not linearly separable, the features can be mapped into a 
higher-dimensional space using Kernel functions where the classes 
become linearly separable. For more details on SVM training and 
kernels, refer to [106] and [111]. Compensation strategies that are 
developed for SVM-based speaker recognition (e.g., NAP and 
WCCN) are discussed in later sections.

FA OF THE GMM SUPERVECTORS
FA aims at describing the variability in high-dimensional observ-
able data vectors using a lower number of unobservable/hidden 

GMM–UBM SYSTEM: SUMMARY
First proposed  Reynolds et al. (2000) [6]
Previous methods GMM models for enrollment, 

cohort speakers as background
Proposed method  Adapt speaker GMMs from a UBM
Why robust? Speaker models adapted from a 

well-trained UBM is more reliable 
than directly trained GMMs for 
each speaker

GMM-SVM SYSTEM: SUMMARY
First proposed  Campbell et al. (2006) [107] 
Previous methods Adapted GMM-based methods, 

GMM–UBM system
Proposed method  Use GMM supervector as utterance 

features, classify using SVMs
Why robust? Combines the effectiveness of 

adapted GMM as an utterance 
model and the discriminating abil-
ity of the SVM
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variables. For speaker rec-
ognition, the idea of 
explaining the speaker- and 
channel-dependent vari-
ability using FA in the 
GMM supervector space 
was first discussed in [112]. 
Many variants of FA meth-
ods were employed since 
then, which finally led to 
the current state-of-the-art 
i-vector approach [79]. In this section, we discuss these methods 
briefly to illustrate how the techniques have evolved.

Linear Distortion Model
In the discussions to follow, a speaker-dependent GMM supervec-
tor m s is generally assumed to be a linear combination of four 
components. These components are as follows:

1) speaker-/channel-/environment-independent component
)(m0

2) speaker-dependent component ( )mspk

3) channel-/environment-dependent component )(mchn

4) residual .)(mres

Component 1 is usually obtained from the UBM and is a constant. 
Components 2–4 are random vectors and are responsible for vari-
ability in the supervectors due to different phenomena. Using this 
model, a GMM supervector obtained from speaker s and session 
h is written as

.m m m m m,s h 0 spk chn res= + + + (7)

For acoustic features of dimension d and a UBM with M mixture 
components, these GMM supervectors are of dimension ( ) .Md 1#
As an example, the speaker- and channel-independent supervector 
m0 is the concatenation of the UBM mean vectors. We denote the 
subvectors of m0 for the gth  mixture as m [ ],g0  which equals .gn  In 
the following sections, we discuss how well-known linear Gaussian 
models, including FA, can be used to develop methods based on this 
generic decomposition of the GMM supervectors. A summary of the 
various linear statistical models in speaker recognition is included 
in Table 1, which highlights both formulation and specifics on 
matrix/model traits.

Classical MAP Adaptation
We revisit the MAP adaptation technique discussed previously in 
the GMM–UBM system. If we examine the adaptation equation (4), 
which is used to update the mean vectors, it is clear that this is a 
linear combination of two components: one is speaker dependent 
and the other is independent. In a more generalized way, MAP 
adaptation can be represented as an operation on the GMM mean 
supervector as: 

,m m Dz ss 0= + (8)

where D is ( )Md Md#  a diagonal matrix and z s is a Md 1#
standard normal random vector. We dropped the subscript 
due to session h for simplicity. According to the linear 

distortion model of (7), 
.m Dz sspk = As discussed 

in [113], in the special 
case when we set

( / ) ,D r12 R=

the MAP adaptation equa-
tions given in (4) [6] arises 
from (8), where r is the 
relevance factor in (6).

Eigenvoice Adaptation
Perhaps the first FA-related model used in speaker recognition was 
the eigenvoice method [105]. The eigenvoice method was initially 
proposed for speaker adaptation in speech recognition [114]. In 
essence, this method restricts the speaker model parameters to lie 
in a lower dimensional subspace, which is defined by the columns 
of the eigenvoice matrix. In this model, a speaker-dependent GMM 
mean supervector m s is expressed as

,mm Vys s0= + (9)

where m0 is the speaker-independent supervector obtained from 
the UBM, the columns of the matrix V spans the speaker sub-
space, and y s are the standard normal hidden variables known as 
speaker factors. Here, we dropped the subscript h for simplicity. 
In accordance with the linear distortion model in (7), the speaker-
dependent component is .m Vy sspk = Note that this model does 
not have a residual noise term as in probabilistic PCA (PPCA) 
[115] or FA. This means that the eigenvoice model is essentially 
equivalent to PCA. The model covariance is .VVT Since supervec-
tors are usually of a large dimension, a full rank sample covari-
ance matrix, i.e., the supercovariance matrix, is difficult to 
estimate with limited amount of data. Thus, EM algorithms 
[116], [117] are used to estimate the eigenvoices. The speaker fac-
tors need to be estimated for an enrollment speaker. Computation 
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[FIG8] A conceptual illustration of an SVM classifier: Positive (+) 
and negative (–) examples are correspondingly labeled, with the 
optimal linear separator and support vectors shown.

[TABLE 1] A SUMMARY OF THE LINEAR STATISTICAL MODELS
IN SPEAKER RECOGNITION.

MODEL FORMULATION REMARKS

CLASSICAL MAP m m Dzs s0= + D  IS DIAGONAL, ( )z 0, INs +

EIGENVOICE m m Vys s0= + V  IS LOW RANK, ( )0, Iy Ns +

EIGENCHANNEL m m UxDz,s h s h0= + + U  IS LOW RANK, ( , ) ( )z x 0 IN ,s h +

JFA m m Ux DzVy, ,s h h s s h0= + + + ,U V ARE LOW RANK,
( , , ) ( )z 0 Iyx N ,,s hh s +

i-VECTOR m m Tw, ,s h s h0= + T  IS LOW RANK, ( )0 Iw N ,,s h +
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of the likelihood is carried out as provided in [16, eq. (19)], using 
the adapted supervector.

This model implies that the adaptation of the GMM supervec-
tor parameters is restricted by the eigenvoice matrix. The advan-
tage with this model is that when a small amount of data is 
available for adaptation, the adapted model is more robust as it is 
restricted to live in the speaker-dependent subspace, being less 
affected by nuisance directions. However, the eigenvoice model 
does not model the channel or intraspeaker variability.

Eigenchannel Adaptation
Similar to adapting the UBM toward a speaker model, a speaker 
model can also be adapted to a channel model [105]. This can be 
useful when an unseen channel distortion is observed during test-
ing, and the enrollment speaker model can be adapted to that 
channel. Similar to the eigenvoice model, the channel variability 
can also be assumed to lie in a subspace spanned by the principal 
eigenvectors of the channel covariance matrix. According to our 
distortion model (7), for a specific channel h, the term 

,m Uxhchn = where U is a low-rank matrix that spans the channel 
subspace, and ( , )x I0Nh ! are the channel factors. When eigen-
channel adaptation is combined with classical MAP, we obtain the 
model for speaker- and session-dependent GMM supervector

.m m Dz Ux,s h s h0= + + (10)

More details on training the hyperparameters D and U can be 
found in [113]. Likelihood computation can be carried out in a 
similar way as the eigenvoice method.

Joint FA
The joint FA (JFA) model is formulated by combining both eigen-
voice and eigenchannel together, which is accomplished by MAP 
adaptation for a single model (see “JFA: Summary”). This model 
assumes that both speaker and channel variability lie in lower dimen-
sional subspaces of the GMM supervector space. These subspaces are 
spanned by the matrices V and U, as before. The model assumes, for a 
randomly chosen utterance obtained from speaker s and session ,h
that its GMM mean supervector can be represented by

.m m Ux Vy Dz, ,s h h s s h0= + + + (11)

Thus, this is the only model so far that considers all four compo-
nents of the linear distortion model we discussed previously. 

Indeed, JFA was shown to outperform the other contemporary 
methods. More details on implementation of JFA can be found in 
[16] and [118].

The i-Vector Approach
As discussed previously, SVM classifiers on GMM supervectors have 
been a very successful approach for robust speaker recognition. FA 
based methods (especially the JFA technique) were also among 
state-of-the-art systems. In an attempt to combine the strengths of 
these two approaches, Dehak et al. [79], [119], [120] attempted to 
use JFA as a feature extractor for SVMs. In their initial attempt 
[119], the speaker factors estimated using JFA were used as features 
for SVM classifiers. Observing the fact that the channel factors also 
contain speaker-dependent information, the speaker and channel 
factors were combined into a single space termed the total variabil-
ity space [79], [120]. In this FA model, a speaker- and session-
dependent GMM supervector is represented by

.m m Tw, ,s h s h0= + (12)

The hidden variables ( , )w 0 IN,s h + in this case are called total 
factors. Similar to all of the FA methods above, the hidden vari-
ables are not observable but can be estimated by their posterior 
expectation. The estimates of the total factors, which can be used 
as features to the next stage of classifiers, came to be known as the 
i-vectors. The term i-vector is a short form of “identity vector,” 
regarding the speaker-identification application, and also of “inter-
mediate vectors,” referring to its intermediate dimension between 
those of a supervector and an acoustic feature vector [79] (see 
“The i-Vector System: Summary”).

Unlike JFA or other FA methods, the i-vector approach does 
not make a distinction between speaker and channel. It is simply a 
dimensionality reduction method of the GMM supervector. In 
essence, (12) is very similar to a PCA model on the GMM supervec-
tors. The T matrix is trained using the same algorithms as for the 
eigenvoice model, except that each utterance is assumed to be 
obtained from a different speaker.

Mismatch Compensation In i-Vector Domain
The i-vector approach itself does not perform any compensation; 
on the contrary, it only provides a meaningful lower-dimensional 
(400 ,  800) representation of a GMM supervector. Thus, it has 

THE i-VECTOR SYSTEM: SUMMARY 
First proposed  Dehak et al. (2009) [79]
Previous methods JFA and GMM–SVM-based approaches
Proposed method  Reduce supervector dimension using 

FA before classification
Why robust? i-vectors effectively summarize utter-

ances and allows using compensa-
tion methods that were not practical 
in large dimensional supervectors

JFA: SUMMARY
First proposed  Kenny et al. (2004) [118]
Previous methods MAP adapted GMM, GMM-SVM 

approach
Proposed method  Model speaker and channel vari-

ability in GMM supervectors
Why robust? Exploits the behavior of speakers’ 

features in variety of channel condi-
tions learned using FA
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most of the advantages of the supervectors, but because of its 
lower dimension, many conventional compensation strategies can 
be applied to speaker recognition, which were previously not prac-
tical with the large-dimensional supervectors.

LINEAR DISCRIMINANT ANALYSIS
Linear discriminant analysis (LDA) is a commonly employed tech-
nique in statistical pattern recognition that aims at finding linear 
combinations of feature coefficients to facilitate discrimination of 
multiple classes. It finds orthogonal directions in the feature space 
that are more effective in discriminating the classes. Projecting the 
original features in these directions improve classification accuracy. 
Let D indicate the set of all development utterances, w ,s i indicates 
an utterance feature (e.g., supervector or i-vector) obtained from the 
ith utterance of speaker ,s ns  denotes the total number of utter-
ances belonging to speaker ,s and S is the total number of speakers 
in D. The between-and within-class covariance matrices are given by

S w w w wS
1 andb s

s

S

s
T

1
= - -

=

r r r r^ ^h h/ (13)

( ) ( ) ,S w w w wS n
1 1

, ,w
ss

S

s i s s i s
T

i

n

1 1

s

= - -
= =

r r/ / (14)

where the speaker-dependent and speaker-independent mean vec-
tors are given by

w wn
1 and,s

s
s i

i

n

1

s

=
=

r /

,w wnS
1 1

,
ss

s

s i
i

n

1 1

s

=
= =

r / /

respectively. The LDA optimization thus aims at maximizing the 
between class variance while minimizing the within-class variance 
(due to channel variability). The projections obtained from this 
optimization are found by the solution of the following general-
ized eigenvalue problem:

S v S v.b wK= (15)

Here, K  is the diagonal matrix containing the eigenvalues. If the 
matrix Sw is invertible, this solution can be found by finding the eigen-
values of the matrix S .Sw b

1- Generally, the first k R< eigenvalues are 
used to prepare a matrix ALDA of dimension R k# given by

[ ],A v vk1LDA f=

where v vk1f denote the first k eigenvectors obtained by solving 
(15). The LDA transformation of the utterance feature w is thus 
obtained by

( ) .w A wLDA LDA
TU =

NAP
The NAP algorithm was originally proposed in [108]. In this 
approach, the feature space is transformed using an orthogonal pro-
jection in the channel’s complementary space, which depends only 
on the speaker (assuming that other variability in the data is 

insignificant). The projection is calculated using the within-class 
covariance matrix. Define a d d# projection matrix [108] of co-
rank k d<

,P I u u[ ] [ ]k k
T= -

where u[ ]k is a rectangular matrix of low rank whose columns are 
the k principal eigenvectors of the within-class covariance matrix 
Sw given in (14). NAP is performed on w as

( ) .w PwNAPU =

WCCN
This normalization was originally proposed for improving robust-
ness in the SVM-based speaker-recognition framework [109] 
using a one-versus-all decision approach. The WCCN projection 
aims at minimizing the false-alarm and miss-error rates during 
SVM training.

The implementation of the strategy begins with using a data 
set D similar to the one that was described in the previous section. 
The within-class covariance matrix Sw  is calculated using (14), 
and the WCCN projection is performed as

( )w w,AT
WCCN WCCNU =

where AWCCN is computed through the Cholesky factorization of 
Sw

1- such that

.S A AT
w

1
WCCN WCCN=-

In contrast to LDA and NAP, the WCCN projection conserves the 
directions of the feature space.

SPEAKER VERIFICATION USING i-VECTORS
After i-vectors were introduced, in essence, many previously avail-
able pattern-recognition methods were effectively applied in this 
domain. We discuss some of the popular methods of classification 
using i-vectors.

SVM Classifier
As discussed previously, the i-vector representation was discovered 
in an attempt to utilize JFA as a feature extractor for SVMs. Thus, 
initially i-vectors were used with SVMs with different kernel func-
tions [79]. The idea is the same as SVM with GMM supervectors, 
except that the i-vectors are now used as utterance-dependent fea-
tures. Because of the lower dimension of the i-vectors compared to 
supervectors, the application of LDA and WCCN projections 
together became more effective and were well suited.

Cosine Distance Scoring
In [79], the cosine similarity measure-based scoring was proposed 
for speaker verification. In this measure, the match score between 
a target and test i-vector wtarget and wtest is computed as their nor-
malized dot product

, .w w
w
w w

w
CDS target test

target test

target test$
=^ h
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Probabilistic Linear Discriminant Analysis
Probalistic LDA (PLDA) was first used for session variability com-
pensation for facial recognition [121]. This essentially follows the 
same modeling assumptions as JFA, i.e., a pattern vector contains 
class-dependent and session-dependent variabilities, both lying in 
lower-dimensional subspaces. An i-vector extracted from utterance 
u is decomposed as

.w w ,, s h s hs h 0 b a fU C= + + + (16)

Here, w RR
0 ! is the speaker-independent mean i-vector, U  is the 

R Nev# low-rank matrix representing the speaker-dependent basis 
functions/eigenvoices, C  is the R Nec# low-rank matrix spanning 
the channel subspace, ,0 INs +b ^ h is an N 1ev # hidden variable 
(i.e., speaker factors), ,0 INs +a ^ h is an N 1ec #  hidden variable 
(i.e., channel factors), and R,h s

R!f  is a random vector represent-
ing the residual noise.

PLDA was first introduced in speaker verification in [94] using 
a heavy-tailed distribution assumption on i-vectors instead of a 
Gaussian assumption. Later, it was shown that when i-vectors are 
length normalized (i.e., they are divided by their corresponding 
vector length) [122], a Gaussian PLDA model performs equiva-
lent to its heavy-tailed version. Since the latter is computationally 
more expensive, Gaussian PLDA models are more commonly 
used. Also, the use of a full-covariance noise model for ,h sf  is fea-
sible in this formulation that allows one to drop the eigenchannel 
term )( haC  from (16) without loss of performance. In this case, 
the PLDA model would be as follows:

.w w, ,s h s s h0 b fU= +

We note that, though developed independently, the JFA model is very 
similar to PLDA. Looking at (11) and (16) and comparing the terms 
makes this clear. The obvious difference between these models is that 
JFA models the GMM supervectors, while PLDA models i-vectors. Since 
i-vectors are essentially dimensionality reduced versions of supervectors 
(incurring loss of information), JFA, in principle, should be better in 
modeling the within- and between-speaker variations. However, in real-
ity, the amount of labeled training data is limited, and due to the large 
number of parameters in JFA, it cannot be trained as effectively as a 
PLDA model on lower dimensional i-vectors (using the same amount of 
labeled data). Besides, the total variability model (i-vector extractor) can 
be trained on unlabeled data sets, which are available in larger amounts.

Although the model equations are identical, there are significant 
differences in the training process of the two models. Since JFA was 
designed for GMM supervectors, the formulations involved process-
ing the acoustic speech frames and their statistics in different mix-
tures of the UBM. Unlike i-vectors, the GMM supervectors are not 
extracted first before JFA training—instead, JFA operates directly on 
the acoustic features and can provide similarity scores between two 
utterances from their corresponding feature streams. This depen-
dence on acoustic features (and the various order statistics) makes 
the scoring process more computationally expensive for JFA. For 
PLDA, the input features are i-vectors that are extracted beforehand, 
and, during the scoring process, only two i-vectors from the corre-
sponding utterances are required—not the acoustic features. This 
makes PLDA much simpler in implementation.

It can be argued that, with a sufficiently large labeled data set, 
JFA can outperform an i-vector-PLDA system. However, we are not 
aware of such results reported at this time.

PERFORMANCE EVALUATION 
IN STANDARDIZED DATA SETS
Evaluating the performance of a speaker-verification task using a 
standardized data set is a very important element of the research 
cycle. Over the years, new data sets and performance metrics have 
been introduced to match realistic scenarios. These, in turn, moti-
vated researchers to discover new strategies to address the chal-
lenges, compare results among peers, and exchange ideas.

THE NIST SRE CHALLENGE
NIST has been organizing an SRE campaign for the past several 
years aiming at providing standard data sets, verification tasks, and 
performance metrics for the speaker ID community (Figure 9). 
Every year’s evaluation introduces new challenges for the research 
community. These challenges include newly introduced recording 
conditions (e.g., microphone, handset, and room acoustics), short 
test utterance duration, varying vocal effort, artificial and real-life 
additive noise, restrictions or allowances in data-utilization strategy, 
new performance metrics to be optimized, etc. It is clear that the per-
formance metric defined for a speaker-recognition task depend on 
the data set and train-test pairs of speech (also known as trials) used 
for the evaluation. A sufficient number of such trials needs to be pro-
vided for a statistically significant evaluation measure [78]. The per-
formance measures can be based on hard verification decisions or 
soft scores, they may require log-LR as scores, and depend on the 

Speaker 1

Speaker 2

Speaker 3

Speaker 4

Speaker 5

Speaker 6

Speaker 7

Speaker 8

Speaker 9

Speaker 10

[FIG9] A graphical representation of 79 utterances spoken by ten 
individuals collected from the NIST SRE 2004 corpus. The i-vector 
representation is used for each segment; the plot is generated 
using GUESS, an open-source graph exploration software [123] 
that can visualize higher-dimensional data using distance 
measures between samples.
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prior probability of encountering a target speaker. For a given data 
set and task, systems evaluated using a specific error/cost criteria can 
be compared. Before discussing the common performance measures, 
we introduce the type of errors encountered in speaker verification.

TYPES OF ERRORS
There are mainly two types of errors in speaker verification (or any 
other biometric authentication) when a hard decision is made by 
the automatic system. From the speaker authentication point of 
view, we define them as

■ false accept (FA): granting access to an impostor speaker
■ false reject (FR): denying access to a legitimate speaker.
From the speaker-detection point of view (a target speaker is 

sought), these are called false-alarm and miss errors, respectively. 
According to these definitions, two error rates are defined as

.

False-Acceptance Rate (FAR) Number of impostor attempts
Number of FA errors

False-Rejection Rate (FRR) Number of legitimate attempts
Number of FR errors

=

=

Speaker-verification systems generally output a match score 
between the training speaker and the test utterance. This is true 
for most two-class recognition/binary detection problem. This 
score is a scalar variable that represents the similarity between the 
enrolled speaker and the test speaker, with higher values indicat-
ing the speakers are more similar. To make a decision, the system 
needs to use a threshold ( )x  as illustrated in Figure 10. If the 
threshold is too low, there will be a lot of FA errors, whereas if the 
threshold is too high, there will be too many FR/miss errors.

EQUAL ERROR RATE
The equal error rate (EER) is defined as the FAR and FRR values 
when they become equal. That is, by changing the threshold, we find 
a point where the FAR and FRR become equal. This is shown in 

Figure 10. The EER is a very popular performance measure for 
speaker-verification systems. Only the soft scores from the automatic 
system are required to compute the EER. No actual hard decisions 
are made. It should be noted that operating a speaker-verification sys-
tem on the threshold corresponding to the EER might not be desir-
able for practical purposes. For high-security applications, one should 
set the threshold higher, lowering the FA errors at the cost of miss 
errors. However, for high convenience, the threshold may be set 
lower. Let us discuss some examples. In authenticating users for bank 
accounts, security is of utmost importance. It is thus better to deny 
access to the legitimate user (and ask other forms of verification) as 
opposed to granting access to an impostor. On the contrary, for an 
automated customer service, denying a legitimate speaker will cause 
inconvenience and frustration to the user. In this case, accepting an 
illegitimate speaker is not as critical as in high-security applications.

DETECTION COST FUNCTION
This is, in fact, a family of performance measures introduced by 
NIST over the years. As mentioned before, the EER does not differ-
entiate between the two errors, which sometimes is not a realistic 
performance measure. The detection cost function (DCF), thus, 
introduces numerical costs/penalties for the two types of errors 
(FA and miss). The a priori probability of encountering a target 
speaker is also provided. The DCF is computed over the full range 
of decision threshold values as

( ) ( ) ( ) ( ) .1DCF C P P C P PMISS Target FA FA Targetx x x= + -

Here,
CMiss = Cost of a miss/FR error
CFA = Cost of an FA error
P argetT = Prior probability of target speaker.

( )PM xiss = Probability of (Miss | Target, Threshold = )x
( )PFA x = Probability of (FA | Nontarget, Threshold = ) .x
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[FIG10] An illustration of target and nontarget score distributions and the decision threshold. Areas under the curves 
with blue and red colors represent FAR and FRR errors, respectively.
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Usually, the DCF is normalized by dividing it by a constant [77]. 
The probability values here can be computed using the distribu-
tion of true and impostor scores and computing the areas under 
the curve as shown in Figure 10. The first three quantities above 
( , ,C CMiss FA  and )PTarget  are predefined. Generally, the goal of the 
system designer is to find the optimal threshold value that mini-
mizes the DCF.

In NIST SRE 2008, these DCF parameters were set as ,10CMiss =

,1CFA =  and . .0 01PTarget =  The values of the costs indicate that 
the system is penalized ten times more for making a miss error 
rather than an FA error. As a real-world example, when detect-
ing a known criminal’s voice from evidence recordings, it may 
be better to have false positives (e.g., to suspect and investigate 
an innocent speaker) than to miss the target speaker (e.g., to be 
unable to detect the criminal at all). If we ignore PTarget  for the 
moment, setting a lower threshold ( )x  would be beneficial 
since, in this case, the system will tolerate more FAs but will not 
miss too many legitimate speakers ( )[PMiss x  will be lower], 
yielding a lower DCF value for that threshold. Now, the value of 
the prior ( . )0 01PTarget =  indicates that a target speaker will be 
encountered by the system once in every 100 speaker-verifica-
tion attempts. If this condition is considered independently, it is 
better to have a higher threshold since most of the attempts will 
be from impostors ( . ) .0 99PNon argett =  However, when all three 
parameters are considered together, finding the optimal thresh-
old requires sweeping through all the DCF values.

By processing the DCF, two performance measures are derived: 
1) the minimum DCF (MinDCF) and 2) the actual DCF (ActDCF). 
The MinDCF is the minimum value of DCF that can be obtained 
by changing the threshold, .x  The MinDCF parameter can be 

computed only when the soft scores are provided by the systems. 
When the system provides hard decisions, the actual DCF is used 
where the probability values involved (in the DCF equation) are 
simply computed by counting the errors. Both of these perfor-
mance measures have been extensively used in the NIST evalua-
tions. The most recent evaluation in 2012 introduced a DCF that 
is a dependent on two different operating points (two sets of error 
costs and target priors) instead of one.

It is important to note here that the MinDCF (or ActDCF) param-
eter is not an error rate in the general sense. Thus, its interpretation 
is not straightforward. Obviously, the lower MinDCF, the better the 
system performance. However, the exact value of the MinDCF can 
only be used to compare other systems evaluated using the same tri-
als and performance measure. Generally, when the system EER 
improves, the DCF parameters also improve. An elaborate discussion 
on the relationship between EER and DCF can be found in [124].

DETECTION ERROR TRADEOFF CURVE
When speaker-verification performance needs to be evaluated in a 
range of operating points, the detection error tradeoff (DET) curve is 
generally employed. The DET curve is a plot of the errors FAR versus 
FRR/miss. An example DET curve is shown in Figure 11. As the sys-
tem performance improves, the curve moves toward the origin. As 
illustrated in Figure 11, the DET curve corresponding to System 2 is 
closer to the origin and thus represents a better system. The EER 
and minDCT points are shown on the DET curve of System 1.

During the preparation of the DET curve, the cumulative density 
functions (CDFs) of the true and impostor scores are transformed to 
normal deviates. This means that the true/impostor score CDF value 
for a given threshold is transformed by a standard normal inverse 
CDF (ICDF) and the resulting values are used to make the plot. This 
transform yields a linear DET curve when the two distributions are 
normal and have equal variances. Thus, even though the labels indi-
cate the axis as error probabilities, they are actually plotted according 
to the corresponding normal deviate values. 

RECENT ADVANCEMENTS IN 
AUTOMATIC SPEAKER RECOGNITION 
In recent years, considerable research progress has been made in 
spoofing and countermeasures [125], [126], back-end classifiers 
[127], [128], compensation for short utterances [129]–[131], 
score calibration and fusion [132], [133], deep neural network 
(DNN) [134]–[136], and alternate acoustic modeling [137] tech-
niques. In this section, we briefly discuss some of these topics and 
their possible implications in the speaker-recognition research.

NIST i-VECTOR MACHINE-LEARNING 
CHALLENGE AND BACK-END PROCESSING
The most recent NIST-sponsored evaluation, the i-Vector 
Machine-Learning Challenge, focused on back-end classifiers. In 
this paradigm, instead of audio data, i-vectors from speech utter-
ances were provided to the participants [138]. In this way, the 
entry barrier to the evaluation was reduced as many machine-
learning-focused research groups were able to participate without 
expertise in audio/speech processing. Significant performance 
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[FIG11] DET curves of two speaker-verification systems 
(System 1 and System 2). In System 1, the points on the curve 
corresponding to the threshold that yields the EER and minimum 
DCF (as in NIST SRE 2008), and the direction of an increasing 
threshold are shown. Being closer to the origin, System 2 shows 
a better performance.
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improvements were observed from top-performing systems com-
pared to the baseline system provided by NIST [138]. Since only 
i-vectors were provided by NIST, the algorithmic improvements 
are all due to modeling and back-end processing of i-vectors. In 
addition, the i-vectors provided by NIST did not have any speaker 
labels, which also generated new ideas on utilizing unlabeled data 
in speaker recognition [139].

DURATION VARIABILITY COMPENSATION
Duration variability is one of the problems that has received con-
siderable attention in recent years. Since the advent of GMM 
supervectors and i-vectors, variable-duration utterances could be 
mapped to a fixed-dimensional pattern. This has been a significant 
advancement since various machine-learning tools were being 
applied to these vectors, especially i-vectors due to their smaller 
dimensions. However, it is clear that an i-vector extracted from a 
short utterance will not be as representative of a speaker com-
pared to the one extracted from a longer utterance. Duration mis-
match between train and test is thus a major problem. One way to 
mitigate this problem is by including short utterances in the 
PLDA training [130], [140]. Alternatively, this can be addressed in 

the score domain [130]. In [141], Kenny et al. propose that i-vec-
tors extracted from short utterances are less reliable and incorpo-
rates this variability by including a noise term into the PLDA 
model. In [142], a DNN-based method was proposed for speaker 
recognition in short utterances where the content of the test 
utterance was searched in the enrollment data to be compared.

DNN-BASED METHODS
In the last few years, DNNs have been tremendously successful at 
many speech-processing tasks, most prominently in speech recog-
nition [143], [144]. Naturally, DNNs have also been used in 
speaker recognition. Works by Kenny et al. [136] have shown 
improvements in extracting Baum–Welch statistics for speaker 
recognition using DNNs. DNNs have also been incorporated for 
multisession speaker recognition [134] as well as phonetically 
aware DNNs for noise-robust speaker recognition [135]. DNNs 
have also been used to extract front-end features, also known as 
bottle-neck features [145]. Since, there are an extensive set of lit-
erature on deep learning [143], [146] and its application in speaker 
recognition is relatively new, we have not included a discussion on 
DNNs in this tutorial.

[TABLE 2] THE SPEAKER-RECOGNITION PROCESS: MAN VERSUS MACHINE.

ASPECT HUMANS MACHINES

TRAINING SPEAKER RECOGNITION IS AN ACQUIRED
HUMAN TRAIT AND REQUIRES TRAINING.

REQUIRES SUFFICIENT DATA TO TRAIN THE RECOGNIZERS.

VAD DIFFERENT PARTS OF THE HUMAN BRAIN ARE
ACTIVATED WHEN SPEECH AND NONSPEECH
STIMULI ARE PRESENTED.

SPEECH SIGNAL PROPERTIES AND STATISTICAL MODELS ARE
USED TO DETECT PRESENCE OR ABSENCE OF SPEECH.

AUDIO PROCESSING THE HUMAN BRAIN PERFORMS BOTH SPECTRAL
AND TEMPORAL PROCESSING. IT IS NOT KNOWN
EXACTLY HOW THE AUDIO SIGNAL DEVELOPS THE
SPEAKER- OR PHONEME-DEPENDENT ABSTRACT
REPRESENTATIONS/MODELS.

ACOUSTIC FEATURE PARAMETERS DEPENDING ON SPECTRAL
AND TEMPORAL PROPERTIES OF THE AUDIO SIGNAL ARE
UTILIZED FOR RECOGNITION.

HIGH-LEVEL FEATURES WE CONSIDER LEXICON, INTONATION, PROSODY,  
AGE, GENDER, DIALECT, SPEAKING RATE, AND
MANY OTHER PARALINGUISTIC ASPECTS OF
SPEECH TO REMEMBER A PERSON’S VOICE.

RECENT ALGORITHMS HAVE INCORPORATED PROSODY, 
PRONUNCIATION, DIALECT, AND OTHER HIGH-LEVEL
FEATURES FOR SPEAKER IDENTIFICATION.

COMPACT REPRESENTATION THE HUMAN BRAIN FORMS SPEAKER-DEPENDENT,  
EFFICIENT ABSTRACT REPRESENTATIONS. THESE ARE
INVARIANT TO CHANGES OF THE ACOUSTIC INPUT,  
PROVIDING ROBUSTNESS TO NOISE AND
SIGNAL DISTORTION.

HIGH-LEVEL FEATURES ARE EXTRACTED THAT SUMMARIZE
THE VOICE CHARACTERISTICS OF A SUBJECT. THESE ARE
EXTRACTED IN A WAY TO MINIMIZE SESSION VARIABILITY
DUE TO NOISE OR DISTORTION.

LANGUAGE DEPENDENCE SPEAKER RECOGNITION BY HUMANS IS BETTER
IF THEY KNOW THE LANGUAGE BEING SPOKEN.

AUTOMATIC SYSTEM’S PERFORMANCE IS DEGRADED IF
THERE IS A MISMATCH IN TRAINING AND TEST LANGUAGE.

FAMILIAR VERSUS
UNFAMILIAR SPEAKERS

HUMANS ARE EXTREMELY GOOD AT
IDENTIFYING FAMILIAR VOICES, BUT NOT
SO FOR UNFAMILIAR ONES.

MACHINES PROVIDE CONSISTENT PERFORMANCE WHEN
ADEQUATE AMOUNT OF DATA IS PROVIDED. FAMILIARITY
CAN BE RELATED TO THE AMOUNT OF TRAINING DATA.

IDENTIFICATION VERSUS
DISCRIMINATION

THE HUMAN BRAIN PROCESSES THESE TWO
TASKS DIFFERENTLY.

IN MOST CASES, THE SAME ALGORITHM (WITH SLIGHT 
MODIFICATION) CAN BE USED TO IDENTIFY AND
DISCRIMINATE BETWEEN SPEAKERS.

MEMORY RETENTION HUMANS’ ABILITY TO REMEMBER A PERSON’S
VOICE DEGRADES WITH TIME.

A COMPUTER ALGORITHM CAN STORE THE MODELS OF
A PERSON INDEFINITELY IF PROVIDED SUPPORT.

FATIGUE HUMAN LISTENERS CANNOT PERFORM AT
THE SAME LEVEL FOR A LONG DURATION.

COMPUTERS DO NOT HAVE ISSUES WITH FATIGUE. LONG
RUNTIMES MAY CAUSE OVERHEATING IF NECESSARY 
PRECAUTIONS ARE NOT TAKEN.

IDENTIFY IDIOSYNCRASIES HUMANS ARE VERY GOOD AT IDENTIFYING
CHARACTERISTIC TRAITS OF A VOICE.

THE MACHINE ALGORITHMS HAVE TO BE SPECIFICALLY 
TOLD WHAT TO LOOK FOR AND COMPARE.

MISMATCHED CONDITIONS HUMANS RELY MORE ON PARALINGUISTIC ASPECTS
OF SPEECH IN SEVERE MISMATCHED CONDITIONS.

AUTOMATIC SYSTEMS ARE TRAINED ON VARIOUS
ACOUSTIC CONDITIONS, AND USUALLY ARE MORE ROBUST. 

SUSCEPTIBILITY TO BIAS HUMAN JUDGMENT CAN BE BIASED BY
CONTEXTUAL INFORMATION.

AUTOMATIC ALGORITHMS CAN BE BIASED TOWARD THE
TRAINING DATA.
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MAN VERSUS MACHINE IN SPEAKER RECOGNITION
In this section, we attempt to compare the speaker-recognition task 
as performed by humans and the state-of-the-art algorithms. First 
we must realize that it is very difficult to do such comparisons in a 
statistically meaningful manner. This is because getting humans to 
evaluate a large number of utterances reliably is quite challenging. 
However, attempts have been made to make such comparisons in 
the past [147]–[149]. In the majority of these cases, especially in 
the recent ones, the speaker-recognition performance of humans 
was found to be inferior to that of automatic systems.

In [150], the authors compared the speaker-recognition perfor-
mance of human listeners to a typical algorithm (automatic sys-
tem is not mentioned in the paper) using a subset of NIST SRE 
1998 data. Opinions of multiple human listeners were combined to 
form the final speaker-recognition decision. Results showed that 
humans are as good as the best system and outperformed standard 
algorithms especially when there is a mismatch in the telephone 
channel (a different number was used to make the phone call).

Recently, NIST presented speaker-recognition tasks for evalu-
ating systems that combined human and machines [20]. The 
task, known as the HASR, was designed in a way such that the 
most difficult test samples are selected for the evaluation (chan-
nel mismatch, noise, same/different speakers that sound highly 
dissimilar/similar, etc.). However, the total number of trials in 
these experiments was very low compared to evaluations 
designed for automatic systems. One of the motivations of this 
study was to evaluate if automatic systems have become good 
enough, in other words, is it beneficial to keep humans involved 
in the process? The HASR study was repeated during the 2012 
NIST SRE where both noisy and channel degraded speech data 
were encountered.

Interestingly, machines consistently performed better than 
human-assisted approaches in the given NIST HASR tasks [151]–
[155]. In [156], it was even claimed that by combining multiple 
naïve listeners’ decisions, the HASR 2010 task can be performed as 
well as forensic experts, which somewhat undermines the role of a 
forensic expert. In [157], it was shown that human and machine 
decisions were complementary, meaning that in some cases the 
humans correctly identified a speaker where the automatic system 
failed, and vice versa. However, the HASR tasks were exceptionally 
difficult for human listeners because of the severe channel mis-
match, unfamiliarity with the speakers, noise, and other factors. 
A larger and more balanced set of trials should be used for a proper 
evaluation of human performance. Following the HASR paradigm, 
further research focused on how humans can aid the decision of 
an automatic system, especially in the context of forensic speaker 
recognition [157]. An i-vector system [79] with a PLDA classifier 
was used in this particular study.

The performance of humans and machines was compared in a 
forensic context in [149], where 45 trials were used (nine target 
and 36 nontarget). The human system consisted of a panel of lis-
teners whereas a GMM–UBM-based system [6] was used for the 
automatic system. Here again, the automatic system outperformed 
the human panel of listeners. However, the results should be inter-
preted with caution since the number of trials here was low.

In [158], human speaker-recognition performance was com-
pared with automatic algorithms in presence of voice mimicry. A 
GMM–UBM system and an i-vector-based system were used in the 
study. The speech database consisted of five Finnish public figures 
and their voices were mimicked by a professional voice actor. The 
results show that humans are more likely to make errors when 
impersonation is done. On average, the automatic algorithm per-
formed better than the human listeners.

Although most experiments so far show human performance to 
be inferior to automatic algorithms, these cannot be considered as 
definitive proof that machines are always better than humans. In 
many circumstances, humans will perform better, especially when 
paralinguistic information becomes important. As discussed previ-
ously, humans perform exceptionally well in recognizing familiar 
speakers. To the best of our knowledge, a comparison of familiar 
speaker recognition versus automatic algorithm (with sufficient 
training data) has not been performed yet. Thus, for familiar speak-
ers, humans may perform much better than state-of-the-art algo-
rithms—and this should motivate researchers to discover how the 
human brain stores familiar speakers’ identity information. In 
HASR, the goal was to have humans assist the automatic system. 
On the other hand, automatic systems inspired by the forensic 
experts’ methodology have already been investigated [159], where 
speaker nativeness, dialect, and other demographic information 
were considered. A generic comparison between how humans and 
machines perform speaker recognition is provided in Table 2.

CONCLUSIONS
A substantial amount of work still needs to be done to fully 
understand how the human brain makes decisions about speech 
content and speaker identity. However, from what we know, it can 
be said that automatic speaker-recognition systems should focus 
more on high-level features for improved performance. Humans 
are effective at effortlessly identifying unique traits of speakers 
they know very well, whereas automatic systems can only learn a 
specific trait if a measurable feature parameter can be properly 
defined. Automatic systems are better at searching over vast col-
lections of audio and, perhaps, at being able to more effectively 
set aside those audio samples which are less likely to be speaker 
matches; whereas humans are better at comparing a smaller sub-
set and overcoming microphone or channel mismatch more eas-
ily. It may be worthwhile to investigate what it really means to 
“know” a speaker from the perspective of an automatic system. 
The search for alternative compact representations of speakers 
and audio segments emphasizing the identity relevant parame-
ters while suppressing the nuisance components will always be an 
ongoing challenge for system developers.
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number of application areas such as biomedical engi-
neering require solving an underdetermined linear 

inverse problem. In such a case, it is necessary to 
make assumptions on the sources to restore identifi-
ability. This problem is encountered in brain-source 

imaging when identifying the source signals from noisy electroen-
cephalographic or magnetoencephalographic measurements. This 
inverse problem has been widely studied during recent decades, giv-
ing rise to an impressive number of methods using different priors. 
Nevertheless, a thorough study of the latter, including especially 
sparse and tensor-based approaches, is still missing. In this article, 
we propose 1) a taxonomy of the algorithms based on methodologi-
cal considerations; 2) a discussion of the identifiability and conver-
gence properties, advantages, drawbacks, and application domains of 
various techniques; and 3) an illustration of the performance of 
seven selected methods on identical data sets. Directions for future 
research in the area of biomedical imaging are eventually provided.

INTRODUCTION
In brain-source imaging, one is confronted with the analysis of a lin-
ear static system—the head volume conductor—that relates the 
electromagnetic activity originating from a number of sources 
located inside the brain to the surface of the head, where it can be 
measured with an array of electric or magnetic sensors using electro-
encephalography (EEG) or magnetoencephalography (MEG). The 

source signals and locations contain valuable information about the 
activity of the brain, which is crucial for the diagnosis and manage-
ment of diseases such as epilepsy or for the understanding of the 
brain functions in neuroscience research. However, without surgical 
intervention, the source signals cannot be directly observed and have 
to be identified from the noisy mixture of signals originating from all 
over the brain, which is recorded by the EEG/MEG sensors at the 
surface of the head. This is known as the inverse problem. On the 
other hand, deriving the EEG/MEG signals for a known source con-
figuration is referred to as the forward problem (see Figure 1). 
Thanks to refined models of head geometry and advanced mathe-
matical tools that allow for the computation of the so-called lead-field 
matrix (referred to as the mixing matrix in other domains), solving 
the forward problem has become straightforward, whereas finding a 
solution to the inverse problem is still a challenging task.

The methods that are currently available for solving the inverse 
problem of the brain can be broadly classified into two types of 
approaches that are based on different source models: the equivalent 
current dipole and the distributed source [26]. Each equivalent cur-
rent dipole describes the activity within a spatially extended brain 
region, leading to a small number of active sources with free orienta-
tions and positions anywhere within the brain. The lead-field matrix 
is, hence, not known but parameterized by the source positions and 
orientations. Equivalent current dipole methods also include the 
well-known multiple signal classification (MUSIC) algorithm [1], 
[42] and beamforming techniques (see [48] and the references 
therein). These methods are based on a fixed source space with a 
large number of dipoles, from which a small number of equivalent 
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current dipoles are identified. On the other hand, the distributed 
source approaches aim at identifying spatially extended source 
regions, which are characterized by a high number of dipoles (largely 
exceeding the number of sensors) with fixed locations. As the posi-
tions of the source dipoles are fixed, the lead-field matrix can be com-
puted and, thus, is known.

We concentrate on the solution of the inverse problem for the 
case where the lead-field matrix is known and focus on the distrib-
uted source model. This inverse problem is one of the main topics 
in biomedical engineering [2], [26], [39], [54] and has been widely 
studied in the signal processing community, giving rise to an 
impressive number of methods. Our objective is to provide an 
overview of the currently available source-imaging methods that 
takes into account the recent advances in the field.

DATA MODEL AND HYPOTHESES
EEG and MEG are multichannel systems that record brain activity 
over a certain time interval with a number of sensors covering a large 
part of the head. The two-dimensional measurements are stored in a 
data matrix ,X RN T! #  where N  denotes the number of EEG/MEG 
sensors and T  the number of recorded time samples. The brain elec-
tric and magnetic fields are known to be generated by a number of 
current sources within the brain, which can be modeled by current 
dipoles [43]. In this article, we assume that the latter correspond to 
the dipoles of a predefined source space, which can be derived from 
structural magnetic resonance imaging. Furthermore, different 
hypotheses on the location and orientation of the sources can be 
incorporated by considering either a volume grid of source dipoles 
with free orientations or a surface grid of source dipoles with fixed 

orientations. Indeed, most of the activity recorded at the surface of 
the head is known to originate from pyramidal cells located in the 
gray matter and oriented perpendicular to the cortical surface [16].

Assuming a source space with free orientation dipoles and denot-
ing S R D T3! #  the signal matrix that contains the temporal activity 
with which each of the D3  dipole components of the D  sources 
contributes to the signals of interest, the measurements at the sur-
face constitute a linear combination of the source signals

X GS N GS X Xi b= + = + + (1) 

in the presence of noise .N  The noise is composed of two parts: 
instrumentation noise Xi  introduced by the measurement system 
and background activity ,X GSb b=  which originates from all dipoles 
of the source space that do not contribute to the signals of interest but 
emit perturbing signals .S Rb

D T3! #  The matrix G RN D3! #  is gen-
erally referred to as the lead-field matrix in the EEG/MEG context. 
For each dipole component of the source space, it characterizes the 
propagation of the source signal to the sensors at the surface.

In the case of dipoles with fixed orientations, the signal matri-
ces S  and Sb  are replaced by the matrices S RD T! #u  and 

,S Rb
D T! #u  which characterize the brain activity of the D

dipoles. Furthermore, the lead-field matrix G  is replaced by the 
matrix ,G RN D! #u  which is given by ,G GH=u  where R D D3!H #

contains the fixed orientations of the dipoles. The lead-field matrix 
G  can be computed numerically based on Maxwell’s equations. 
Several methods have been developed to accomplish this, and vari-
ous software packages are available [23].

We assume that the lead-field matrix is known and consider the 
EEG/MEG inverse problem that consists in estimating the unknown 

Forward Problem: Data Generation

Inverse Problem: Source Imaging

Source Signals Head Model

Activity of Interest

Background
Activity

EEG

Fp1
F7
T3
T5
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[FIG1] An illustration of the forward and inverse problems in the context of EEG.
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sources S  or Su  (depending on the source model) from the measure-
ments .X  As the number of source dipoles D  (several thousand) is 
much higher than the number of sensors (several hundred), the 
lead-field matrix is severely underdetermined, making the inverse 
problem ill posed. To restore the identifiability of the underdeter-
mined source reconstruction problem, it is necessary to make 
assumptions on the sources. We discuss a large number of hypothe-
ses that have been introduced in the context of the EEG/MEG 
inverse problem. In the following sections, we distinguish between 
three categories of assumptions depending on whether the hypothe-
ses apply to the spatial, temporal, or spatiotemporal (deterministic or 
statistical) distribution of the sources, represented by “Sp,” “Te,” and 
“SpTe” respectively. Subsequently, we provide a short description of 
the possible hypotheses.

HYPOTHESES ON THE SPATIAL 
DISTRIBUTION OF THE SOURCES

Sp1 MINIMUM ENERGY
The power of the sources is physiologically limited. A popular 
approach thus consists in identifying the spatial distribution of 
minimum energy.

Sp2 MINIMUM ENERGY IN A TRANSFORMED DOMAIN
Because of a certain synchronization of adjacent neuronal popula-
tions, the spatial distribution of the sources is unlikely to contain 
abrupt changes and can, therefore, be assumed to be smooth. This 
hypothesis is generally enforced by constraining the Laplacian of 
the source spatial distribution to be of minimum energy.

Sp3 SPARSITY
In practice, it is often reasonable to assume that only a small frac-
tion of the source dipoles contributes to the measured signals of 
interest in a significant way. For example, audio or visual stimuli 
lead to characteristic brain signals in certain functional areas of 
the brain only. The signals of the other source dipoles are, thus, 
expected to be zero. This leads to the concept of sparsity.

Sp4 SPARSITY IN A TRANSFORMED DOMAIN
If the number of active dipoles exceeds the number of sensors, 
which is generally the case for spatially extended sources, the 
source distribution is not sufficiently sparse for standard methods 
based on sparsity in the spatial domain to yield accurate results, 
leading to too-focused source estimates. In this context, another 
idea consists in transforming the sources into a domain where 
their distribution is sparser than in the original source space and 
imposing sparsity in the transformed domain. The applied trans-
form may be redundant, including a large number of basis func-
tions or atoms, and is not necessarily invertible.

Sp5 SEPARABILITY IN SPACE 
AND WAVE-VECTOR DOMAINS
For each distributed source, one can assume that the space-wave-vec-
tor matrix at each time point, which is obtained by computing a local 
spatial Fourier transform of the measurements, can be factorized into 

a function that depends on the space variable only and a function that 
depends on the wave-vector variable only. The space and wave-vector 
variables are, thus, said to be separable. In the context of brain-source 
imaging, this is approximately the case for superficial sources.

Sp6 GAUSSIAN JOINT PROBABILITY DENSITY FUNCTION 
WITH PARAMETERIZED SPATIAL COVARIANCE
For this prior, the source signals are assumed to be random varia-
bles that follow a Gaussian distribution with a spatial covariance 
matrix that can be described by a linear combination of a certain 
number of basis covariance functions. This combination is charac-
terized by so-called hyperparameters, which have to be identified 
in the source-imaging process.

HYPOTHESES ON THE TEMPORAL 
DISTRIBUTION OF THE SOURCES

Te1 SMOOTHNESS
Since the autocorrelation function of the sources of interest usu-
ally has a full width at half maximum of several samples, the 
source time distribution should be smooth. For example, this is 
the case for interictal epileptic signals or event-related potentials.

Te2 SPARSITY IN A TRANSFORMED DOMAIN
Similar to hypothesis Sp4, this assumption implies that the 
source signals admit a sparse representation in a domain that is 
different from the original time domain. This can, for instance, be 
achieved by applying a wavelet transform or a redundant transfor-
mation such as the Gabor transform to the time dimension of the 
data. The transformed signals can then be modeled using a small 
number of basis functions or atoms, which are determined by the 
source-imaging algorithm.

Te3 PSEUDOPERIODICITY WITH 
VARIATIONS IN AMPLITUDE
If the recorded data comprise recurrent events such as a repeated 
time pattern that can be associated with the sources of interest, one 
can exploit the repetitions as an additional diversity. This does not 
necessarily require periodic or quasiperiodic signals. Indeed, the 
intervals between the characteristic time patterns may differ, as 
may the amplitudes of different repetitions. Examples of signals 
with repeated time patterns include interictal epileptic spikes and 
event-related potentials (ERPs).

Te4 SEPARABILITY IN TIME AND FREQUENCY DOMAINS
This hypothesis is the equivalent of hypothesis Sp5 and assumes 
that the time and frequency variables of data transformed into 
the time-frequency domain [e.g., by applying a short-time Fou-
rier transform (STFT) or a wavelet transform to the measure-
ments] separate. This is approximately the case for oscillatory 
signals as encountered, for example, in epileptic brain activity.

Te5 NONZERO HIGHER-ORDER MARGINAL CUMULANTS
Regarding the measurements as realizations of an N-dimensional 
vector of random variables, this assumption is required when 
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resorting to statistics of an order higher than two, which offer a 
better performance and identifiability than approaches based on 
second-order statistics. It is generally verified in practice, as the sig-
nals of interest usually do not follow a Gaussian distribution.

HYPOTHESES ON THE SPATIOTEMPORAL 
DISTRIBUTION OF THE SOURCES

SpTe SYNCHRONOUS DIPOLES
Contrary to point sources, which can be modeled by a single dipole, 
in practice, one is often confronted with so-called distributed 
sources. A distributed source is composed of a certain number of grid 
dipoles, which can be assumed to transmit synchronous signals. This 
hypothesis concerns both the spatial and the temporal distributions 
of the sources and is generally made in the context of dipoles with 
fixed orientations. In this case, it allows for the separation of the 
matrix ,SIr

u  which contains the signals of all synchronous dipoles of 
the rth  distributed source, indicated by the set ,Ir  into the coeffi-
cient vector r]  that characterizes the amplitudes of the synchronous 
dipoles and thereby the spatial distribution of the rth  distributed 
source and the signal vector sr  that contains the temporal distribu-
tion of the distributed source. This gives rise to a new data model

,X HS N= +r (2) 

where the matrix [ , , ]H h hR1 g=  contains the lead-field vectors 
for R distributed sources and the matrix S RR T! #r  characterizes 
the associated distributed source signals. Each distributed source 
lead-field vector hr  corresponds to a linear combination of the lead-
field vectors of all grid dipoles belonging to the distributed source:

.h Gr r]= u  The distributed source lead-field vectors can be used as 
inputs for source-imaging algorithms, simplifying the inverse prob-
lem by allowing for a separate localization of each source.

HYPOTHESES ON THE NOISE
While both the instrumentation noise and the background activity 
are often assumed to be Gaussian, the instrumentation noise can be 
further assumed to be spatially white, whereas the background activ-
ity is spatially correlated because signals are mixed. To meet the 
assumption of spatially white Gaussian noise made by many algo-
rithms, the data can be prewhitened based on an estimate of the noise 
covariance matrix .Cn  More precisely, the prewhitening matrix is 
computed as the inverse of the square root of the estimated noise 
covariance matrix. To achieve prewhitening, the data and the lead-
field matrices are multiplied from the left by the prewhitening matrix.

ALGORITHMS
In this section, we provide an overview of the various source-imaging 
methods that have been developed in the context of the EEG/MEG 
inverse problem. Based on methodological considerations, we distin-
guish four main families of techniques: regularized least-squares 
approaches, tensor-based approaches, Bayesian approaches, and 
extended source scanning approaches. Each class of methods is associ-
ated with a certain number of hypotheses that are exploited by the 
algorithms. The knowledge of these hypotheses leads to a better 
understanding of the functioning of the source-imaging techniques.

REGULARIZED LEAST-SQUARES METHODS
A natural approach to solve the ill-posed EEG/MEG inverse prob-
lem consists of finding the solution that best describes the meas-
urements in a least-squares sense. In the presence of noise, this is 
generally achieved by solving an optimization problem with a cost 
function of the form

( ) | | | |S X GSL F
2 m= - + ( ) .Sf (3) 

For methods that do not consider the temporal structure of the 
data, but work on a time-sample-by-sample basis, the data matrix 
X  and the source matrix S  are replaced by the column vectors x
and ,s  respectively.

The first term on the right-hand side of (3) is generally referred to 
as the data fit term and characterizes the difference between the 
measurements and the surface data reconstructed from given sources. 
The second is a regularization term and incorporates additional con-
straints on the sources according to the a priori information. The reg-
ularization parameter m is used to manage a tradeoff between data fit 
and a priori knowledge and depends on the noise level since the gap 
between the measured and reconstructed data is expected to become 
larger as the signal-to-noise ratio decreases. Figure 2 provides an over-
view of the regularized least-squares algorithms with different regu-
larization terms that are discussed in the following sections.

MINIMUM NORM ESTIMATES—ASSUMPTION Sp1 OR Sp2
The minimum norm solution is obtained by employing a prior, 
which imposes a minimal signal power according to hypothesis 
Sp1, leading to a regularization term that is based on the 
L2-norm of the signal vector: ( ) | | | | .s Wsf 2

2=  To compensate for 
the depth bias, the diagonal matrix W R D D3 3! #

+  containing fixed 
weights was introduced in the weighted minimum norm esti-
mates (MNE) methods. Furthermore, one can consider the vari-
ance of the noise or the sources, leading to normalized estimates. 
This approach is pursued by the dynamic statistical parametric 
mapping (dSPM) [15] algorithm, which takes into account the 
noise level, and standardized low-resolution brain electromagnetic 
tomography (sLORETA) [45], which standardizes the source esti-
mates with respect to the variance of the sources.

The MNEs generally yield smooth source distributions. Never-
theless, spatial smoothness can also be more explicitly promoted by 
applying a Laplacian operator L  to the source vector in the regular-
ization term, leading to the popular LORETA method [46], which is 
based on assumption Sp2. In this case, the L2-norm constraint is 
imposed on the transformed signals, yielding a regularization term 
of the form ( ) .s LWsf 2

2=  More generally, the matrix L  can be 
used to implement a linear operator that is applied to the sources.

The original MNEs have been developed for sources with free 
orientations. Modifications of the algorithms to account for orien-
tation constraints can, e.g., be found in [34] and [53].

METHODS BASED ON SPARSITY—ASSUMPTION Sp3 OR Sp4
As the MNEs generally lead to blurred source localization results, as 
widely described in the literature (see, e.g., [56]), source-imaging 
methods based on hypothesis Sp3, which promote sparsity, were 
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developed to obtain more focused source estimates. One of the first 
algorithms proposed in this field was focal underdetermined system 
solver (FOCUSS) [22], which iteratively updates the minimum 
norm solution using an L0  “norm.” This gradually shrinks the 
source spatial distribution, resulting in a sparse solution. Around 
the same time, source-imaging techniques based on an L p-norm 
( )p0 1# #  regularization term of the form ( ) ,s Wsf p=  where 
W  is a diagonal matrix of weights, were put forward [36]. The 
parameter p  is generally chosen to be equal to 1, leading to a con-
vex optimization problem. (Note that the minimization of this cost 
function is closely related to the optimization problem 

| | | | . .Ws x Gsmin s tp 2
2 # d-  with regularization parameter ,d

on which the algorithm proposed in [36] is based.) However, by 
treating the dipole components independently in the regularization 
term, the estimated source orientations are biased. To overcome this 
problem, Uutela et al. [50] proposed using fixed orientations deter-
mined either from the surface normals or estimated using a prelim-
inary minimum norm solution. This gave rise to the minimum 
current estimate (MCE) algorithm. Extensions of this approach, 
which require only the knowledge of the signs of the dipole compo-
nents or which permit the incorporation of loose orientation con-
straints, have been treated in [29] and [34]. Another solution to the 
problem of orientation bias of the sparse source estimates consists 
in imposing sparsity dipolewise instead of componentwise [20]. In 
[56], a combination of the ideas of FOCUSS and L p-norm ( )p 1#
regularization was implemented in an iterative scheme.

To find a compromise between the smoothness and sparsity of 
the spatial distribution, the use of a prior that is composed of both an 

L1-norm and an L2-norm regularization term was proposed in [52]. 
Another idea consists in imposing sparsity in a transformed 
domain. This is generally achieved by employing a regularization 
term of the form Ts 1u , where T  is a transformation matrix. In 
the literature, different transformations have been considered. The 
authors of [10] used a surface Laplacian, thus imposing sparsity on 
the second-order spatial derivatives of the source distribution, in 
combination with classical L1-norm regularization. Another way 
to promote a piecewise constant spatial distribution was proposed 
by Ding, giving rise to the variation-based sparse cortical current 
density (VB-SCCD) method [19], which is closely related to the 
total variation approach. A third approach that makes use of spar-
sity in a transformed domain considers a spatial wavelet transform 
that allows the signals to be compressed through a sparse repre-
sentation of the sources in the wavelet domain [10], [31].

MIXED NORM ESTIMATES—ASSUMPTION Sp3 OR Sp4
AND ASSUMPTION Te1 OR Te2
To impose hypotheses simultaneously in several domains, e.g., the 
space-time plane, one can resort to mixed norms. Efficient algorithms 
that have been developed to deal with the resulting 
optimization problem are presented in [24]. In [44], a source-imaging 
method, called mixed-norm estimate (MxNE), which imposes spar-
sity over space (hypothesis Sp3) and smoothness over time (assump-
tion Te1) using a mixed L ,1 2-norm regularization, has been proposed.

An approach that imposes sparsity over space (hypothesis Sp3) 
as well as in the transformed time domain (assumption Te2) is 
taken in the time-frequency MxNE (TF-MxNE) method. 
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[FIG2] An overview of regularized least-squares algorithms. (For an explanation of the employed notations for the different 
algorithms, see the text in the associated sections.)
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This technique makes use of a dictionary, ,U  from which a small 
number of temporal basis functions are selected to characterize the 
source signals. In [25], Gabor basis functions were considered, 
whereas the authors of [49] employed a data-dependent temporal 
basis obtained using  a singular value decomposition (SVD) of the 
measurements and a data-independent temporal basis that is given 
by natural cubic splines. The method is based on mixed norms and 
uses a composite prior of two regularization terms similar to [52].

Furthermore, in [28], one can find an approach that imposes 
sparsity in a spatial transform domain similar to [10], but which is 
based on a mixed L ,1 2 -norm to take into account the temporal 
smoothness of the source distribution. Finally, let us point out 
that it is also possible to consider both temporal and spatial basis 
functions (assumptions Sp4 and Te2) as suggested in [7] for the 
event sparse penalty (ESP) algorithm.

TENSOR-BASED SOURCE LOCALIZATION—
ASSUMPTION SpTe; ASSUMPTION Sp5, 
Te3, OR Te4: AND ASSUMPTIONS Sp4 AND Sp3
The objective of tensor-based methods consists of identifying the 
lead-field vectors and the signals of distributed sources, i.e., matri-
ces H  and Sr  in data model (2), from measurements. To separate 
R  simultaneously active distributed sources, tensor-based meth-
ods exploit multidimensional data (at least one dimension in addi-
tion to space and time) and assume a certain structure underlying 
the measurements. The multidimensional data are then approxi-
mated by a model that reflects the assumed structure and com-
prises a number of components that can be associated with the 
sources. A popular tensor model is the rank-R  canonical polyadic 
(CP) decomposition [14], which imposes a multilinear structure 
on the data. This means that each element of a third-order 
tensor X  can be written as a sum of R  components, each being a 
product of three univariate functions, ,ar ,br  and dr

( , , ) ( ) ( ) ( ) .X a b dk m r
r

R

k r r m
1

a b c a b c=, ,

=

/ (4) 

The samples of functions ,ar ,br  and dr  can be stored into three 
loading matr ices  [ , , ],A a aCK R

R1 g! =# B CL R! =#

[ , , ],b bR1 g  and [ , , ]D d dCM R
R1 g! =#  that characterize the 

tensor .X CK L M! # #

In the literature, a certain number of tensor methods based on 
the CP decomposition have been proposed in the context of 
EEG/MEG data analysis. These methods differ in the dimension(s), 
which is (are) exploited in addition to space and time. In this work, 
we focus on third-order tensors. Here, first, a distinction can be 
made between approaches that collect an additional diversity 
directly from the measurements, for instance, by taking different 
realizations of a repetitive event (see [40]), or methods that create a 
third dimension by applying a transform which preserves the two 
original dimensions, such as the STFT or wavelet transform. This 
transform can be applied either over time or over space, leading to 
space–time–frequency (STF) data (see, e.g., [17] and the references 
therein) or space–time–wave–vector (STWV) data [5]. Depending 
on the dimensions of the tensor, the CP decomposition involves dif-
ferent multilinearity assumptions: for space–time–realization 

(STR) data, hypothesis Te3 is required; for STF data, hypothesis Te4 
is involved; and for STWV data, we resort to hypothesis Sp5.

Once several simultaneously active distributed sources have been 
separated, using the tensor decomposition, and estimates for the dis-
tributed source lead-field vectors have been derived, the latter can be 
used for source localization. The source localization is then per-
formed separately for each distributed source. For this purpose, a dic-
tionary of potential elementary distributed sources is defined by a 
number of circular-shaped cortical areas of different centers and sizes, 
subsequently called disks. Each disk describes a source region with 
constant amplitudes, leading to a sparse, piecewise constant source 
distribution, which can be attributed to hypotheses Sp3 and Sp4. For 
each source, a small number of disks that correspond best to the esti-
mated distributed source lead-field vector are then identified based on 
a metric and are merged to reconstruct the distributed source. The 
steps of the algorithm based on STWV data and referred to as STWV-
DA (disk algorithm) [5] are schematically summarized in Figure 3. 

BAYESIAN APPROACHES—ASSUMPTION Sp6
Bayesian approaches are based on a probabilistic model of the data 
and treat the measurements, the sources, and the noise as realiza-
tions of random variables. In this context, the reconstruction of 
the sources corresponds to obtaining an estimate of their posterior 
distribution, which is given by

( | ) ( )
( | ) ( )

s x x
x s s

p p
p p

= , (5) 

where ( | )x sp  is the likelihood of the data, ( )sp  is the source dis-
tribution, and ( )xp  is the model evidence. The crucial point con-
sists in finding an appropriate prior distribution ( )sp  for the 
sources, which, in the Bayesian framework, incorporates the 
hypotheses that regularize the ill-posed inverse problem. We can 
distinguish three classes of Bayesian approaches [54]: maximum a 
posteriori estimation for the sources, variational Bayes, and empiri-
cal Bayes. The first approach employs a fixed prior ( )sp  leading to 
MNE, MCE, and MxNE solutions, which were addressed earlier. In 
this section, we focus on variational and empirical Bayesian 
approaches, which use a flexible, parameterized prior ,sp c^ h
which is modulated by the hyperparameter vector .RL!c  More 
particularly, in the EEG/MEG context, the source distribution is 
generally assumed to be zero-mean Gaussian with a covariance 
matrix C s  that depends on hyperparameters, such that

.s S C Sexpp 2
1

s
1T\c c- -^ c ^h h m (6) 

The hyperparameters can either directly correspond to the ele-
ments of C s  (as in the Champagne algorithm [55]) or parameter-
ize the covariance matrix such that .C Ci

I
is i1c= =/  Here, ,Ci

, ,i I1 g=  are predefined covariance components. The hyperpa-
rameters are then learned from the data to perform some kind of 
model selection by choosing the appropriate components.

VARIATIONAL BAYESIAN APPROACHES
The variational Bayesian methods (see [21] and the references 
therein) try to obtain estimates of the posterior distributions of the 
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hyperparameters ( | ) .xp ct  To do this, additional assumptions are 
required, such as 1) statistical independence of the hyperparame-
ters (also known as mean-field approximation) or 2) a Gaussian 
posterior distribution of the hyperparameters (also known as 
Laplace approximation). This allows us to not only approximate 
the distribution ( )s xp  and thereby estimate the sources but also 
to provide an estimate of the model evidence ( ),xp  which can be 
used to compare different models (e.g., for different sets of covari-
ance components).

EMPIRICAL BAYESIAN APPROACHES
The empirical Bayesian approaches (see, e.g., [37] and [55] and the 
references therein), on the other hand, are concerned with finding 
a point estimate of the hyperparameters, which is obtained by 
marginalization over the unknown sources s

.s sx sargmax p p p dc c c=
c

t ^ ^ ^h h h# (7) 

For known hyperparameters, the conditional distribution ,s xp c^ h
can be determined. To obtain a suitable estimate of the sources, one 
can, for instance, apply the expectation maximization (EM) algo-
rithm [18], which alternates between two steps: 1) the M-step in 
which the maximum likelihood estimates of the hyperparameters are 
updated for fixed s  and 2) the E-step in which the conditional expec-
tation of the sources is determined based on the hyperparameters 
obtained in the M-step. An example of an empirical Bayesian algo-
rithm is the Champagne algorithm introduced in [55].

EXTENDED SOURCE SCANNING METHODS
Here, the idea is to identify active sources from a dictionary of 
potential distributed sources. To this end, a metric is computed for 
each element of the dictionary. The source estimates are then 
obtained from the elementary source distributions that are associ-
ated with the maxima of the metric. Based on the employed met-
ric, we subsequently distinguish two types of scanning methods 

that correspond to spatial filtering, also known as beamforming,
and subspace-based approaches.

BEAMFORMING APPROACHES—
ASSUMPTIONS Sp3 AND Sp4
Beamforming techniques were originally proposed in the con-
text of equivalent current dipole localization from MEG meas-
urements [51]. The basic approach employs the linearly 
constrained minimum variance (LCMV) filter, which is based 
on the data covariance matrix and is derived for each dipole of 
the source space to reconstruct its temporal activity while sup-
pressing contributions from other sources. The filter output is 
then used to compute a metric that serves to identify the active 
dipole sources. The LCMV beamformer was shown to yield 
unbiased solutions in the case of a single dipole source [48], but 
leads to source localization errors in the presence of correlated 
sources. To overcome this problem, extensions of the beam-
forming approach to multiple, potentially correlated (dipole) 
sources have been considered (see [41] and the references 
therein). Furthermore, in [33], the beamforming approach has 
been extended to the localization of distributed sources. This is 
achieved by deriving spatial filters for all elements of a diction-
ary of potential source regions, also called patches. The source-
imaging solution is then obtained from the dictionary elements 
associated with the maxima of the metric, which is derived 
from the filter outputs, resulting in a spatially sparse source dis-
tribution with a small number of active source regions accord-
ing to hypotheses Sp3 and Sp4.

SUBSPACE-BASED APPROACHES—ASSUMPTIONS SpTe,
Te5, Sp3, AND Sp4
Similar to Bayesian approaches, subspace-based methods also treat 
the measurements made by several sensors as realizations of a ran-
dom vector. They then exploit the symmetric q2 th ( )q 1$ -order 
cumulant matrix C ,q x2  of this random vector from which the signal 
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[FIG3] A schematic representation of the STWV-DA algorithm.
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and noise subspaces are identified by means of an eigenvalue 
decomposition. For source-imaging purposes, one then exploits the 
fact that the higher-order lead-field vector ,gr

q7u , , ,r R1 g=

where gr
q7u  is a shorthand notation for g g gr r r7 7 7gu u u  with 

q 1-  Kronecker products (denoted by ),7  must lie in the 
q2 th-order signal subspace and be orthogonal to the noise sub-

space. Therefore, MUSIC-like  algorithms can be employed, which 
were first used in the context of equivalent current dipole localiza-
tion [1], [42]. Recently, the q2 -MUSIC algorithm [12] has been 
adapted to the identification of distributed sources [6], then 
referred to as q2 -ExSo-MUSIC. In analogy to the classical MUSIC 
algorithm, the q2 -ExSo-MUSIC spectrum is computed for a num-
ber of predefined parameter vectors .]  To this end, one defines a 
dictionary of disks as described in the section “Tensor-Based Source 
Localization,” assuming a sparse, piecewise constant source distri-
bution (corresponding to hypotheses Sp3 and Sp4) similar to VB-
SCCD and STWV-DA. The spectrum is then thresholded, and all 
coefficient vectors ]  for which the spectrum exceeds a fixed 
threshold are retained and united to model distributed sources. An 
advantage of subspace-based techniques exploiting the q2 th order 
statistics with q 12  over other source-imaging algorithms lies in 
their asymptotic robustness to Gaussian noise because cumulants 
of an order higher than two of a Gaussian random variable are null.

DISCUSSION
Here we discuss several aspects of the brain-source-imaging methods 
described in the previous section, including identifiability and con-
vergence issues, advantages and drawbacks of representative algo-
rithms, and application domains. Table 1 lists several source-imaging 

methods mentioned in the previous section and summarizes the 
exploited hypotheses.

IDENTIFIABILITY
For methods that solve the inverse problem by exploiting sparsity, 
the uniqueness of the solution depends on the conditioning of the 
lead-field matrix. More particularly, sufficient conditions that are 
based on the mutual or cumulative coherence of the lead-field 
matrix are available in the literature [11] and can easily be verified 
for a given lead-field matrix. However, in brain-source imaging, 
these conditions are generally not fulfilled because the lead-field 
vectors of adjacent grid dipoles are often highly correlated, making 
the lead-field matrix ill conditioned.

A strong motivation for the use of tensor-based methods is the 
fact that the CP decomposition is essentially unique under mild con-
ditions on the tensor rank [32]. These conditions are generally veri-
fied in brain-source imaging because the rank R  of the noiseless 
tensor corresponds to the number of distributed sources, which is 
usually small (fewer than ten) compared to the tensor dimensions. 
The limitations of the tensor-based approach thus arise from the 
approximations that are made when imposing a certain structure on 
the data and not from the identifiability conditions. Note, however, 
that these identifiability conditions only concern the CP decomposi-
tion, which separates the distributed sources. Additional conditions 
are indeed required for the uniqueness of the results of the subse-
quent source localization step that is applied for each distributed 
source separately. Nevertheless, the separation of the distributed 
sources facilitates their identification and may alleviate the identifia-
bility conditions for the source localization step.

[TABLE 1] THE CLASSIFICATION OF THE DIFFERENT ALGORITHMS MENTIONED IN THE “ALGORITHMS” SECTION
ACCORDING TO THE EXPLOITED HYPOTHESES.

BRAIN-SOURCE IMAGING Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Te1 Te2 Te3 Te4 Te5 SpTe

REGULARIZED LEAST-SQUARES ALGORITHMS
sLORETA [45] X
LORETA [46] X
MCE [50] X
VB-SCCD [19] X
MxNE [44] X X
TF-MxNE [25] X X

BAYESIAN APPROACHES
CHAMPAGNE [55] X

EXTENDED SOURCE SCANNING METHODS
q2 -ExSo-MUSIC [6] X X X

TENSOR-BASED METHODS
STR-DA [5] X X X
STF-DA [5] X X X
STWV-DA [5] X X X

HYPOTHESES ON THE SPATIAL DISTRIBUTION HYPOTHESES ON THE TEMPORAL DISTRIBUTION
Sp1: MINIMUM ENERGY
Sp2: MINIMUM ENERGY IN A TRANSFORMED DOMAIN
Sp3: SPARSITY
Sp4: SPARSITY IN A TRANSFORMED DOMAIN
Sp5: SEPARABILITY IN THE SPACE-WAVE-VECTOR DOMAIN
Sp6: PARAMETERIZED SPATIAL COVARIANCE

Te1: SMOOTHNESS
Te2: SPARSITY IN A TRANSFORMED DOMAIN
Te3: PSEUDOPERIODICITY
Te4: SEPARABILITY IN THE TIME-FREQUENCY DOMAIN
Te5: NONZERO HIGHER-ORDER MARGINAL CUMULANTS

HYPOTHESES ON THE SPATIOTEMPORAL DISTRIBUTION
SpTe: SYNCHRONOUS DIPOLES
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Finally, for subspace-based approaches, the number of sources 
that can be identified depends on the dimensions of the signal and 
noise subspaces of the cumulant matrix. In the best case, one can 
identify at most N 1q2 -  statistically independent distributed 
sources, where N Nq

q
2 #  denotes the maximal rank that can be 

attained by the q2 th-order distributed source lead-field matrix 
and N  is the number of sensors, while, in the worst case, when all 
distributed sources are correlated, one can identify up to N 1-
sources. In the context of brain-source imaging, these identifiabil-
ity conditions are usually not very restrictive.

CONVERGENCE
The source-imaging methods exploiting sparsity may be imple-
mented using two types of convex optimization algorithms: interior 
point methods such as second-order cone programming (SOCP) [9] 
and proximal splitting methods such as the fast iterative shrinkage-
thresholding algorithm (FISTA) [3] or the alternating direction 
method of multipliers (ADMM) [8]. Both types of solvers are known 
to converge to the global solution of a convex optimization prob-
lem. However, the interior point methods are computationally too 
expensive to solve large-scale problems as encountered in brain-
source imaging, and the simpler and more efficient proximal split-
ting methods are to be preferred in this case.

To solve the optimization problem associated with the CP 
decomposition, a wide panel of algorithms, including alternating 
methods such as alternating least squares, derivative-based tech-
niques such as gradient descent (GD) or Levenberg–Marquardt 
[14], and direct techniques (see, e.g., [35] and [47] and the refer-
ences therein) have been used. Even if the local convergence prop-
erties hold for most of these methods, there is no guarantee that 
they will converge to the global minimum because the cost func-
tion generally features a large number of local minima. However, in 
practical situations, it has been observed [30] that good results can  
be achieved, e.g., by combining a direct method such as the direct 
algorithm for canonical polyadic decomposition (DIAG) algorithm 
described in [35] with a derivative-based technique such as GD.

Similar to the tensor decomposition algorithm, there is no 
guarantee of global convergence for the EM algorithm, which is 
popular in empirical Bayesian approaches, or for the alternating 
optimization method employed by the Champagne algorithm.

ADVANTAGES AND DRAWBACKS
Since strengths and weaknesses are often specific to a given source-
imaging method and cannot be generalized to other techniques of 
the same family of approaches, we subsequently focus on seven rep-
resentative algorithms. Table 2 lists the advantages and drawbacks 
of each of these methods. On the one hand, the regularized least-
squares techniques sLORETA, MCE, and MxNE are simple and 
computationally efficient, but the source estimates obtained by 
these algorithms tend to be very focal (for MCE and MxNE) or 
blurred (for sLORETA). On the other hand, VB-SCCD, STWV-DA, 
and 4-ExSo-MUSIC, which allow for the identification of spatially 
extended sources, feature a higher computational complexity. Fur-
thermore, STWV-DA and 4-ExSo-MUSIC have additional require-
ments such as knowledge of the number of sources or the signal 

subspace dimension, a certain structure of the data (for STWV-DA), 
or a sufficiently high number of time samples (for 4-ExSo-MUSIC). 
While all of these methods require adjusting certain parameters, 
which are tedious to tune in practice, the main advantage of the 
Champagne algorithm consists in the fact that there is no parame-
ter to adjust. However, this method also has a high computational 
complexity and leads to very sparse source estimates.

APPLICATION DOMAINS
Brain-source imaging finds application both in the clinical 
domain and in cognitive neuroscience. The most frequent clinical 
application is in epilepsy, where the objective consists in delineat-
ing the regions from where interictal spikes or ictal discharges 
arise [38]. For this purpose, brain-source-imaging methods such 
as VB-SCCD, STWV-DA, or 4-ExSo-MUSIC, which can identify 
both the spatial extent and the shape of a small number of distrib-
uted sources, are well suited. In cognitive neuroscience, multiple 
brain structures are often simultaneously activated, particularly 
when the subjects are asked to perform complex cognitive tasks 
during the experimental sessions [2]. The source-imaging meth-
ods employed for the analysis of these data should thus be able to 
deal with multiple correlated sources. This is, e.g., the case for 
VB-SCCD and other regularized least-squares techniques, but not 
for STWV-DA or 4-ExSo-MUSIC. On the other hand, during sim-
ple tasks such as those related to perceptual processes, the analy-
sis of EEG signals of ERPs can also aim at identifying focal 
sources, in which case methods such as MCE, MxNE, or Cham-
pagne are preferred. Finally, there is a rising interest in the analy-
sis of source connectivity [27]. While sLORETA, MCE, MxNE, or 
Champagne can be employed for this purpose, VB-SCCD, STWV-DA, 
and 4-ExSo-MUSIC, which enforce identical signals for dipoles 
belonging to the same patch, would theoretically be less suited, 
especially for the analysis of very local cortical networks. Never-
theless, at a macroscopic level, these algorithms may be employed 
to identify cortical networks that characterize the connectivity 
between distinct brain regions.

RESULTS
In this section, we give the reader an idea of the kind of source-
imaging results that can be obtained with different types of algo-
rithms by illustrating and comparing the performance of seven 
representative algorithms on simulated data for an example of epi-
leptic EEG activity. To do this, we consider two or three quasi-
simultaneous active patches and model epileptiform spike-like 
signals that spread from one brain region to another. The sources 
are localized using the sLORETA, MCE, MxNE, VB-SCCD, STWV-DA, 
Champagne, and 4-ExSo-MUSIC algorithms. To quantitatively 
evaluate the performance of the different methods, we use a 
measure called the distance of localization error (DLE) [13], 
which characterizes the difference between the original and the 
estimated source configuration. The DLE is averaged over 50 reali-
zations of EEG data with different epileptiform signals and back-
ground activity. For detailed descriptions of the data generation 
process, the implementation of the source-imaging methods, and 
the evaluation criterion, see [4].
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The CPU runtimes that are required for the application of the 
different source-imaging methods, implemented in MATLAB and 
run on a machine with a 2.7-GHz processor and 8 GB of random 
access memory, are listed in Table 3. Note that the runtime of 
4-ExSo-MUSIC cannot be compared to that of the other algo-
rithms because this method is partly implemented in C.

We first consider two scenarios with two patches of medium 
distance composed of a patch in the inferior frontal region (InfFr) 
combined once with a patch in the inferior parietal region (InfPa) 
and once with a patch in the middle posterior temporal gyrus 
(MidTe). The patches are all located on the lateral aspect of the left 
hemisphere, but the patch MidTe is partly located in a sulcus, lead-
ing to weaker surface signals than the patches InfFr and InfPa, 
which are mostly on a gyral convexity. This has an immediate 
influence on the performance of all source-imaging algorithms 
except for Champagne. For the first scenario, the algorithms 
exhibit high dipole amplitudes for dipoles belonging to each of the 
true patches. For the second scenario, on the other hand, the weak 
patch is difficult to make out on the estimated source distribution 

of sLORETA, slightly more visible on the MCE and MxNE solu-
tions, and completely missing for 4-ExSo-MUSIC. VB-SCCD and 
STWV-DA both recover the second patch, but with a smaller 
amplitude in the case of VB-SCCD and a smaller size for STWV-DA. 
According to the DLE, MCE leads to the best results among the 
focal source-imaging algorithms while STWV-DA outperforms the 
other distributed source localization methods.

In the third scenario, we add a patch at the temporo-occipital 
function (OccTe) to the InfFr and MidTe patches, which further 
complicates the correct recovery of the active grid dipoles. The best 
result in terms of the DLE (see Figure 4 and the lower part of 
Table 4) is achieved by VB-SCCD. Even though this method mostly 
identifies the brain regions that correspond to the active patches, it 
does not allow the patches MidTe and OccTe to be distinguished 
into two separate active sources. STWV-DA, on the other hand, 
identifies all three patches, even though the extent of the estimated 
active source region that can be associated to the patch MidTe is 
too small. However, this method also identifies several spurious 
source regions of small size located between the patches MidTe and 

[TABLE 2] THE ADVANTAGES AND DRAWBACKS OF SOURCE-IMAGING ALGORITHMS.

ALGORITHM ADVANTAGES DISADVANTAGES

sLORETA [45] ■ SIMPLE TO IMPLEMENT
■ COMPUTATIONALLY EFFICIENT
■ NO LOCALIZATION ERROR FOR A SINGLE DIPOLE
SOURCE IN THE ABSENCE OF NOISE
■ WORKS ON A SINGLE TIME SAMPLE

■ BLURRED RESULTS
■ ASSUMES INDEPENDENT DIPOLE SOURCES

MCE [50] ■ SIMPLE
■ CAN LOCALIZE CORRELATED SOURCES
■ WORKS ON A SINGLE TIME SAMPLE
■ LOW COMPUTATIONAL COST FOR SMALL NUMBERS
OF TIME SAMPLES

■ VERY FOCAL SOURCE ESTIMATES

VB-SCCD [19] ■ IDENTIFIES SPATIALLY EXTENDED SOURCES
■ FLEXIBLE WITH RESPECT TO THE PATCH SHAPE
■ PERMITS TO LOCALIZE MULTIPLE SIMULTANEOUSLY
ACTIVE (AND CORRELATED) PATCHES
■ WORKS ON A SINGLE TIME SAMPLE

■ OVERESTIMATES SIZE OF SMALL PATCHES
■ COMPUTATIONALLY EXPENSIVE
■ SYSTEMATIC ERROR ON ESTIMATED AMPLITUDES

MxNE [44] ■ EXPLOITS THE TEMPORAL STRUCTURE OF THE DATA
■ EXTRACTS SMOOTH TIME SIGNALS
■ SMALL COMPUTATIONAL COST

■ VERY FOCAL SOURCE ESTIMATES

CHAMPAGNE [55] ■ NO PARAMETER TO ADJUST MANUALLY
■ EASY TO IMPLEMENT
■ PERMITS PERFECT SOURCE RECONSTRUCTION UNDER
CERTAIN CONDITIONS
■ WORKS ON A SINGLE TIME SAMPLE

■ VERY SPARSE SOURCE ESTIMATES
■ ASSUMES INDEPENDENT DIPOLE SIGNALS
■ HIGH COMPUTATIONAL COMPLEXITY

STWV-DA [5] ■ SEPARATES (CORRELATED) SOURCES
■ IDENTIFIES EXTENDED SOURCES
■ DOES NOT REQUIRE SPATIAL PREWHITENING TO YIELD
ACCURATE RESULTS

■ MAKES STRONG ASSUMPTIONS ON DATA STRUCTURE
THAT ARE DIFFICULT TO VERIFY IN PRACTICE
■ REQUIRES KNOWLEDGE OF THE NUMBER OF SOURCES TO SEPARATE
■ COMPUTATIONALLY EXPENSIVE FOR LONG DATA LENGTHS

4-ExSo-MUSIC [6] ■ IDENTIFIES EXTENDED SOURCES
■ ROBUST TO GAUSSIAN NOISE

■ HIGH COMPUTATIONAL COMPLEXITY
■ REQUIRES KNOWLEDGE OF THE SIGNAL SUBSPACE DIMENSION
■ REQUIRES A SUFFICIENTLY LARGE NUMBER OF TIME SAMPLES ( )5002
TO ESTIMATE THE DATA STATISTICS
■ DIFFICULTIES IN LOCALIZING HIGHLY CORRELATED SOURCES

[TABLE 3] THE AVERAGE CPU RUNTIME OF THE DIFFERENT SOURCE-IMAGING ALGORITHMS
FOR THE CONSIDERED THREE-PATCH SCENARIOS.

sLORETA VB-SCCD MxNE MCE CHAMPAGNE STWV-DA 4-ExSo-MUSIC

CPU RUNTIME IN SECONDS 0.18 120 5.9 2.2 233 156 58
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InfFr. 4-ExSo-MUSIC and Champagne recover only one of the two 
patches located in the temporal lobe. Similar to VB-SCCD, 
sLORETA does not allow the patches MidTe and OccTe to be dis-
tringuished. This distinction is better performed by MCE and espe-
cially by MxNE, which displays three foci of brain activity.

CONCLUSIONS AND PERSPECTIVES
We classified existing source-imaging algorithms based on method-
ological considerations. Furthermore, we discussed the different 
techniques, both under theoretical and practical considerations, by 
addressing questions of identifiability and convergence, advantages 
and drawbacks of certain algorithms as well as application domains, 
and by illustrating the performance of representative source-imag-
ing algorithms through a simulation study.

While uniqueness conditions are available for both tensor- and 
sparsity-based techniques, in the context of brain-source imaging, 
these conditions are generally only fulfilled for tensor-based 
approaches, which exploit the concept of distributed sources, 
whereas the bad conditioning of the lead-field matrix practically 
prohibits the unique identification of a sparse source distribution. 
On the other hand, while convex optimization algorithms used for 
sparse approaches usually converge to the global minimum, such 
algorithms are not available for tensor decompositions, which suf-
fer from multiple local minima, making it almost impossible to 
find the global optimum. In practice, despite the limitations con-
cerning identifiability and convergence, both tensor-based and 
sparse approaches often yield good source reconstruction.

Since the various source localization algorithms have different 
advantages, drawbacks, and requirements, source-imaging solu-
tions may vary depending on the application. As discussed previ-
ously, for each problem, an appropriate source-imaging technique 
has to be chosen depending on the desired properties of the solu-
tion, the characteristics of the algorithm, and the validity of the 
hypotheses employed by the method. Furthermore, it is advisable 
to compare the results of different methods for confirmation of 
the identified source region(s).

To summarize the findings of the simulation study, we can say 
that sLORETA, Champagne, MCE, and MxNE recover well the 
source positions, though not their spatial extent as they are con-
ceived for focal sources, while ExSo-MUSIC, STWV-DA, and 
VB-SCCD also allow for an accurate estimate of the source size. We 
noticed that most of the methods, except for ExSo-MUSIC and 
STWV-DA, require prewhitening of the data or a good estimate of the 
noise covariance matrix (in the case of Champagne) to yield accurate 
results. On the one hand, this can be explained by the hypothesis of 
spatially white Gaussian noise made by some approaches, while on 
the other hand, the prewhitening also leads to a decorrelation of the 
lead-field vectors and, therefore, to a better conditioning 

InfFr + InfPa InfFr + MidTe InfFr + MidTe
+ OccTe

sLORETA

Champagne

MCE

MxNE

VB-SCCD

STWV-DA

4-ExSo-MUSIC

Min Max

InfFr + InfPa InfFr + MidTe InfFr + MidTe
+ OccTe

sLORETA

Champagne

MCE

MxNE

VB-SCCD

STWV-DA

4-ExSo-MUSIC

Min Max

[FIG4] The original patches and source reconstructions of 
different source-imaging algorithms for the scenarios 
InfFr+InfPa, InfFr+MidTe, and InfFr+MidTe+OccTe. 

[TABLE 4] THE DLE (IN CENTIMETERS) OF SOURCE-IMAGING ALGORITHMS FOR DIFFERENT SCENARIOS.

SCENARIO sLORETA CHAMPAGNE MCE MxNE VB-SCCD STWV-DA ExSo-MUSIC
InfFr+InfPa 2.97 4.03 3.51 3.52 1.23 0.59 0.61
InfFr+MidTe 6.13 4.34 4.40 4.50 1.51 1.17 14.90
InfFr+MidTe+OccTe 5.88 4.83 4.59 4.51 2.54 5.99 4.30
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of the lead-field matrix, which consequently facilitates the correct 
identification of active grid dipoles. Furthermore, the source-imag-
ing algorithms generally have some difficulties in identifying mesial 
sources located close to the midline as well as multiple quasi-simul-
taneously active sources. On the whole, for the situations addressed 
in our simulation study, STWV-DA seems to be the most promising 
algorithm for distributed source localization, both in terms of 
robustness and source reconstruction quality. However, more 
detailed studies are required to confirm the observed performances 
of the tested algorithms before drawing further conclusions.

Based on these results, we can identify several promising 
directions for future research. As the VB-SCCD algorithm dem-
onstrates, imposing sparsity in a suitable spatial transform 
domain may work better than applying sparsity constraints 
directly to the signal matrix. This type of approach should, thus, 
be further developed. Another track for future research consists 
in further exploring different combinations of a priori informa-
tion, e.g., by merging the successful strategies of different 
recently established source-imaging approaches, such as tensor- 
or subspace-based approaches and sparsity. In a similar way, one 
could integrate the steps of two-step procedures such as STWV-
DA into one single step to process all of the available information 
and constraints at the same time.
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T
he IEEE Signal Processing 
(SP) Cup is a competition 
that provides undergraduate 
students with the opportu-
nity to form teams and work 

together to solve a challenging and 
interesting real-world problem using sig-
nal processing techniques and methods. 

The second IEEE SP Cup, held during 
the fall and winter of 2014, had  the follow-
ing topic: “Heart Rate Monitoring During 
Physical Exercise Using Wrist-Type Pho-
toplethysmographic (PPG) Signals” [1]. Par-
ticipating students were grouped in teams 
and provided with PPG signals recorded 
from subjects’ wrists during physical exer-
cise. Students were then asked to design 
an algorithm to estimate the subjects’ cor-
responding heart rates. 

BACKGROUND AND MOTIVATION
Wearable health monitoring is a popular, 
fast-growing area in both industry and 
academia. Numerous wearable devices for 
monitoring vital signs have been devel-
oped and sold or are selling on the con-
sumer market, such as smart watches and 
smart wristbands. A key function of these 
wearable devices is heart rate monitoring 
using PPG signals recorded from users’ 
wrists. This function can help users con-
trol the intensity of their workout accord-
ing to their heart rate or, alternately, help 
remote health-care providers monitor the 
health status of the users. 

However, estimating heart rate using 
wrist-type PPG signals during exercise is a 
difficult problem. The movements of the 
users, especially their wrist motion, can 
result in extremely strong motion artifacts 
(MAs) in recorded PPG signals, thereby 

seriously degrading heart rate estimation 
accuracy (Figure 1). Such interference 
calls for effective MA removal and heart 
rate estimation methods.

As a researcher with years of experi-
ence in PPG-based heart rate monitor-
ing, I realized that this problem was 
suitable for the SP Cup for the follow-
ing reasons:

■ The problem can be formulated into 
a typical signal processing problem 
from different perspectives. For exam-
ple, with the available simultaneous 
acceleration signals, it can be formu-
lated into an adaptive noise cancella-
tion problem. Alternatively, it can be 
formulated into a single-channel (or 
multichannel) signal decomposition 
problem. Therefore, students have the 
freedom to choose different signal pro-
cessing techniques to solve this prob-
lem, based on their preferences and 
academic backgrounds. 
■ Solving this problem requires 
jointly using multiple signal process-
ing algorithms, fostering collaboration 
between team members. A successful 
heart rate monitoring solution consists 
of many components, such as digital 
filtering, interference cancellation, 
power spectrum estimation, signal 
decomposition, or other advanced 
algorithms, depending on the kind of 
signal processing problems formulated 
by the students. Therefore, team mem-
bers can divide the problem into a 
number of subproblems, working on 
them separately. But they also need to 
closely collaborate with each other to 
achieve the optimal performance of 
their whole solution.
As a result, I submitted a proposal to run 

an SP Cup on this topic last year, and I was 
delighted to learn that it had been accepted.

DESCRIPTION OF THE COMPETITION
Approximately 270 students, consisting of 
66 teams, registered for this edition of the 
SP Cup. They came from 21 countries/
areas. Ultimately, 49 teams submitted 
their results by the deadline with qualified 
submission materials.

The competition had two rounds. In 
the first round, performance evaluation 
was mainly based on an average absolute 
estimation error, defined as the difference 
between true heart rates and estimated 
heart rates averaged over the whole test 
database. Three teams with the best esti-
mation performance were selected to 
enter the final round. The finalist teams 
presented their work at ICASSP 2015. A 
panel of judges attended their presenta-
tions and ranked them. The evaluation 
criteria included 1) the average absolute 
estimation error (mean and variance), 2) 
the algorithm novelty, 3) the quality of the 
report writing, and 4) the oral presenta-
tion. Details of the competition procedure 
can be found in [1] and [3].

COMPETITION RESULTS

FIRST PLACE: SIGNAL PROCESSING
CREW DARMSTADT
The team Signal Processing Crew Darm-
stadt (Alaa Alameer, Bastian Alt, Christian 
Sledz, Hauke Radtki, Maximilian Hütten-
rauch, Patrick Wenzel, and Tim Schäck) 
from Technische Universität Darmstadt, 

Zhilin Zhang
[sp EDUCATION]

Digital Object Identifier 10.1109/MSP.2015.2462991
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Undergraduate Students Compete 
in the IEEE Signal Processing Cup: Part 3

The IEEE SP Cup 2016 will be held at 
ICASSP 2016 with the competition topic: 
“Exploring Power Signatures for Loca-
tion Forensics of Media Recordings.” 
Visit http://www.signalprocessingsociety.
org/community/sp-cup/ for more details.
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Germany, supervised by Dr.-Ing. Michael 
Muma, won first place. They adaptively 
estimated the time-varying transfer func-
tions of each one of the tri-axis accelera-
tion signals that produced artifacts in raw 
PPG signals. A quality-weighted combina-
tion of the outputs of the adaptive filters 
was then used to form a cleansed signal 
from which the heart rate was estimated. 
The method achieved the average abso-
lute estimation error of 3.44 beats/min-
ute (BPM) on the test database.

SECOND PLACE: SUPERSIGNAL
The team Supersignal (Sayeed Shafayet 
Chowdhury, Rakib Hyder, Anik Khan, Md. 
Samzid Bin Hafiz, and Zahid Hasan) from 
Bangladesh University of Engineering and 

Technology, Bangladesh, supervised by 
Prof. Mohammad Ariful Haque, took sec-
ond place. This team proposed a solution, 
mainly based on adaptive filtering, with 
carefully designed reference signals from 
tri-axis accelerometer data and PPG sig-
nals.The team obtained the average abso-
lute estimation error of 2.27 BPM on the 
test database.

THIRD PLACE: SSU
The team SSU (Gyehyun Baek, Minkyu 
Jung, Hyunil Kang, Jungsub Lee, Baek-
san On, and Sunho Kim) from Soongsil 
University, South Korea, supervised by 
Prof. Sungbin Im, placed third. To 
remove motion artifacts in the raw PPG 
signals, the team proposed a solution 

based on a multiple-input, single-output 
(MISO) filter with tri-axis accelerometer 
data as inputs, where the MISO filter 
coefficients are estimated using the Wie-
ner filter approach. The solution obtained 
the average absolute estimation error of 
3.26 BPM on the test database.

Figure 2 shows the estimation results 
of the three teams on set 2 of the test 
database.

FEEDBACK FROM PARTICIPATING 
STUDENTS AND SUPERVISORS
I received extensive feedback from the 
participating students and their supervi-
sors. Due to space constraints in this 
article, selected samples from the three 
winning teams are given next.
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[FIG1] A comparison between an MA-free PPG signal and an MA-contaminated PPG signal. (a)–(d) shows the MA-free PPG signal 
and its spectrum, and the MA-contaminated PPG signal and its spectrum, respectively. The spectra are calculated using the 
periodogram algorithm. The red circles in (b) and (d) indicate the spectral peaks corresponding to the heartbeat. The 
x-coordinates in (b) and (d) are expressed by BPM for convenience, instead of hertz. The comparison shows the difficulty of 
identifying heart rate from MA-contaminated PPG signals. (Figure adapted from [2].)
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STUDENTS’ FEEDBACK 
ON THE EXPERIENCE

I think the SP Cup is very helpful in a 
sense that one can work on close-to-
real-world problems.The problem was 
not as designed as university tasks, and 
the data were collected from real experi-
ments. Also, it showed that often not 
the most complex and sophisticated 
concepts lead to good results, but rath-
er, one starts out with a basic idea and 
adds bits and pieces to this initial idea.
—Signal Processing Crew Darmstadt

We had to learn a lot of new topics 
like adaptive filtering, wavelet 
decomposition, empirical mode 
decomposition, singular spectrum 
analysis, etc. in an attempt to solve 
the problem. We think solving, or 
even attempting to solve, a real-life 
signal processing problem helps a lot 
to build up our interest, as well as 
understanding, in signal processing.

—Supersignal

Our team members and I regularly 
met to study algorithms, including 
independent component analysis, 
singular spectrum analysis, sparse 
signal recovery, Kalman filter, and 
so on, during meetings. These tech-
niques helped us deal with our goal. 
We tried to implement some of the 
techniques into MATLAB codes.

—SSU

STUDENTS’ FEEDBACK ON 
TEAMWORK

Our SP Cup team size was bigger, and 
we learned how to cooperate together 
in smaller groups, each group being 
responsible for a certain problem […] 
This, of course, required communica-
tion skills to understand the work of 
each group and combine everything 
together. We met once/twice per week 
and worked together. The discussions 
showed us that there were always 
other possible ways to think of a spe-
cific problem, and these discussions 
helped us identify the best possible 
way to solve a specific problem.
—Signal Processing Crew Darmstadt

SUPERVISORS’ FEEDBACK
The most important ingredient in 
the recipe (to win the SP Cup) was 
the motivation of the students. We 
did our best to keep up a good team 
spirit in which their creativity could 
be channeled into new approaches. 
We had regular meetings, beginning 
with a kick-off meeting where the 
students got to know each other. We 
also provided the team with the 
communication infrastructure to 
ensure that the information flow 
between the students was efficient 
and transparent. 

The SP Cup was extremely use-
ful for students who could apply the 
concepts they had learned, e.g., in 
our lectures on adaptive filters and 
digital signal processing. Also, via 
the SP Cup, the students were able 
to implement and fully understand 
different adaptive filters, such as the 
least mean squares and Kalman fil-
ters. They understood, using real 
data, the tradeoffs between perfor-
mance and computational costs.

—Dr.-Ing. M. Muma, 
Signal Processing Crew Darmstadt

The students benefitted so much 
from the SP Cup that it cannot be 
fully explained in words. It gave 
them the opportunity to work on a 
real-world problem. It taught them 
how to study the literature and link 
fundamental and advanced digital 
signal processing algorithms to solve 
a complex problem. Moreover, it 
gave them hands-on experience to 
write technical reports. Although the 
SP Cup is primarily intended for 
undergraduate students, we had to 
explore many advanced algorithms 
to find an applicable solution. As a 
result, the insight that I have gained, 
on the related signal processing 
algorithms, are helpful to my teach-
ing undergraduate, as well as gradu-
ate, courses. Specifically, it helps me 
to put forward appropriate examples 
and develop suitable assignments for 
my students. The benefit is not just 
limited to teaching courses but also 
extends to supervising research proj-
ects and theses.

—Prof. M.A. Haque, Supersignal,
who also led students 

to win the first SP Cup
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[FIG2] The heart rate groundtruth of test set 2 and the estimates by the three 
winning teams. During the data recording, the subject performed various activities, 
including forearm and upper arm exercise, running, jumping, and push-ups. Thus, 
the subject’s heart rate largely fluctuated. Most of the time, the estimates of the 
three teams closely followed the true heart rate changes.
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The SP Cup provides students with 
insight about how signal processing 
works in practice. Undergraduate 
students usually learn many signal 
processing theories and tech-
niques, but only from textbooks 
and lectures. Through this competi-
tion, they collected a lot of informa-
tion from various materials such as 
papers, videos, and discussions, and 
the combination of the collected 
information gave good results. It is 
important for students to learn how 
to approach problems. Several stu-
dents even seriously studied sparse 
signal processing, Kalman filtering, 
and independent component analy-
sis, which are beyond the scope of 
the undergraduate signal process-
ing level, to try understanding the 
state of the art. Introducing the SP 
Cup in class interests students in 

signal processing. The explanation 
of the topic of the SP Cup, related to 
health monitoring, helps students 
find applications of signal processing 
in our daily lives. It is most useful to 
reduce the distance of the students to 
the signal processing area.

—Prof. S. Im, 
SSU

CONCLUSIONS
I am glad to see that many teams proposed 
effective algorithms to solve this chal-
lenge. Nevertheless, it should be noted 
that there is still much work to do so that 
the algorithms can work in various sce-
narios (e.g., different physical activities, 
different skin color, and different collec-
tion devices and PPG sensors). I hope that 
this edition of the SP Cup managed to 
raise students’ interest in applying their 

signal processing skills to solve practical 
problems in wearable health care.

AUTHOR
Zhilin Zhang (zhilinzhang@ieee.org) is a 
staff research engineer and manager with 
Samsung Research America, Dallas, 
Texas. He was a main organizer of the 
2015 IEEE Signal Processing Cup and a 
member of the Bioimaging and Signal 
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IEEE Signal Processing Society.
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On the Intrinsic Relationship Between the 
Least Mean Square and Kalman Filters

T
he Kalman filter and the 
least mean square (LMS) 
adaptive filter are two of the 
most popular adaptive esti-
mation algorithms that are 

often used interchangeably in a number 
of statistical signal processing applica-
tions. They are typically treated as sepa-
rate entities, with the former as a 
realization of the optimal Bayesian esti-
mator and the latter as a recursive solu-
tion to the optimal Wiener filtering 
problem. In this lecture note, we con-
sider a system identification framework 
within which we develop a joint perspec-
tive on Kalman filtering and LMS-type 
algorithms, achieved through analyzing 
the degrees of freedom necessary for 
optimal stochastic gradient descent adap-
tation. This approach permits the intro-
duction of Kalman filters without any 
notion of Bayesian statistics, which may 
be beneficial for many communities that 
do not rely on Bayesian methods [1], [2]. 

There are several and not immediately 
patent aspects of common thinking 
between gradient descent and recursive 
state-space estimators. Because of their 
nonobvious or awkward nature, these are 
often overlooked. Hopefully the frame-
work presented in this article, with the 
seamless transition between LMS and Kal-
man filters, will provide a straightforward 
and unifying platform for understanding 
the geometry of learning and optimal 
parameter selection in these approaches. 
In addition, the material may be useful in 
lecture courses in statistical signal pro-
cessing, or indeed, as interesting reading 
for the intellectually curious and generally 
knowledgeable reader. 

NOTATION
Lowercase letters are used to denote sca-
lars, e.g., ;a  boldface letters for vectors, 

;a  and boldface uppercase letters for 
matrices, A.  Vectors and matrices are 
respectively of dimensions M 1#  and 

.M M#  The symbol ( ) T$  is used for vec-
tor and matrix transposition and the 
subscript k  for discrete time index. 
Symbol E ·" , represents the statistical 
expectation operator, tr ·" , is the matrix 
trace operator, and · 2  the l2  norm. 

PROBLEM FORMULATION
Consider a generic system identification 
setting 

,x wd no
k k

T
k k= + (1)

where the aim is to estimate the unknown 
true system parameter vector, wo

k  (optimal 
weight vector), which characterizes the sys-
tem in (1) from observations, ,dk  corrupted 
by observation noise, .nk  This parameter 
vector can be fixed, i.e., ,w wk

o o=  or time 
varying as in (1), while xk  designates a 
zero-mean input vector and nk  is a zero-
mean white Gaussian process with variance 

.E nn k
2 2v = " ,  For simplicity, we assume 

that all signals are real valued.
To assist a joint discussion of state-

space and regression-type models Table 1 
lists the terms commonly used across dif-
ferent communities for the variables in 
the system identification paradigm in (1). 

We first start the discussion with a deter-
ministic and time-invariant optimal weight 

vector, ,w wk
o o=  and build up to the gen-

eral case of a stochastic and time-varying 
system to give the general Kalman filter.  

PERFORMANCE 
EVALUATION CRITERIA
Consider observations from an unknown 
deterministic system 

.x wd nk k k
oT= + (2)

We desire to estimate the true parameter 
vector wo  recursively, based on the 
existing weight vector estimate wk 1-

and the observed and input signals, i.e., 
( , , ) .w w w xf dk k k k1

o = = -t  Notice that 
, ,w xdk k k1-  are related through the out-

put error 

.x we dk k k k 1
T= - - (3)

Performance of statistical learning 
algorithms is typically evaluated based 
on the mean square error (MSE) crite-
rion, which is defined as the output error 
power and is given by 

.E eMSE k k
2def

p= = " , (4)

Since our goal is to estimate the true 
system parameters, it is natural to also 
consider the weight error vector 

,w w wk k
def o= -u (5)

and its contribution to the output error, 
given by 

.x we nk k k k1
T= +-u (6)
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[TABLE 1] THE TERMINOLOGY USED IN DIFFERENT COMMUNITIES.
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O

ADAPTIVE FILTERING DESIRED SIGNAL INPUT REGRESSOR TRUE/OPTIMAL WEIGHTS

KALMAN FILTERING OBSERVATION MEASUREMENT STATE VECTOR

MACHINE LEARNING TARGET FEATURES HYPOTHESIS PARAMETERS
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Without loss of generality, here we 
treat xk  as a deterministic process, 
although in adaptive filtering convention 
it is assumed to be a zero-mean stochas-
tic process with covariance matrix 

.x xER k k
T= " ,  Our assumption con-

forms with the Kalman filtering litera-
ture, where the vector xk  is often 
deterministic (and sometimes even time 
invariant). Replacing the output error 
from (6) into (4) gives 

( )wx

x x

E n

P
k k k k

k k k n

1
2

1
2

T

T

p

v

= +

= +

-

-

u" ,
(7a)

,, mink
def

exp p= + (7b)

where w wEPk k k1 1 1
def T=- - -u u" , is the sym-

metric and positive semidefinite weight 
error covariance matrix, and the noise 
process nk  is assumed to be statistically 
independent from all other variables. 
Therefore, for every recursion step, ,k
the corresponding MSE denoted by kp

comprises two terms: 1) the time-vary-
ing excess MSE (EMSE), ,,kexp  which 
reflects the misalignment between the 
true and estimated weights (function of 
the performance of the estimator), and 2) 
the observation noise power, ,min n

2p v=

which represents the minimum achiev-
able MSE (for )w wk

o=  and is indepen-
dent of the performance of the estimator. 

Our goal is to evaluate the perfor-
mance of a learning algorithm in identify-
ing the true system parameters, ,wo  and a 
more insightful measure of how closely 

the estimated weights, ,wk  have 
approached the true weights, ,wo  is the 
mean square deviation (MSD), which rep-
resents the power of the weight error vec-
tor and is given by 

.

w wwJ E EMSD

tr P
k k k k

k

2def T= = =

=

u uu" "
"

,
,
,

(8)

Observe that the MSD is related to the 
MSE in (7a) through the weight error 
covariance matrix, ,w wEPk k k

T= u u" ,  and 
thus minimizing MSD also corresponds to 
minimizing MSE. 

OPTIMAL LEARNING GAIN 
FOR STOCHASTIC GRADIENT
ALGORITHMS
The LMS algorithm employs stochastic 
gradient descent to approximately mini-
mize the MSE in (4) through a recursive 
estimation of the optimal weight vector, 
wo  in (2), in the form w wk k 1= -

.E ewk k
2dn- " ,  Based on the instanta-

neous estimate ,E e ek k
2 2." ,  the LMS 

solution is then given by [3] 

.

w w w

w x e

LMS: k k k

k k k k

1

1 n

D= +

= +

-

- (9)

The parameter kn  is a possibly time-vary-
ing positive step-size that controls the 
magnitude of the adaptation steps the 
algorithm takes; for fixed system parame-
ters this can be visualized as a trajectory 
along the error surface—the MSE plot 
evaluated against the weight vector, 

( ) .wkp  Notice that the weight update 

w x ek k k knD =  has the same direction as 
the input signal vector, ,xk  which makes 
the LMS sensitive to outliers and noise in 
data. Figure 1 illustrates the geometry of 
learning of gradient descent approaches 
for correlated data (elliptical contours of 
the error surface)—gradient descent per-
forms locally optimal steps but has no 
means to follow the globally optimal 
shortest path to the solution, .wo  It is 
therefore necessary to control both the 
direction and magnitude of adaptation 
steps for an algorithm to follow the short-
est, optimal path to the global minimum 
of error surface, ( ) .wop

The first step toward Kalman filters is 
to introduce more degrees of freedom by 
replacing the scalar step-size, ,kn  with a 
positive definite learning gain matrix, ,Gk

so as to control both the magnitude and 
direction of the gradient descent adapta-
tion, and follow the optimal path in 
Figure 1. In this way, the weight update 
recursion in (9) now generalizes to 

.w w x eGk k k k k1= +- (10)

Unlike standard gradient-adaptive step-
size approaches that minimize the MSE 
via /k k2 2p n  [4], [5], our aim is to intro-
duce an optimal step-size (and learning 
gain) into the LMS based on the direct 
minimization of the MSD in (8). For con-
venience, we consider a general recursive 
weight estimator 

,w w egk k k k1= +- (11)

which represents both (9) and (10), where 
the gain vector 

,
,

( ),
( ) .

x
x

9
10

for the conventional LMS in
for a general LMS in

g

G

k

k k

k k

def

n

=

'

(12)

To minimize the MSD, given by 
,wJ E tr Pk k k

2= =u" ", ,  we first estab-
lish the weight error vector recursion for 
the general LMS by subtracting wo  from 
both sides of (11) and replacing the output 
error with ,x we nk k k k1

T= +-u  to give 

.w w x w ng gk k k k k k k1 1
T= - -- -u u u (13)

The recursion for the weight error covari-
ance matrix, ,Pk  is then established upon 
postmultiplying both sides of (13) by their 

w1

w
2

Gradient
Descent Path

Optimal Path

True Weights

w  = [w1, w2 ]T° ° °

[FIG1] Mean trajectories of an ensemble of noisy single-realization gradient descent 
paths for correlated data. The LMS path, produced based on (9), is locally optimal 
but globally slower converging than the optimal path.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [119] NOVEMBER 2015

respective transposes and applying the sta-
tistical expectation operator E ·" , to both 
sides, to yield 

.

w w

x P x

x x

EP

g g
P P g g P

k k k

k k k k k k k

k k k k k n1
2

1 1 1

T

T

T T

T v

=

+ +

= - +

-

- - -

u u

^
^

h
h

" ,

(14)

Using the well-known matrix trace 
identities, x xtr trP g g Pk k k k k k1 1

T T=- -" ", ,
xg Pk k k1

T= -  and ,tr g g gg gk k k k k
2T T= =" ,

the MSD evolution, ,J tr Pk k= " ,  is 
obtained as 

.

x

x x

J J 2g P
g P

k k k k k

k k k k n

1 1

2
1

2T

T

v

= -

+ +

- -

-^ h (15)

OPTIMAL SCALAR 
STEP-SIZE FOR LMS
The standard optimal step-size approach 
to the LMS aims at  achieving 

,x we d 0|k k k k k1
T= - =+  where the a pos-

teriori error, ,e |k k1+  is obtained using the 
updated weight vector, ,wk  and the cur-
rent input, .xk  The solution is known as 
the normalized LMS (NLMS), given by (for 
more details, see [6]) 

.w w
x

x e1NLMS: k k
k

k k1 2= +- (16)

The effective LMS-type step-size, 
/ ,x1k k

2n =  is now time varying and 
data adaptive. In practice, to stabilize the 
algorithm a small positive step-size kt  can 
be employed, to give / .xk k k

2n t=

The NLMS is therefore conformal with 
the LMS, whereby the input vector, ,xk

is normalized by its norm, xk
2  (input 

signal power). 

To find the optimal scalar step-size 
for the LMS in (9), which minimizes the 
MSD, we shall first substitute the gain 

xgk k kn=  into (15), to give the MSD 
recursion 

( ) .

x x

x x x

J J 2 P

P

k k k k k k

k k k k k n

1 1

2 2
1

2T

T

,ex k

k

n

n v

= -

+ +

p

p

- -

-1 2 3444 444

1 2 344 44

(17)

The optimal step-size, which minimizes 
MSD, is then obtained by solving for kn

in (17) via / ,J 0k k2 2n =  to yield [7] 

.

x x x
x x

x

1

1

P
P

,

k
k k k k n

k k k

k k

k

2
1

2
1

2

T

normalization

ex

T

n
v

p

p

=
+

=

-

-

correction

^ h

= :
(18)

REMARK 1 
In addition to the NLMS-type normaliza-
tion factor, / ,x1 k

2  the optimal LMS 
step-size in (18) includes the correction
term, / ,1,k kex 1p p  a ratio of the EMSE, 

, ,ex kp  to the overall MSE, .kp  A large devi-
ation from the true system weights causes 
a large /, k kexp p  and fast weight adaptation 
(cf. slow adaptation for a small / ) ., k kexp p

This also justifies the use of a small step-
size, ,kt  in practical NLMS algorithms, 
such as that in “Variants of the LMS.”

FROM LMS TO KALMAN FILTER
The optimal LMS step-size in (18) aims to 
minimize the MSD at every time instant, 
however, it only controls the magnitude of 
gradient descent steps (see Figure 1). To 
find the optimal learning gain that con-
trols simultaneously both the magnitude 

and direction of the gradient descent in 
(10), we start again from the MSD recur-
sion [restated from (15)] 

.

x

x x

J J 2g P
g P

k k k k k

k k k k n

1 1

2
1

2T

T

v

= -

+ +

- -

-^ h

The optimal learning gain vector, ,gk

is then obtained by solving the above MSD 
for ,gk  via / ,gJ 0k k2 2 =  to give 

.
x x

x x

x

g
P

P P

G

k
k k k n

k
k

k

k
k

k k

1
2

1 1
T v p

=
+

=

=

-

- -

(19)

This optimal gain vector is precisely the 
Kalman gain [8], while the gain matrix, 

,Gk  represents a ratio between the weight 
error covariance, ,Pk 1-  and the MSE, .kp

A substitution into the update for Pk  in 
(14) yields a Kalman filter that estimates 
the time-invariant and deterministic 
weights, ,wo  as outlined in Algorithm 1.

REMARK 2
For ,1n

2v =  the Kalman filtering equa-
tions in Algorithm 1 are identical to the 
recursive least squares (RLS) algorithm. 
In this way, this lecture note complements 
the classic article by Sayed and Kailath [9] 
that establishes a relationship between the 
RLS and the Kalman filter. 

SCALAR COVARIANCE UPDATE
An additional insight into our joint per-
spective on Kalman and LMS algorithms 
is provided for independent and identically 
distributed system weight error vectors, 
whereby the diagonal weight error 

VARIANTS OF THE LMS

To illustrate the generality of our results, consider the NLMS 
and the regularized NLMS (also known as f-NLMS), given 
by

: ,w w
x
x eNLMS k k k

k

k
k1 2t= -- (S1)

: ,w w
x

x eNLMS k k
k

k
k

k
1 2f

f
- = +

+
- (S2)

where kt  is a step-size and kf  a regularization factor. Based on 
(17) and (18), the optimal values for kt  and kf  can be found as 

,
, .

P
P

Px x
x x

x x
x

k
k k k n

k k k
k

k k k

k n

1
2

1

1

2 2

T

T

Tt
v

f
v

=
+-

-

-

(S3)

Upon substituting kt  and kf  from (S3) into their respective 
weight update recursions in (S1) and (S2), we arrive at 

( )
,

P
Pw w

x x
x x

x
x e1k k

k

k

k k k n

k k k
k

1
2

1
2T

T

=
v

+
+-

-
- (S4)

for both the NLMS and f-NLMS, which is identical to the LMS 
with the optimal step-size in (18). Therefore, the minimization 
of the mean square deviation with respect to the parameter: 
1) kn  in the LMS, 2) kt  in the NLMS, and 3) kf  in the -f NLMS, 
yields exactly the same algorithm, which is intimately related 
to the Kalman filter, as shown in Table 2 and indicated by the 
expression for the Kalman gain, .gk
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covariance matr ix  i s  g iven by 
,P I,k P k1 1

2v=- -  while the Kalman gain, 
,gk  in (19) now becomes 

,
x x

x
x

xg
,

,
k

P k k k n

P k
k

k k

k

1
2 2

1
2

2Tv v

v

f
=

+
=

+-

-

(20)

where / ,k n P k
2

1
2def

f v v= -  denotes the regu-
larization parameter and ,P k 1

2v -  is the 
estimated weight error vector variance.

REMARK 3 
A physical interpretation of the regulariza-
tion parameter, ,kf  is that it models our con-
fidence level in the current weight estimate, 

,wk  via a ratio of the algorithm-independent 
minimum MSE, ,min n

2p v=  and the algo-
rithm-specific weight error variance, 

.,P k 1
2v -  The more confident we are in cur-

rent weight estimates, the greater the value 
of kf  and the smaller the magnitude of the 
weight update, .w egk k kD =

To complete the derivation, since 
P I,k P k

2v=  and ,Mtr P ,k P k
2v=" ,  the 

MSD recursion in (15) now becomes 

( )
.

x
x

M
, , ,P k P k

k k

k
P k

2
1

2
2

2

1
2v v

f
v= -

+
- -

(21)

The resulting hybrid “Kalman-LMS” algo-
rithm is given in Algorithm 2. 

REMARK 4
The form of the LMS algorithm outlined 
in Algorithm 2 is identical to the class of 
generalized normalized gradient descent 
(GNGD) algorithms in [5] and [10], 
which update the regularization param-
eter, ,kf  using stochastic gradient 
descent. More recently, Algorithm 2 was 
derived independently in [11] as an 
approximate probabilistic filter for linear 
Gaussian data and is referred to as the 
probabilistic LMS.

FROM OPTIMAL LMS 
TO GENERAL KALMAN FILTER
To complete the joint perspective on the 
LMS and Kalman filters, we now consider 
a general case of a time-varying and sto-
chastic weight vector wk

o  in (1), to give 

, ~ ( , ),w w q q Q0F Nk k k k k s1
o o= ++ (22a)

, ~ ( , ) .x wd n n 0Nk k k k k n
2oT v= + (22b)

The evolution of the true weight vector 
wk

o  is governed by a known state transi-
tion matrix, ,Fk  while the uncertainty in 
the state transition model is represented 
by a temporally white state noise vector, 

,qk  with covariance ,EQ q qs k k
T= " ,

which is uncorrelated with observation 
noise .nk  The optimal weight vector evo-
lution in (22a) requires both the update of 
the current state estimate, ,w |k k  in an 
LMS-like fashion and the prediction of the 
next state, ,w |k k1+  as below 

( ),w w x wdg| | |k k k k k k k k k1 1
T= + -- -

(23a)
,w wF| |k k k k k1 =+ (23b)

where gk in (23a) is the Kalman gain. Figure 2 
illustrates that, unlike the standard LMS or 
deterministic Kalman filter in Algorithm 1, 

Algorithm 2: A hybrid Kalman-LMS algorithm.

At each time instant ,k 02  based on measurements { , }xdk k

1) Compute the confidence level (regularisation parameter): 

/ ,k n P k
2

1
2f v v= -

2) Update the weight vector estimate: 

( )w w
x

x x wdk k
k k

k
k k k1 2 1

T

f
= +

+
-- -

3) Update the weight error variance: 

( )x
x

M
, , ,P k P k

k k

k
P k

2
1

2
2

2

1
2v v

f
v= -

+
- -

M
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S

qu
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ξk (w )
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[FIG2] The time-varying state transition in (22a) results in a time-varying MSE
surface. For clarity, the figure considers a scalar case without state noise. Within the 
Kalman filter, the prediction step in (23b) preserves the relative position of w |k k1+

with respect to the evolved true state, .wk 1
o
+

Algorithm 1: The Kalman filter for deterministic states.

At each time instant ,k 02  based on measurements { , }xdk k

1) Compute the optimal learning gain (Kalman gain): 

/x xg P x Pk k k k k k n1 1
2T v= +- -^ h

2) Update the weight vector estimate: 

( )w w x wdgk k k k k k1 1
T= + -- -

3) Update the weight error covariance matrix: 

xP P g Pk k k k k1 1
T= -- -
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the general Kalman filter in (23a) and (23b) 
employs its prediction step in (23b) to track 
the time-varying error surface, a “frame of 
reference” for optimal adaptation. 

The update steps (indicated by the 
index | )k k  and the prediction steps 
(index | )k k1+  for all the quantities 
involved are defined below as 

,

,

w w w

w wEP

| |

| | |

k k k k k

k k k k k k

def o

def T

= -

=

u

u u" ,
,w w w wF q| | |k k k k k k k k k1 1 1

def o= - = ++ + +u u

.

w wEP
F P F Q

| | |

|

k k k k k k

k k k k s

1 1 1
def T

T

=

= +

+ + +u u" ,
(24)

Much like (13)–(17), the Kalman gain 
is derived based on the weight error vector 
recursion, obtained by subtracting the 
optimal time-varying wk

o  from the state 
update in (23a), to yield  

,w w x w ng g| | |k k k k k k k k k k1 1
T= - -- -u u u (25)

so that the evolution of the weight error 
covariance becomes 

.

w w
x x

x x

EP
P P g g P

g g P

|

| | |

|

| |k k k k k k

k k k k k k k k k k

k k k k k k n

1 1 1

1
2

def

T

T T

T

v

=

= - +

+ +

- - -

-

T

u u

^
^

h
h

" ,

(26)

Finally, the Kalman gain, ,gk  which 
minimizes the MSD, ,J tr P| |k k k k= " ,  is 
obtained as [1] 

.
x x

x xg
P

P
G

|

|
k

k k k k n

k k
k k k

1
2

1
T v

=
+

=
-

- (27)

which is conformal with the optimal LMS 
gain in (19). The general Kalman filter 
steps are summarized in Algorithm 3.

REMARK 5
Steps 1–3 in Algorithm 3 are identical to 
the deterministic Kalman filter that was 
derived starting from the LMS and is 
described in Algorithm 1. The essential 

difference is in steps 4 and 5, which cater 
for the time-varying and stochastic gen-
eral system weights. Therefore, the funda-
mental principles of the Kalman filter can 
be considered through optimal adaptive 
step-size LMS algorithms. 

CONCLUSIONS
We have employed “optimal gain” as a 
mathematical lens to examine conjointly 
variants of the LMS algorithms and Kalman 
filters. This perspective enabled us to create 
a framework for unification of these two 
main classes of adaptive recursive online 
estimators. A close examination of the rela-
tionship between the two standard perfor-
mance evaluation measures, the MSE and 
MSD, allowed us to intuitively link up the 
geometry of learning of Kalman filters and 
LMS, within both deterministic and sto-
chastic system identification settings. The 
Kalman filtering algorithm is then derived 
in an LMS-type fashion via the optimal 
learning gain matrix, without resorting to 
probabilistic approaches [12]. 

Such a conceptual insight permits 
seamless migration of ideas from the 
state-space-based Kalman filters to the 
LMS adaptive linear filters and vice versa 
and provides a platform for further devel-
opments, practical applications, and non-
linear extensions [13]. It is our hope that 
this framework of examination of these 
normally disparate areas will both demys-
tify recursive estimation for educational 
purposes [14], [15] and further empower 
practitioners with enhanced intuition and 
freedom in algorithmic design for the 
manifold applications. 
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[TABLE 2] A SUMMARY OF OPTIMAL GAIN VECTORS. THE OPTIMAL STEP-SIZES
FOR THE LMS-TYPE ALGORITHMS ARE LINKED TO THE A PRIORI VARIANT OF THE
KALMAN GAIN VECTOR, ,gk SINCE P P|k k k1 1=- - FOR DETERMINISTIC AND TIME-
INVARIANT SYSTEM WEIGHT VECTORS.

ALGORITHM GAIN VECTOR OPTIMAL GAIN VECTOR

KALMAN
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gk P
x x

x
Pk k k k n

k k k
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1
T v+-
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LMS
NLMS
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2t P
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k k k n
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Algorithm 3: The general Kalman filter.

At each time instant ,k 02  based on measurements { , }xdk k

1) Compute the optimal learning gain (Kalman gain): 

/x x xg P P| |k k k k k k k k n1 1
2T v= +- -^ h

2) Update the weight vector estimate: 

( )w w x wdg| | |k k k k k k k k k1 1
T= + -- -

3) Update the weight error covariance matrix: 

xP P g Pk k k k k1 1
T= -- -

4) Predict the next (posterior) weight vector (state): 

w wF| |k k k k k1 =+

5) Predict the weight error covariance matrix: 

P F P F Q| |k k k k k k s1
T= ++
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The Computational Network Toolkit

T
he computational network 
toolkit (CNTK) is a general-
purpose machine-learning 
tool that supports training 
and evaluation of arbitrary 

computational networks (CNs), i.e., 
machine-learning models that can be 
described as a series of computational 
steps. It runs under both Windows and 
Linux and on both central processing unit 
(CPU) and Compute Unified Device Archi-
tecture (CUDA)-enabled graphics process-
ing unit (GPU) devices. The source code, 
periodic release builds, documents, and 
example setups can all be found at http://
cntk.codeplex.com.

MOTIVATION
In the past several years, powered by the 
significant improvements in computing fa-
cilities and the great increase of data, deep 
learning techniques became the new state 
of the art in many fields such as speech 
recognition and image classification.

The deep neural network (DNN) is the 
first successful deep learning model [1]. In 
DNNs, the combined hidden layers con-
duct complex nonlinear feature transfor-
mation, and the top layer classifies the 
samples. DNNs jointly optimize the fea-
ture transformation and the classification. 
Though powerful, DNNs do not explicitly 
exploit structures such as translational 
variability in images, nor do they explicitly 
apply operations such as pooling and ag-
gregation to reduce feature variability.

The convolutional neural network 
(CNN) improves upon the DNN with the 
explicit modeling of the translational vari-
ability by tiling shared local filters across 
observations to detect the same pattern at 

different locations [2]. The pattern-detec-
tion results are then aggregated through 
either maximum or average pooling. 
However, CNNs only deal with transla-
tional variability and cannot handle other 
variations such as horizontal reflections 
or color intensity differences. Further-
more, CNNs, like DNNs, cannot take ad-
vantage of dependencies and correlations 
between adjacent samples in a sequence.

To address this deficiency, recurrent 
neural networks (RNNs) were introduced 
[3]. RNNs can exploit information fed back 
from hidden and/or output layers in the 
previous time steps and are often trained 
with the backpropagation through time 
algorithm. Unfortunately, simple RNNs 
are difficult to train and have difficulty 
modeling long-range dependencies.

The long short-term memory (LSTM)-
RNN [3] addresses this difficulty by em-
ploying input, output, and forget gates. It 
significantly improves upon the simple 
RNN and has been successfully applied in 
many pattern recognition tasks. However, 
it may not be optimal for a specific prob-
lem at hand since LSTM is a generic mod-
el that does not take into account special 
structures in particular tasks. 

To exploit the structure and informa-
tion inside a particular task, we need to 
design customized models. Unfortunately, 
testing customized models is time con-
suming without proper tools. Typically, 
we need to design the model, derive the 
training algorithm, implement them, and 
run the tests. The majority of the time is 
spent in the algorithm development and 
model implementation, which are often 
error prone and time-consuming. To 
make things worse, the right model is 
rarely found on the first trial. We often 
need to design and evaluate many models 
with different architectures before set-
tling down with the right one for a 

specific task. CNTK intends to provide 
means to reduce the effort required by 
these two steps and therefore increase the 
speed of innovation by focusing on prob-
lem analysis and model design.

COMPUTATIONAL NETWORKS
If we examine DNNs, CNNs, RNNs, and 
LSTM-RNNs, we notice that all of these 
models can be reduced as a series of 
computational steps. If we know how to 
compute each step as well as the order 
in which they are computed, we have an 
implementation of these models. This 
observation suggests that we can gener-
alize and treat all these models as spe-
cial cases of CNs [10]. 

A CN can be described as a directed 
graph where each vertex, called a com-
putation node, represents a computa-
tion, and each edge represents the 
operator-operant relationship. Note that 
the order of operands matters for some 
operations such as matrix multiplica-
tion. Leaf nodes in the graph do not 
have children and are used to represent 
input values or model parameters that 
are not result of some computation.

Figure 1 illustrates the correspon-
dence between the NN and the CN rep-
resentations for a single-hidden-layer 
neural network with a recurrent loop 
from the hidden layer to itself. The oper-
ations performed by the neural network 
at time t can be captured by the follow-
ing three equations:

,p W x b( ) ( ) ( )
t t
1 1 1= + (1)

,s W s p( ) ( ) ( )
t t t

3
1

1 1= v +-` j (2)

f ,o W s b( ) ( )
t t

2 2= +` j (3)

where W(.)  and b(.)  are weights and bias 
defining the behavior of the NN and that 
will be learnt during the training phase. 
Equations (1) and (3) capture the 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

___

http://cntk.codeplex.com
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [124] NOVEMBER 2015

[best of the WEB]continued

behavior of a single-hidden layer NN. 
The first equation gives the hidden layer 
preactivation pt  for the input .xt  All el-
ements should then go through the sig-
moid function ( ) / [ ( )]expp p1 1v = + -

to obtain the hidden layer activity st

that is then fed to a softmax function 
( )f  in (3) to obtain the output layer ac-

tivity .ot  Equation (2) accounts for the 
recurrent loop from the hidden layer to 
itself and makes the influence of the 
previous hidden layer activity s 1t-  ap-
parent. This flow of computations can be 
readily represented as a CN. The recur-
rent loop is depicted in the dash-line box 
and relies on a past-value node to indi-
cate the dependence of the hidden layer 
activity on its past values.

Note that CNs can cover a signifi-
cantly larger variety of and more com-
plicated models than the standard 
models such as DNNs and RNNs. To sup-
port this architectural flexibility, it is 
necessary to employ special algorithms 
to evaluate and train CNs.

NODE EVALUATION
Given a CN, we need to evaluate the value 
of any node in it. However, for general 
CNs, different network structures may re-
quire a different computation order. In the 
cases similar to DNNs, where there is no 
recurrent loop in the CN, the value of a 
node can be computed by following a 

depth-first search on a directed acyclic 
graph (DAG), starting from that node. 
Node evaluation under this condition, also 
called forward computation, is very effi-
cient because many samples can be com-
puted concurrently.

When there are recurrent connec-
tions, efficient computation becomes 
harder. We cannot compute the value 
of several samples in a sequence as a 
batch since the value of the next data 
sample depends on the previous data 
sample in the same sequence. Two 
strategies can be exploited to speed up 
the forward computation in a CN with 
directed loops.

The first strategy identifies the loops 
[or strongly connected components 
(SCCs)] in the CN. If we treat each SCC 
as a composite node, the CN with loops 
becomes a DAG and we can use the 
depth-first-search-based forward compu-
tation strategy to evaluate the nodes. For 
regular nodes, the value of all samples in 
the sequence can be computed in paral-
lel as a single matrix operation. For the 
composite nodes corresponding to a 
loop, the nodes are evaluated sample-by-
sample following the time index in the 
sequence. The computation order of the 
nodes inside the loop can be easily deter-
mined once the values computed in the 
previous time index are assumed to be 
known at the current time index: the 

loop then becomes a DAG if we consider 
each time step.

The second strategy to speed up for-
ward computation in the recurrent CNs 
is to process multiple sequences in par-
allel. To do so, we can organize sequenc-
es in a way that the frames with the 
same time index from different sequenc-
es are grouped together so that we can 
compute them in parallel. 

In practice, both strategies can be ex-
ploited to speed up the evaluation and 
training of recurrent neural networks.

MODEL TRAINING
To train a CN, we need to define a scalar 
training criterion, represent it as a com-
putation node, and insert it into the CN to 
result in another CN. The model parame-
ters can then be optimized using the sto-
chastic gradient descent (SGD) algorithm. 
The key here is to efficiently and automat-
ically compute the gradient of the criteri-
on with regard to each model parameter, 
no matter what CN structure is specified. 
Here, the well-known reverse automatic 
gradient computation algorithm [4] can 
be extended to CNs with recurrent con-
nections similar to that in the forward 
computation. This algorithm assumes that 
each node (operator) knows how to com-
pute the gradient of the training criterion 
with regard to its child nodes (operands) 
and is independent on other nodes.

W (1)

b (1)

W (3)

W (2)

b (2)

xt ot

1

W (1) : Weight xt : Input

Times

W (2) : Weight

b (2) : Bias

Plus

Plus Times

PastValue

W (3) : Weight

Sigmoid

Times

b (1) : Bias

Plus

ot: Softmax

(b)(a)

1

[FIG1] NN-CN representation correspondence for a single-hidden-layer neural network with a recurrent loop from the hidden 
layer to itself. Nodes of the CN are represented using the [node name]:[node type] or [node type] format. (a) Neural network 
representation. (b) CN representation.
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EXISTING TOOLKITS
There were already open-source deep
learning toolkits available before CNTK. 
Each toolkit has its own set of features 
and targeted users.

Theano [5] might be the first general-
purpose training tool for deep learning 
models. It is implemented in Python and 
supports automatic symbolic differentiation. 
However, Theano lacks of mechanisms to 
efficiently train arbitrary recurrent neural 
networks. In addition, Theano requires a 
compilation step in the process that can cast 
difficulties in debugging.

Caffe [6] is probably the most popular 
open-source deep learning toolkit with a 
focus on image classification tasks. It is 
written in C++, with Python and MATLAB 
interfaces. It provides a flexible language 
for specifying models. Most recently, 
LSTM RNN has also been implemented in-
side Caffe. However, its support to RNNs is 
still very limited and lacks of functional-
ities needed in tasks such as speech recog-
nition and natural language processing.

Torch [7] is a popular deep learning 
toolkit that supports automatic differentia-
tion. The users need to write code in Lua 
scripting language to use Torch although 
its back end is written in C/C++ and CUDA. 

CNTK shares the same goal as the 
aforementioned toolkits, i.e., making 
deep learning model development easier. 
In particular, CNTK has been designed 
to efficiently train arbitrary (including 
bidirectional) recurrent neural networks 
and sequence-level criteria, which is very 
important to achieve the state-of-the-art 
results on tasks such as speech recogni-
tion and language modeling and to ex-
plore new recurrent architectures. CNTK 
is written in C++ and is integrated with 
popular speech recognition toolkits such 
as Hidden Markov Model Toolkit (HTK) 
and Kaldi. It also comes with a real-time 
speech decoder and can be easily 
plugged into other existing speech-rec-
ognition decoders.

COMPUTATIONAL 
NETWORK TOOLKIT
CNTK is a C++ implementation of CN. It 
supports both CPU and GPU (CUDA). The 
toolkit is architected in modules with 
the core CN functionalities separated 

from the data readers (for different data 
format), training algorithms, and net-
work definition. 

To run CNTK, we need to prepare a 
configuration file that specifies a com-
mand. If the configuration file is named 
myconfig.cfg, we run CNTK as

cntk.exe 
configFile=myconfig.cfg.

The top-level commands supported in 
CNTK are listed in Table 1. Different com-
mands require different information. For 
example, the train command requires in-
formation on the model definition, data 
reader, and training algorithm.
In CNTK, the model structure can be 
specified using the network definition 
language (NDL), which is very similar to 
the math formula. For example, the line 
h = Times(W, x) indicates that the node 
h is the product of the weight W and the in-
put x, where Times is an NDL function. 
See “Example in Figure 1 as Expressed in 
NDL” for reference, where 

inputDim is the input feature dimen-
sion, hiddenDim is the hidden-layer 
dimension, and outputDim is the out-
put-layer dimension.  

Table 2 lists the key functions current-
ly supported in CNTK. Each function is as-
sociated with a type of computation node. 
New computation node types can be added 
independently following the interface de-
fined in CNTK. NDL supports macros to 
simplify repeated operations.

Advantageously, CNTK provides sever-
al data readers, designed for different file 
formats and purposes. The UCIFastReader 
is designed to support space-delimitated 
text files often used in the UCI data sets. It 
can use the BinaryReader to cache and 
speed up. The HTKMLFReader and Kal-
diReader are used to read speech features 
and labels in HTK and Kaldi format, re-
spectively. The LMSequenceReader and 
LUSequenceReader are text file sequence 
readers for language modeling and lan-
guage understanding, respectively. If a file 
format is supported by the above-men-
tioned readers, we can either convert it to 

[TABLE 1] TOP-LEVEL COMMANDS SUPPORTED IN CNTK.

COMMAND DESCRIPTION
Train TRAIN A MODEL
Eval EVALUATE A MODEL
CV EVALUATE MODELS AT DIFFERENT EPOCHS ON A CROSS-VALIDATION SET
Adapt ADAPT AN ALREADY TRAINED MODEL
Write WRITE THE VALUE OF A NODE TO A FILE
Edit MODIFY AN EXISTING MODEL 
Dumpnode DISPLAY THE INFORMATION OF NODE(S)

EXAMPLE IN FIGURE 1 AS EXPRESSED IN NDL

ndlCreateNetwork(inputDim, hiddenDim, outputDim) = [
W1 = Parameter(hiddenDim, inputDim)
W2 = Parameter(outputDim, hiddenDim)
W3 = Parameter(hiddenDim, hiddenDim)
b1 = Parameter(hiddenDim, init=fixedvalue, value=0)
b2 = Parameter(outputDim, init=fixedvalue, value=0)

xt = Input(inputDim, tag=feature)
p1 = Plus(Times(W1, xt), b1)
pastS = PastValue (outputDim, s1)
s1 = Sigmoid (Plus (Times (W3, pastS), p1))
ot = Softmax (Plus (Times (W2, s1), b2))

]
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one of the above file formats or write a 
new reader to support the new file format.

CNTK trains models using the sto-
chastic gradient descent (SGD) algo-
rithm. In addition, CNTK supports 
AdaGrad, RMSProp, model averaging, 
and 1-bit quantization-based data paral-
lelization. CNTK supports manual or au-
tomatic learning rate annealing. 

SUMMARY AND ADDITIONAL 
INFORMATION
CNTK allows us to define complex CNs 
and to train and evaluate the model. It 
can significantly reduce the effort need-
ed to develop new models and therefore 
speed up the innovation. Equipped with 
CNTK, a machine-learning practitioner 
may define a model with CNs using NDL, 
evaluate the model, expand, reduce, or 
transport the model using a model edit-
ing language, and reevaluate the modi-
fied model. For reference, CNTK has 
already been successfully used to develop 
and validate novel models such as the 

prediction-adaptation-correction-RNN for 
speech recognition [8] and the sequence en-
coder-decoder model for text translation [9]

If you are interested in knowing more 
about CNTK, you can find detailed infor-
mation on the toolkit in [10] and at http://
cntk.codeplex.com.
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[TABLE 2] FUNCTIONS SUPPORTED IN NDL.

CATEGORY FUNCTIONS

INPUTS AND PARAMETERS Input, ImageInput, LookupTable, Parameter, Constant

VECTOR, MATRIX AND TENSOR 
OPERATIONS

ReLU, Sigmoid, Tanh, Log, Cos, Dropout, Negate, Softmax, LogSoftmax, SumElements, 
RowSlice, RowStack, Scale, Times, DiagTimes, Plus, Minus, ElementTimes, KhatriRaoProd-
uct, Reshape

TRAINING CRITERIA SquareError, CrossEntropyWithSoftmax, ClassificationError, ClassBasedCrossEntropyWith-
SoftMax, GMMLogLikelihood, CRF

NORMALIZATION Mean, InvStdDev, PerDimMVNorm

CNN Convolution, MaxPooling, AveragePooling
RNN TimeReverse, PastValue, FutureValue
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2015
[OCTOBER]
IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
19–21 October, Xiamen, China.
General Chairs: Xiao-Ping Zhang, 
Oscar C. Au, and Jonathan Li 
URL: http://www.mmsp2015.org/

IEEE International Conference on Signal 
and Image Processing Applications 
(ICSIPA)
19–21 October, Kuala Lumpur, Malaysia.
General Chair: Syed Khaleel
URL: http://spsocmalaysia.org/icsipa2015/

[NOVEMBER]
49th Asilomar Conference on Signals, 
Systems, and Computers (ACSSC)
8–11 November, Pacific Grove, 
California, United States. 
General Chair: Erik G. Larsson
URL: http://www.asilomarsscconf.org/

Seventh IEEE International Workshop 
on Information Forensics and 
Security (WIFS)
16–19 November, Rome, Italy. 
General Chairs: Patrizio Campisi 
and Nasir Memon
URL: http://www.wifs2015.org/

[DECEMBER]
IEEE 6th International Workshop 
on Computational Advances 
in Multisensor Adaptive 
Processing (CAMSAP)
13–16 December, Cancun, Mexico.
URL: http://inspire.rutgers.edu/camsap2015/

IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU)
13–17 December, Scottsdale, Arizona, 
United States.
URL: http://www.asru2015.org/

International Conference on 
3-D Imaging (IC3D)
14–15 December, Liege, Belgium.
Contact: alain@3dstereomedia.eu
URL: http://www.3dstereomedia.eu/ic3d

IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)
14–16 December, Orlando, Florida, 
United States. 
General Chairs: José M.F. Moura 
and Dapeng Oliver Wu
URL: http://2015.ieeeglobalsip.org/

IEEE Second World Forum on 
Internet of Things (WF-IoT)
14–16 December, Milan, Italy. 
Conference Chair: Latif Ladid
URL: http://sites.ieee.org/wf-iot/

Asia-Pacific Signal and Information 
Processing Association Annial Summit 
and Conference (APSIPA)
16–19 December, Hong Kong. 
Honorary General Chair: Wan-Chi Siu 
General Cochairs: Kenneth Lam, 
Helen Meng, and Oscar Au 
URL: http://www.apsipa2015.org/

2016
[MARCH]
41st IEEE International Conference 
on Acoustics, Speech, and Signal 
Processing (ICASSP)
21–25 March, Shanghai, China.
General Chairs: Zhi Ding, Zhi-Quan Luo, 
and Wenjun Zhang
URL: http://icassp2016.org

Data Compression Conference (DCC)
29 March–1 April, Snowbird, Utah, 
United States.
URL: http://www.cs.brandeis.edu/~dcc/Dates.
html 

[APRIL]
15th ACM/IEEE International 
Conference on Information Processing 
in Sensor Networks (IPSN)
11–14 April, Vienna, Austria.
General Chair: Guoliang Xing 
URL: http://ipsn.acm.org/2016/

IEEE International Symposium on 
Biomedical Imaging (ISBI)
13–16 April, Prague, Czech Republic.
General Chairs: Jan Kybic and Milan Sonka
URL: http://biomedicalimaging.org/2016/

[JUNE]
IEEE Workshop on Statistial Signal 
Processing (SSP)
26–29 June, Palma de Mallorca, Spain. 
General Chairs: Antonio Artés-Rodríguez 
and Joaquín Miguez
URL: http://ssp2016.tsc.uc3m.es/ 

[JULY]
IEEE Ninth IEEE Sensor Array and 
Multichannel Signal Processing 
Workshop (SAM) 
10–13 July, Rio de Janeiro, Brazil. 
General Chairs: Rodrigo C. de Lamare 
and Martin Haardt 
URL: http://delamare.cetuc.puc-rio.br/
sam2016/index.html

IEEE International Conference on 
Multimedia and Expo (ICME)
11–15 July, Seattle, Washington, 
United States. 
General Chairs: Tsuhan Chen, 
Ming-Ting Sun, and Cha Zhang
URL: http://www.icme2016.org/
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is available in IEEE Xplore.
Visit http://ieeexplore.ieee.org, select the “Browse” tab, 

and then navigate to “Journals and Magazines” 
in the drop-down menu to fi nd SPM’s current issue.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

___________

____________

_____________

___

mailto:j.barrague@ieee.org
http://www.mmsp2015.org/
http://spsocmalaysia.org/icsipa2015/
http://www.asilomarsscconf.org/
http://www.wifs2015.org/
http://inspire.rutgers.edu/camsap2015/
http://www.asru2015.org/
mailto:alain@3dstereomedia.eu
http://www.3dstereomedia.eu/ic3d
http://2015.ieeeglobalsip.org/
http://sites.ieee.org/wf-iot/
http://www.apsipa2015.org/
http://icassp2016.org
http://www.cs.brandeis.edu/~dcc/Dates.html
http://ipsn.acm.org/2016/
http://biomedicalimaging.org/2016/
http://ssp2016.tsc.uc3m.es/
http://delamare.cetuc.puc-rio.br/sam2016/index.html
http://www.icme2016.org/
http://ieeexplore.ieee.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


PHA-1+
0.05-6 GHz

$199
ea. (qty. 20)

Gain 13.5 dB
Pout 22 dBm

Gain 14.0 dB

AVA-183A+
5-18 GHz 

$695
ea. (qty. 10)

Pout 19 dBm

MICROWAVE MMIC AMPLIFIERS
50 MHz to26.5GHz

Mini-Circuits®

www.minicircuits.com    P.O. Box 35 166, Brooklyn, NY 11235-0003   (718) 934-4500   sales@minicircuits.com

AVM-273HPK+
13-26.5 GHz

$3690
ea. (qty. 10)

Gain 13.0 dB
Pout 27 dBm

New

Mini-Circuits’ New AVM-273HPK+ wideband microwave 
MMIC amplifier supports applications from 13 to 26.5 GHz 
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power handling. It is unconditionally stable and an ideal 

LO driver amplifier. Internal DC blocks, bias tee, and 
microwave coupling capacitor simplify external circuits, 
minimizing your design time.
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dynamic range, low noise, and excellent IP3 performance, 
making it ideal for LTE and TD-SCDMA. Good input and 
output return loss across almost 7 octaves extend its use to 
CATV, wireless LANs, and base station infrastructure.

We’ve got you covered!  Visit minicircuits.com for full specs, 
performance curves, and free data!  These models are in stock 
and ready to ship today!
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The language of technical computing

Over one million people around 
the world speak MATLAB. 
Engineers and scientists in every field
from aerospace and semiconductors 
to biotech, financial services, and 
earth and ocean sciences use it 
to express their ideas. 
Do you speak MATLAB?

Cells in mitosis:  
high-throughput microscopy
for image-based screens.
Provided by Roy Wollman,
Univ. California, Davis.

Article available at 
mathworks.com/ltc
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SIGNAL AND INFORMATION PROCESSING 
OVER NETWORKS

IEEE TRANSACTIONS ON

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:

Editor-in-
-ieee 

Now accepting paper submissions

Adaptation, Detection, Estimation, and Learning 
Distributed detection and estimation 
Distributed adaptation over networks
Distributed learning over networks
Distributed target tracking 
Bayesian learning; Bayesian signal processing
Sequential learning over networks 
Decision making over networks 
Distributed dictionary learning 
Distributed game theoretic strategies
Distributed information processing 
Graphical and kernel methods 
Consensus over network systems 
Optimization over network systems 

Communications, Networking, and Sensing 
Distributed monitoring and sensing 
Signal processing for distributed communications and 
networking
Signal processing for cooperative networking 
Signal processing for network security 
Optimal network signal processing and resource 
allocation 

Modeling and Analysis 
Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
Wireless/mobile multimedia 

Data Analysis 
Processing, analysis, and visualization of big data 
Signal and information processing for crowd 
computing 
Signal and information processing for the Internet of 
Things 
Emergence of behavior 

Emerging topics and applications 
Emerging topics 
Applications in life sciences, ecology, energy, social 
networks, economic networks, finance, social 
sciences, smart grids, wireless health, robotics, 
transportation, and other areas of science and 
engineering 
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NEW PUBLICATION:
Transactions on Signal and Information Processing over Networks (T-SIPN)*

http://www.signalprocessingsociety.org/publications/periodicals/tsipn/

>>We are accepting paper submissions: please submit a manuscript here<<

There has been an explosion of research in network systems of various types, including 
physical, engineered, biological and social systems. Its aim is to find answers to fundamental 
questions about the systems and with them be able to understand, predict, and control them 
better. To that end, a core area of work is signal and information processing over networks.

Network systems represent a growing research field encompassing numerous disciplines in 
science and engineering. Their complexity is reflected in the diversity and the interconnectivity
of their elements, which have the capacity to adapt and learn from experience. Applications of 
network systems are wide and include communications (wireless sensor networks, peer-to-peer 
networks, pervasive mobile networks, the Internet of Things), the electric power grid, biology, 
the Internet, the stock market, ecology, and in animal and human societies.

The Transactions on Signal and Information Processing over Networks (T-SIPN) publishes
timely peer-reviewed technical articles on advances in the theory, methods, and algorithms for 
signal and information processing, inference, and learning in network systems. The following 
core topics define the scope of the Transaction:

Adaptation, Detection, Estimation, and Learning (ADEL)

o Distributed detection and estimation (ADEL-DDE)
o Distributed adaptation over networks (ADEL-DAN)
o Distributed learning over networks (ADEL-DLN)
o Distributed target tracking (ADEL-DTT)
o Bayesian learning; Bayesian signal processing (ADEL-BLSP)
o Sequential learning over networks (ADEL-SLN)
o Decision making over networks (ADEL-DMN)
o Distributed dictionary learning (ADEL-DDL)
o Distributed game theoretic strategies (ADEL-DGTS)
o Distributed information processing (ADEL-DIP)
o Graphical and kernel methods (ADEL-GKM)
o Consensus over network systems (ADEL-CNS)
o Optimization over network systems (ADEL-ONS)

Communications, Networking, and Sensing (CNS)

o Distributed monitoring and sensing (CNS-DMS)
o Signal processing for distributed  communications and networking (CNS-SPDCN)
o Signal processing for cooperative networking  (CNS-SPCN)
o Signal processing for network security (CNS-SPNS)
o Optimal network signal processing and resource allocation (CNS-NSPRA)

(continued on next page)
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Modeling and Analysis (MA)

o Performance and bounds of methods (MA-PBM)
o Robustness and vulnerability (MA-RV)
o Network modeling and identification (MA-NMI)
o Simulations of networked information processing systems (MA-SNIPS)
o Social learning    (MA-SL)
o Bio-inspired network signal processing (MA-BNSP)
o Epidemics and diffusion in populations (MA-EDP)

Imaging and Media Applications (IMA)

o Image and video processing over networks (IMA-IVPN)
o Media cloud computing and communication (IMA-MCCC)
o Multimedia streaming and transport (IMA-MST)
o Social media computing and networking (IMA-SMCN)
o Signal processing for cyber-physical systems (IMA-SPCPS)
o Wireless/mobile multimedia (IMA-WMM)

Data Analysis (DA)

o Processing, analysis, and visualization of big data (DA-BD)
o Signal and information processing for crowd computing (DA-CC)
o Signal and information processing for the Internet of Things (DA-IOT)
o Emergence of behavior (DA-EB)

Emerging topics and applications (ETA)

o Emerging topics (ETA-ET)
o Applications in life sciences, ecology, energy, social networks, economic networks, 

finance, social sciences etc. smart grids, wireless health, robotics, transportation, and 
other areas of science and engineering (ETA-APP)

>>We are accepting paper submissions: please submit a manuscript here<<

*T-SIPN is co-sponsored by the Signal Processing, Communications and Computer 
societies
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IEEE TRANSACTIONS ON

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

W. Clem Karl
Boston University

                                                                          www.signalprocessingsociety.org     [16]  NOVEMBER 2015

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_________________________________________________

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org/publications/periodicals/tci/
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                              www.signalprocessingsociety.org     [17]  NOVEMBER 2015

The 23rd IEEE International Conference on Image Processing (ICIP) will be held in the Phoenix 
Convention Centre, Phoenix, Arizona, USA, on September 25 - 28, 2016. ICIP is the world’s largest 
and most comprehensive technical conference focused on image and video processing and computer 
vision. In addition to the Technical Program, ICIP 2016 will feature an Innovation Program focused 
on innovative vision technologies and fostering innovation, entrepreneurship, and networking.
The conference will feature world-class speakers, tutorials, exhibits, and a vision technology showcase.

Topics in the ICIP 2016 Technical Program include but are not limited to the following:
Filtering, Transforms, Multi-Resolution Processing
Restoration, Enhancement, Super-Resolution
Computer Vision Algorithms and Technologies
Compression, Transmission, Storage, Retrieval
Computational Imaging
Color and Multispectral Processing
Multi-View and Stereoscopic Processing
Multi-Temporal and Spatio-Temporal Processing
Video Processing and Analytics
Authentication and Biometrics

Biological and Perceptual-based Processing
Visual Quality Assessment
Scanning, Display, and Printing
Document and Synthetic Visual Processing
Applications to various fields (e.g., biomedical, 
Advanced Driving Assist Systems,  assistive 
living, security, learning,
health and environmental monitoring, 
manufacturing, consumer electronics)

The ICIP 2016 innovation program will feature a vision technology showcase of state-of-the-art vision 
technologies, innovation challenges, talks by innovation leaders and entrepreneurs, tutorials, and 
networking.

Paper Submission: Prospective authors are invited to submit full-length papers at the conference website, 
with up to four pages for technical content including figures and references, and with one additional 
optional 5th page for references only. Submission instructions, templates for the required paper format, 
and information on “no show” policy are available at www.icip2016.com.

Tutorials and Special Sessions Proposals: Tutorials will be held on September 25, 2016. Tutorial 
proposals should be submitted to tutorials@icip2016.com and must include title, outline, contact 
information, biography and selected publications for the presenter(s), and a description of the tutorial 
and material to be distributed to participants. Special Sessions proposals should be submitted to 
specialsessions@icip2016.com and must include a topical title, rationale, session outline, contact 
information, and a list of invited papers. For detailed submission guidelines, please refer the ICIP 2016 
website at www.icip2016.com.

Important Deadlines:
Special Session and Tutorial Proposals: November 16, 2015
Notification of Special Session and Tutorial Acceptance: December 18, 2015

Paper Submissions: January 25, 2016
Notification of Paper Acceptance: April 30, 2016

Visual Technology Innovator Award Nomination: March 30, 2016

Revised Paper Upload Deadline: May 30, 2016
Authors‘ Registration Deadline: May 30, 2016

General Chair
Lina Karam
    Arizona State University
General Co-Chair
Aggelos Katsaggelos
    Northwestern University
Technical Program Chairs
Fernando Pereira
    Instituto Superior Técnico
Gaurav Sharma
    University of Rochester
Innovation Program Chairs
Haohong Wang
    TCL Research America
Jeff Bier
    BDTI & Embedded Vision Alliance
Finance Chair
Sohail Dianat
    Rochester Institute of Technology
Plenary Chairs
Michael Marcellin
    University of Arizona
Sethuraman  Panchanathan
    Arizona State University
Special Sessions Chairs
Dinei Florencio
    Microsoft Research
Chaker Larabi
    Poitiers University
Zhou Wang
    University of Waterloo
Tutorials Chairs
Ghassan AlRegib
    Georgia Tech
Rony Ferzli
    Intel
Publicity Chair
Michel Sarkis
    Qualcomm Technologies Inc.
Awards Chairs
Vivek Goyal
    Boston University
Ivana Tosic
    Ricoh Innovations
Exhibits Chair
David Frakes
    Arizona State University &
    Google
Publication Chairs
Patrick Le Callet
    Nantes University
Baoxin Li
    Arizona State University
Local Arrangement Chairs
Jorge Caviedes
    Intel
Pavan Turaga
    Arizona State University
Registration Chair
Ricardo De Queiroz
    Universidade de Brasilia
Conference Management
Conference Management Services

http://www.facebook.com/icip2016

https://twitter.com/icip2016/

https://www.linkedin.com/groups/ICIP-2016-6940658

www.icip2016.com

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_____________________

________________

http://www.signalprocessingsociety.org
https://www.linkedin.com/groups/ICIP-2016-6940658
https://twitter.com/icip2016/
http://www.facebook.com/icip2016
http://www.icip2016.com
http://www.icip2016.com
http://www.icip2016.com
mailto:specialsessions@icip2016.com
mailto:tutorials@icip2016.com
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [18]  NOVEMBER 2015

OCTOBER 2015 VOLUME 10 NUMBER 10 ITIFA6 (ISSN 1556-6013)

PAPERS

Soft Content FingerprintingWith Bit Polarization Based on Sign-Magnitude Decomposition http://dx.doi.org/10.1109/TIFS.2015.2432744 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Voloshynovskiy, T. Holotyak, and F. Beekhof 2033

http://dx.doi.org/10.1109/TIFS.2015.2440188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. B. Raja, R. Raghavendra, and C. Busch 2048
Modeling Facial Soft Tissue Thickness for Automatic Skull-Face Overlay http://dx.doi.org/10.1109/TIFS.2015.2441000 . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. R. Campomanes-Álvarez, O. Ibáñez, C. Campomanes-Álvarez, S. Damas, and O. Cordón 2057

Cross-Speed Gait Recognition Using Speed-Invariant Gait Templates and Globality-Locality Preserving Projections
http://dx.doi.org/10.1109/TIFS.2015.2445315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Huang, A. Elgammal, J. Lu, and D. Yang 2071

Copy-Move Forgery Detection by Matching Triangles of Keypoints http://dx.doi.org/10.1109/TIFS.2015.2445742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Ardizzone, A. Bruno, and G. Mazzola 2084

Improving Wireless Secrecy Rate via Full-Duplex Relay-Assisted Protocols http://dx.doi.org/10.1109/TIFS.2015.2446436 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Parsaeefard and T. Le-Ngoc 2095

Single Sample Face Recognition via Learning Deep Supervised Autoencoders http://dx.doi.org/10.1109/TIFS.2015.2446438 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Gao, Y. Zhang, K. Jia, J. Lu, and Y. Zhang 2108

http://dx.doi.org/10.1109/TIFS.2015.2449264 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Lin, R. Zhang, H. Ma, and M. Wang 2119

Subband PUEA Detection and Mitigation in OFDM-Based Cognitive Radio Networks http://dx.doi.org/10.1109/TIFS.2015.2450673 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Alahmadi, Z. Fang, T. Song, and T. Li 2131
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On Known-Plaintext Attacks to a Compressed Sensing-Based Encryption: A Quantitative Analysis
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CISRI: A Crime Investigation System Using the Relative Importance of Information Spreaders in Networks Depicting
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A First Step Toward Network Security Virtualization: From Concept To Prototype http://dx.doi.org/10.1109/TIFS.2015.2453936 . . . . . . . . . . . . .
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Forensic Detection of Processing Operator Chains: Recovering the History of Filtered JPEG Images
http://dx.doi.org/10.1109/TIFS.2015.2424195 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . V. Conotter, P. Comesaña, and F. Pérez-González 2257
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Aims and Scope

Network models of the brain have become an important tool of modern neurosciences to study fundamental 

organizational principles of brain structure & function. Their connectivity is captured by the so-called 

, the complete set of structural and functional links of the network. There is still an important 

need for advancing current methodology; e.g., going towards increasing large-scale models; incorporating 

multimodal information in multiplex graph models; dealing with dynamical aspects of network models; and 

matching data-driven and theoretical models. 

These challenges form multiple opportunities to develop and adapt emerging signal processing theories and 

methods at the interface of graph theory, machine learning, applied statistics, simulation, and so on, to play 

a key role in the analysis and modeling and to bring our understanding of brain networks to the next level

for key applications in cognitive and clinical neurosciences, including brain-computer interfaces.
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Novel subspace decompositions (e.g., tensor models, sparsity-driven regularization, low-rank 
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Multiscale decompositions (e.g., graph wavelets)

Advanced statistical inference (e.g., two-step procedures, Riemannian statistics)

Machine learning (e.g., graph kernels, structured penalties, deep neural networks)

Dynamical systems and simulation approaches 

Time delay techniques for brain networks

Big data methods for brain networks (e.g., approximate inference, distributed computing on graphs)

Dynamical graphical models (e.g., Bayesian non-parametrics, structure learning)

Clustering (e.g., overlapping/fuzzy communities)
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Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 
  engineering—digital

10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 
  management
5. Design engineering management
  —analog
6. Design engineering management
  —digital
7. Research and development
  engineering
8. Design/development engineering
  —analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2016 IEEE MEMBERSHIP APPLICATION  

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone

Primary E-mail

Secondary Address

Company Name Department/Division

Street Address  City State/Province

Postal Code Country

Secondary Phone  

Secondary E-mail

 Home  Business  (All IEEE mail sent here)  

 Home  Business  
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IEEE Aerospace and Electronic Systems AES010 25.00 12.50

IEEE Antennas and Propagation AP003 15.00 7.50

IEEE Broadcast Technology BT002 15.00 7.50

IEEE Circuits and Systems CAS004 22.00 11.00

IEEE Communications C0M019 30.00 15.00

IEEE Components, Packaging, & Manu. Tech. CPMT021 15.00 7.50

IEEE Computational Intelligence CIS011 29.00 14.50

IEEE Computer C016 56.00 28.00

IEEE Consumer Electronics CE008 20.00 10.00

IEEE Control Systems CS023 25.00 12.50

IEEE Dielectrics and Electrical Insulation DEI032 26.00 13.00

IEEE Education E025 20.00 10.00

IEEE Electromagnetic Compatibility EMC027 31.00 15.50

IEEE Electron Devices ED015 18.00 9.00

IEEE Engineering in Medicine and Biology EMB018 40.00 20.00

IEEE Geoscience and Remote Sensing GRS029 19.00 9.50

IEEE Industrial Electronics IE013 9.00 4.50

IEEE Industry Applications IA034 20.00 10.00

IEEE Information Theory IT012 30.00 15.00

IEEE Instrumentation and Measurement IM009 29.00 14.50

IEEE Intelligent Transportation Systems ITSS038 35.00 17.50

IEEE Magnetics MAG033 26.00 13.00

IEEE Microwave Theory and Techniques MTT017 17.00 8.50

IEEE Nuclear and Plasma Sciences NPS005 35.00 17.50

IEEE Oceanic Engineering OE022 19.00 9.50

IEEE Photonics PHO036 34.00 17.00

IEEE Power Electronics PEL035 25.00 12.50

IEEE Power & Energy PE031 35.00 17.50

IEEE Product Safety Engineering PSE043 35.00 17.50

IEEE Professional Communication PC026 31.00 15.50

IEEE Reliability RL007 35.00 17.50

IEEE Robotics and Automation RA024 9.00 4.50

IEEE Signal Processing SP001 22.00 11.00

IEEE Social Implications of Technology SIT030 33.00 16.50

IEEE Solid-State Circuits SSC037 22.00 11.00

IEEE Systems, Man, & Cybernetics SMC028 12.00 6.00

IEEE Technology & Engineering Management TEM014 35.00 17.50

IEEE Ultrasonics, Ferroelectrics, & Frequency Control UFFC020 20.00 10.00

IEEE Vehicular Technology VT006 18.00 9.00

PROMO CODECAMPAIGN CODE

 Yes     No     If yes, provide the following:

Member Recruiter Name ___________________________________

IEEE Recruiter’s Member Number (Required) ______________________

Credit Card Number

Name as it appears on card

Signature

Proceedings of the IEEE ................... print $47.00 or online $41.00
Proceedings of the IEEE (print/online combination) ..................$57.00
IEEE Standards Association (IEEE-SA) ................................................$53.00
IEEE Women in Engineering (WIE) .....................................................$25.00

Please total the Membership dues, Society dues, and other amounts 
from this page:
IEEE Membership dues    ............................................................. $_______
IEEE Society dues (optional)     ................................................. $_______
IEEE-SA/WIE dues (optional)    .................................................. $_______
Proceedings of the IEEE (optional)    ....................................... $_______
Canadian residents pay 5% GST or appropriate HST (BC—12%; NB, NF,
ON-13%;NS-15%) on Society payments & publications only.....................TAX $_______

AMOUNT PAID ................................................................................TOTAL $_______

Payment Method
All prices are quoted in US dollars. You may pay for IEEE membership 
by credit card (see below), check, or money order payable to IEEE, 
drawn on a US bank.

6

CARDHOLDER’S 5-DIGIT ZIPCODE

(BILLING STATEMENT ADDRESS) USA ONLY

MONTH                   YEAR
EXPIRATION DATE

5

7

7

Check

Please reprint your full name here

BETWEEN
1 MAR 2016-
15 AUG 2016

PAY

BETWEEN
 16 AUG 2015-
28 FEB 2016

PAY

Complete both sides of this form, sign, and return to:
IEEE MEMBERSHIP APPLICATION PROCESSING
445 HOES LN, PISCATAWAY, NJ 08854-4141 USA
or fax to +1 732 981 0225
or join online at www.ieee.org/join

Add IEEE Society Memberships (Optional)5 2016 IEEE Membership Rates 
(student rates available online)

6

More Recommended Options7

Payment Amount8

Were You Referred to IEEE?9

1
5

-M
EM

-3
8

5
 P

 6
/1

5

Minimum Income or Unemployed Provision
Applicants who certify that their prior year income did not exceed US$14,700
(or equivalent) or were not employed are granted 50% reduction in: full-year dues,
regional assessment and fees for one IEEE Membership plus one Society Membership. 
If applicable, please check appropriate box and adjust payment accordingly. Student 
members are not eligible.

I certify I earned less than US$14,700 in 2015
I certify that I was unemployed in 2015

The 39 IEEE Societies support your technical and professional interests.
Many society memberships include a personal subscription to the core journal, 
magazine, or newsletter of that society. For a complete list of everything 
included with your IEEE Society membership, visit www.ieee.org/join. 
All prices are quoted in US dollars.

Please check the appropriate box.

One or more Society publications

Society newsletter

Legend—Society membership includes:
Online access to publication

CD-ROM of selected society 
publications

IEEE member dues and regional assessments are based on where 
you live and when you apply. Membership is based on the calendar 
year from 1 January through 31 December. All prices are quoted 
in US dollars.

Please check  the appropriate box.

RESIDENCE
United States .................................................................$197.00 ............. $98.50
Canada (GST)*.............................................................$173.35 ............... $86.68
Canada (NB, NF and ON HST)*...........................$185.11 ............... $92.56
Canada (Nova Scotia HST)*...................................$188.05 ............... $94.03
Canada (PEI HST)*.....................................................$186.58 ............... $93.29

Canada (GST and QST Quebec)..........................$188.01 ............... $94.01
Africa, Europe, Middle East......................................$160.00 ............... $80.00
Latin America.................................................................$151.00 ............... $75.50
Asia, Pacific .....................................................................$152.00 ............... $76.00
*IEEE Canada Business No. 125634188

Auto Renew my Memberships and Subscriptions (available when paying by credit card).
I agree to the Terms and Conditions located at www.ieee.org/autorenew

BETWEEN
16 AUG 2015-
28 FEB 2016
PAY

BETWEEN
1 MAR 2016-
15 AUG 2016

PAY
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