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CERAMIC  MMIC AMPLIFIERS
®RUGGED ULTRA REL

MIL Qualifications (see website for complete list and details )

Gross and Fine Leak HTOL (1700 hours+ @ +105°C)
Mechanical Shock Thermal Shock
Vibration Steam Aging
Acceleration Solder Heat Resistance
PIND Autoclave (and more)

Robust performance across wide bandwidths makes them 
ideal for instrumentation, or anywhere long-term reliability 
adds bottom-line value.  Go to minicircuits.com for all the 
details today, and get them in your hands as soon as 
tomorrow!

Electrical Specifications (-55 to +105°C)

Model Freq.  Gain  POUT  IP3  NF  DC Price $ ea.
(GHz) (dB) (dBm) (dBm) (dB) (V) (qty 20)

CMA-62+ 0.01-6 15 19 33 5 5 4.95
CMA-63+ 0.01-6 20 18 32 4 5 4.95
CMA-545+ 0.05-6 15 20 37 1 3 4.95
CMA-5043+ 0.05-4 18 20 33 0.8 5 4.95
CMA-545G1+ 0.4-2.2 32 23 36 0.9 5 5.45
CMA-162LN+ 0.7-1.6 23 19 30 0.5 4 4.95
CMA-252LN+ 1.5-2.5 17 18 30 1 4 4.95

 High IP3 up to 38 dBm Low DC current 65 mA    ea. (qty 20)
$495

10 MHz to 6GHz

CMA

3  x  3 x 1.14 mm

RoHS compliant

Mini-Circuits®

www.minicircuits.com    P.O. Box 35 166, Brooklyn, NY 11235-0003   (718) 934-4500   sales@minicircuits.com

When failure is not an option. Our new CMA MMIC 
amplifiers deliver outstanding performance in a rugged, 
nitrogen-fi l led, hermetic LTCC design, just 0.045” 
high.  These models are so tough, they’ve qualif ied for 
use under MIL environmental conditions:

Low NF 0.5 dB
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[from the EDITOR]
Min Wu

Editor-in-Chief 
minwu@umd.edu

hen you receive this 
issue of IEEE Signal 

Processing Magazine 
(SPM), the Interna-

tional Conference on 
Acoustics, Speech, and Signal Processing 
(ICASSP) will be taking place in beautiful 
Brisbane, Australia. SPM’s Editorial Board 
will meet in person during ICASSP. This is 
a valuable opportunity for the Editorial 
Board to reflect on the progress made so 
far, the plans being carried out, and to 
brainstorm ideas to bring the magazine to 
the next level. 

Ten new Editorial Board members 
started their term this year: Sven Lončarić 
(University of Zagreb, Croatia), Brian 
Lovell (University of Queensland, Austra-
lia), Yi Ma (ShanghaiTech University, Chi-
na), Henrique (Rico) Malvar (Microsoft 
Research), Athina Petropulu (Rutgers Uni-
versity), Peter Ramadge (Princeton Uni-
versity), Shigeki Sagayama (Meiji Univer-
sity and emeritus University of Tokyo, 
Japan), Shihab Shamma (University of 
Maryland), Gregory Wornell (Massachu-
setts Institute of Technology), and Dapeng 
Wu (University of Florida). Together with 
the continuing Editorial Board members, 
these colleagues have brought to our mag-
azine a tremendous amount of collective 
knowledge and experiences. Knowing the 
many commitments that they already 
have, I greatly appreciate their willingness 
to serve on SPM’s Editorial Board.

I would also like to welcome Dr. Andres 
Kwasinski, who was a devoted area editor 
for columns and forum for the past three 
years, as our area editor for social media 
and outreach. This newly created area edi-
tor position will help explore new types of 

content and provide effective outreach to 
members and readers. 

The magazine has been a premier plat-
form for researchers to contribute tutorial 
surveys and overviews on the latest advanc-
es in signal processing. This issue of SPM
includes three clusters of feature articles 
centered on learning and classification, new 
advances in signal processing theories and 
methods, and interesting new signal pro-
cessing applications. It is due to the tireless 
efforts of Prof. Marc Moonen, past area edi-
tor for feature articles, and Prof. Abdelhak 
Zoubir, SPM’s past editor-in-chief, that we 
are able to bring this diverse set of articles to 
you in one issue. Prof. Shuguang (Robert) 
Cui, SPM’s new area editor for feature arti-
cles, also contributed to assembling this is-
sue. My sincere thanks to all of their efforts!

It is common today to characterize the 
impact of articles using citation statistics. 
Here, beyond numbers, I would like to 
share a personal experience of publishing 
with SPM that may shine some light toward 
the impact on authors and readers. My first 
article with SPM was in response to the call 
for papers to the special issue on digital 
rights management (DRM) more than 
ten years ago. I was working with several 
colleagues on tracing the leak of multi-
media documents by embedding specially 
designed signals in image and video so 
that each copy is uniquely labeled. The 
guest editors reminded us of SPM’s tuto-
rial article style, which was in place to en-
sure that articles were to be understood 
by a broad audience. 

One of the guidelines that I still remem-
ber today is the number of equations—no 
more than three—which sounded impos-
sible at first: after all, we were planning 
to synthesize the work from a series of 
research papers by several representa-
tive groups, and the number of equations 

in each of these papers was in the double 
digits! This seemingly stringent constraint 
pushed us to think hard on how to present 
the ideas in accessible terms, with the mini-
mum number of equations. For example, to 
explain the essential idea of a complex code 
construction from a seminal theoretical 
work, we developed a toy example and 
created step-by-step illustrations. This 
process of publishing a tutorial article 
with SPM helped me develop a deeper 
understanding toward the research prob-
lems and obtain valuable insights that 
inspired later research. 

The article was published in the March 
2004 issue of SPM as part of a timely and 
balanced article collection on DRM with 
beautiful artistic designs. The IEEE Xplore
online library was in its infancy then. So I 
mailed hard copies of the issue to several 
researchers overseas, including one to Prof. 
Yanda Li, who led the signal and informa-
tion processing program at my college 
alma mater, Tsinghua University, in China. 
Later that year, I received a phone call from 
a college friend with whom I hadn’t been 
in contact for many years. As it turned out, 
this friend faced an antipiracy challenge 
when developing digital technologies for 
China’s broadcasting industry, but few re-
searchers in China at the time had worked 
on this problem. When he came to consult 
Prof. Li, my article in that special issue pro-
vided a starting point for discussion. The 
world is so small! Indeed, beyond citation 
numbers, SPM has served as a vehicle to 
connect researchers across mountains and 
oceans, and bring together signal process-
ing professionals in academia and industry.
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MMIC 
AMPLIFIERS

NF from 0.5 dB,  IP3 to+48 dBm,  Gain from  8 to 39 dB,  Pout to+30 dBm

Mini-Circuits®

www.minicircuits.com    P.O. Box 35 166, Brooklyn, NY 11235-0003   (718) 934-4500   sales@minicircuits.com

from qty.100073¢DC to 26.5 GHz
NOW!

Gali,
GVA, PHA

PSA

      AVM,  
AVA, PMA

CMA Ceramic

LEE
ERA

FREE Samples On Demand!
www.minicircuits.com/products/ez_samples.shtml

EZSAMPLESTM Searching millions of actual data points             
to meet your specific requirements.

U.S. Patents 7739260
                    7761442

RoHS compliant

Now with over 145 MMIC amplifier models covering frequencies from DC to 26.5 GHz*, chances are, Mini-Circuits 
has your application covered.  Our ultra-broadband InGaP HBT and PHEMT amplifiers offer one of the industry’s 
broadest selections of gain, output power, IP3, and noise figure to optimize your commercial, industrial, or military 
system performance. They can even meet your most critical size and power requirements with supply voltages 
as low as 2.8V, current consumption as low as 16mA, and packages as small as SOT-363 (1.35 x 2.25mm).  
Our tight process control guarantees consistent performance across multiple production runs, so you can have 
confidence in every unit.  

Visit minicircuits.com and use our Yoni2™ search engine to search our entire model database by performance criteria 
for the model that meets your needs. You’ll find pricing, full model specs, characterization data, S-parameters, and even 
free samples of select models!  So why wait?  Place your order today, and have units in your hands as soon as tomorrow!

*Low-end frequency cut-off determined by external coupling capacitors and external bias choke.
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Alex Acero 
2014–2015 SPS President

a.acero@ieee.org

The IEEE Gives Our Society the “Thumbs Up”  

I
n January 2014, shortly after starting 
my term as president of the IEEE Sig-
nal Processing Society (SPS), I 
learned it was time to prepare the 
IEEE Technical Activities Board (TAB) 

five-year Society review report. Each 
member of the SPS’s Executive Commit-
tee was responsible for at least one section 
of the report; however, I was responsible 
for quite a few. After several months of 
work, we ended up with a 100-page-long 
document. Fortunately, our great staff led 
us through the process, and it ended up 
being much less daunting than it initially 
looked. We delivered our report to the 
IEEE Society Review Committee during 
the June 2014 IEEE TAB meeting held in 
New Jersey. We recently received the com-
mittee’s feedback and, in a nutshell, we 
passed with flying colors!

The Review Committee praised the So-
ciety’s large portfolio of publications  (the 
SPS is the fourth-largest Society in the 
IEEE in terms of members but the second 
in terms of the number of journal and 
magazine articles published), number of 
conferences [having created the China 
Summit and International Conference on 
Signal and Information Processing (Chi-
naSIP) and the Global Conference on Sig-
nal and Information Processing (Global-
SIP) during the last five years], and our 
sound finances. They were impressed by 
the new initiatives under our membership 
board: the Chapter of the Year Award, the 

Chapter certification process, SigView, 
SigPort, and the seasonal schools on 
emerging topics. Finally, they also appre-
ciated the creation of special interest 
groups and our nascent effort to encour-
age volunteers to author Wikipedia pages 
on signal processing topics. These efforts 
must have paid off—Society membership 
has increased to over 17,000 members 
from 13,800 in 2009 (few Societies have 

grown that much in the same period), in-
cluding the highest percentage growth in 
student membership (+17.7% since Janu-
ary 2013). The Review Committee said 
they’d be passing along our Society’s best 
practices to other Societies.

Roughly half of the Society’s 17,000 
members are from industry, but the per-
centage of industry members on our Exec-
utive Committee and Board of Governors 
is significantly lower. Accordingly, the Re-
view Committee encouraged us to look for 
ways to increase industry participation in 
the governing boards of the Society. They 
also encouraged us to investigate ways to 
involve industry members more, possibly 
though local workshops in the Chapters, 
while  suggesting that more surveys could 
be offered to our industry members.

The IEEE reviews each of the 45 Societ-
ies and councils every five years. While I 
won’t be involved five years from now when 
it’s our turn to do it again, I think the Soci-
ety review is a great mechanism for control 
and feedback. In fact, a decade ago, we de-
cided to set up a similar mechanism, pat-
terned after the five-year Society review, to 
review our technical committees.

Our Society’s Executive Committee is 
composed of a president; president-elect; 
and vice presidents for publications, con-
ferences, technical directions, and mem-
bership. We have monthly conference 
calls, meet at ICASSP (the International 
Conference on Acoustics, Speech, and Sig-
nal Processing) and yet again in the fall [a 
time that coincides with GlobalSIP or ICIP 
(the International Conference on Image 
Processing)], and answer numerous e-
mails. We all have day jobs in academia or 
industry, so our volunteer time tends to be 
spent running the day-to-day tasks of the 
Society. Although preparing for the five-
year Society review was a lot of work, it 
provided us with a great opportunity to 
step back and get a little perspective, and 
we intend to follow up on all of the review 
committee’s recommendations. Preparing 
for the review really taught me what a 
great Society we have and its potential for 
growth., and I’d love to hear from all of 
you how we can make things even better. 
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WE RECENTLY RECEIVED 
THE COMMITTEE’S
FEEDBACK AND, 
IN A NUTSHELL, 

WE PASSED WITH 
FLYING COLORS!
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Instant Access to IEEE Publications 

Start today to maximize 
your research potential.

Contact: onlinesupport@ieee.org
www.ieee.org/digitalsubscriptions

Enhance your IEEE print subscription with 
online access to the IEEE Xplore® digital library.

Download papers the day they are published

Discover related content in IEEE Xplore

Signifi cant savings over print with an online
institutional subscription

“IEEE is the umbrella that
allows us all to stay current
with technology trends.” 

Dr. Mathukumalli Vidyasagar
Head, Bioengineering Dept. 
University of Texas, Dallas
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Intrinsically Hopeful

I
n November 2014, 
Prof. Thomas Kailath 
from Stanford Uni-
versity was presented 
with the National 

Medal of Science by U.S. 
President Barack Obama 
in Washington, D.C., dur-
ing a ceremony honoring 
ten of the top American 
scientists and engineers. 
The medal was estab-
lished by U.S. President 
Dwight Eisenhower in 1959, and the first 
medal was awarded by U.S. President John 
F. Kennedy in 1963.

Prof. Kailath is a Life Fellow of the 
IEEE and has been an IEEE Signal Pro-
cessing Society member for more than 
40 years. Throughout his career, he 
made significant contributions to signal 
processing. In the 1960s, he was mostly 
interested in signal detection before 
turning onto signal estimation in the 
1970s. The ESPRIT algorithm is a well-
known outcome of this line of research.
In the 1980s, Prof. Kailath then focused 
on various aspects of array processing as 
well as the design of very-large-scale in-
tegration architectures for signal pro-
cessing applications. His research team 
has, for instance, developed spatial mul-
tiplexing in multiple-input, multiple-
output antenna systems, which is now 
used in Wi-Fi. In the 1990s, signal pro-
cessing ideas were instrumental in his 
work on optical microlithography, when 
his team broke what was believed to be 
the 100-nm barrier in semiconductor 
manufacturing by Gordon Moore and 

several others. Some of 
these contributions are 
still standard industry 
practice at the present 
t ime. His technical 
achievements have been 
acknowledged over the 
years with top awards 
from both the IEEE Sig-
nal Processing Society 
and the IEEE Informa-
tion Theory Society.

During the National 
Medal of Science ceremony, Prof. Kailath 
was recognized for “transformative contri-
butions to the fields of information and 
system science, for distinctive and sus-
tained mentoring of young scholars, and 
for translation of scientific ideas into entre-
preneurial ventures that have had a signifi-
cant impact on industry.” A short remark 
by President Obama gave an even more 

personal flavor to the award ceremony. “As 
Thomas Kailath, one of our honorees today, 
says, ‘Scientists are intrinsically hopeful and 
believe in grand answers, and that if we 
work hard enough we can find some of 
them in our lifetime.’ And that’s a good 
phrase: intrinsically hopeful. I’m intrinsical-
ly hopeful, I am [laughter]. That’s who I am. 
That’s who we are as a people, as Americans, 
as a nation.” According to Prof. Kailath, the 
quotation originates from an offline discus-
sion with a member of the staff who was 
asking about failures when he was talking 
about his contributions. He replied that he 
could not really recollect any major failure 
and then elaborated further saying the
words quoted by the president or some-
thing close to it. Possibly, it resonated with 
the president because hope had been a ma-
jor theme of his first election campaign.
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THOMAS KAILATH

Current Job: Hitachi America Professor of Engineering Emeritus, Stanford University, 
United States
Birthplace: Pune, India

Education: B.E. degree (1956) from the University of Pune, India; S.M. degree 
(1959) and Sc.D. degree (1961) from the Massachusetts Institute of Technology, 
United States

First Job: Counting seeds in a seed-packing facility

Major Awards: U.S. National Medal of Science; IEEE Medal of Honor; IEEE Jack S. 
Kilby Signal Processing Medal; U.S. National Academy of Engineering and National 
Academy of Sciences; and many more.

Learn More on the Web:
Stanford Univ. [Online]. Available: http://web.stanford.edu/~tkailath/
Mini-Documentary by National Medals Foundation. [Online]. Available: http:// 
www.youtube.com/watch?v=58n2ONrcCRw 
T. S. Perry, “Medal of Honor: Thomas Kailath,” IEEE Spect. [Online]. Available: 
http://spectrum.ieee.org/computing/networks/medal-of-honor-thomas-kailath. 
doi: 10.1109/MSPEC.2007.352532
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IEEE GlobalSIP'15-Call for Papers   (http://2015.ieeeglobalsip.org/)

General Chairs: Jose Moura and Dapeng Oliver Wu
Technical Program Chairs: Mihaela van der Schaar, Xiaodong Wang, and Hsiao-Chun Wu

The IEEE Global Conference on Signal and Information Processing (GlobalSIP) is a recently launched
flagship conference of the IEEE Signal Processing Society . GlobalSIP' 15 will be held in Orlando, Florida,
USA, December 14–16, 2015. The conference will focus broadly on signal and information processing with an
emphasis on up-and-coming signal processing themes. The conference will feature world-class speakers,
tutorials, exhibits, and technical sessions consisting of poster or oral presentations. GlobalSIP' 15 technical 
program will be comprised of a main program (General Symposium) and several co-located symposia on special 
topics. Technical paper submissions are solicited in the interest topics, which may include, but are not limited to:

Signal processing in communications 
and networks, including green 
communication and signal 
processing in optical communication
Image and video processing
Selective topics in speech and language 
processing
Signal processing in security applications
Signal processing in energy and power systems

Signal processing in genomics and 
bioengineering (physiological, 
pharmacological and behavioral)
Signal processing for social media networks
Neural signal processing
Seismic signal processing
Hardware and real-time implementations
Other novel and significant applications of 
selected areas of signal processing

Symposia: 
General Symposium
Symposium on Signal Processing on Graphics Processing Units and Multicores
Symposium on Signal Processing in Mobile Multimedia Communication Systems
Symposium on 3GPP EVS and Beyond
Symposium on Signal and Information Processing for Optimizing Future Energy Systems
Symposium on Signal Processing Challenges in Human Brain Connectomics
Symposium on Real-Time Signal Processing for Low-Cost and Low-Power Smart Devices
Symposium on Signal Processing for Optical Wireless Communications
Symposium on Signal and Information Processing for Software-Defined Ecosystems, and Green Computing
Symposium on Signal Processing Applications in Smart Buildings

Submission of Papers: Prospective authors are invited to submit full-length papers, with up to four pages for technical 
content including figures and possible references, and with one additional optional 5th page containing only references. 
Manuscripts should be original (not submitted/published anywhere else) and written in accordance with the standard IEEE 
double-column paper template. All paper submissions should be carried out through EDAS system (http://edas.info). A
selection of best papers and best student papers will be made by the GlobalSIP 2015 best paper award committee upon 
recommendations from Technical Committees.

Timeline for paper submission:
May 15, 2015:
June 30, 2015:

September 5, 2015:

Paper submission deadline
Review results announced
Camera-ready papers due

Notice: The IEEE Signal Processing Society enforces a “no-show” policy. Any accepted paper included in the final program 
is expected to have at least one author or qualified proxy attend and present the paper at the conference. Authors of the 
accepted papers included in the final program who do not attend the conference will be subscribed to a “No-Show List”, 
compiled by the Society. The “no-show” papers will not be published by IEEE on IEEE Xplore or other public access 
forums, but these papers will be distributed as part of the on-site electronic proceedings and the copyright of these papers 
will belong to the IEEE.
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Top Downloads in IEEE Xplore

T
he “Reader’s Choice” column 
in IEEE Signal Processing 
Magazine contains a list of 
articles published by the 
IEEE Signal Processing 

Society (SPS) that ranked among the 

top 100 most downloaded IEEE Xplore
articles. This issue is based on down-
load data through December 2014. The 
table below contains the citation 
information for each article and the 
rank obtained in IEEE Xplore. The 

highest rank obtained by an article in 
this time frame is indicated in bold. 
Your suggestions and comments are 
welcome and should be sent to 
Associate Editor Michael Gormish 
(gormish@ieee.org).

Digital Object Identifier 10.1109/MSP.2014.2387971
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TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100 N TIMES
IN TOP 100 
(SINCE JAN
2011)

DEC 
2014

NOV 
2014

OCT 
2014

SEP 
2014

AUG 
2014

JUL 
2014 

GENERALIZED NEW MERSENNE
NUMBER TRANSFORMS
Boussakta, S.; Hamood, M.T.; Rutter, N.
IEEE Transactions on Signal Processing
vol. 60, no. 5, 2012, pp. 2640–2647

Two new number theoretic transforms 
named as odd and odd-squared new 
Mersenne number transforms are 
introduced. An example is given which 
shows their suitability for the calculation 
of different types of convolutions and 
other algorithms.

14 1

LESSONS FOR RADAR
Vespe, M.; Jones, G.; Baker, C.J.
IEEE Signal Processing Magazine
vol. 26, no. 1, 2009, pp. 65–75

A range of strategies employed by bats is 
considered for possible exploitation in the 
radar systems of tomorrow. Focus is given 
to the functions necessary for autono-
mous navigation.

33 1

AN OVERVIEW OF MASSIVE MIMO:
BENEFITS AND CHALLENGES
Lu, L.; Li, G.Y.; Swindlehurst, A.L.; 
Ashikhmin, A.; Zhang, R.
IEEE Journal on Selected Topics in Signal 
Processing
vol. 8, no. 5, 2014, pp. 742–758

Equipping cellular base stations with a 
very large number of antennas potentially 
allows for orders of magnitude 
improvement in spectral and energy 
efficiency. This paper presents an 
extensive overview and analysis of 
massive MIMO systems.

37 66 3

IMAGE QUALITY ASSESSMENT: FROM
ERROR VISIBILITY TO STRUCTURAL
SIMILARITY
Wang, Z.; Bovik, A.C.; Sheikh, H.R.; 
Simoncelli, E.P.
IEEE Transactions on Image Processing
vol. 13, no. 4, 2004, pp. 600–612

This paper introduces a framework for 
quality assessment based on the 
degradation of structural information. 
Within this framework a structure 
similarity index is developed and 
evaluated. MATLAB code is available.

59 29 33 45 25 17 27

K-SVD: AN ALGORITHM FOR DESIGNING
OVERCOMPLETE DICTIONARIES FOR
SPARSE REPRESENTATION
Aharon, M.; Elad, M.; Bruckstein, A.
IEEE Transactions on Signal Processing
vol. 54, no. 11, 2006, pp.4311–4322

K-SVD is an iterative method that 
alternates between sparse coding of the 
examples based on the current dictionary 
and a process of updating the dictionary 
atoms to better fit the data in a 
computationally efficient manner.

61 39 38 53 48 60 8

WEIGHTED GUIDED IMAGE FILTERING
Li, Z.; Zheng, J.; Zhu, Z.; Yao, W.; Wu, S.
IEEE Transactions on Image Processing
vol. 24, no. 1, 2015, pp. 120–129

The weighted guided image filter 
incorporates an edge-aware weighting 
into existing guided image filter to 
address the problem of halo artifacts. The 
filter is applied to detail enhancement, 
haze removal and image fusion.

64 1
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TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100 N TIMES
IN TOP 100 
(SINCE JAN
2011)

DEC 
2014

NOV 
2014

OCT 
2014

SEP 
2014

AUG 
2014

JUL 
2014 

MODELING AND OPTIMIZATION
FOR BIG DATA ANALYTICS: (STATISTICAL)
LEARNING TOOLS FOR OUR ERA OF
DATA DELUGE
Slavakis, K.; Giannakis, G.B.; Mateos, G.
IEEE Signal Processing Magazine
vol. 31, no. 5, 2014, pp. 18–31

This article offers scalable architectures 
and optimization algorithms for 
decentralized and online learning 
problems for SP-relevant tasks such as 
PCA, dictionary learning, compressive 
sampling, and subspace clustering.

78 62 52 52 4

IMAGE SUPER-RESOLUTION
VIA SPARSE REPRESENTATION
Yang, J.; Wright, J.; Huang, T.S.; Ma, Y.
IEEE Transactions on Image Processing
vol. 19, no. 11, 2010, pp. 2861–2873

This paper presents an approach to 
single-image super-resolution based upon 
sparse signal representation of low and 
high-resolution patches.

91 83 89 45 16

MODULATION FORMATS AND
WAVEFORMS FOR 5G NETWORKS:
WHO WILL BE THE HEIR OF OFDM?
Banelli, P.; Buzzi, S.; Colavolpe, G.;  
Modenini, A.; Rusek, F.; Ugolini, A.
IEEE Signal Processing Magazine
vol. 31, no. 6, 2014, pp. 80–93

This article provides a review of some 
modulation formats suited for 5G enriched 
by a comparative analysis of their 
performance in a cellular environment, 
and by a discussion on their interactions 
with specific 5G ingredients.

95 80 91 3

IMAGE QUALITY ASSESSMENT
FOR FAKE BIOMETRIC DETECTION:
APPLICATION TO IRIS, FINGERPRINT,
AND FACE RECOGNITION 
Galbally, J.; Marcel, S.; Fierrez, J.
IEEE Transactions on Image Processing
vol. 23, no. 2, 2014, pp. 710–724

This paper uses 25 general image quality 
features extracted from the authentication 
image to distinguish between legitimate 
and imposter samples for fingerprint, iris, 
and 2D face biometrics.

97 69 48 15 40 8

SCALING UP MIMO: OPPORTUNITIES
AND CHALLENGES WITH
VERY LARGE ARRAYS
Rusek, F.; Persson, D.; Lau, B.K.; Larsson, 
E.G.; Marzetta, T.L; Edfors, O; Tufvesson, F. 
IEEE Signal Processing Magazine
vol. 30, no. 1, 2013, pp. 40–60

The more antennas the transmitter/
receiver is equipped with and the more 
degrees of freedom that the propagation 
channel can provide, the better the 
performance in terms of data rate or link 
reliability. This article quantifies the 
reliability and achievable rates.

67 79 17

NEW CHALLENGES FOR IMAGE
PROCESSING RESEARCH
Pappas, T.N.
IEEE Transactions on Image Processing
vol. 20, no. 12, 2011, p. 3321

The editor-in-chief of IEEE Transactions on 
Image Processing addresses the direction 
of the journal and image processing.

87 80 23 27 5

CONVEX OPTIMIZATION FOR
BIG DATA: SCALABLE, RANDOMIZED,
AND PARALLEL ALGORITHMS FOR
BIG DATA ANALYTICS
Cevher, V.; Becker, S.; Schmidt, M.
IEEE Signal Processing Magazine
vol. 31, no. 5, 2014, pp. 32–43

This article reviews recent advances in 
convex optimization algorithms for big 
data, which aim to reduce the computa-
tional, storage, and communications 
bottlenecks.

55 75 92 3

PRIVACY PRESERVING DATA SHARING
WITH ANONYMOUS ID ASSIGNMENT
Dunning, L.A.; Kresman, R.
IEEE Transactions on Information Forensics 
and Security
vol. 8, no. 2, 2013, pp. 402–413

This paper offers an algorithm and 
analyzes multiple algorithms to assign ID 
numbers ranging from 1 to N to N parties 
without using a trusted central authority 
and is still resistant to collusion among 
other members.

59 28 3

A TUTORIAL ON PARTICLE FILTERS FOR
ONLINE NONLINEAR/NON-GAUSSIAN
BAYESIAN TRACKING
Arulampalam, M.S.; Maskell, S.; Gordon, N.; 
Clapp, T.
IEEE Transactions on Signal Processing
vol. 50, no. 2, 2002, pp. 174–188

This paper reviews optimal and suboptimal 
Bayesian algorithms for nonlinear/
non-Gaussian tracking problems, with a 
focus on particle filters. Variants of the 
particle filter are introduced within a 
framework of the sequential importance 
sampling (SIS) algorithm and compared 
with the standard EKF.

86 77 80 42

SUPER-RESOLUTION IMAGE RECON-
STRUCTION: A TECHNICAL OVERVIEW
Park, S.C.; Park, M.K.; Kang, M.G.
IEEE Signal Processing Magazine
vol. 20, no. 3, 2003, pp. 21–36

This article introduces the concept of 
super-resolution (SR) algorithms and 
presents a technical review of various 
existing SR methodologies and models the 
low-resolution image acquisition process.

93 56 19
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TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100 
N TIMES 
IN TOP 100 
(SINCE JAN 
2011)

DEC 
2014

NOV 
2014

OCT 
2014

SEP 
2014

AUG 
2014

JUL 
2014 

RECENT DEVELOPMENTS IN THE SPARSE 
FOURIER TRANSFORM: A COMPRESSED 
FOURIER TRANSFORM FOR BIG DATA
Gilbert, C.; Indyk, P.; Iwen, M.; Schmidt, L.
IEEE Signal Processing Magazine
vol. 31, no. 5, 2014, pp. 91–100

This article surveys recent developments 
of the sparse Fourier transform, which 
addresses big data issues by computing a 
compressed Fourier transform using only 
a subset of the input data, in time 
smaller than the data set size.

94 85 90 3

LOW COMPLEXITY EQUALIZATION 
FOR DOUBLY SELECTIVE CHANNELS 
MODELED BY A BASIS EXPANSION
Hrycak, T.; Das, S.; Matz, G.; 
Feichtinger, H.G.
IEEE Transactions on Signal Processing
vol. 58, no. 11, 2010, pp. 5706–5719 

The equalizer computes a regularized 
solution of a linear system involving the 
channel matrix, which utilizes the 
product-convolution structure without 
ever explicitly creating the channel 
matrix. The proposed equalizer achieves 
BERs comparable to those of MMSE 
equalization, and outperforms 
low-complexity equalizers.

24 1

BIG DATA ANALYSIS WITH 
SIGNAL PROCESSING ON GRAPHS: 
REPRESENTATION AND PROCESSING OF 
MASSIVE DATA SETS WITH IRREGULAR 
STRUCTURE
Sandryhaila, A.; Moura, J.M.F.
IEEE Signal Processing Magazine
vol. 31, no. 5, 2014, pp. 80–90

Fundamental concepts of discrete signal 
processing on graphs including graph 
signals and graph filters, graph Fourier 
transform, graph frequency, and 
spectrum ordering are reviewed and 
compared with counterparts from 
classical signal processing. Product 
graphs are used as a graph model to 
extend to large data.

87 1

ORDINAL FEATURE SELECTION FOR IRIS 
AND PALMPRINT RECOGNITION
Sun, Z.; Wang, L.; Tan, T.
IEEE Transactions on Image Processing
vol. 23, no. 9, 2014, pp. 3922–3934

Feature selection is designed to achieve 
an accurate and sparse representation of 
ordinal measures. Formulation as a linear 
programming problem obtains efficient 
quality results on the CASIA and PolyU 
databases.

62 1

VECTOR-VALUED IMAGE PROCESSING 
BY PARALLEL LEVEL SETS
Ehrhardt, M.J.; Arridge, S.R.
IEEE Transactions on Image Processing
vol. 23, no. 1, 2014, pp 9–18

Considers the components of an image 
as a vector. By minimizing large angles, 
parallel level sets are obtained and used 
for demosaicking.

35 5

GRADIENT HISTOGRAM ESTIMATION 
AND PRESERVATION FOR TEXTURE 
ENHANCED IMAGE DENOISING
Zuo, W.; Zhang, L.; Song, C.; Zhang, D.; 
Gao, H.
IEEE Transactions on Image Processing
vol. 23, no. 6, 2014, pp. 2459–2472

This paper avoids the smoothing 
associated with many denoising 
algorithms by preserving the histogram 
of gradients in an image. Region based 
variants handle different textures.

89 1

 [SP]

IEEE SPS Community Repository on
Signal and Information Processing

SigPort welcomes research drafts, white papers, theses, 
presentation slides, posters, lecture notes, dataset 
descriptions, products and service brief, and more

Wonder what SigPort is and how to use it—
Watch tutorial videos at www.trial.sigport.org/about-sigport

Try out using limited-time promotion code:  Trial14100
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Date of publication: 6 April 2015

Signal Processing Enhances Environmental Sensing

S
ensors and other data sources, 
combined with sophisticated 
signal processing techniques, 
promise to help scientists better 
observe and analyze various 

types of environmental data.
Biologist Nathan Merchant, for exam-

ple, has created a method for tracking 
ships and monitoring underwater noise 
levels in protected marine mammal habi-
tats. Merchant, senior scientist for under-
water noise at the U.K. Centre for Envi-
ronment, Fisheries, and Aquaculture 
Science (CEFAS), developed the system 
with coresearchers Enrico Pirotta, Tim 
Barton, and Paul Thompson, of The Insti-
tute of Biological and Environmental Sci-
ences at Scotland’s University of Aberdeen.

“Underwater noise levels have risen 
significantly over time in step with human 
activity,” Merchant says. These changes in 
the acoustic environment affect marine 
mammals, which rely on sound as their 
primary sensory mode. “The disturbance 
caused by man-made noise can disrupt 
crucial activities, such as hunting for food, 
affecting the animals’ health.”

To help understand the impact noise 
might exert on dolphins and their popula-
tion levels, the researchers conducted a 
study on Moray Firth, Scotland’s largest in-
let (Figure 1). Moray Firth is home to a pop-
ulation of bottlenose dolphins as well as nu-
merous types of seals, porpoises, and whales. 
The protected habitat also hosts construc-
tion yards that supply Scotland’s rapidly ex-
panding offshore wind farm industry. Pro-
jected increases in wind farm construction 
are expected to drive more shipping 
through the habitat—something many sci-
entists believe could eventually negatively 
impact resident marine mammals.

“Various types of ships emit noise at 
different levels and frequencies, therefore 
it is vital to know which kinds of vessels 
are crossing the habitats and migration 
routes of marine mammals,” Merchant 
says. Merchant and his fellow researchers 
recently monitored underwater noise lev-
els using hydrophone sensors (underwater 
microphones), ship-tracking data, and 
shore-based time-lapse photography. The 
techniques created a ship-noise assess-
ment toolkit.

“In this project, we used signal pro-
cessing techniques to integrate several dif-
ferent data sources into one package: 
time-lapse video, underwater sound re-
cordings, and ship-tracking data,” Mer-
chant says. Using signal processing tech-
niques in combination with video editing 
software, the researchers combined video, 
audio, and spatial data to produce a syn-
chronized audiovisual representation of 
the soundscape, including shipping activi-
ty and weather conditions across the ma-
rine mammal habitat.

The main challenge the researchers 
faced was processing each data source in a 
way that would supply a common time 
resolution for the audiovisual output. “We 
used geolocation tools to map the ship 
tracking data through time, which in-
volved temporal and spatial interpolation 
of the raw data, which has a fairly coarse, 
~10 minute time resolution,” Merchant 
explains. “The sound recordings were av-
eraged at intervals that corresponded to 
the time resolution of the video and spa-
tial data, and an adaptive thresholding al-
gorithm was also developed which detect-
ed when a ship was passing.”

The approach, Merchant says, allowed 
the researchers to link diverse data sourc-
es and gain insights into the habitat’s son-
ic environment in a way that would not 
have been possible by interpreting each 

data source individually. “The integrative 
approach produced a ship noise assess-
ment analysis that was much more than 
the sum of its parts,” Merchant adds.

One of the main difficulties in studying 
underwater sound is that long-term re-
cordings generate vast amounts of acoustic 
data—several terabytes in the case of this 
project. “Consequently, we have had to de-
velop high-performance computing tech-
niques for processing big data, which in-
volved using parallel processing across 
many cores of a large server or cluster,” 
Merchant says. “Now that we have these in 
place, we can process large datasets rapidly, 
but getting there was quite a challenge.”

Merchant notes that the biggest chal-
lenge he currently faces is developing mod-
els to predict how sound will spread through 
an underwater area, which would enable the 
researchers to produce maps of sound levels 
in a particular habitat. “This [capability] can 
be used in environmental impact assess-
ment of noisy activities, like offshore wind 
farm construction, because it shows us over 
how big an area marine mammals could po-
tentially be disturbed,” Merchant says. “We 
are currently refining and testing scripts us-
ing data from several field studies.”

According to Merchant, there is an al-
most endless number of coastal areas 
where shipping interacts with nearby hab-
itats. “Not only... marine mammals but 
also fishes and invertebrates, which we are 
aware are also sensitive to noise,” he says. 
“The techniques that have been developed 
in this project can very much be applied to 
assess what kind of ships are making 
noise, what kind of noise level is generat-
ed, and how they are concentrated spatial-
ly, as well as how all of this interacts with 
the habitats.”

Merchant also believes that the new 
techniques will spin off applications ex-
tending far beyond marine habitat 
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[special REPORTS]continued

protection. “There will potentially be a lot 
of people interested in being able to, for ex-
ample, detect when ships are passing along 
a corridor that’s on a tracking system,” he 
adds. “We are aware that there might be 
some interest in doing that kind of thing 
[from] Coast Guard and military types.”

FOLLOWING URBAN VIBRATIONS
Urban traffic—including cars, trucks, 
trains, and planes—generates both acous-
tic and seismic noise. While most people 
can easily detect vehicle noise, seismic vi-
brations are usually not perceptible to hu-
mans. Nevertheless, a pair of researchers 
at the Scripps Institution of Oceanography 
at the University of California at San Diego 
believe that seismic “noise” could soon be-
come a useful data source for next-genera-
tion traffic information systems.

While the detection of naturally occur-
ring seismic vibrations has long been use-
ful to scientists searching for subsurface 
features like earthquake faults and petro-
leum resources, the various types of vibra-
tions generated by traffic flows have never 
been explored in any real depth, says Nima 
Riahi, a Scripps postdoctoral fellow work-
ing alongside Peter Gerstoft, a Scripps 
geophysicist. The pair believes that a fu-
ture urban seismic network could tap into 

vehicle-generated vibrations to monitor 
the flow of human transport across a spe-
cific area.

Last year, energy company Signal 
Hill Petroleum of Signal Hill, California, 
gave the researchers access to a large vi-
bration data set covering the area under 
the city of Long Beach, California. “We 
seized the opportunity,” explains Riahi. 
The data set—mapped by a 5,300-geo-
phone network—was as part of a hydro-
carbon industry survey covering an area 
of more than 7 × 10 km (Figure 2). Geo-
phones are devices commonly used by 
private, government and academic re-
searchers to record energy waves reflect-
ed by subsurface geology, typically as a 
way of mapping out geologic structures 
or tracking earthquakes.

“By analyzing vibrations from geo-
phones spaced approximately 100 m (300 
ft) apart, we were able to examine activity 
in Long Beach with a resolution below a 
typical city block,” Riahi adds. He notes 
that the spatiotemporal structure of the 
man-made seismic noise intensity re-
vealed individual train activity along the 
area’s Blue Line Metro railway line, al-
lowed the counting of departing and land-
ing aircraft at Long Beach Airport (as well 
as estimating their motion) and gave 

clues about traffic movement along Inter-
state 405, a major southern California 
freeway. More advanced analysis tech-
niques and algorithms promise to reveal 
many other types of manmade signals 
within the ground, Riahi says, potentially 
leading to the monitoring of activities be-
yond traffic flow. 

“The findings indicate that human 
seismic noise might serve as a rich data 
source for the observation of cities,” Ri-
ahi says. “The approach could also be 
used for urban area characterization, al-
lowing various types and schedules of 
activities to be visualized, making it 
possible to vibrationally identify specific 
industrial, residential or office zones.”

Riahi describes the research accom-
plished so far as “simple and straightfor-
ward” signal processing. “We tried to keep 
it simple at first. It is essentially calculating 
the power of the vibration as a function of 
time.” A custom-design spatiotemporal fil-
ter was also used to remove vibrations that 
failed to match a pattern indicating a type 
of ongoing movement, such as a train trav-
eling down a track.

The researchers are only interested in 
examining various types of continuous vi-
brations, which exist in many different 
variations. “There are a lot of things hap-
pening: day/night variations, trucks pass-
ing, which might be different than when a 
car passes,” Riahi says. “We want to see if 
there are similarities between different 
things; can we group things together, like 
in cluster analysis?”

Freeway traffic proved to be more diffi-
cult to discern and analyze than train or 
airport movements. “The 405 is challeng-
ing because it is a ten-lane highway, two 
directions,” Riahi says. “We had about 
13 sensors per kilometer of highway—that 
is really a low spatial sampling.” Yet, al-
though they were restricted to only a lim-
ited number of sensors, the researchers 
were still able to detect individual trucks 
moving along the roadbed at night. “We 
know that, because there is a continuous 
motion detected from one sensor to the 
next at about 55 miles per hour going 
through the entire stretch of the 405 sec-
tion we were looking at,” Riahi explains.

Finding seismic needles in a geological 
haystack required Riahi and Gerstoft to 

[FIG1] Researchers deploy a hydrophone sound sensor in Scotland’s Moray Firth as a 
dolphin surfaces nearby. (Photo courtesy of U.K. CEFAS.)
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consider a wide range of approaches. 
“Clustering techniques are an interesting 
path to pursue when you are just trying to 
look for structure in the data,” Riahi re-
marks. The team investigated the poten-
tial of various clustering algorithms. “One 
of them, obviously, is K-means, which is a 
popular but nonoptimal clustering algo-
rithm,” Riahi says. “There are also algo-
rithms based on sparse coding and sparse 
reconstruction, where you are saying, ‘I 
have some signal, I think it is composed of 
a few elemental components and I am try-
ing to find out which one it is.’”

According to Riahi, the spatiotemporal 
filter required significant creativity. “I had 
to custom-write that filter because I was 
not aware of anything that would work for 
our data,” Riahi says. “There were other 
options; I tried image processing filters, 
for instance, but the ones that I came 
across and tried out did not work so well.”

Riahi says the study showed that an-
thropogenic seismic power—a relatively 
simple attribute—when analyzed with a 
dense grid of urban seismic sensors, can 
measure a wide range of human activities. 
“The human imprint on the seismic wave 
field provides a rich, but so far underap-
preciated, data source to observe cities,” 
Riahi remarks.

MEASURING SEA LEVELS
FROM SPACE
A new way of measuring sea levels, devel-
oped by researchers at Sweden’s Chalmers 
University of Technology, promises to gen-
erate faster and more accurate readings. 
Measuring sea level is an important part of 
climate research, since a rising mean sea 
level is a key indicator of climate change.

Johan Löfgren and Rüdiger Haas, re-
search scientists at Chalmers’ Department 
of Earth and Space Sciences, have created 
a Global Navigation Satellite System 
(GNSS) tide gauge, an instrument that 
measures sea level by using radio signals 
from satellite navigation systems. “We 
want to be able to make detailed measure-
ments of sea level so that we can under-
stand how coastal societies will be affected 
in the future,” Löfgren says.

The GNSS tide gauge uses radio sig-
nals from Earth-orbiting satellites with-
in satellite navigation systems like 
global positioning system (GPS) and 
Glonass (Russia’s equivalent of GPS). 
Two antennas measure signals directly 
from the satellites and signals reflected 
off the sea surface (Figure 3). By analyz-
ing these signals together, the sea level 
and its variation can be measured up to 
20 times per second.

The GNSS tide gauge has an advan-
tage over previous technologies in that it 
can measure changes in both land and sea 
simultaneously in the same location. 
Therefore, both long-term and short-term 
land movements can be taken into 

[FIG2] An aerial view of Long Beach, California, showing a portion of the 5,300-geophone network. Interstate 405 runs through 
the photo’s center; a Long Beach Airport runway is on the right. (Photo courtesy of Scripps Institution of Oceanography at the 
University of California at San Diego.)

[FIG3] When a satellite passes overhead, 
the GNSS tide gauge uses signals from 
the satellite and signals reflected off the 
sea surface to measure the current sea 
level. (Photo courtesy of Onsala Space 
Observatory/J. Löfgren.)

(continued on page 161)
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I
n this article, we present an account of the state of the art in acoustic scene classifica-
tion (ASC), the task of classifying environments from the sounds they produce. Start-
ing from a historical review of previous research in this area, we define a general 
framework for ASC and present different implementations of its components. We 
then describe a range of different algorithms submitted for a data challenge that was 

held to provide a general and fair benchmark for ASC techniques. The data set recorded 
for this purpose is presented along with the performance metrics that are used to evaluate 
the algorithms and statistical significance tests to compare the submitted methods. 

We use a baseline method that employs Mel-frequency cepstral coefficients (MFCCs), 
Gaussian mixture models (GMMs), and a maximum likelihood criterion as a benchmark 
and only find sufficient evidence to conclude that three algorithms significantly outperform 
it. We also evaluate the human classification accuracy in performing a similar classification 
task. The best-performing algorithm achieves a mean accuracy that matches the median 
accuracy obtained by humans, and common pairs of classes are misclassified by both com-
puters and humans. However, all acoustic scenes are correctly classified by at least some 
individuals, while there are scenes that are misclassified by all algorithms.

INTRODUCTION
Enabling devices to make sense of their environment through the analysis of sounds is 
the main objective of research in machine listening, a broad investigation area related to 
computational auditory scene analysis (CASA) [51]. Machine-listening systems perform 

[Daniele Barchiesi, 

Dimitrios Giannoulis, 

Dan Stowell, and 

Mark D. Plumbley]

[Classifying environments from the sounds they produce]

Acoustic Scene 
Classification
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analogous processing tasks to the human auditory system and 
are part of a wider research theme linking fields such as 
machine learning, robotics, and artificial intelligence.

ASC refers to the task of associating a semantic label to an 
audio stream that identifies the environment in which it has been 
produced. Throughout the literature on ASC, a distinction is made 
between psychoacoustic/psychological studies aimed at under-
standing the human cognitive processes that enable our under-
standing of acoustic scenes [35] and computational algorithms 
that attempt to automatically perform this task using signal pro-
cessing and machine-learning methods. The perceptual studies 
have also been referred to as soundscape cognition [15] by defining 
soundscapes as the auditory equivalent of landscapes [43]. In con-
trast, the computational research has also been called computa-
tional auditory scene recognition [38]. This is a task related to the 
area of CASA [51] and is particularly applied to the study of envi-
ronmental sounds [18]. It is worth noting that, although many 
ASC studies are inspired by biological processes, ASC algorithms 
do not necessarily employ frameworks developed within CASA and 
the two research fields do not completely overlap.

Work in ASC has evolved in parallel with several related 
research problems. For example, methods for the classification of 
noise sources have been employed for noise-monitoring systems 
[22] or to enhance the performance of speech processing algo-
rithms [17]. Algorithms for sound source recognition [13] 
attempt to identify the sources of acoustic events in a recording 
and are closely related to event detection and classification tech-
niques. The latter methods are aimed at identifying and labeling 
temporal regions containing single events of a specific class and 
have been employed, e.g., in surveillance systems [40], elderly 
assistance [26], and speech analysis through the segmentation of 
acoustic scenes [29]. Furthermore, algorithms for the semantic 
analysis of audio streams that also rely on the recognition or clus-
tering of sound events have been used for personal archiving [19] 
and audio segmentation [33] and retrieval [53].

The distinction between event detection and ASC can sometimes 
appear blurred, e.g., when considering systems for multimedia 
indexing and retrieval [9], where the identification of events, such as 
the sound produced by a baseball player batting in a run, also char-
acterizes the general environment (in this case, the environment of a  
baseball game). On the other hand, ASC can be employed to enhance 
the performance of sound event detection [28] by providing prior 
information about the probability of certain events. To limit the 
scope of this article, we will only detail systems aimed at modeling 
complex physical environments containing multiple events.

Applications that can specifically benefit from ASC include the 
design of context-aware services [45], intelligent wearable devices 
[52], robotics navigation systems [11], and audio archive manage-
ment [32]. Concrete examples of possible future technologies that 
could be enabled by ASC include smartphones that continuously 
sense their surroundings, switching to silent mode every time a 
person enters a concert hall; assistive technologies such as hear-
ing aids or robotic wheelchairs that adjust their functioning 
based on the recognition of indoor or outdoor environments; or 
sound archives that automatically assign metadata to audio files. 
Moreover, classification could be performed as a preprocessing 
step to inform algorithms developed for other applications, such 
as source separation of speech signals from different types of 
background noise. Although this article details methods for the 
analysis of audio signals, it is worth mentioning that, to address 
the aforementioned problems, acoustic data can be combined 
with other sources of information such as geolocation, accelera-
tion sensors, collaborative tagging, and filtering.

From a purely scientific point of view, ASC represents an inter-
esting problem that both humans and machines are only able to 
solve to a certain extent. From the outset, semantic labeling of an 
acoustic scene or soundscape is a task open to different interpreta-
tions, as there is not a comprehensive taxonomy encompassing all 
the possible categories of environments. Researchers generally 
define a set of categories, record samples from these environments, 

© ISTOCKPHOTO.COM/AGSANDREW
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and treat ASC as a supervised classification problem within a 
closed universe of possible classes. Furthermore, even within pre-
defined categories, the set of acoustic events or qualities character-
izing a certain environment is generally unbounded, making it 
difficult to derive rules that unambiguously map acoustic events or 
features to scenes. 

BACKGROUND: A HISTORY OF ASC
The first method appearing in the literature to specifically address 
the ASC problem was proposed by Sawhney and Maes in a 1997 
technical report from the Massachusetts Institute of Technology 
(MIT) Media Lab [42]. The authors recorded a data set from a set of 
classes including people, voices, the subway, and traffic. They 
extracted several features from the audio data using tools borrowed 
from speech analysis and auditory research, employing recurrent 
neural networks and a k-nearest neighbor criterion to model the 
mapping between features and categories, and obtaining an overall 
classification accuracy of 68%. One year later, researchers from the 
same institution recorded a continuous audio stream by wearing a 
microphone while making a few bicycle trips to a supermarket and 
then automatically segmented the audio into different scenes 
(such as a home, a street, and a supermarket) [12]. For the classifi-
cation, they fitted the empirical distribution of features extracted 
from the audio stream to hidden Markov models (HMMs).

Meanwhile, research in experimental psychology was focused 
on understanding the perceptual processes driving the human 
ability to categorize and recognize sounds and soundscapes. Bal-
las found that the speed and accuracy in the recognition of sound 
events is related to the acoustic nature of the stimuli, how often 
they occur, and whether they can be associated with a physical 
cause or a sound stereotype [4]. Peltonen et al. observed that the 
human recognition of soundscapes is guided by the identification 

of typical sound events, such as human voices or car engine 
noises, and measured an overall 70% accuracy in the human abil-
ity to discern among 25 acoustic scenes [37]. Dubois et al. investi-
gated how individuals define their own taxonomy of semantic 
categories when this is not given a priori by the experimenter 
[15]. Finally, Tardieu et al. tested both the emergence of semantic 
classes and the recognition of acoustic scenes within the context 
of rail stations [47]. They reported that sound sources, human 
activities, and room effects such as reverberation are the ele-
ments driving the formation of soundscape classes and the cues 
employed for recognition when the categories are fixed a priori.

Influenced by the psychoacoustic/psychological literature that 
emphasized both local and global characteristics for the recogni-
tion of soundscapes, some of the computational systems that 
built on the early works by researchers at MIT [42], [12] focused 
on modeling the temporal evolution of audio features. Eronen 
et al. employed MFCCs to describe the local spectral envelope of 
audio signals and GMMs to describe their statistical distribution 
[21]. Next, they trained HMMs to account for the temporal evolu-
tion of the GMMs using a discriminative algorithm that exploited 
knowledge about the categories of training signals. Eronen et al. 
further developed this work by considering a larger group of fea-
tures and adding a feature transform step to the classification 
algorithm, obtaining an overall 58% accuracy in the classification 
of 18 different acoustic scenes [20].

In the algorithms mentioned so far, each signal belonging to a 
training set of recordings is generally divided into frames of fixed 
duration, and a transform is applied to each frame to obtain a 
sequence of feature vectors. The feature vectors derived from 
each acoustic scene are then employed to train a statistical model 
that summarizes the properties of a whole soundscape or of mul-
tiple soundscapes belonging to the same category. Finally, a 

[TABLE 1] THE LIST OF ALGORITHMS SUBMITTED FOR THE DCASE CHALLENGE ON ASC.

ACRONYM AUTHORS TITLE

RNH G. ROMA, W. NOGUEIRA, AND P. HERRERA RECURRENCE QUANTIFICATION ANALYSIS FEATURES FOR AUDITORY
SCENE CLASSIFICATION

RG A. RAKOTOMAMONJY AND G. GASSO HISTOGRAM OF GRADIENTS OF TIME–FREQUENCY REPRESENTATIONS
FOR AUDIO SCENE CLASSIFICATION

GSR J.T. GEIGER, B. SCHULLER, AND G. RIGOLL RECOGNIZING ACOUSTIC SCENES WITH LARGE-SCALE AUDIO FEATURE
EXTRACTION AND SVM

CHR M. CHUM, A. HABSHUSH, A. RAHMAN, AND C. SANG IEEE AASP SCENE CLASSIFICATION CHALLENGE USING HMMs AND
FRAME-BASED CLASSIFICATION

NHL J. NAM, Z. HYUNG, AND K. LEE ASC USING SPARSE FEATURE LEARNING AND SELECTIVE MAX-POOLING
BY EVENT DETECTION

NR W. NOGUEIRA, G. ROMA, AND P. HERRERA SOUND SCENE IDENTIFICATION BASED ON MFCC, BINAURAL FEATURES
AND A SUPPORT VECTOR MACHINE (SVM) CLASSIFIER

PE K. PATIL AND M. ELHILALI MULTIRESOLUTION AUDITORY REPRESENTATIONS FOR SCENE
CLASSIFICATION

KH J. KRIJNDERS AND G.A.T. HOLT A TONE-FIT FEATURE REPRESENTATION FOR SCENE CLASSIFICATION

ELF B. ELIZALDE H. LEI, G. FRIEDLAND, AND N. PETERS AN i-VECTOR-BASED APPROACH FOR AUDIO SCENE DETECTION

LTT* D. LI, J. TAM, AND D. TOUB AUDITORY SCENE CLASSIFICATION USING MACHINE-LEARNING
TECHNIQUES

OE E. OLIVETTI THE WONDERS OF THE NORMALIZED COMPRESSION DISSIMILARITY
REPRESENTATION

* The original LTT submission achieved low accuracy due to a bug in a MATLAB toolbox—here we are presenting the results obtained with the correct implementation.
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decision criterion is defined to assign unlabeled recordings to the 
category that best matches the distribution of their features.

FEATURES
Several categories of audio features have been employed in ASC sys-
tems. Here, we present a list and provide their rationale in the context 
of audio analysis for classification. [Here and throughout the article, 
the notation [1, XXX] (see Table 1) is used to cite the extended 
abstracts submitted for the detection and classification of acoustic 
scenes and events (DCASE) challenge described in “Challenge on 
Detection and Classification of Acoustic Scenes and Events” section.]

1) Low-level time-based and frequency-based audio descrip-
tors: Several ASC systems [1, GSR] [20], [34] employ features 
that can be easily computed from either the signal in the time 
domain or its Fourier transform. These include (among others) 
the zero crossing rate, which measures the average rate of sign 
changes within a signal and is related to the main frequency of 
a monophonic sound; the spectral centroid, which measures 
the center of mass of the spectrum and is related to the percep-
tion of brightness [25]; and the spectral roll-off that identifies a 
frequency above which the magnitude of the spectrum falls 
below a set threshold.
2) Frequency-band energy features (energy/frequency): 
This class of features used by various ASC systems [1, NR 
CHR GSR], [20] is computed by integrating the magnitude 
spectrum or the power spectrum over specified frequency 
bands. The resulting coefficients measure the amount of 
energy present within different subbands and can also be 
expressed as a ratio between the subband energy and the 
total energy to encode the most prominent frequency 
regions in the signal.
3) Auditory filter banks: A further development of energy/fre-
quency features consists of analyzing audio frames through 
filter banks that mimic the response of the human auditory 
system. Sawhney and Maes used Gammatone filters for this 
purpose [42]. Clarkson et al. instead computed Mel-scaled fil-
ter bank coefficients (MFCs) [12], whereas Patil and Elahili 
[1, PE] employed a so-called auditory spectrogram.
4) Cepstral features: MFCCs are an example of cepstral fea-
tures and are perhaps the most popular features used in ASC. 
They are obtained by computing the discrete DCT of the loga-
rithm of MFCs. The word cepstral is an anagram of the word 
spectral and indicates that this class of features is computed 
by applying a Fourier-related transform to the spectrum of a 
signal. Cepstral features capture the spectral envelope of a 
sound and, thus, summarize their coarse spectral content.
5) Spatial features: If the soundscape has been recorded 
using multiple microphones, features can be extracted from 
the different channels to capture the properties of the acous-
tic scene. In the case of a stereo recording, popular features 
include the interaural time difference (ITD), which measures 
the relative delay occurring between the left and right channels 
when recording a sound source, and the interaural level dif-
ference (ILD), which measures the amplitude variation 
between channels. Both ITD and ILD are linked to the 

position of a sound source in the stereo field. Nogueira et al. 
included spatial features in their ASC system [1, NR].
6) Voicing features: Whenever the signal is thought to contain 
harmonic components, a fundamental frequency f0  or a set of 
fundamental frequencies can be estimated, and groups of features 
can be defined to measure the properties of these estimates. In 
the case of ASC, harmonic components might correspond to spe-
cific events occurring within the audio scene, and their identifica-
tion can help discriminate between different scenes. Geiger 
et al. employed voicing features related to the fundamental fre-
quency of each frame in their system [1, GSR]. The method pro-
posed by Krijnders and Holt [1, KH] is based on extracting 
tone-fit features, a sequence of voicing features derived from a 
perceptually motivated representation of the audio signals. First, 
a so-called cochleogram is computed to provide a time–frequency 
representation of the acoustic scenes inspired by the properties of 
the human cochlea. Then, the tonalness of each time–frequency 
region is evaluated to identify tonal events in the acoustic scenes, 
resulting in tone-fit feature vectors.
7) Linear predictive coefficients (LPCs): This class of features 
has been employed in the analysis of speech signals that are mod-
eled as autoregressive processes. In an autoregressive model, 
samples of a signal s  at a given time instant t are expressed as 
linear combinations of samples at L  previous time instants

( ) ( ) ( ),s st t l tl
l

L

1
a f= - +

=

/ (1)

where the combination coefficients l l
L

1a =" , determine the 
model parameters and e  is a residual term. There is a map-
ping between the value of LPCs and the spectral envelope of 
the modeled; therefore, la  encodes information regarding 
the general spectral characteristics of a sound. Eronen et al. 
employed LPC features in their proposed method [20].
8) Parametric approximation features: Autoregressive mod-
els are a special case of approximation models where a signal 
s  is expressed as a linear combination of J basis functions from 
the set j j

J
1{ =" ,

( ) ( ) ( ) .s t t tj
j

J

1
a z e= +

=
j/ (2)

Whenever the basis functions z j are parameterized by a set 
of parameters j ,c  features can be defined according to the 
functions that contribute to the approximation of the signal. 
For example, Chu et al. decompose audio scenes using the 
Gabor transform, which is a representation where each 
basis function is parameterized by its frequency ,f  its time 
scale ,u  its time shift ,x  and its frequency phase i  so that 

j uf , , ,c x i= jj jj" ,  [10]. The set of indexes identifying 
nonzero coefficients j:j j 0!a=) " , corresponds to a set of 
active parameters jc )  contributing to the approximation of 
the signal and encodes events in an audio scene that occur at 
specific time–frequency locations. Patil and Elahili also 
extract parametric features derived from the two-dimensional 
(2-D) convolution between the auditory spectrogram and 2-D 
Gabor filters [1, PE].
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9) Unsupervised learning features: The model (2) assumes that 
a set of basis functions is defined a priori to analyze a signal. 
Alternatively, bases can be learned from the data or from other 
features already extracted in an unsupervised way. Nam et al. 
employed a sparse restricted Boltzmann machine (SRBM) to 
adaptively learn features from the MFCCs of the training data 
[1, NHL]. An SRBM is a neural network that has been shown to 
learn basis functions from input images, which resemble the 
properties of representations built by the visual receptors in the 
human brain. In the context of ASC, an SRBM adaptively 
encodes basic properties of the spectrum of the training signals 
and returns a sequence of features learned from the MFCCs 
along with an activation function that is used to determine time 
segments containing significant acoustic events.
10) Matrix factorization methods: The goal of matrix factor-
ization for audio applications is to describe the spectrogram 
of an acoustic signal as a linear combination of elementary 
functions that capture typical or salient spectral elements 
and are, therefore, a class of unsupervised learning features. 
The main intuition that justifies using matrix factorization 
for classification is that the signature of events that are 
important in the recognition of an acoustic scene should be 
encoded in the elementary functions, leading to discrimina-
tive learning. Cauchi employed nonnegative matrix factor-
ization (NMF) [8], and Benetos et al. used probabilistic latent 
component analysis in their proposed algorithms [6]. Note 
that a matrix factorization also outputs a set of activation 
functions that encode the contribution of elementary func-
tions in time, hence modeling the properties of a whole 
soundscape. Therefore, this class of techniques can be con-
sidered to jointly estimate local and global parameters.
11) Image processing features: Rakotomamonjy and Gasso 
designed an algorithm for ASC whose feature extraction func-
tion comprises the following operations [1, RG]. First, the audio 
signals corresponding to each training scene are processed 
using a constant-Q transform, which returns frequency repre-
sentations with logarithmically spaced frequency bands. Then, 
512 512# -pixel grayscale images are obtained from the con-
stant-Q representations by interpolating neighboring time–
frequency bins. Finally, the features are extracted from the images 
by computing the matrix of local gradient histograms. This is 
obtained by dividing the images into local patches, defining a set 
of spatial orientation directions, and counting the occurrence of 
edges exhibiting each orientation. Note that, in this case, the vec-
tors of features are not independently extracted from frames but 
from time–frequency tiles of the constant-Q transform.
12) Event detection and acoustic unit descriptors: Heittola
et al. proposed a system for ASC that classifies soundscapes 
based on a histogram of events detected in a signal [27]. 
During the training phase, the occurrence of manually 
annotated events (such as a honking car horn, applause, or 
a basketball bouncing) is used to derive models for each 
scene category. In the test phase, HMMs are employed to 
identify events within an unlabeled recording and to define 
a histogram that is compared to the ones derived from the 

training data. This system represents an alternative to the 
common framework that includes features, statistical 
learning, and a decision criterion in that it essentially per-
forms event detection and ASC at the same time. However, 
for the purpose of this tutorial, the acoustic events can be 
thought of as high-level features whose statistical proper-
ties are described by histograms.

A similar strategy is employed by Chaudhuri et al. to learn 
acoustic unit descriptors (AUDs) and classify YouTube multi-
media data [9]. AUDs are modeled using HMMs and used to 
transcribe an audio recording into a sequence of events. The 
transcriptions are assumed to be generated by N-gram language 
models whose parameters are trained on different soundscape 
categories. The transcriptions of unlabeled recordings during 
the test phase are, thus, classified following a maximum likeli-
hood criterion.

FEATURE PROCESSING
The features described so far can be further processed to derive 
new quantities that are used either in place or as an addition to 
the original features.

FEATURE TRANSFORMS
This class of methods is used to enhance the discriminative 
capability of features by processing them through linear or non-
linear transforms. Principal component analysis (PCA) is per-
haps the most commonly cited example of feature transforms. It 
learns a set of orthonormal bases that minimize the Euclidean 
error resulting from projecting the features onto subspaces 
spanned by subsets of the basis set (the principal components) 
and, hence, identifies the directions of maximum variance in 
the data set. Because of this property, PCA and the more general 
independent component analysis (ICA) have been employed as 
dimensionality reduction techniques to project high-
dimensional features onto lower-dimensional subspaces while 
retaining the maximum possible amount of variance [1, PE] 
[20], [34]. Nogueira et al., on the other hand, evaluate a Fisher 
score to measure how features belonging to the same class are 
clustered near each other and far from features belonging to dif-
ferent classes [1, NR]. A high Fisher score implies that features 
extracted from different classes are likely to be separable, and it 
is used to select optimal subsets of features.

TIME DERIVATIVES
For all of the quantities computed on local frames, discrete time 
derivatives between consecutive frames can be included as addi-
tional features that identify the time evolution of the properties 
of an audio scene.

STATISTICAL MODELS
Once the features are extracted from the audio frames, the next 
stage of an ASC system generally consists of learning statistical 
models of the distribution of the features. Statistical models are 
parametric mathematical models used to summarize the prop-
erties of individual audio scenes or whole soundscape categories 
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from the feature vectors. They can be divided into generative or 
discriminative methods.

When working with generative models, feature vectors are 
interpreted as being generated from one of a set of underlying sta-
tistical distributions. During the training stage, the parameters 

of the distributions are optimized based on the statistics of the 
training data. In the test phase, a decision criterion is defined to 
determine the most likely model that generated a particular 
observed example. A simple implementation of this principle is 
to compute the basic statistical properties of the distribution of 

MFCCs, GMMs, AND A MAXIMUM LIKELIHOOD CRITERION

MFCCs

MCCs have been widely used as a feature for audio analysis. Let 
s Rn

D! be a signal frame and snt  the absolute value of its 
Fourier transform. The coefficients corresponding to linearly 
spaced frequency bins are mapped onto R  Mel frequency 
bands to approximate the human perception of pitches (which 
can be approximately described as logarithmic, meaning that 
we are capable of a much better resolution at low frequencies 
than at high frequencies), resulting in L D#  coefficients. The 
magnitude of the Mel coefficients is converted to a logarithmic 
scale and the resulting vector is processed using a discrete cosine 
transform (DCT). Finally, the K R#  first coefficients are selected 
and constitute the vector of features  ( ) .x sTn n= This last step 
essentially measures the frequency content of the log-
magnitude of the spectrum of a signal and, therefore, captures 
general properties of the spectral envelope. For example, 
periodic sounds that exhibit spectral peaks at multiples of a 
fundamental frequency are highly correlated with one or sev-
eral cosine bases, encoding this information in the value of the 
corresponding MFCC coefficients. The set of parameters 

, ,D R Ki = " , includes frames, dimension, the number of Mel 
bands, and the number of DCT coefficients that need to be 
defined when computing the MFCCs. These parameters deter-
mine the dimensionality reduction introduced by the features 
extraction operator, and their choice is governed by the trade-
off between generalization and discrimination mentioned in 
the section “A General Framework for ASC.”

STATISTICAL NORMALIZATION
To classify features extracted from signals belonging to differ-
ent categories, it is important to evaluate the relative differ-
ences between the values of feature vectors belonging to 
different classes rather than differences between different 
coefficients within feature vectors extracted from the same 
signal. For this reason, during the training phase of the ASC 
classification algorithm, statistical normalization is performed 
as a standard feature processing aimed at avoiding offsets or 
scaling variations of any of the coefficients within feature vec-
tors. This is accomplished by subtracting the global mean 
(computed from features extracted from the whole data set) 
from each vector x ,n m  and by dividing each coefficient by 
their global standard deviation. After the feature vectors have 
been normalized, the average and standard deviation of the 
coefficients x , ,n m k  are 0 and 1, respectively.

GMMs
GMMs are used to infer global statistical properties of the 
features from local features vectors, which are interpreted as 
realizations of a generative stochastic process. Let ( , )N n R
be a multivariate normal distribution with mean RK!n and 

covariance matrix ,RK K!/ # and recall that the notation 
x ,n qK  identifies features vectors extracted from training sig-
nals that belong to the qth  category. Then, every such vec-
tor is modeled as generated by the following distribution:

( ),wx N, ,n q i
i

I

i i
1

+ n RK

=

% (S1)

where I is a fixed number of components and wi  is a latent 
variable expressing the probability that a particular obser-
vation is generated from the ith  component.

The operator S takes the collection of features x ,n qK and 
learns a global model for the qth  class wM , ,q i i i i

I
1n R= =" ,

by estimating the parameters of the Gaussian mixture distri-
bution in (S1), which can be accomplished through an expec-
tation-maximization (EM) algorithm [7]. The only parameter 
to be set in this case is the number of Gaussian components 
,I which rules a tradeoff between model accuracy and over-

fitting. Indeed, SI must include a sufficient number of com-
ponents to account for the fact that different events within 
a soundscape generate sounds with different spectral prop-
erties. However, as the number of components becomes too 
large, the model tends to fit spurious random variations in 
the training data, hindering the generalization capabilities 
of the algorithm when confronted with an unlabeled sound.

MAXIMUM LIKELIHOOD CRITERION
Once the GMMs’ Mq have been inferred from the training 
data, features can be extracted from an unlabeled sound 
by applying the operator .T The new sequence of features 
x ,n new  is statistically normalized using the same mean and 
standard deviation values obtained from the training sig-
nals, and a likelihood measure G  is employed to evaluate 
which class is statistically most likely to generate the 
observed features, hence determining the sound classifica-
tion. A set of coefficients gq is computed by evaluating the 
log-likelihood of the observed data given the model

( ) ( ) ( ),g p w xx xM, , ,
T

q n q i n i
i

I

n ii
1

new new new\ n nR= - -
=

/
(S2)

and a category is picked based on the most likely model 
 .argminc g

q
qnew =

)

Note that the baseline system described here is an example 
of a bag-of-frames technique where the ordering of the 
sequence of features is irrelevant. Any random permutation 
of the sequences x ,n qK  does not affect the computation of 
the GMM parameters and, thus, the classification of unla-
beled signals.
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feature vectors belonging to different categories (such as their 
mean values), hence obtaining one class centroid for each cate-
gory. The same statistic can be computed for each unlabeled 
sample that is assumed to be generated according to the distri-
bution with the closest centroid and is assigned to the corre-
sponding category.

When using a discriminative classifier, the features derived from 
an unlabeled sample are not interpreted as being generated by a 
class-specific distribution but are assumed to occupy a class-spe-
cific region in the feature space. One of the most popular discrimi-
native classifiers for ASC is the SVM. The model output from an 
SVM determines a set of hyperplanes that optimally separate fea-
tures associated to different classes in the training set (according to 
a maximum-margin criterion). An SVM can only discriminate 
between two classes. However, when the classification problem 
includes more than two categories (as is the case in the ASC task 
presented in this article), multiple SVMs can be combined to deter-
mine a decision criterion that allows for discrimination between Q
classes. In the one-versus-all approach, Q  SVMs are trained to dis-
criminate between data belonging to one class and data from the 
remaining Q 1-  classes. Instead, in the one-versus-one approach, 

( ) /Q Q 1 2-  SVMs are trained to classify between all possible class 
combinations. In both cases, the decision criterion estimates the 
class from an unlabeled sample by evaluating the distance between 
the data and the separating hyperplanes learned by the SVMs.

Discriminative models can be combined with generative ones. 
For example, one might use the parameters of generative models 
learned from training data to define a feature space and then 
employ an SVM to learn separating hyperplanes. In other words, 
discriminative classifiers can be used to derive classification criteria 
from either the feature vectors or the parameters of their statistical 
models. In the former case, the overall classification of an acoustic 
scene must be decided from the classification of individual data 
frames using, e.g., a majority vote.

Different statistical models have been used for computational 
ASC, and the following list highlights their categories.

1) Descriptive statistics: Several techniques for ASC [1, KH 
GSR RNH] employ descriptive statistics. This class of meth-
ods is used to quantify various aspects of statistical distribu-
tions, including moments (such as mean, variance, skewness, 
and kurtosis of a distribution), quantiles, and percentiles.
2) GMMs: Other methods for ASC [11], [2] employ GMMs, 
which are generative methods where feature vectors are 
interpreted as being generated by a multimodal distribution 
expressed as a sum of Gaussian distributions. GMMs are fur-
ther detailed in “MFCCs, GMMs, and a Maximum Likelihood 
Criterion” where we will present a baseline ASC system used 
for a benchmark.
3) HMMs: This class of models is used in several ASC systems 
[12], [20] to account for the temporal unfolding of events 
within complex soundscapes. Suppose, for example, that an 
acoustic scene recorded in an underground train includes an 
alert sound preceding the sound of the doors closing and the 
noise of the electric motor moving the carriage to the next 
station. The features extracted from these three distinct 

sounds could be modeled using Gaussian densities with differ-
ent parameters, and the order in which the events normally 
occur would be encoded in an HMM transition matrix. This 
contains the transition probability between different states at 
successive times, which is the probability of each sound 
occurring after the other. 

A transition matrix that correctly models the unfolding of 
events in an underground train would contain large diagonal 
elements indicating the probability of sounds persisting in 
time, significant probabilities connecting events that occur 
after each other (an alert sound followed by the sound of the 
doors closing and then the sound of motors), and negligible 
probabilities connecting sounds that occur in the wrong order 
(for example, the doors closing before the alert sound). 
4) Recurrence quantification analysis: Roma et al. employ 
recurrence quantification analysis (RQA) to model the tem-
poral unfolding of acoustic events [1, RNH]. This technique 
is used to learn a set of parameters that have been developed 
to study dynamical systems in the context of chaos theory 
and are derived from so-called recurrence plots, which cap-
ture periodicities in a time series. In the context of ASC, the 
RQA parameters include: recurrence measuring the degree 
of self-similarity of features within an audio scene; determin-
ism, which is correlated to sounds periodicities; and lami-
narity, which captures sounds containing stationary 
segments. The outputs of the statistical learning function 
are a set of parameters that model each acoustic scene in the 
training set. This collection of parameters is then fed to an 
SVM to define the decision boundaries between classes that 
are used to classify unlabeled signals.
5) i-vector: The system proposed by Elizalde et al. [1, ELF] is 
based on the computation of the i-vector [14]. This is a tech-
nique originally developed in the speech processing commu-
nity to address a speaker verification problem, and it is based 
on modeling a sequence of features using GMMs. In the con-
text of ASC, the i-vector is specifically derived as a function of 
the parameters of the GMMs learned from MFCCs. It leads to 
a low-dimensional representation summarizing the properties 
of an acoustic scene and is input into a generative probabilis-
tic linear discriminant analysis (pLDA) [30].

DECISION CRITERIA
Decision criteria are functions used to determine the category 
of an unlabeled sample from its feature vectors and from the 
statistical model learned from the set of training samples. Deci-
sion criteria are generally dependent on the type of statistical 
learning methods used. The the following details how different 
models are associated to the respective criteria.

1) One versus one and one versus all: These decision criteria 
are associated to the output of a multiclass SVM and are used 
to map the position of a features vector to a class, as already 
described in the section “Statistical Models.”
2) Majority vote: This criterion is used whenever a global 
classification must be estimated from decisions about single 
audio frames. Usually, an audio scene is classified according 
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to the most common category assigned to its frames. Alterna-
tively, a weighted majority vote can be employed to vary the 
importance of different frames. Patil and Elahili, for example, 
assign larger weights to audio frames containing more 
energy [1, PE].
3) Nearest neighbor: According to this criterion, a feature vec-
tor is assigned to the class associated to the closest vector 
from the training set (according to a metric, often the Euclid-
ean distance). A generalization of the nearest neighbor is the 
k-nearest neighbor criterion, whereby the k  closest vectors 
are considered and a category is determined according to the 
most common classification.
4) Maximum likelihood: This criterion is associated with 
generative models, whereby feature vectors are assigned to 
the category whose model is most likely to have generated 
the observed data according to a likelihood probability.
5) Maximum a posteriori (MAP): An alternative to maximum 
likelihood classification is the MAP criterion, which includes 
information regarding the marginal likelihood of any given 
class. For instance, suppose a global positioning system in a 
mobile device indicates that, in the current geographic area, 
some environments are more likely to be encountered than 
others. This information could be included in an ASC algo-
rithm through an MAP criterion.

META-ALGORITHMS
In the context of supervised classification, meta-algorithms are 
machine-learning techniques designed to reduce the classifica-
tion error by running multiple instances of a classifier in paral-
lel, each of which uses different parameters or different training 
data. The results of each classifier are then combined into a 
global decision.

DECISION TREES AND TREE BAGGERS
A decision tree is a set of rules derived from the analysis of fea-
tures extracted from training signals. It is an alternative to gener-
ative and discriminative models because it instead optimizes a set 
of if/else conditions about the values of features that leads to a 
classification output. Li et al. employed a tree-bagger classifier, 
which is a set of multiple decision trees [1, LTT]. A tree bagger is 
an example of a classification meta-algorithm that computes 

multiple so-called weak learners (classifiers whose accuracy is 
only assumed to be better than chance) from randomly sampled 
copies of the training data following a process called bootstrap-
ping. In the method proposed by Li et al., the ensemble of weak 
learners are then combined to determine a category for each 
frame and, in the test phase, an overall category is assigned to 
each acoustic scene based on a majority vote.

NORMALIZED COMPRESSION DISSIMILARITY 
AND RANDOM FOREST 
Olivetti adopts a system for ASC that departs from the techniques 
described throughout this article in favor of a method based on 
audio compression and random forest [1, OE]. Motivated by the 
theory of Kolmogorov complexity, which measures the shortest 
binary program that outputs a signal and that is approximated 
using compression algorithms, he defines a normalized compres-
sion distance between two audio scenes. This is a function of the 
size in bits of the files obtained by compressing the acoustic scenes 
using any suitable audio coder. From the set of pairwise distances, 
a classification is obtained using a random forest, which is a meta-
algorithm based on decision trees.

MAJORITY VOTE AND BOOSTING
The components of a classification algorithm can themselves be 
thought of as parameters subject to optimization. Thus, a fur-
ther class of meta-algorithms deals with selecting from or com-
bining multiple classifiers to improve the classification 
accuracy. Perhaps the simplest implementation of this general 
idea is to run several classification algorithms in parallel on 
each test sample and determine the optimal category by a 
majority vote, an approach that will be also used in the section 
“Evaluation of Algorithms for ASC.” Other more sophisticated 
methods include boosting techniques [44], where the overall 
classification criterion is a function of linear combinations 
involving a set of weak learners.

A GENERAL FRAMEWORK FOR ASC
Now that we have seen the range of machine-learning and signal 
processing techniques used in the context of ASC, let us define a 
framework that allows us to distill a few key operators and compo-
nents. Computational algorithms for ASC are designed to solve a 

snew sn, new

sn, ΛqsΛq xn, Λq

cnewxn, new

Test

Training

Q Classes

[FIG1] A supervised classification framework for ASC.
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supervised classification problem where a set of M  training record-
ings sm m

M
1=" ,  is provided and associated with corresponding labels 

c 1m m
M =" ,  that indicate the category to which each soundscape 

belongs. Let q q
Q

1c =" ,  be a set of labels indicating the members of a 
universe of Q  possible categories. Each label cm  can assume one of 
the values in this set, and we define a set, : ,m cq m qcK = =" ,

that identifies the signals belonging to the qth  class. The system 
learns statistical models from the different classes during an off-line 
training phase and uses them to classify unlabeled recordings, ,snew

in the test phase. 
First, each of the training signals is divided into short frames. 

Let D  be the length of each frame, and s R,n m
D!  indicates the 

nth  frame of the mth  signal. Typically, D  is chosen so that the 
duration of the frames is about 50 ms depending on the signal’s 
sampling rate.

The frames in the time domain are not directly employed for 
classification but rather are used to extract a sequence of features 
through a transform ,s xT T , ,n m n m=: ^ h  where x R,n m

K!  indi-
cates a vector of features of dimension .K  Often, ,K D%  mean-
ing that T  causes a dimensionality reduction. This is aimed at 
obtaining a coarser representation of the training data where 
members of the same class result in similar features (yielding 
generalization) and members of different classes can be distin-
guished from each other (allowing discrimination). Some sys-
tems further manipulate the features using feature transforms, 
such as in the method proposed by Eronen et al. [20]. For clarity 
of notation, we will omit this additional feature processing step 
from the description of the ASC framework, considering any 
manipulation of the features to be included in the operator .T

The individual features obtained from time-localized frames 
cannot summarize the properties of soundscapes that are consti-
tuted by a number of different events occurring at different times. 
For this reason, sequences of features extracted from signals 
belonging to a given category are used to learn statistical models of 
that category, abstracting the classes from their empirical realiza-
tions. Let x ,n qK  indicate the features extracted from the signals 
belonging to the qth  category. The function : xSS M,n q =K^ h" ,

learns the parameters of a statistical model M  that describes the 
global properties of the training data. Note that this formulation of 
the statistical learning stage (also illustrated in Figure 1) can 
describe a discriminative function that requires features from the 
whole training set to compute separation boundaries between 
classes. In the case of generative learning, the output of the func-
tion S  can be separated into Q  independent models Mq" , con-
taining parameters for each category, or into M  independent 
models Mm" , corresponding to each training signal.

Once the training phase has been completed and a model M
has been learned, the transform T  is applied in the test phase to 
a new unlabeled recording ,snew  leading to a sequence of features 

.xnew  A function ( , ): x cG G Mnew new=  is then employed to clas-
sify the signal, returning a label in the set .q q

Q
1c =" ,

Most of the algorithms mentioned in the section “Back-
ground: A History of ASC” follow the framework depicted in 
Figure 1 and only differ in their choice of the functions , ,T S
and .G  Some follow a seemingly different strategy but can still 

be analyzed in light of this framework. For example, matrix fac-
torizations algorithms like the one proposed by Benetos et al. 
[6] can be interpreted as combining features extraction and sta-
tistical modeling through the unsupervised learning of spectral 
templates and an activation matrix, as already discussed in the 
section “Features.”

A special case of ASC framework is the so-called bag-of-frames 
approach [2], named in an analogy with the bag-of-words tech-
nique for text classification whereby documents are described by 
the distribution of their word occurrences. Bag-of-frames tech-
niques follow the general structure shown in Figure  1 but 
ignore the ordering of the sequence of features when learning 
statistical models.

CHALLENGE OF DCASE
Despite a rich literature on systems for ASC, the research com-
munity has so far lacked a coordinated effort to evaluate and 
benchmark algorithms that tackle this problem. The challenge of 
DCASE has been organized in partnership with the IEEE Audio 
and Acoustic Signal Processing (AASP) Technical Committee to 
test and compare algorithms for ASC and for event detection and 
classification. This initiative is in line with a wider trend in the 
signal processing community aimed at promoting reproducible 
research [50]. Similar challenges have been organized in the 
areas of music information retrieval [36], speech recognition [5], 
and source separation [46].

THE DCASE DATA SET
Existing algorithms for ASC have been generally tested on data 
sets that are not publicly available [42], [20], making it difficult if 
not impossible to produce sustainable and reproducible experi-
ments built on previous research. Creative Commons licensed 
sounds can be accessed for research purposes on http://freesound.
org, a collaborative database that includes environmental sounds 
along with music, speech, and audio effects. However, the differ-
ent recording conditions and varying quality of the data present 
in this repository would require a substantial curating effort to 
identify a set of signals suited for a rigorous and fair evaluation of 
ASC systems. On the other hand, the adoption of commercially 
available databases, such as the Series 6000 General Sound 
Effects Library [54], would constitute a barrier to research repro-
ducibility due to their purchase cost.

The DCASE challenge data set [23] was specially created to 
provide researchers with a standardized set of recordings pro-
duced in ten different urban environments. The soundscapes 
were recorded in the London area and include: a bus, a busy 
street, an office, an open-air market, a park, a quiet street, a 
restaurant, a supermarket, the tube (underground railway), 
and a tube station. Two disjoint data sets were constructed 
from the same group of recordings, each containing ten 30-s 
long clips for each scene, totaling 100 recordings. Of these two 
data sets, one is publicly available and can be used by research-
ers to train and test their ASC algorithms; the other has been 
held back and has been used to evaluate the methods submit-
ted for the challenge.
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LIST OF SUBMISSIONS
A total of 11 algorithms were proposed for the DCASE challenge 
on ASC from research institutions worldwide. The respective 
authors submitted accompanying extended abstracts describing 
their techniques, which can be accessed from the DCASE Web site 
[55]. Table 2 lists the authors and titles of the contributions and 
defines the acronyms that are used throughout the article to refer 
to the algorithms.

In addition to the methods submitted for the challenge, we 
designed a benchmark baseline system that employs MFCCs, 
GMMs, and a maximum likelihood criterion. We have chosen to 
use these components because they represent standard practices 
in audio analysis, which are not specifically tailored to the ASC 
problem and, therefore, provide an interesting comparison with 
more sophisticated techniques. Table 1 summarizes the various 
approaches for ASC (see “MFCCs, GMMs, and a Maximum Likeli-
hood Criterion”). 

EVALUATION OF ALGORITHMS FOR ASC

EXPERIMENTAL DESIGN
A system designed for ASC comprises training and test phases. The 
researchers who participated in the DCASE challenge were pro-
vided with a public data set that includes ground truth labels, indi-
cating the environment in which the sounds were recorded. The 
training, test, and optimization of design parameters can be per-
formed by partitioning this data set into training and test subsets, 
a standard practice in machine learning that is further discussed 
next. To obtain a fair evaluation reflecting the conditions of a real-
world application, where sounds and labels are unknown to the 

algorithms, the methods submitted to the DCASE challenge were 
tested on a private data set.

CROSS-VALIDATION
Recall from Figure 1 that statistical models are learned from the 
elements of the training data that belong to different classes and, 
therefore, depend on the particular signals available for training. 
This represents a general problem of statistical inference occur-
ring every time models are learned using a limited set of data and 
is associated with a sampling error or bias. For example, to learn 
a statistical model of the sounds produced in an office environ-
ment, we would ideally need complete and continuous historical 
recordings from every office in the world. By only analyzing data 
recorded from one or several offices, we are bound to learn mod-
els that are biased toward the sounds present within the available 
signals. However, if the training data are rich enough to include 
sounds produced in most office environments, and if these 
sounds are effectively modeled, then the sampling bias can be 
bounded and models can statistically infer general properties of 
office environments from an incomplete set of measurements. 
Cross-validation is employed to minimize the sampling bias by 
optimizing the use of a set of available data. The collection of 
labeled recordings is partitioned into different subsets for training 
and testing so that all of the samples are used in the test phase. 
Different partition methods have been proposed in the literature 
for this purpose [7]. To evaluate the algorithms submitted to the 
DCASE challenge, we employed a so-called stratified fivefold 
cross-validation of the private data set. From 100 available record-
ings, five independent classifications are performed so that each 
run contains 80 training recordings and 20 test recordings. The 
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[FIG2] The mean values and confidence intervals of the accuracy of methods for ASC evaluated on the DCASE private data set 
using stratified fivefold cross-validation. The boxes enclose methods that cannot be judged to perform differently with a 
significance level of 95%. See Table 1 for the definition of the algorithms’ acronyms. MV is a majority vote classifier that assigns 
to an audio recording the label that is most commonly returned by the other methods. H indicates the median human accuracy, 
as obtained through the test described in the section “Human Listening Test,” while [31] refers to the human accuracy obtained 
by Krijnders and Holt. Note that algorithmic results are not directly comparable to the variations in human performance, and, 
hence, only the median human performance is depicted. See Figure 6 for more details on the distribution of human accuracies.
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partitions are designed so that the five test subsets are disjoint, 
thus allowing for the classification of each of the 100 signals in 
the test phases. In addition, the proportion of signals belonging to 
different classes is kept constant in each training and test subset 
(eight signals per class in the former and two signals per class in 
the latter) to avoid class biases during the statistical learning.

PERFORMANCE METRICS
Performance metrics were calculated from each classification 
obtained using the training and test subsets, yielding five results 
for each algorithm. Let C be the set of correctly classified sam-
ples. The classification accuracy is defined as the proportion of 
correctly classified sounds relative to the total number of test 
samples. The confusion matrix is a Q Q#  matrix whose ( , )i j th
element indicates the number of elements belonging to the ith
class that have been classified as belonging to the jth  class. In a 
problem with Q 10=  different classes, chance classification has 
an accuracy of 0.1 and a perfect classifier has an accuracy of 1. 
The confusion matrix of a perfect classifier is a diagonal matrix 
whose ( , )i i th  elements correspond to the number of samples 
belonging to the ith  class.

RESULTS
Figure 2 depicts the results for the algorithms submitted to the 
DCASE challenge (see Table 1 for the acronyms of the meth-
ods). The central dots are the percentage accuracies of each 
technique calculated by averaging the results obtained from 
the five folds, and the bars are the relative confidence intervals. 
These intervals are defined by assuming that the accuracy 
value obtained from each fold is a realization of a Gaussian pro-
cess whose expectation is the true value of the overall accuracy 
(i.e., the value that we would be able to measure if we evaluated 

an infinite number of folds). The total length of each bar is the 
magnitude of a symmetric confidence interval computed as the 
product of the 95% quantile of a standard normal distribution 

.q 3 92( , )
.

0 1
0 95
N . and the standard error of the accuracy (that is, 

the ratio between the standard deviation of the accuracies of 
the folds and the square root of the number of folds .)5v

Under the Gaussian assumption, confidence intervals are inter-
preted as covering with 95% probability the true value of the 
expectation of the accuracy.

From analyzing the plot, we can observe that the baseline 
algorithm achieves a mean accuracy of 55%, and a group of other 
methods obtain a similar result in the range between 55 and 
65%. Four algorithms (GSR, RG, LTT, and RNH) approach or 
exceed a mean accuracy of 70%. OE performs relatively close to 
chance level and significantly worse than all of the other meth-
ods. The boxes displaying the results of the paired tests explained 
in the section “Ranking of Algorithms” indicate that a number of 
systems performed significantly better than the baseline.

Finally, the method MV indicated in red refers to a majority 
vote classifier whose output for each test file is the most common 
category assigned by all other methods. The mean accuracy 
obtained with this metaheuristic outperforms all of the other 
techniques, indicating a certain degree of independence between 
the classification errors committed by the algorithms. In other 
words, for almost 80% of soundscapes, some algorithms make a 
correct decision, and the algorithms that make an incorrect clas-
sification do not all agree on one particular incorrect label. This 
allows the decisions to be combined into a relatively robust meta-
classifier. On the other hand, the performance obtained using MV 
is still far from perfect, suggesting that a number of acoustic 
scenes are misclassified by most algorithms. Indeed, this can be 
confirmed by analyzing the confusion matrix of the MV solution. 
As we can see in Figure 3, the class pairs (park, quiet street) and 
(tube, tube station) are commonly misclassified by the majority of 
the algorithms.

To investigate the poor performance of the method OE, we 
considered the results obtained on the public DCASE data set, 
which are not detailed here for the sake of conciseness. OE 
obtained the highest classification accuracy of all methods, sug-
gesting that it overfitted the training data by learning models 
that could not generalize to the test signals.

RANKING OF ALGORITHMS
The ASC performance has been evaluated by computing the statis-
tics among different cross-validation folds. However, all of the sub-
mitted methods have been tested on every file of the same 
held-back data set, and this allows us to compare their accuracy 
on a file-by-file basis. Recall that s p indicates a signal in the test 
set. A binary variable X p can be assigned to each signal and 
defined so that it takes the value 1 if the file has been correctly 
classified and 0 if it has been misclassified. Each X p  can thus be 
interpreted as a realization of a Bernoulli random process whose 
average is the mean accuracy of the classifier.

Given two classifiers ,C C1 2 and the corresponding variables 
, ,X X, ,C p C p1 2 a third random variable X XY , ,C p C pp 1 2= - assumes 

C
at

eg
or

y

Bus

Busy Street

Office

Open-Air Market

Park

Quiet Street

Restaurant

Supermarket

Tube

Tube Station

B
us

B
us

y 
S

tr
ee

t

O
ffi

ce

O
pe

n-
A

ir 
M

ar
ke

t

P
ar

k

Q
ui

et
 S

tr
ee

t

R
es

ta
ur

an
t

S
up

er
m

ar
ke

t

Tu
be

Tu
be

 S
ta

tio
n

Estimate

10

10 10

10

20

10 10

10

10

10

10

10

10

90

100

100

80

80

50 50

70

10 60

80

6030

[FIG3] A confusion matrix of MV algorithmic classification results.
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values in the set , ,1 0 1- +" , and indicates the difference in the 
correct or incorrect classification of s p by the two classifiers (that 
is, Y 1=- implies that C1 has misclassified s and C2 has cor-
rectly classified it; Y 0=  means that the two methods return 
equivalently correct or incorrect decisions, and Y 1= implies that 
C1  has correctly classified s and C2  has misclassified it). A sign test 
[24] can be performed to test the hypothesis that the expected 
value of Y is equal to zero. This is equivalent to performing a 
paired test evaluating the hypothesis that the performance of the 
two classifiers C1 and C2  is the same. Hence, being able to reject 
this hypothesis at a fixed probability level provides a method to 
rank the algorithms.

The gray boxes in Figure 2 represent groups of methods 
whose accuracy is not significantly different when tested on the 
DCASE data set, according to the sign tests ranking criterion 
evaluated between pairs of different methods. Methods enclosed 
in the same box cannot be judged to perform better or worse 
according to the chosen significance level. Starting with the least 
accurate algorithms, we can observe that the performance of OE 
is significantly different compared with all the other techniques. 
Then, a cluster of methods ranging from ELF to CHR do not per-
form significantly differently from the baseline. GSR and RG can 
be said to have significantly higher accuracy if compared to the 
baseline method, but not if compared to NR, NHL, or CHR. 
Finally, RNH is not significantly more accurate than GSR, RG, 
and LTT, but it outperforms all of the remaining methods. Note 

that we do not include the results of the majority vote 
metaheuristic in the ranking, as a paired sign test assumes the 
variables ,X X, ,C p C p1 2 to be statistically independent, and this 
assumption is violated in the case of MV.
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[FIG4] The distribution of algorithmic soundscapes classification accuracies. The solid line in (a) represents the average accuracy 
calculated from all of the acoustic scenes. (b) The histogram of mean accuracies resulting from the classification of all 100 
soundscapes, highlighting that ten soundscapes are correctly classified by at most only 10% of the algorithms.
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[FIG5] A multidimensional scaling solution (2-D) derived from 
the pairwise similarities between algorithm labeling decisions. 
Algorithms that make similar (mis)classifications tend to appear 
close to one another. 
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DISTRIBUTION OF ALGORITHMIC SOUNDSCAPES 
CLASSIFICATION ACCURACIES
Further analysis of the classification results can be carried out to 
understand whether there are individual soundscape recordings 
in the DCASE data set that are classified more accurately than 
others. After evaluating each method with a fivefold cross-
validation, every signal s p  is classified by all of the algorithms. 
Figure 4 shows a scatter plot of the mean classification accuracy 
obtained for each file and a histogram of the relative distribution. 
We can observe that some acoustic scenes belonging to the cate-
gories “bus,” “busy street,” “quiet street,” and “tube station” are 
never correctly classified (those at 0%). In general, the classifica-
tion accuracy among soundscapes belonging to the same cate-
gory greatly varies, with the exception of the classes “office” and 
“restaurant” that might contain distinctive events or sound char-
acteristics resulting in more consistent classification accuracies.

PAIRWISE SIMILARITY OF ALGORITHMS’ DECISIONS
While the results in Figure 2 demonstrate the overall accuracy 
achieved by algorithms, they do not show which algorithms tend 
to make the same decisions as others. For example, if two algo-
rithms use a very similar method, we would expect them to make 
a similar pattern of mistakes. We can explore this aspect of the 
algorithms by comparing their decisions pairwise against one 
another and using the number of disagreements as a distance 
measure. We can then visualize this using multidimensional scal-
ing (MDS) to project the points into a low-dimensional space, 
which approximately honors the distance values [16, Ch. 10].

The results of the MDS are shown in Figure 5. We tested 
multiple dimensionalities and found that 2-D (as shown) 
yielded a sufficiently low stress to be suitably representative. 
The OE submission is placed in a corner of the plot at some dis-
tance from the other algorithms; that submission achieved low 
scores on the private testing data. As a whole, the plot does not 

appear to cluster together methods by feature type, as MFCC 
and non-MFCC approaches as well as SVM and non-SVM 
approaches are interspersed.

HUMAN LISTENING TEST
To determine a human benchmark for the algorithmic results on 
ASC, we designed a crowdsourced online listening test in which 
participants were asked to classify the public DCASE data set by 
listening to the audio signals and choosing the environment in 
which each signal was recorded from the ten categories: “bus,” 
“busy street,” “office,” “open-air market,” “park,” “quiet street,” 
“restaurant,” “supermarket,” “tube,” and “tube station.”

In designing the listening experiment, we chose not to 
divide the classification into training and test phases because we 
were interested in evaluating how well humans can recognize 
the acoustic environments basing their judgment on nothing 
other than their own personal experience. The participants were 
not presented with labeled training sounds before the test, and 
they were not told their performance during the test.

To maximize the number of people taking the test, we allowed 
each participant to classify as many acoustic scenes as he or she 
wanted while randomizing the order in which the audio samples 
appeared in the test to ensure that each file had the same prob-
ability of being classified. To avoid potential biases, people who 
were likely to have worked with the data and, thus, were likely to 
know the class labels in advance, did not take the test.

HUMAN ACCURACY
Fifty participants took part in the test. Their most common age was 
between 25 and 34 years old, and the most common listening 
device employed during the test was high-quality headphones. Spe-
cial care was taken to remove test cases or invalid attempts from 
the sample. This included participants clearly labeled as “test” in 
the metadata, participants who only attempted to label only one or 
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[FIG6] The distribution of human soundscape classification accuracies.
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two soundscapes, and most of those who achieved scores as low as 
0%, which points to outliers with a clear lack of motivation. Figure 6 
shows that the mean accuracy among all participants was 72%, and 
the distribution of accuracies reveals that most people scored 
between 60 and 100%, with two outliers whose accuracy was as low 
as 20%. Since the distribution of accuracies is not symmetric, we 
show a box plot summarizing its statistics instead of reporting con-
fidence intervals for the mean accuracy. The median value of the 
participants’ accuracy was 75%, the first and third quartiles are 
located at around 60 and 85%, and 95% of values lie between 
around 45 and 100%. Note that, although we decided to include 
the results from all of the participants in the study who classified at 
least a few soundscapes, the most extreme points (corresponding to 
individuals who obtained accuracies of about 25 and 100%, respect-
ively) only include classifications performed on fewer than ten 
acoustic scenes. Removing from the results participants who 
achieved about 25% accuracy would result in a mean of 74%, 
which is a lot closer to the median value. In a more controlled lis-
tening test, Krijnders and Holt [31] engaged 37 participants, with 
each participant asked to listen to 50 public DCASE soundscapes 
and select one of the ten categories. The participants were required 
to listen for the entire duration of the recordings and use the same 
listening device. They obtained a mean accuracy of 79%, which is 
in the same area as the results of our crowdsourced study (75%).

CUMULATIVE ACCURACY 
During the test, we asked the participants to indicate their age 
and the device they used to listen to the audio signals, but we did 
not observe a correlation between these variables and the classifi-
cation accuracy. We did observe a correlation between the num-
ber of classified samples and the overall classification accuracy. 
People who listened to and categorized most or all of the 100 
total samples tended to score better than individuals who only 
classified a few sounds. To assess whether this occurred because 
participants learned how to better classify the sounds as they pro-
gressed in the test, we computed for each individual the cumula-
tive accuracy ( ),tt  which is defined as the ratio between the 
number of correctly classified samples and the total number of 
classified samples at times , ,t P1 f=

( )
( )

.t t
t

t
C

= (3)

A positive value of the discrete first-time derivative of this 
function ( ) ( ) ( )t t t 1t t t= - -l  would indicate that there is an 
improvement in the cumulative classification accuracy as time 
progresses. Therefore, we can study the distribution of ( )ttl  to 
assess the hypothesis that participants were implicitly training an 
internal model of the classes as they performed the test. The aver-
age of the function ( )ttl calculated for all of the participants was 

. .0 0028-  A right-tailed t-test rejected with 95% probability that 
the expectation of ( )ttl  is greater than zero, and a left-tailed t-test 
failed to reject with the same probability that the expectation is less 
than zero, indicating that participants did not improve their accu-
racy as they progressed through the test. This is a positive finding 
as the listening test was designed to avoid training from 

the exposure to the soundscapes. Having rejected the learning 
hypothesis, we are left with a selection bias explanation: we believe 
that people who classified more sounds were simply better able or 
more motivated to do the test than individuals who found the 
questions difficult or tedious and did not perform as well.

SCENES CLASS CONFUSION MATRIX
Further insight about the human classification results can be 
obtained by analyzing the overall confusion matrix of the listening 
test. Figure 7 shows that “supermarket” and “open-air market” 
are the most commonly misclassified categories whose samples 
have been estimated as belonging to various other classes. In 
addition, there are some common misclassifications between the 
classes “park” and “quiet street” and, to a minor extent, between 
the classes “tube” and “tube station.”

DISTRIBUTION OF HUMAN SOUNDSCAPES 
CLASSIFICATION ACCURACIES
To assess if some soundscapes were classified more accurately 
than others, we conducted a similar analysis for the human per-
formance benchmark to the one described in the section “Distri-
bution of Algorithmic Soundscapes Classification Accuracies.” 
Figure 8 depicts the mean accuracy of the classification of 100 
soundscapes in the public DCASE data set and a histogram of the 
relative distribution. The public and private portions of the 
DCASE data set are disjoint subsets of the group of recordings 
produced for the challenge; therefore, a paired comparison of the 
accuracies in Figures 4 and 8 cannot be carried out. Nonetheless, 
it is informative to compare the trends between the two analyses: 
it appears that the mean performance for the human classifica-
tion approaches 80% as opposed to a value of around 55% 
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[FIG7] A confusion matrix of human classification results. Note 
that the rows of the confusion matrix might not add up to 100% 
due to the rounding of percentages.
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achieved on average by the algorithms. In addition, the distribu-
tion of the mean accuracy in the case of human classification 
appears more regular, with most soundscapes being correctly 
classified most of the time, and with only a few outlier scenes 
whose classification accuracy is below 30%.

DISCUSSION
By interpreting sophisticated algorithms in terms of a general 
framework, we have offered a tutorial that uncovers the most 
important factors to take into account when tackling a difficult 
machine-learning task such as the classification of soundscapes. 
Inevitably, every abstraction or generalization is carried out at the 
expense of omissions in the description of the implementation 
details of each method. Nonetheless, we think that valuable insights 
can be gained by analyzing the classification results in light of the 
framework proposed in the section “A General Framework for ASC.”

ALGORITHMS FROM THE DCASE CHALLENGE
A first trend regarding the choice of statistical learning function 
S can be inferred by analyzing the algorithms submitted for the 

DCASE challenge summarized in Table 2. All but one method 
(ELF) use discriminative learning to map features extracted from 
the audio signals sm  to class labels .cm  Moreover, most of the 
algorithms whose mean accuracy is greater than or equal to that 
achieved by the baseline method employ SVM. All techniques that 
perform significantly better than the baseline, except for LTT, 
employ a combination of generative and discriminative learning 
by training an SVM classifier using parameters of models Mm

learned from individual audio scenes. This suggests that models 
learned from single audio scenes offer an appropriate tradeoff 
between discrimination and generalization. On the one hand, 
audio signals recorded in the same environment are analyzed by 
learning different statistical models that account for variations 
between one recording and the next. On the other hand, the 
parameters of these models occupy localized regions in a parame-
ter’s space so that classification boundaries can be learned to dis-
criminate between signals recorded in different environments.

A closer analysis of some of the better-scoring algorithms 
(GSR, RG, and RNH) reveals a further common design motiv-
ation. In different ways, all three methods attempt to model 
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[FIG8] The distribution of human soundscapes classification accuracies. (a) Each point represents the mean classification accuracy for a 
given acoustic scene, and the solid line represents the mean accuracy across all scenes. (b) The histogram depicts the distribution of 
classification accuracies across acoustic scenes.
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temporal relationships between features extracted from differ-
ent portions of the signals. RNH employs RQA parameters to 
encode periodicities (or stationarity) of the MFCC coefficients, 
RG accounts for time–frequency structures in the audio signals 
by learning gradient histograms of images derived from their 
spectrograms, and, finally, GSR computes linear regression 
coefficients of local features that encode general trends across a 
whole scene. This supports the intuitive observation that an 
ASC method should take into consideration the time evolution 
of different acoustic events to model complex acoustic scenes.

A further observation derived from analyzing Table 2 is that, 
among the methods that used classification trees in combination 
with a tree bagger or a random forest algorithm, OE achieved a 

poor classification performance, while LTT reached the second-
best mean accuracy. This might suggest that meta-algorithms 
can be a valuable strategy but may also be prone to overfitting.

Finally, a more exploratory remark regards the general use 
of the framework described in the section “A General Frame-
work for ASC.” Aucoutourier [3] studied the performance of a 
class of algorithms for audio timbre similarity, which followed 
a method similar to the ASC baseline. He reported the exist-
ence of a glass ceiling as more and more sophisticated algo-
rithms failed to improve the performance obtained using a 
simple combination of MFCCs and GMMs. To a certain extent, 
the fact that seven out of 11 ASC methods did not significantly 
outperform our baseline might suggest a similar effect and 

[TABLE 2] A SUMMARY AND CATEGORIZATION OF COMPUTATIONAL METHODS FOR ASC. THE ACRONYMS AFTER THE 
AUTHOR(S) NAME(S) IN THE METHOD COLUMN ARE DEFINED IN TABLE 1. THE ARROWS INDICATE SEQUENTIAL PROCESSING, 
E.G., WHEN STATISTICAL PARAMETERS LEARNED FROM FEATURES ARE FED TO AN SVM TO OBTAIN SEPARATING HYPERPLANES. 
IN SOME CASES, THE DECISION CRITERION OF SVMS (ONE VERSUS ALL, ONE VERSUS ONE, OR ALTERNATIVE) IS NOT SPECIFIED IN
THE REFERENCE. HOWEVER, IT IS ALWAYS SPECIFIED WHEN THE DISCRIMINATIVE LEARNING IS PERFORMED ON FRAMES, AND
AN OVERALL CLASSIFICATION IS DETERMINED BY A MAJORITY VOTE OR A WEIGHTED MAJORITY VOTE. NOTE THAT, FOR EACH
WORK CITED, ONLY THE METHOD LEADING TO THE BEST CLASSIFICATION RESULTS WAS CONSIDERED.

METHOD FEATURES STATISTICAL MODEL DECISION CRITERION

SAWHNEY AND MAES [42] FILTER BANK NONE NEAREST NEIGHBOR " MAJORITY
VOTE

CLARKSON ET AL. [12] MFCs HMM MAXIMUM LIKELIHOOD

ERONEN ET AL. [20] MFCCs, LOW-LEVEL
DESCRIPTORS, ENERGY/
FREQUENCY, LPCS " ICA, PCA 

DISCRIMINATIVE HMM MAXIMUM LIKELIHOOD

AUCOUTURIER [2] MFCCs GMMs NEAREST NEIGHBOR

CHU ET AL. [10] MFCCs, PARAMETRIC (GABOR) GMMs MAXIMUM LIKELIHOOD

MALKIN AND WAIBEL [34] MFCCs, LOW-LEVEL
DESCRIPTORS "  PCA 

LINEAR AUTOENCODER NETWORKS MAXIMUM LIKELIHOOD

CAUCHI [8] NMF MAXIMUM LIKELIHOOD

BENETOS [6] PLCA MAXIMUM LIKELIHOOD

HEITTOLA ET AL. [27] ACOUSTIC EVENTS HISTOGRAM MAXIMUM LIKELIHOOD

CHAUDHURI ET AL. [9] AUDs N-GRAM LANGUAGE MODELS MAXIMUM LIKELIHOOD

DCASE SUBMISSIONS

BASELINE MFCCs GMMs MAXIMUM LIKELIHOOD

RNH MFCCs RQA, MOMENTS "  SVM —

RG LOCAL GRADIENT HISTOGRAMS
(LEARNED ON TIME–FREQUENCY
PATCHES)

AGGREGATION "  SVM ONE VERSUS ONE

GSR MFCCs, ENERGY/FREQUENCY,  
VOICING

MOMENTS, PERCENTILES, LINEAR
REGRESSION COEFFICIENT "  SVM

MAJORITY VOTE

CHR ENERGY/FREQUENCY SVM ONE VERSUS ALL, MAJORITY VOTE

NHL LEARNED (MFCCs "  SRBM) SELECTIVE MAX POOLING "  SVM ONE VERSUS ALL

NR MFCCs, ENERGY/FREQUENCY,  
SPATIAL " FISHER
FEATURE SELECTION

SVM MAJORITY VOTE

PE FILTER BANK "
PARAMETRIC (GABOR) "  PCA 

SVM ONE VERSUS ONE, WEIGHTED
MAJORITY VOTE

KH "  VOICING MOMENTS, PERCENTILES "  SVM —

ELF MFCCs I-VECTOR " PLDA MAXIMUM LIKELIHOOD

LTT MFCCs ENSEMBLE OF CLASSIFICATION TREES MAJORITY VOTE "  TREE BAGGER

OE SIZE OF COMPRESSED AUDIO COMPRESSION DISTANCE "
ENSEMBLE OF CLASSIFICATION TREES

" RANDOM FOREST
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urge researchers to pursue alternative paradigms. Modeling 
temporal relationships as described before is one first step in 
this direction, and perhaps algorithms whose design motiva-
tions depart from those driving the development of the base-
line, such as the normalized compression dissimilarity (OE), 
might be worth additional investigation.

COMPARISON OF HUMAN AND ALGORITHMIC RESULTS
When designing the human listening test, we chose to present 
individuals with samples from the public DCASE data set to avoid 
distributing the held-back data set that was produced to test the 
algorithms. In addition, we chose not to divide the human task 
into training and testing phases because we were interested in 
evaluating how people performed by only drawing from previous 
experience and not from prior knowledge about the test set. The 
different experimental design choices between human and algo-
rithmic experiments do not allow us to perform a statistically rig-
orous comparison of the classification performances. However, 
since the public and private DCASE data sets are two parts of a 
unique session of recordings realized with the same equipment 
and in the same conditions, we still believe that qualitative com-
parisons are likely to reflect what the results would have been had 
we employed a different design strategy that allowed for a direct 
comparison. More importantly, we believe that qualitative conclu-
sions about how well algorithms can approach human capabil-
ities are more interesting than rigorous significance tests on how 
humans can perform according to protocols (such as the fivefold 
stratified cross-validation) that are clearly unnatural tasks.

Having specified the above disclaimer, several observations 
can be derived from comparing algorithmic and human classifi-
cation results. First, Figures 2 and 6 show that RNH achieves a 
mean accuracy in the classification of soundscapes of the private 
DCASE data set that is similar to the median accuracy obtained 
by humans on the public DCASE data set. This strongly sug-
gests that the best-performing algorithm achieves similar accu-
racy compared to a median human benchmark.

Second, the analysis of the misclassified acoustic scenes sum-
marized in Figures 4 and 8 suggests that, by aggregating the 
results from all of the individuals who took part in the listening 
test, all of the acoustic scenes are correctly classified by at least 
some individuals, while there are scenes that are misclassified by 
all algorithms. This observation echoes the problem of hubs 
encountered in music information retrieval, whereby certain 
songs are always misclassified by algorithms [41]. Moreover, 
unlike for the algorithmic results, the distribution of human 
errors shows a gradual decrease in accuracy from the easiest to 
the most challenging soundscapes. This observation indicates 
that, in the aggregate, the knowledge acquired by humans 
through experience still results in a better classification of sound-
scapes that might be considered ambiguous or lacking in highly 
distinctive elements.

Finally, the comparison of the confusion matrices presented 
in Figures 3 and 7 reveals that similar pairs of classes (such as 
“park” and “quiet street” or “tube” and “tube station”) are com-
monly misclassified by both humans and algorithms. Given what 

we found about the misclassification of a single acoustic scene, 
we do not infer from this observation that the algorithms are 
using techniques that emulate human audition. An alternative 
interpretation is rather that some groups of classes are inherently 
more ambiguous than others because they contain similar sound 
events. Even if both physical and semantic boundaries between 
environments can be inherently ambiguous, for the purpose of 
training a classifier, the universe of soundscapes classes should be 
defined as mutually exclusive and collectively exhaustive. In other 
words, it should include all of the possible categories relevant to 
an ASC application while ensuring that every category is as dis-
tinct as possible from all of the others. 

FURTHER RESEARCH
Some themes that have not been considered in this article may 
be important depending on particular ASC applications and are 
suggested here for further research.

1) Algorithm complexity: A first issue to be considered is the 
complexity of algorithms designed to learn and classify acoustic 
scenes. Given that mobile context-aware services are among the 
most relevant applications of ASC, particular emphasis should be 
placed on designing methods that can be G  run with the limited 
processing power available to smartphones and tablets. The 
resources-intensive processing of training signals to learn statis-
tical models for classification can be carried out off-line, but the 
operators T and G still need to be applied to unlabeled signals 
and, depending on the application, might need to be simple 
enough to allow real-time classification results.
2) Continuous and user-assisted learning: Instead of assuming 
a fixed set of categories, as done in most publications on ASC, a 
system might be designed to be progressively trained to recog-
nize different environments. In this case, a user should record 
soundscape examples that are used to train classification mod-
els (either online or off-line, using the recording device’s own 
computational resources or uploading and processing the sig-
nals with remote cloud resources) and progressively add new 
categories to the system’s memory of soundscapes. Users could 
also assist the training by confirming or rejecting the category 
returned from querying each unlabeled signal and, thus, refine 
the statistical models every time a new classification is per-
formed. Such systems would inevitably require more interven-
tion by the user but would likely be more precise and relevant 
than totally automated systems.
3) Hierarchical classification: In this article, we have consid-
ered a set of categories whose elements are assumed to be 
mutually exclusive (that is, a soundscape can be classified as 
bus or park but not both). Alternatively, a hierarchical classi-
fication could be considered where certain categories are sub-
sets or supersets of others. For example, a system might be 
designed to classify between outdoor and indoor environ-
ments and then distinguish between different subsets of the 
two general classes. In this context, different costs could be 
associated with different types of misclassification errors: for 
example, algorithms could be trained to be very accurate in 
discriminating between outdoor and indoor and less precise 
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in distinguishing between an outdoor park and an outdoor 
busy street.
4) Acoustic scene detection: As a limit case of systems that 
employs nonuniform misclassification costs, algorithms 
might be designed to detect a particular environment and 
group all of the other irrelevant categories into an others 
class. In this case, the system would essentially perform 
acoustic scene detection rather than classification.
5) Multimodal learning: Another avenue of future research 
consists in fusing multimodal information to improve the 
classification accuracy of ASC systems. Video recordings, geo-
location information, and temperature and humidity sensors 
are all examples of data that can be used in conjunction with 
audio signals to provide machines with context awareness.
6) Event detection and scene classification: The combination 
of event detection algorithms and ASC, which has already 
been the object of research endeavors [27], [9], is likely to 
benefit from advances in both areas. Information regarding 
the events occurring in an acoustic scene could be combined 
with more traditional frame-based approaches to update the 
probability of categories as different events are detected. For 
example, while general spectral properties of a soundscape 
could be used to infer that a signal was likely to have been 
recorded in either a park or on a quiet street, detecting the 
event car horn would help disambiguate between the two. 
Furthermore, this Bayesian strategy employed to update the 
posterior probability of different classes could be used to 
handle transitions between different environments.
7) Testing on different data sets: Finally, data sets that con-
tain sounds from different acoustic environments have been 
recently released. They include the diverse environments 
multichannel acoustic noise database [48] and the database 
of annotated real environmental sounds [49].

CONCLUSIONS
In this article, we provided a tutorial on ASC with a particular 
emphasis on computational algorithms designed to perform 
this task automatically. By introducing a framework for ASC, we 
have analyzed and compared methods proposed in the literature 
in terms of their modular components. We then presented the 
results of the DCASE challenge, which set the state of the art in 
computational ASC, and compared the results obtained by algo-
rithms with a baseline method and a human benchmark. On 
the one hand, many of the submitted techniques failed to signif-
icantly outperform the baseline system, which was designed to 
not be optimized for this particular task. However, some meth-
ods significantly outperformed the baseline and approached an 
accuracy comparable to the human benchmark. Nonetheless, a 
more careful analysis of the human and algorithmic results 
highlighted that some acoustic scenes were misclassified by all 
algorithms while all soundscapes were correctly classified by at 
least some individuals. This suggests that there is still room for 
improvement before algorithms reach and surpass the ability of 
humans to make sense of their environment based on the 
sounds it produces.
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H
idden Markov models (HMMs) and Gaussian mixture models (GMMs) are the two most common types of 
acoustic models used in statistical parametric approaches for generating low-level speech waveforms 
from high-level symbolic inputs via intermediate acoustic feature sequences. However, these models 
have their limitations in representing complex, nonlinear relationships between the speech generation 
inputs and the acoustic features. Inspired by the intrinsically hierarchical process of human speech pro-

duction and by the successful application of deep neural networks (DNNs) to automatic speech recognition (ASR), 
deep learning techniques have also been applied successfully to speech generation, as reported in recent literature. 

This article systematically reviews these emerging speech generation approaches, with the dual goal of help-
ing readers gain a better understanding of the existing techniques as well as stimulating new work in the 

burgeoning area of deep learning for parametric speech generation. 
In speech signal and information processing, many applications have been formulated as machine-learn-

ing tasks. ASR is a typical classification task that predicts word sequences from speech waveforms or fea-
ture sequences. There are also many regression tasks in speech processing that are aimed to generate 

speech signals from various types of inputs. They are referred to as speech generation tasks in this 
article. Speech generation covers a wide range of research topics in speech processing, such as 

text-to-speech (TTS) synthesis (generating speech from text), voice conversion (modifying 
nonlinguistic information of the input speech), speech enhancement (improving 

speech quality by noise reduction or other processing), and articulatory-to-acous-
tic mapping (converting articulatory movements to acoustic features). These 
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topics have the common goal of generating speech signals and dif-
fer in the forms of inputs. Statistical parametric speech generation 
(SPSG), which combines statistical acoustic models and vocoding 
techniques to generate speech waveforms, has been the main-
stream approach for solving the speech generation problems. This 
approach first builds statistical acoustic models representing either 
the conditional probability density function (PDF) of output acous-
tic features given the input features or joint PDFs between the 
input and output features. The model structure is usually task 
dependent, but the parameters are estimated from a training data-
base consisting of pairs of inputs and output acoustic features. At 
the speech-generation stage, the input features are given, which 
could be texts for TTS and noisy speech for speech enhancement. 
Then, the conditional distribution of the output acoustic features 
given the input features can be derived from the trained acoustic 
models. The output acoustic features are predicted from the condi-
tional distribution under a certain criterion, e.g., maximizing the 
output probability, and are subsequently sent to a vocoder to recon-
struct a speech waveform. In SPSG, vocoders are used to extract 
acoustic features, such as spectral [e.g., Mel-cepstral coefficients 
(MCCs)] and excitation (e.g., fundamental frequency and aperiodic-
ity) features, from the raw waveforms of training data and to recon-
struct speech waveforms from the generated acoustic features at 
synthesis time. Although both vocoder and acoustic modeling are 
essential for SPSG systems, this article focuses on acoustic model-
ing techniques for SPSG.

GMMs and HMMs with single Gaussian (or GMM) state-out-
put PDFs are the two most popular acoustic models for SPSG 
[1], [2]. HMMs can represent nonstationary distributions of 
acoustic features using a sequence of hidden states, which are 
associated with linguistic features.

GMMs are widely used in frame-by-frame mapping for several 
speech-generation tasks, such as voice conversion, speech 
enhancement, and articulatory-to-acoustic mapping. The SPSG 
approaches using these two types of models have been shown to 
generate highly intelligible and smooth speech [2]–[4]. However, 
the generated speech sounds are noticeably muffled compared to 
recorded speech. Inadequate acoustic modeling is one of the main 
reasons for this deficiency [2], [5].

Take HMM-based speech synthesis, for example. In this ap-
proach, decision-tree-clustered, context-dependent phoneme HMMs 
are typically used to represent distributions of acoustic features 
given linguistic features [6]. The PDF of the acoustic features associ-
ated with each leaf node of the decision trees is typically a single 
Gaussian distribution with a diagonal covariance matrix.

At training time, parameters of the HMMs are usually esti-
mated based on the maximum likelihood (ML) criterion. At syn-
thesis time, given an input sentence and the trained parameters of 
the HMMs, the most likely acoustic features are predicted using 
the speech parameter-generation algorithm [7]. Since single 
Gaussian distributions are used as state-output PDFs, the outputs 
of the speech parameter-generation algorithm tend to distribute 
near the means of the Gaussian distributions, which are estimated 
by averaging all observations associated with a given decision tree 
leaf node. Although this averaging process improves the 

robustness of parameter estimation and generation, the detailed 
characteristics of the speech parameters are often lost. Therefore, 
the reconstructed spectral envelopes are typically oversmoothed, 
which leads to the muffled voice quality of the synthetic speech. In 
recent years, many techniques have been proposed to alleviate the 
oversmoothing problem by introducing better acoustic models 
(e.g., the trajectory HMM [8], product of experts [9], and Gaussian 
process regression [10]), improving the model training criterion 
(e.g., minimum generation error training [11], [12]), or modifying 
the speech parameter-generation algorithm (e.g., integrating a 
global variance model [13], using segment-wise representation 
[14], and minimizing Kullback–Leibler divergences [15]).

Since 2006, deep learning has emerged as a new area of 
machine-learning research [16], [17] and has also attracted the 
attention of many signal processing researchers. Deep learning 
refers to a class of machine-learning techniques that exploit 
many layers of nonlinear information processing for supervised 
or unsupervised feature extraction and transformation, and for 
pattern analysis and classification. Both unconditional deep 
architectures [e.g., restricted Boltzmann machines (RBMs) [19], 
deep belief networks (DBNs) [16], denoising autoencoders 
(DAEs) [20], [21], deep Boltzmann machines [18], and condi-
tional deep architectures, e.g., DNNs] [17], have been inten-
sively studied and explored by signal processing researchers in 
recent years. Strictly speaking, an RBM is a shallow graphical 
model with only one layer of hidden units; it is the constituent 
of many deep models (e.g., DBNs and DNNs). As a density 
model, RBMs perform much better than the conventional shal-
low structures (e.g., GMMs) [18]. Considering its intrinsic rela-
tionship and similarity to other deep models, RBMs are included 
as an example of deep generative models in this article. 

One example is the successful application of DNNs to the 
acoustic modeling of ASR. In this approach, DNNs are introduced 
to replace GMMs for evaluating the fit between a frame of acous-
tic observations and each HMM state [22]. Deep learning tech-
niques have also been applied to the acoustic modeling of speech 
generation very recently to deal with the limitations of the con-
ventional approaches [23]–[40]. Different from the deep learning 
in ASR where DNN-HMM is the dominant model structure, these 
emerging acoustic modeling approaches for speech generation 
adopted various model structures. Some of them focus on 
improving the density functions of HMM states or GMM mixtures 
using RBMs or DBNs [23], [24], [27]. While some others use 
DBNs or DNNs to model the entire mapping process from input 
to output feature sequences directly [25], [26], [28]–[35].

This article first reviews the conventional and popular statis-
tical framework for speech generation, including HMM-based 
speech synthesis and GMM-based voice conversion, focusing on 
acoustic modeling and not on the vocoder. It then analyzes the 
limitations of these approaches. The key models and techniques 
of deep learning as relevant to speech generation, including 
RBMs, DBNs, and DNNs, are also introduced. 

Subsequently, emerging speech generation approaches using 
deep learning techniques for acoustic modeling are reviewed 
systematically, with an analysis of their motivations and a 
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description of their implementations. Finally, we discuss the 
remaining issues associated with current deep learning meth-
ods for parametric speech generation and point to future direc-
tions in this area.

CONVENTIONAL ACOUSTIC MODELING 
USING HMMs AND GMMs FOR SPSG

HMM-BASED SPEECH SYNTHESIS
Statistical parametric speech synthesis (SPSS) [5] emerged in the 
mid-1990s [6], [41]. In this approach, the relationship between text 
and its acoustic realizations is modeled using a set of stochastic 
generative acoustic models. Decision-tree-clustered, context-depen-
dent phoneme HMMs with single Gaussian state-output PDFs are 
the most popular generative acoustic model used in SPSS [6]. This 
approach is known as HMM-based speech synthesis. An HMM is a 
generative model that generates an observation sequence using a 
discrete and hidden state sequence. An example of a three-state left-
to-right HMM is illustrated in Figure 1. In an HMM, state-output 
PDFs describe the distribution of observed features belonging to 
corresponding states and the transition among states is character-
ized by state-transition probabilities.

HMM-based speech synthesis is able to synthesize highly 
intelligible and smooth speech sounds. In addition, this model-
based approach makes speech synthesis far more flexible 
compared to the conventional unit selection and waveform con-
catenation approach. Model adaptation, interpolation, and 
manipulation methods have been applied to control the HMM’s 

parameters and thus diversify the characteristics of the gener-
ated speech [42]–[49]. Figure 2 shows the diagram of a typical 
HMM-based speech synthesis system. At the training stage, 
acoustic features of speech, including vocal tract and vocal 
source parameters, are extracted from the speech waveforms in 
a training database. Context features are also derived from the 
segmental and prosodic labels of the texts corresponding to the 
waveforms. Then, a set of parameters of context-dependent 
HMMs *m  is estimated based on the ML criterion as

( , ),arg max y xp* ;m m=
m

(1)

[FIG1] An example of a three-state, left-to-right HMM.

[FIG2] A block diagram of a typical HMM-based speech synthesis system.
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where ( )p $  is used to denote a PDF (continuous) in this article,  
, , ,y y y yT1 2 f= < < <<6 @  denotes a sequence of acoustic features 

with T  frames, yt  is the acoustic feature at frame ,t
{ , , }x x xN1 f=  is a sequence of linguistic context features for 

y  that are derived from text automatically or annotated manu-
ally, N  is the number of phonemes, and ( )$ <  denotes the matrix 
transposition operation. The acoustic feature vector at each 
frame typically consists of static acoustic parameters y Rs

D
t

y!

and their velocity and acceleration components, ystD  and 
ys

2
tD , as 

.[ , , ]y y y ys s st
2

t t tD D= < < << (2)

Therefore, the complete acoustic feature sequence y  can be 
considered a linear transform of the static feature sequence 

, , ,y y y ys s s sf= < < < <
T1 2

6 @  as

,y M yy s= (3)

where My  is determined by the velocity and acceleration calcu-
lation functions used in (2) [7].

An HMM-based speech synthesis system typically contains a 
large number of context-dependent HMMs with linguistic context 
features that are far more extensive and can express far more fine-
grained distinctions than those used in HMM-based ASR systems 
[50], [51]. This leads to data sparsity problems, such as overfitting 
in context-dependent models that have only few training examples 
available and the problem that many valid combinations of lin-
guistic context features will be absent from the training database. 
To deal with this issue, a decision-tree-based clustering technique 
[52] is applied after the initial training to cluster state-output 
PDFs of the context-dependent HMMs as shown in Figure 3, where 

the state-output PDFs of the context-dependent HMMs with simi-
lar context descriptions are represented by a shared distribution. 
The question set for decision tree constriction is designed consider-
ing the characteristics of the language being processed. Next, the 
state alignment results using the trained HMMs are utilized to 
train context-dependent state-duration PDFs [6]. A single Gaussian 
distribution is also used to model the state-duration PDF at each 
state. A decision-tree-based model clustering technique is similarly 
applied to these state-duration PDFs [54]. Joint training of state-
output and state-duration PDFs based on hidden semi-Markov 
models have also been used [53].

The acoustic model ( , )y xp ; m  used in HMM-based speech 
synthesis can be rewritten as

( , ) ( , , ),y x y q xp p
q

; ;m m=
6

/ (4)

( , ) ( , ),q x y qP p
q

; ;m m=
6

/ (5)

( , ) ( , ),q x y qP p
q t

T

t t
1

;; m m=
6 =

%/ (6)

where ( )P $  is used to denote a probability mass function 
(discrete) in this article, ( , )y qp t t; m  is a state-output PDF associ-
ated with the q tht  state, which is typically a single Gaussian dis-
tribution with a diagonal covariance matrix and , ,q q qT1 f= " ,

is an HMM state sequence. Note that the derivation from (5) to (6) 
is based on the assumption of HMMs that the frame observations 
are independent from each other given the state sequence.

To perform synthesis, the result of front-end linguistic analysis 
on input text is used to get the context features xu  for synthesis, as 
shown in Figure 2. In the HMM state sequence decision step, a sen-
tence HMM corresponding to the input text is composed, with its 
parameters derived from the training stage. 

In the step of acoustic parameter-generation, the acoustic 
features that maximize their output probabilities given the sen-
tence HMM are determined under the constraints between 
static and dynamic features [7] as

( ., )arg maxy y xp* *
y y M y

s
s y s

; m=
=

u (7)

The solution to (7) can be simplified if only the optimal state 
sequences in (5) is considered; optimization is approximated as 
two sequential steps

( , ),arg maxq q xP* *
q

; m= u (8)

( ., )arg maxy yp q* * *
y

y M y

s
t

T

t t
1

s
y s

; m=
= =

% (9)

Then, the closed-form solution of y*
s  can be derived by setting 

the partial derivative of (9) with respect to ys  to zero once the 
state sequence q*  is given [7]. Finally, these generated parame-
ters are sent to a vocoder to reconstruct the speech waveforms.

GMM-BASED VOICE CONVERSION
The aim of voice conversion is to modify the nonlinguistic infor-
mation (e.g., speaker characteristics) of input speech while 

[FIG3] A decision-tree-based modeling clustering for HMM-
based speech synthesis.
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keeping the linguistic information unchanged. Different from the 
linguistic features, which are used as inputs for speech synthesis, 
the input features for voice conversion are typically continuous 
acoustic representations of a source voice. Many statistical 
approaches to voice conversion have been studied since the late 
1980s, such as codebook mapping [55], GMM [2], [56], frequency 
warping [57], neural networks [58], partial least square regres-
sion [59], noisy channel model [60], etc. Among them, GMM-
based voice conversion is the most popular [2], [56]. Figure 4 is a 
diagram of a typical GMM-based voice conversion system with 
parallel training data, which means that the training database 
contains the speech waveforms uttered by the source and target 
voices for the same texts. At the training stage, the acoustic fea-
tures of the source and target speech in the training database are 
extracted by a vocoder and are aligned frame by frame by dynamic 
time warping. Then, the aligned pairs of the source acoustic fea-
ture vector xt  and the target acoustic feature vector yt  are con-
catenated to construct a joint feature vector .,z x yt t t= < < <6 @
Similar to HMM-based speech synthesis, the acoustic features 
xt  and yt  consist of static and dynamic components. There-
fore, the acoustic feature sequences , , ,x x x xT1 2 f= < < < <6 @  and 

, , ,y y y yT1 2 f= < < < <6 @  can also be written as a linear transform 
from the static feature sequences , , ,x x x xs s s s1 2

f= < < < <
T

6 @  and 
, , ,y y y ys s s s2
f= < < < <

T1
6 @  as x M xx s=  and ,y M ysy=  where Mx

and M y  are determined by the velocity and acceleration calcula-
tion functions [2]. Then, a joint distribution GMM (JD-GMM) m
with a set of parameters { , , }( ) ( )

m m
z

m
z

m
M

1na R =  is estimated to model 

a joint PDF between the source and target acoustic features, 
where M  denotes the total number of mixture components in 
the JD-GMM, and ,ma ,( )

m
zn  and ( )

m
zR  correspond to the mixture 

weight, mean vector, and covariance matrix associated with the 
mth  Gaussian component. The mean vector and covariance 
matrix are structured as

, .( )
( )

( )
( )

( )

( )

( )

( )m
z m

x

m
y m

z m
xx

m
yx

m
xy

m
yyn

n

n
R

R
R

R
R

= == =G G (10)

To reduce the number of model parameters and computational 
cost, ,( )

m
xxR ,( )

m
yyR ,( )

m
xyR  and ( )

m
yxR  are commonly set to be diago-

nal [2]. These model parameters are typically estimated by the 
ML criterion as

( , ),arg max x yp* ;m m=
m

(11)

( ) .arg max zp
t

T

t
1

; m=
m

=

% (12)

The conditional PDF given an input source acoustic feature xu
can be further derived from the trained JD-GMM *m  as

( , ) ( , , ),y x y m xp p* *

m
; ;m m=

6

u u/ (13)

( , ) ( , , ),m x y xP p m* *

m
t

t

T

t t
1

; ;m m=
6 =

u u%/ (14)

where { , , }m m mT1 f=  denotes the sequence of mixture com-
ponents. ( , ) ( , )m x xP P m* *

t

T
t t1

; ;m m=
=

u u%  and ( , )xP m *
t t; mu
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[FIG4] A block diagram of a typical GMM-based voice conversion system.
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can be determined from the marginal PDF of ,xt  which is a GMM 
of M  mixture components with the set of model parameters 

.{ , , }( ) ( )
m m

x
m
xna R  The conditional PDF ( , , )y xp mt t t; m  is a Gauss-

ian distribution with a mean vector

x,
( ) ( ) ( ) ( )

m t
y x

m
y

m
yx

m
xx

t m
x1n n nR R= + -; - ^ h (15)

and a covariance matrix

.( ) ( ) ( ) ( )
m
y x

m
yy

m
yx

m
xx

m
xy1R R R R R= -; - (16)

Figure 5(a) shows the PDF of an example JD-GMM with two mix-
tures, where the source and target acoustic features are simply 
represented by scalars. Two examples of the conditional distribu-
tions derived from the JD-GMM are illustrated in Figure 5(b), 
which are also two-mixture GMMs.

At conversion time, the converted acoustic features can be pre-
dicted using either the minimum mean-square error [56] or the 
maximum a posteriori criterion [2], given the source acoustic fea-
ture sequence .xu  If the maximum a posteriori criterion is adopted, 
the static acoustic features of the target voice are predicted as

.( , )arg maxy y xp* *
y y M y

s
s sy

; m=
=

u (17)

Similar to HMM-based speech synthesis, the solution to (17) is 
simplified by only considering the mixture components with the 
highest posterior probability at each frame in (14). Thus, we have

( , ),arg max xm P m* *
mt t t

t
; m= u  (18)

( ., , )arg maxy y xp m* * *
y

y M y

s
t

T

t t t
1 s

s
y

; m=
= =

u% (19)

Then, a closed-form solution to (19) can be achieved in a similar 
way to solve (9) [2]. Finally, the converted acoustic features are sent 
to a vocoder to reconstruct the corresponding speech waveform.

This GMM-based voice conversion framework has also been 
successfully applied to other frame-by-frame-mapping speech 
generation tasks, such as bandwidth extension [61], speech 
enhancement [62], [63], and articulatory-acoustic mapping [64].

THE COMMON STRUCTURE: TWO-STEP MAPPING
As shown in (8), (9), (18), and (19), both HMM- and GMM-based 
SPSG share the common structure of two-step mapping to rep-
resent the conditional PDF of the acoustic features ,y  given the 
input features .x

1) Input-to-cluster mapping using hidden discrete variable:
In this step, each input feature vector is mapped to hidden 
discrete clusters of the acoustic features to be generated, i.e., 
the HMM state q*

t  in (8) or the GMM mixture component m*
t

in (18). In HMM-based speech synthesis, q*  is determined 
using the decision trees for state-output PDFs and the state-
duration PDFs. In GMM-based voice conversion, this is 
achieved by the posterior probabilities .( , )xP m *

t t; mu

2) Cluster-to-feature mapping using Gaussian distributions:
Given the input features, once the cluster sequence is deter-
mined, the conditional PDF for generating the acoustic fea-
tures can be determined by combining the PDFs describing 
each cluster in the sequence, i.e., ( , )yp q* *

t t; m  in (9) and 
( , , )y xp m* *

t t t; mu  in (19). In the current SPSG approaches, 
the PDF associated with each cluster is typically an ML-esti-
mated single Gaussian distribution with a diagonal covari-
ance matrix [2], [6].
Although the acoustic modeling approach described earlier 

works reasonably well in SPSG, it has well known limitations. 
First, decision-tree-based input-to-cluster mapping in HMM-
based speech synthesis is inefficient for expressing complex con-
text dependencies, such as the exclusive OR (XOR) problem. This 
may lead to overfitting to the training data because of the data 
partitioning issue [65]. Second, the cluster-to-feature mapping 
using single Gaussian distributions with diagonal covariance 
matrices is established based on two independence assumptions: 
1) conditional independence between frames given the state or 
the Gaussian component and 2) independence of acoustic fea-
tures within a frame. As discussed earlier, this leads to recon-
structed spectral envelopes being oversmoothed and the quality 
of synthetic speech is degraded.

Compared with the statistical models used in the conventional 
acoustic modeling of SPSG (such as decision trees, HMMs, and 
GMMs), deep learning techniques are better at representing the 
intrinsic correlations among the units of input vectors (e.g., the 
input context features for speech synthesis), among the units of out-
put vectors (e.g., the output spectral features for speech synthesis), 
and between the input and output vectors (e.g., the aligned spectral 
features of the source and target speakers for voice conversion) using 
a joint (e.g., RBM and DBN) or conditional (e.g., DNN) modeling 
framework. Therefore, it is promising that the deep learning tech-
niques can help the acoustic modeling of speech generation to 

[FIG5] PDFs of (a) a joint distribution GMM ( , )p x y  with two 
mixtures and (b) and (c) the conditional distributions ( )p y x;
derived from it. (b) .p y x 1=-^ h  (c) .p y x 1=^ h
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overcome the limitations of the current approach mentioned earlier, 
so as to achieve better input-to-cluster or/and cluster-to-feature map-
ping. Furthermore, human speech production mechanisms involve 
clearly layered hierarchical structures in transforming the informa-
tion from the linguistic level to the acoustic level via intermediate 
levels of motor control and articulation [66]–[69], also suggesting 
the need for deep model structures for SPSG applications.

This article reviews a number of recent approaches, based on the 
deep learning techniques, for overcoming these limitations and 
improving acoustic modeling for SPSG. A few basic models for deep 
learning are first reviewed in the section “Basic Models for Deep 
Learning,” including some mathematical details that are uncom-
mon in the literature but essential for using these models in SPSG. 

BASIC MODELS FOR DEEP LEARNING
Since 2010, deep learning techniques have been successfully 
applied to the modeling of speech signals, such as speech recog-
nition [70]–[74], spectrogram coding [20], voice activity detection 
[75], and acoustic-articulatory inversion mapping [76]. One sig-
nificant advantage of deep learning techniques is their strong 
ability to represent the intrinsic correlation or mapping relation-
ship among the units of a high-dimensional stochastic vector 
using a joint (e.g., RBM and DBN) or conditional (e.g., CRBM and 
DNN) modeling framework. Considering that speech generation 
is a regression task and the aim of its acoustic modeling is to 
describe the joint or conditional distribution of continuous 
acoustic features, we will review these basic models from the 
viewpoint of density models in this section. 

RBMs
An RBM is an undirected graphical model (i.e., a Markov random 
field) that can model the dependency among a set of random vari-
ables using a two-layered architecture [19]. In an RBM, visible sto-
chastic units , ,v v vV1 f= <6 @  are connected to hidden stochastic 
units ,, ,h h hH1 f= <6 @  as shown in Figure 6, where V  and H
are the numbers of units at the visible and hidden layers, respec-
tively. When { , }v 0 1 V!  and { , }h 0 1 H!  are both binary stochas-
tic variables, the energy function of the state { , }v h  is defined as

( , ; ) ,v hE a v b h w v hi
i

V

i j
j

H

j
j

H

i

V

i j
1 1 11

ijm =- - -
= = ==

/ / // (20)

where wij  represents the symmetric interaction between vi  and 
j,h ai  and bj  are bias terms, and m  denotes the set of model 

parameters consisting of ,, ,a a aV1 f= <6 @ ,, ,b b bH1 f= <6 @  and 
.{ }W w RV H

ij != #  The joint PDF over the visible and hidden 
units is given by a Boltzmann distribution as

( , ) ( , ; ) / ,expv h v hP E C1
Z T; m m= -
m

" , (21)

where CT  is a temperature parameter, which is assumed to be 1 
in the rest of this article, and

( , ; )exp v hEZ
hv

m= -
66

m " ,// (22)

is the partition function, which can be estimated using the 
annealed importance sampling (AIS) technique [18]. The mar-
ginal PDF over the visible vector v  can be calculated as

( ) ( , ; ) .expv v hP E1
Z h

; m m= -
6m

" ,/ (23)

Given a training set, m  can be estimated based on the ML crite-
rion by stochastic gradient descent. The derivative of 

( )log vP ; m  with respect to the model parameters, e.g., ,wij  can 
be derived using (20)–(23) as

(
[ ] [ ],

)log v
w
P

v h v hE EP i j P i j
ij

Data Model2
2 ; m

= - (24)

where [·]EPData  denotes an expectation with respect to the distribution 
of the training data and [·]EPModel  denotes an expectation with respect 
to the distribution of the model .( )vP ; m  Because computation of 

[·]EPModel  is intractable, the contrastive divergence (CD) algorithm has 
been proposed to approximate [·]EPModel  by Gibbs sampling [77].

RBMs can also be applied to model the distribution of real-
valued data (e.g., mel-frequency MCCs in ASR), categorical data 
(e.g., some linguistic context features in TTS), or a mixed vector 
of binary, real-valued, and categorical data by defining different 
forms of energy functions [25]. For a Gaussian-Bernoulli RBM, 
which means v RV!  are real-valued and { , }h 0 1 H!  are 
binary, the energy is defined as

( , ; ) ( ) ,v hE
v a

b h w h v
2 i

i i

i

V

j
j

H

j
j

H

i

V

j
i

i
2

2

1 1 11
ijm

v v
=

-
- -

= = ==

/ / // (25)

where the variance parameters i
2v  are commonly fixed to a prede-

termined value instead of learning them from training data [17]. 
While training a Gaussian–Bernoulli RBM using the CD algorithm, 
the two conditional PDFs for Gibbs sampling are derived as

( , ) ,v vP h g b w1j j 2
1

·; m R= = + < -
j` j (26)

( , ) ( ; , ),v h v Wh ap N; m R= + (27)

where ( ) / ( ( ))expg x x1 1= + -  is a sigmoid function, w · j

denotes the jth  column of a matrix ,W ( ; , )vN n R  denotes a 
Gaussian distribution of v  with a mean vector n  and a covari-
ance matrix ,R  and { , , }diag V1

2 2fv vR =  is diagonal. If { }i i
V2

1v =

are fixed to 1, R  turns into an identity matrix. 
RBMs have been successfully used in unsupervised pretraining 

of DNN-based acoustic models in ASR [22]. RBMs have also been 
used as density models to represent the distributions of acoustic 

v

h

[FIG6] A graphical model representation for an RBM.
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features for SPSG [23], [24], [27]. The marginal PDF of a Gaussian–
Bernoulli RBM can be derived from (23) and (25) as [the variance 
parameters i

2v  in (25) are fixed to 1 for notational simplicity]

( ) ( , ; )expv v hp E1
Z h

; m m= -
6m

" ,/

( )exp b h v Whv a1
2Z h

i i

i

V 2

1
= -

-
+ +

6

< <

m =

) 3/ /

( )exp v a1
2Z

i i

i

V 2

1
= -

-
m =

) 3/

exp v wb h h·
{ , }hj

H

j j j j
0 11

·
j

+ <

!=

^ h% /

( )exp v a1
2Z i

V
i i

1

2

= -
-

m =

' 1%

,exp v wb1· j j
j

H

1
·+ + <

=

^ h" ,% (28)

which shows that a Gaussian–Bernoulli RBM can be considered 
either a product of experts (PoEs) or a GMM.

■ PoE [78]: A PoE represents a probability distribution by 
multiplying several simpler distributions, followed by nor-
malization. PoEs can produce much sharper distributions 
than their individual experts and perform more efficiently 
than mixture models in high-dimensional space [77]. As 
shown in (28), elements in the first product represent single-
variable experts without cross-dimensional correlations. The 
elements in the second product represent constraints 
between input variable using the model parameters corre-
sponding to each hidden unit.
■ GMM: An RBM can also be considered as a GMM with 2H

mixture components with structured mean vectors and iden-
tity covariance matrices. For example, if ,H 0=

( ) ( )expvp
v a1

2Z
i i

i

V 2

1
; m = -

-
m =

) 3/ (29)

is a single Gaussian distribution with a mean vector .a  If H
is increased to 1, ( )vp ; m  in (28) can be rewritten as

( ) ( )expvp
v a1

2Z
i i

i

V 2

1
; m = -

-
m =

) 3/

( ) ,exp v a w
2Z

i i i

i

V
1

2

1

l+ -
- -

m =

) 3/ (30)

where l  is a constant value determined by the model parame-
ters. We can see that ( )vp ; m  becomes a GMM with two mixture 

components, where their mean vectors become a  and ,a w 1·+

respectively. Generally speaking, as the number of hidden units is 
incremented, the number of mixture components is doubled by 
copying and shifting the mean vectors. These structured mean 
vectors and the tied covariance matrices provide better general-
ization. Thus, they are robust toward data sparsity.
RBMs can also be used to model conditional PDFs between two 

groups of visible units using their variation form, i.e., the condi-
tional RBM (CRBM). The CRBM was originally proposed to model 
the temporal dependency of human motion features [79]. The 
model structure of a CRBM representing the conditional PDF 

( , )y xp ; m  is illustrated in Figure 7. In this model, the links 
between the visible units y  and the hidden units h  are undi-
rected. If x  is known, y  and h  form an RBM and its model 
parameters depend on x  through the two directed links from x  to 
y  and .h  If { , }h 0 1 H!  are binary and x RDX!  and y RDY!  are 
real-valued, the energy function of a CRBM can be written as

( , , ; )y h xE
y a A x

2
k

i

i i k

i

D

2

2

1

kiY

m
v

=
- -

=

` j/
/

,b B x h w h
y

j
k

k
j

H

j
j

H

i

D

j
i

i

1 11
kj ij

Y

v
- + -
= ==
c m// // (31)

where { , }A Bm =  is the set of parameters in the CRBM, 
{ }A A RD V

ki
X!= #  and { }B B RD H

kj
Y!= #  are matrices corre-

sponding to the directed links in Figure 7. The conditional PDF 
of y  given x  can be written as

( , ) ( , , )y x y h xp p
h

; ;m m=
6

/ (32)

( , , ; ) ,exp y h xE1
Z h

m= -
6m

" ,/ (33)

where 

( , , ) ( , , ; ) ,expy h x y h xp E1
Z

; m m= -
m

" , (34)

( , , ; ) .exp y h x yE dZ
h

m= -
6

m " ,/# (35)

Similar to RBMs, m  can be trained based on the ML criterion 
using the CD algorithm [79].

DBNs
A DBN is a probabilistic generative model that is composed of 
many layers of hidden units [16]. The graphical model represen-
tation for a three-hidden-layer DBN is shown in Figure 8. In this 
model, each layer captures the correlations among the activities 
of hidden features in the layer below. The top two layers of the 
DBN form an undirected graph. The lower layers form a directed 
graph with a top–down direction to generate the visible units. 
Assuming that v  is real-valued and { }h( )l

l
L

1=  are binary, the joint 
PDF of a DBN over the visible and hidden units can be written as

, , , ,,v h h v h hhp p P( ) ( ) ( ) ( )( )L

l

L
l l1

2

1
11f ; ;; mm m=

=

-
-^ ^ ^h h h%

, ,h hP· ( ) ( )L L1 ; m-^ h (36)[FIG7] The graphical model representation for a CRBM.
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where , ,h h h( ) ( ) ( )l l
H
l

1 lf=
<6 @  is the hidden stochastic vector at the 

lth  hidden layer, Hl  is the dimensionality of ,h( )l  and L  is the 
number of hidden layers. ( , )h hP ( ) ( )L L1 ; m-  is represented by an 
RBM as (21) with the weight matrix W( )L  and the bias vectors a( )L

and .b( )L ( , )v hp ( )1; m  and { ( , )}h hP ( ) ( )l l
l
L1

2
1; m-

=
-  are represented 

by sigmoid belief networks [80]. Each sigmoid belief network is 
described by a weight matrix W( )l  and a bias vector .a( )l  Assum-
ing that v  is real-valued and { }h( )l

l
L

2=  are binary, the conditional 
PDF ( , )v hp ( )1; m  of a sigmoid belief network is described by (27). 
For { , , , },l L2 3 1f! -  the dependency between two adjacent 
hidden layers is represented by

.,hP h g a w h1( ) ( ) ( ) ( )( )
i
l l

i
l l

j
l

j

1
ij; m= = +

-^ ch m/ (37)

For an L-hidden-layer DBN, its model parameters are composed 
of .{ , , , , , , , }a W a W a b W( ) ( ) ( ) ( ) ( ) ( ) ( )L L L L L1 1 1 1f - -  Furthermore, the 
marginal PDF of the visible variables for a DBN can be written as

, , , .v v h hp p ( ) ( )

h h

L1

( ) ( )l L

g f; ; mm =
6 6

^ ^h h/ / (38)

Given the training samples of the visible units, it is difficult to 
estimate the model parameters of a DBN directly based on the ML 
criterion due to the complex model structure with multiple hidden 
layers. Therefore, a greedy learning algorithm has been proposed 
and popularly applied to train DBNs in a layer-by-layer manner 
[16]. A stack of RBMs are used in this algorithm. First, it estimates 
the parameters { , , }a b W( ) ( ) ( )1 1 1  of the first-layer RBM to model the 
visible training data. Then, it freezes the parameters { , }a W( ) ( )1 1  of 
the first layer and draws samples from ( , )h vP 1( )1 ; m=  using (26) 
to train the next-layer RBM .{ , , }a b W( ) ( ) ( )2 2 2  This training proce-
dure is conducted recursively until it reaches the top layer and gets 

.{ , , }a b W( ) ( ) ( )L L L  It has been shown that this greedy learning algo-
rithm can improve the lower bound on the log-likelihood of the 
model, given training samples by adding each new hidden layer 
[16], [18]. Once the model parameters are estimated, the calcula-
tion of the log probability that a DBN assigns to training or test 
data by applying (38) directly becomes computationally intractable. 
A lower bound on the log probability can be estimated by combin-
ing the AIS-based partition function estimation with the approxi-
mate inference [18].

DNNs
A DNN is a feed-forward, artificial neural network that has more 
than one layer of hidden units between its input and output lay-
ers [22]. The model representation for a two-hidden-layer DNN is 
shown in Figure 9. At each hidden layer, each hidden unit typi-
cally maps the weighted sum of its inputs from the layer below to 
a deterministic value using a nonlinear activation function and 
passes it to the layer above. If a sigmoid function ( )g $  is used as 
an activation function, its output is given as

,h g b h w( ) ( ) ( ) ( )
j
l

j
l

i
l

i

l1
ij= +

-

c m/ (39)

where h( )
j
l  is the jth  hidden unit at the lth  layer (h x( )

i i
0
=  is 

the ith  dimension of input feature), b( )
j
l  is the bias of the jth

unit at the lth  layer, and w( )l
ij  is the weight associated with the 

link from h( )
i
l 1-  to .h( )

j
l  The form of activation functions at the 

output layer depends on the task. For multiclass classification 
tasks, a softmax function is typically used

j ,
exp

exp
y

b h w

b h w
( ) ( ) ( )

( ) ( ) ( )

k i

i

k
L

i
L L

j
L

i
L L

1 1

1 1

ik

ij
=

+

+
+ +

+ +

u
$

$

.

./ /
/

(40)

where y h( )
j j

L 1
=

+u  gives the posterior probability of the jth
class and L  is the number of hidden layers. For regression 
tasks, a linear activation function is often used

j .y b h w( ) ( ) ( )
j
L

i
L

i

L1 1
ij= +

+ +u / (41)

The set of parameters of an L-hidden-layer DNN consists of 
.{ , , , , }b W b W( ) ( ) ( ) ( )L L1 1 1 1fm = + +  They can be optimized in a 

supervised way by minimizing a loss function that measures the 
difference between data and predicted outputs using the back-
propagation algorithm [81]. For classification tasks, the cross 
entropy between correct and predicted class posterior probabili-
ties is often used as the loss function

( , ; ) ( ),logy y y yL j
j

jm =-u u/ (42)

[FIG8] The graphical model representation for a three-hidden-
layer DBN.
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[FIG9] The model representation for a two-hidden-layer DNN.
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where y j  denotes the correct class posterior probability given 
input, which is typically a binary value. For regression tasks, the 
mean square error is commonly adopted as the loss function

( , ; ) ( ) ,y y y yL
j

j j
2m = -u u/ (43)

where y j  and jyu  are the jth  dimension of the correct and pre-
dicted outputs, respectively. A DNN for regression can be con-
sidered a probabilistic model representing a conditional PDF of 
y  given x  using a Gaussian distribution, i.e.,

( , ) ( ; , ),y x y y Ip N; m = u (44)

where I  is an identity matrix and yu  depends on x  and .m  Thus, 
minimizing the mean square error between yu  and y  with 
respect to m  is equivalent to the ML estimation of .m

DNNs can be powerful models of the highly complex and non-
linear relationship between inputs and outputs. However, it is diffi-
cult to train a DNN with many hidden layers. The error signal in 
back-propagation training decays as it is back-propagated along 
many hidden layers, which leads to the vanishing gradient prob-
lem [82], i.e., the lower layers cannot get much information about 
how to update their model parameters. Supervised training of 
DNNs can also result in overfitting to training data because of the 
power of DNNs to represent training samples. To avoid this prob-
lem, unsupervised pretraining techniques, which use DBN 
(stacked RBMs) weights to initialize a DNN, were proposed [17]. 
To build an L-hidden-layer DNN, an L-hidden-layer DBN is first 
trained. Then, weights of the DBN are used to initialize the 
weights of the DNN. After initializing the DNN weights, supervised 
fine-tuning is conducted using back-propagation to adjust the 
weights estimated in pretraining. This unsupervised pretraining 
strategy can provide a better starting point for supervised fine-tun-
ing than random initialization and reduce overfitting significantly.

Besides RBMs, autoencoders (AEs) are another form of 
model that can be used for pretraining DNNs in a layerwise 
manner. An AE is a particular type of one-hidden-layer neural 
network [83]. It first maps an input vector x  to a hidden repre-
sentation h  using a weight matrix W  and then maps h  back 
into a reconstruction xu  of the same shape as x  using a weight 
matrix .W l  The two weight matrices may optionally be con-
strained: .W W= <l  The parameters are optimized such that 
the average reconstruction error from x  to xu  is minimized. 
The reconstruction error can be measured using either the 
mean square error or the cross-entropy criterion depending on 
the assumed distribution on the input features.

To prevent the hidden layer from simply learning the identity 
transform, a common modification of the AE is the DAE [21], 
which is trained to reconstruct the original input from a cor-
rupted copy. Compared with RBMs, one of the advantages of 
using AEs and DAEs is that many traditional optimization algo-
rithms for neural networks can be used in training. The DAE can 
also be stacked to form a particular type of DNN, called a deep 
DAE, through unsupervised pretraining and supervised fine-tun-
ing. While pretraining each layer, the hidden representations 

given by the DAE of the layer below are used as the input to the 
current layer. For supervised fine-tuning, an output layer is added 
on top of the network and the weights of the entire network are 
adjusted to minimize the cost function [83].

ACOUSTIC MODELING USING DEEP 
LEARNING TECHNIQUES FOR SPSG
Given the success of applying deep learning to a variety of 
speech tasks, we believe that the approach can also be applied to 
acoustic speech modeling in speech generation to overcome the 
limitations mentioned earlier and to achieve better input-to-
cluster and/or cluster-to-feature mapping. Applications of the 
deep learning techniques to SPSG had not been investigated 
until very recently. During the last year, several articles on the 
topic for speech synthesis [23]–[26], [33], [34], voice conversion 
[27]–[29], and speech enhancement [30]–[32] have been pub-
lished. They reported positive results that the deep learning 
techniques improved the naturalness, similarity, and/or quality 
of generated speech. These deep learning approaches can be 
classified into three categories according to the modeling steps, 
as well as the relationship between the input and output fea-
tures represented in the model.

CLUSTER-TO-FEATURE MAPPING 
USING DEEP GENERATIVE MODELS
In this approach, the deep learning techniques are applied to the 
cluster-to-feature mapping step of acoustic modeling for SPSG, i.e., 
to describe the distribution of acoustic features at each cluster. The 
input-to-cluster mapping, which determines the clusters from the 
input features, still uses conventional approaches, such as decision 
trees and state-duration PDFs in HMM-based speech synthesis and 
posterior probabilities of mixture components in GMM-based voice 
conversion. One example of this approach is HMM-based speech 
synthesis using RBMs and DBNs for spectral modeling [24]. This 
work improves the conventional spectral modeling approach in 
HMM-based parametric speech synthesis. Improvement was 
achieved in two aspects: First, raw spectral envelopes extracted by 
speech transformation and representation based on adaptive inter-
polation of weighted spectrum (STRAIGHT) analysis [84] rather 
than the low-dimensional representations, such as MCCs or line 
spectral pairs (LSPs) derived from these spectral envelopes, were 
modeled. Second, RBMs and DBNs were adopted to replace single 
Gaussian distributions at the leaf nodes of decision trees. The 
model structure of this approach is shown in Figure 10. To simplify 
model training with high-dimensional spectral features, decision 
trees and state alignments were assumed to be given.

At the acoustic feature extraction stage using STRAIGHT anal-
ysis, original spectral envelopes were stored in addition to spectral 
parameters. The context-dependent HMMs for low-dimensional 
spectral parameters and F0  features were estimated according to 
the approach introduced in the section “HMM-Based Speech Syn-
thesis.” A single Gaussian distribution was used to model the spec-
tral parameters at each leaf node of the decision trees. Then, a 
state-level forced alignment was carried out with the trained 
HMMs. The state boundaries obtained were used to gather the 
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spectral envelopes for each decision tree’s leaf node. Then, an RBM 
or a DBN was trained at each leaf node according to the ML crite-
rion. In this approach, the spectral envelope features at each frame 
consisting of static, velocity, and acceleration components corre-
spond to the visible vector v  in (23) for RBMs and (38) for DBNs.

To simplify model estimation, each dimension of the spectral 
envelope features was normalized to zero mean and unit vari-
ance before training RBMs or DBNs, and the variance parame-
ters i

2v  in (25) were fixed to 1 for each leaf node. As a result, a 
set of context-dependent RBM-HMMs or DBN-HMMs is trained 
for modeling the spectral envelopes.

At synthesis time, the speech parameter-generation algorithm 
was used to generate the spectral envelopes. The optimal 
sequences of spectral envelopes were determined so as to maxi-
mize their output probability given the RBM-HMM or the DBN-
HMM. If a single Gaussian distribution is adopted as the 
state-output PDFs of HMMs, and the state sequence is given, there 
is a closed-form solution to determine the optimal acoustic feature 
trajectories [7]. However, the marginal PDFs of RBMs and DBNs 
are much more complicated than a single Gaussian distribution. 
Thus, there is no closed-form solution to find the optimal acoustic 
feature trajectories. To avoid this problem, a Gaussian approxima-
tion was applied before the parameter-generation stage as a simpli-
fication. At each decision tree leaf node of decision trees, a 
Gaussian distribution ( ; , )vN n R  was constructed, where

( )arg max vp
v

;n m= (45)

was the mode vector estimated [24] from ( )vp ; m  for each RBM 
or DBN and R  was a diagonal covariance matrix computed from 
the training samples associated with the leaf node. Because each 
dimension of the training samples of v  was normalized to zero 
mean and unit variance, a denormalization processing was con-
ducted before parameter-generation to derive the distributions 
of the original spectral envelope features from the estimated n
and .R  The RBMs/DBNs at the leaf nodes were replaced by these 
Gaussian distributions at the synthesis stage. Therefore, the 
speech parameter-generation algorithm can be followed to pre-
dict the spectral envelopes. For details about the mode estima-
tion algorithm, refer to [24].

A group of subjective evaluations has been conducted to prove 
the effectiveness of this approach [24]. Some evaluation results are 
summarized and shown in Table 1. In this table, each line presents 
the preference percentages given by a preference listening test con-
ducted between two systems. For example, the first row means that 
48% of the stimuli generated by the GMM system was judged by 
the listeners to be better than those of the baseline system. The 
percentage of converse preference was 18.67%. The baseline sys-
tem was constructed using Mel-cepstra and single Gaussian distri-
butions for cluster-to-feature mapping. At training time, 
Mel-cepstra were derived from the spectral envelopes extracted by 
STRAIGHT. At synthesis time, the spectral envelopes recovered 
from the generated mel-cepstra were sent into STRAIGHT to 
reconstruct speech waveforms. A system using spectral envelopes 
and single Gaussian distributions for cluster-to-feature mapping 

was also constructed. However, it was found that this system had 
very similar synthetic results to the baseline system. Some detailed 
explanation can be found in [24], which means that simply replac-
ing mel-cepstra with spectral envelopes is not helpful if the model 
structures are not modified accordingly. Therefore, the baseline 
system was adopted as a representative for these two systems in the 
subjective evaluation to simplify the test design. The GMM and 
RBM systems adopted GMMs of eight mixtures and RBMs of 50 
hidden units to model the distribution of spectral envelopes at each 
leaf node of the decision trees. No postfiltering techniques, such as 
GV-based parameter-generation [13], were applied to any of these 
systems. It can be seen from the table that the use of RBMs to 
model the spectral envelopes at each leaf node achieved signifi-
cantly better naturalness than the use of single Gaussian distribu-
tions and GMMs. A comparison between the spectral envelopes 
generated by the baseline system and the RBM system is shown in 
Figure 11. From this figure, we can observe the enhanced formant 
structures after modeling the spectral envelopes using RBMs.

In addition to speech synthesis, this approach was also applied to 
other speech generation tasks, such as voice conversion [27]. Simi-
lar to conventional GMM-based voice conversion, the input-to-clus-
ter mapping in [27] was determined by the posterior probabilities of 
mixture components of a trained GMM, given the input acoustic 
features. Then, RBMs were adopted to model the joint PDFs 
between the source and target acoustic features for each cluster. The 
subjective evaluation results also demonstrated the effectiveness of 

[FIG10] A model structure of cluster-to-feature mapping using 
RBMs for HMM-based speech synthesis [24].

…

…
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[TABLE 1] THE SUBJECTIVE PREFERENCE SCORES (%) 
AMONG SPEECH SYNTHESIZED USING THE BASELINE, GMM, 
AND RBM SYSTEMS. 

BASELINE GMM RBM N/P* p

18.67 48 – 33.33 0.0014
5.33 – 70.67 24 0
– 16 69.33 14.67 0

* N/P denotes “no preference” [24].
The systems that achieved significantly better preference at the p < 0.05 level are in bold font.
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this approach when either MCCs or spectral envelopes were used as 
spectral features. The mean opinion score (MOS) of similarity of the 
converted speech improved from 2.83 to 3.13, and the MOS of natu-
ralness increased from 2.90 to 3.45, respectively [27].

INPUT-TO-FEATURE MAPPING 
USING DEEP JOINT MODELS
This approach uses a single deep generative model to achieve 
the integrated input-to-feature mapping by modeling the joint 
PDF between the input and output features. For example, a syn-
thesis method using a multidistribution DBN (MD-DBN) has 
been proposed in [25] with input features capturing linguistic 
contexts and output features being acoustic features. More spe-
cifically, the input contextual features for speech synthesis were 
the tonal syllables in Mandarin Chinese, which were encoded 
within a 1-of- k  code following the categorical distribution (i.e., 
the generalized Bernoulli distribution). The output acoustic fea-
tures to be generated consisted of syllable-level spectrum and 
excitation features. Each syllable was represented by an acoustic 
feature supervector, which consisted of multiple frames of Mel-
generalized cepstral coefficients (MGCs), log-energy, ,log F0  and 
voiced/unvoiced (U/V) flags. These frames were uniformly 
spaced within the boundary of a syllable. Different types of 
acoustic features including spectrum and excitation parameters 
are modeled by a single network so that the correlation between 
them can be modeled. Syllable duration was modeled and pre-
dicted separately in this framework.

To model the different distributions of the binary data (i.e., the 
U/V flags) and the continuous data (i.e., the MGCs and ),log F0  the 
approach used an MD-DBN, as shown in Figure 12. This consisted 
of the building blocks of RBMs, with different types of distribution 
units in the visible layer. Gaussian distributions were used for the 
spectral data and ,log F0  and Bernoulli distributions for the U/V 
flags, to form the Gaussian–Bernoulli RBM (GB-RBM) for the bot-
tom layer. Training of the MD-DBN began with unsupervised 

learning, where an MD-DBN with L 1-  hidden layers was first 
trained using the acoustic features as observations as shown in the 
right part of Figure 12. The MD-DBN was built by stacking up 
multiple Bernoulli RBMs (B-RBMs) on top of the bottom GB-RBM 
layer; thus, the depth of the model could be easily controlled. 
This was followed by supervised learning where the ( )L 1- th 
layer was extended with a 1-of-k  vector x  that encoded Mandarin 
syllable IDs and then learned one more layer on top. This addi-
tional layer modeled the joint distribution between the syllable IDs 
and the hidden activations of the supervector using the Categori-
cal-Bernoulli RBM (CB-RBM).

This training paradigm has three advantages over HMM-based 
synthesis: 1) It models all training data in a centralized network 
and avoids data partitioning. Instead of using thousands of Gauss-
ian distributions to piece the acoustic space together as in the 
HMM-based approach, this approach uses only one MD-DBN to 
portray the whole acoustic space, which potentially reduces the 
requirements of training data and increases the efficiency of 
model parameters. 2) The supervector consists of multiple acous-
tic frames from a syllable with temporal dynamics intact, which 
can be captured by the MD-DBN. This differs from the HMM-
based synthesis, which assumes that acoustic observations are 
dependent only on the current hidden state. Since the correla-
tions in the temporal domain can be captured directly by the MD-
DBN, the use of dynamic features can be eliminated. 3) In the 
frequency domain, the correlations between spectral coefficients 
within a single frame can also be modeled by the MD-DBN, which 
does not adopt any independence assumptions such as those 
introduced by the use of a GMM with a diagonal covariance 
matrix. As a result, the decoupling process in the speech feature 
extraction can be eliminated to preserve more information.

At synthesis time, the contextual features x  were first deter-
mined for each syllable by text analysis. Then, alternative Gibbs sam-
pling using ( , , )x hP h 1( ) ( )

i
L L 1; m= -  and ( , )hP h 1( ) ( )

j
L L1

; m=
-

were conducted with the x  clamped to update h( )L 1-  until con-
vergence or a maximum number of iterations was reached. Then, 
the acoustic feature supervector was predicted as the mean vector 
of ( , ),y hp ( )1; m  which was determined by recursively generating 
hidden variables from h( )L 1-  to .h( )1  Finally, the generated 
acoustic features were interpolated according to the predicted 
syllable durations and were sent into the Mel log spectrum 
approximation filter [85] to reconstruct the speech waveforms. 
No postfiltering or global-variance-based voice enhancement 
techniques were incorporated.

It is worth noting that this acoustic modeling method dis-
carded HMMs and modeled the joint PDF between the input 
contextual features and the output acoustic features using one 
single MD-DBN without the conventional two-step mapping. 
Table 2 shows the five-point Likert scale MOSs of the HMM 
baseline (HMM), the system predicting MGCs using the pro-
posed MD-DBN approach [DBN (MGCs)], and the system pre-
dicting both MGCs and log F0  using the MD-DBN approach 
[DBN (MGCs + )]log F0  [25]. Comparing DBN (MGCs) with 
HMM, we can see that the proposed MD-DBN approach outper-
forms the conventional HMM baseline for modeling and 
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[FIG11] The spectrograms of a segment of synthetic speech 
using (a) the baseline system and (b) the RBM system [24].
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predicting spectral features. The quality degradation from 
DBN(MGCs) to DBN(MGCs + log F )0  suggests that the low-
dimensional F0  features are not well modeled when combined 
with high-dimensional spectrum features.

INPUT-TO-FEATURE MAPPING USING 
DEEP CONDITIONAL MODELS
Similar to the previous approach, this one predicts acoustic fea-
tures from inputs using an integrated deep generative model. The 
difference is that this approach models a conditional PDF of output 
acoustic features, given input features instead of their joint PDF.

A DNN-based speech synthesis approach was proposed in 
[26]. In this approach, context and acoustic features were treated 
as inputs and targets of a DNN, respectively, as shown in Figure 13. 
As introduced in the DNNs section, a DNN describes a condi-
tional PDF of outputs given inputs using a Gaussian distribution. 
A text to be synthesized was first converted to a sequence of 
frame-level linguistic context features. The linguistic context fea-
tures at each frame included binary answers to questions about 
contexts, numeric context descriptors, position of the current 
frame within a segment, and segment durations. The acoustic 
features at each frame were composed of MCCs, ,log F0  excita-
tion aperiodicities, their derived dynamic components [3], and 
binary U/V decisions. The weights of the DNN were trained from 
pairs of inputs and targets extracted from training data. Like the 
DBN-based approach discussed in the section “Input-to-Feature 
Mapping Using Deep Joint Models,” as acoustic features include 
both spectral and excitation parameters and a single DNN is 
trained, correlations between them can be modeled. At synthesis 
time, phoneme durations were first determined by a duration 
prediction module; then, frame-level linguistic context features 
were composed. By feeding the composed linguistic context fea-
tures to the trained DNN, output acoustic features were pre-
dicted. By using these predicted output acoustic features as 
means along with the frame-independent variances of output 
acoustic features computed from all training data, the speech 
parameter-generation algorithm [7] generated the smooth 
acoustic feature trajectories. The generated acoustic feature 
parameters were post-processed by a postfilter (in the experi-
ment reported in [26], postfiltering in the mel-cepstral domain 
[86] was applied to emphasize formant structure) and then sent 
to a vocoder to reconstruct a speech waveform.

A subjective preference listening test was conducted to com-
pare the performance of the DNN-based systems with HMM-based 
systems [26]. The experimental results are shown in Table 3. In 
this experiment, HMM- and DNN-based systems with similar 
numbers of parameters were compared. The a  in the first column 
of Table 3 is the scaling factor for the penalty term in the mini-
mum description length (MDL) criterion, which is often used to 
control the number of parameters in HMM-based systems. It can 
be seen in the table that, for all three model sizes, the DNN-based 
system achieved better naturalness than the HMM-based system 
according to the p  values given by hypothesis tests.

Other approaches of DNN-based TTS can be found [33], [34]. 
These include a hybrid approach between DNN and Gaussian 

process (GP)-based regression [33] to predict ;log F0  a DNN that 
maps linguistic context features to log F0  was first trained, and 
then the activations at the last hidden layer were used as inputs for 
GP-based nonparametric regression. This approach combined the 
parametric and nonparametric regression models. An alternative 
approach [34] used a vector-space representation of input texts as 
inputs of DNN-based TTS. This vector-space representation was 
derived without using any linguistic resources; only orthographic 
information (graphemes) was used; thus, it did not require any lan-
guage knowledge to build a model. 

The acoustic modeling approach using deep conditional 
models has also been applied to other speech generation tasks, 
such as voice conversion [28], [29] and speech enhancement 
[30]–[32]. A DNN-based voice conversion approach has been 
proposed in [28]. In this approach, acoustic features of a source 

[TABLE 2] THE SUBJECTIVE EVALUATION RESULTS  
FOR THE DBN-BASED SPEECH SYNTHESIS [25].

SYSTEM MOS
HMM 2.86
DBN (MGCs) 3.09

DBN (MGCs )log F0+ 2.88

Context Features

Acoustic Features

x

y

h(L)

h(L–1)

h(1)

[FIG12] The model structure of input-to-feature mapping using 
DBN for speech synthesis [25].

…

…

…

…

Context Features

Acoustic Features

…

[FIG13] A model structure of input-to-feature mapping using 
DNN for speech synthesis [26].
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voice were mapped to those of a target voice using a DNN that 
was initialized by concatenating two DBNs. CRBMs have also 
been used to construct conditional models for voice conversion. 
In [29], a CRBM was estimated to model a conditional PDF of 
acoustic features of a target voice given acoustic features from a 
source voice. For speech enhancement, conditional generative 
model-based approaches have been proposed for mapping 
acoustic features extracted from noisy speech to those of clean 
speech using DNNs [32] or DAEs [30], [31]. 

COMPARISONS AMONG THESE THREE APPROACHES
The cluster-to-feature mapping approach using deep generative 
models has the model structure most similar to conventional HMM- 
or GMM-based approaches. The input-to-cluster mapping step is pre-
served, and few modifications to the existing speech generation 
engines are necessary after off-line model training [24]. The input-to-
feature mapping approaches using deep joint models or deep condi-
tional models integrate the two-step mapping of acoustic modeling 
into a single step [25], [26], which can express complicated mapping 
functions more efficiently and provide better generalization than the 
approaches using conventional input-to-cluster mapping, such as 

decision trees and GMM posterior probabilities. Compared with the 
sampling-based parameter-generation from a DBN [25], generating 
acoustic features from a DNN is more straightforward [26]. However, 
the conditional PDF represented by a DNN is relatively simple 
because it is a Gaussian distribution with an identity covariance 
matrix as described in the “DNNs” section. Table 4 summarizes the 
recently proposed acoustic modeling approaches using deep learning 
techniques for SPSG. Some discussions on these approaches will be 
given in the “Discussion” section.

DISCUSSION

PERFORMANCE OF RBMs AS DENSITY MODELS
RBMs are the basis of many deep models such as DBNs and DNNs. 
As introduced in the “RBMs” section, RBMs have some good prop-
erties in describing the distribution of high-dimensional observa-
tions with cross-dimension correlations. The performance of 
GMMs and RBMs in modeling the distribution of mel-cepstra and 
spectral envelopes for a specific context-dependent HMM state was 
investigated in [23]. Spectral envelopes were extracted by 
STRAIGHT analysis [84], and MCCs were derived from the spectral 
envelopes at each frame. In the experiment, a leaf node with 
720 frames was used; 520 frames were used for training and the 
remaining 200 frames were used as a test set. The number of mix-
ture components in a GMM varied from 1 to 32, and the number of 
hidden units in an RBM varied from 1 to 1,000. The average log 
probabilities on the training and test sets for different model struc-
tures are shown in Table 5 for MCCs and the spectral envelopes, 
respectively. It can be seen from the tables that the GMMs overfit 
more to the training data as the model complexity increased. On 
the other hand, the RBMs consistently gave good generalization 
ability even with a large number of hidden units. It can be seen 

[TABLE 3] THE SUBJECTIVE PREFERENCE SCORES (%) 
BETWEEN SPEECH SAMPLES FROM THE HMM-
AND DNN-BASED SYSTEMS [26]. 

HMM ( )a DNN (# LAYERS #  # UNITS) N/P p

15.8 (16) 38.5 (4 #  256) 45.7 10 61 -

16.1 (4) 27.2 (4 #  512) 56.8 10 61 -

12.7 (1) 36.6 (4 #  1,024) 50.7 10 61 -

The systems that achieved significantly better preference at the p < 0.01 level are shown in 
bold font.

[TABLE 4] A SUMMARY OF THE PROPOSED ACOUSTIC MODELING APPROACHES USING DEEP LEARNING TECHNIQUES FOR SPSG.

TASK 
MODEL
STRUCTURE INPUT FEATURES

GENERATED
ACOUSTIC FEATURES

LING ET AL. 2013 [24] * SPEECH SYNTHESIS RBM/DBN-HMM RICH CONTEXT FEATURES SPECTRAL ENVELOPES

KANG ET AL. 2013 [25] @ SPEECH SYNTHESIS DBN SIMPLE LINGUISTIC FEATURES MCCs, ,log F0 AND U/V

ZEN ET AL. 2013 [26] ? SPEECH SYNTHESIS DNN RICH LINGUISTIC CONTEXT
FEATURES

MCCs, ,log F0 APERIODICITIES, AND
U/V

LU ET AL. 2013 [34] ? SPEECH SYNTHESIS DNN VECTOR SPACE
REPRESENTATION OF TEXTS

LSPs, ,log F0 AND APERIODICITIES

FERNANDEZ ET AL. 2013 [33] ? SPEECH SYNTHESIS DNN-GP RICH LINGUISTIC CONTEXT
FEATURES

log F0

CHEN ET AL. 2013 [27] * VOICE CONVERSION MIXTURE
OF RBMs

SPECTRAL ENVELOPES
OF SOURCE VOICE

SPECTRAL ENVELOPES

NAKASHIKA ET AL. 2013 [28] ? VOICE CONVERSION DNN MCCs OF SOURCE VOICE MCCs OF TARGET VOICE

WU ET AL. 2013 [29] ? VOICE CONVERSION CRBM MCCs OF SOURCE VOICE MCCs OF TARGET VOICE

LU ET AL. 2013 [30] ? SPEECH ENHANCEMENT DEEP DAE POWER SPECTRA OF
NOISY SPEECH

POWER SPECTRA OF CLEAN SPEECH

XIA ET AL. 2013 [31] ? SPEECH ENHANCEMENT DAE POWER SPECTRA OF
NOISY SPEECH

POWER SPECTRA OF CLEAN SPEECH

XU ET AL. 2014 [32] ? SPEECH ENHANCEMENT DNN POWER SPECTRA OF
NOISY SPEECH

POWER SPECTRA OF CLEAN SPEECH

*, @, and § denote the three categories descibed in the section “Acoustic Modeling Using Deep Learning Techniques for SPSG.”
* denotes cluster-to-feature mapping using deep generative models.
@ denotes input-to-feature mapping using deep joint models.
§ denotes input-to-feature mapping using deep conditional models.
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from Table 5 that the best GMM and the best RBM had very close 
test-set log probabilities while modeling the MCCs. However, the 
RBMs gave much higher test-set log probabilities than the GMMs 
as shown in Table 5(b). These results can be attributed to the fact 
that mel-cepstral analysis decorrelates spectral parameters, 
whereas the advantage of RBMs is to analyze the latent patterns 
embedded in the high-dimensional raw data with strong interdi-
mensional correlations, such as raw spectral envelopes.

INPUT AND TARGET FEATURES
In acoustic modeling for SPSG, the forms of input features are 
task dependent. The same is true for the acoustic modeling 
using deep learning techniques. As shown in Table 4, simple to 
rich linguistic context features are typically used as input 
features for speech synthesis [24]–[26], [33], whereas vector-
space representation of input texts has also been used [34]. 
Input features for voice conversion are typically spectral fea-
tures extracted from a source voice [27]–[29]. Likewise, input 
features for speech enhancement are typically power spectra 
extracted from noisy speech [30]–[32].

Various output acoustic features for speech generation have been 
used, as listed in Table 4. The discussion in the section “Performance 
of RBMs as Density Models” shows that RBMs and other deep gener-
ative models are good at modeling the distribution of high-dimen-
sional acoustic features with cross-dimensional correlations. Thus, 
some approaches took this into account when selecting their output 
acoustic features. The cross-dimensional correlations represented by 
the deep generative models exist in both the frequency domain, e.g., 
by using raw power spectra or spectral envelopes at each frame [24], 
[30]–[32], and the temporal domain, e.g., by concatenating the 
acoustic features of multiple frames [25]. In some speech generation 
tasks, such as speech synthesis, F0 is another important acoustic fea-
ture to be predicted in addition to spectral parameters. F0 together 
with other excitation-related acoustic features, including U/V deci-
sions and aperiodicity ratios, has also been used as a part of target 
features in some deep-learning-based acoustic modeling approaches 
[25], [26]. However, the prediction performance of log F0 was not as 
good as that of spectral features as shown in the experimental results 
in [25] and [26]. 

MODEL STRUCTURES AND MODEL TRAINING
As shown in Table 4, different model structures have been 
adopted in these approaches. RBMs and DBNs were used to repre-
sent joint PDFs and to achieve cluster-to-feature [24], [27] or 
input-to-feature mapping [25]. On the other hand, DNNs, 
CRBMs, and DAEs were adopted to represent conditional PDFs 
and to achieve direct input-to-feature mapping [26], [30]–[32]. 
The depth of architecture, i.e., the number of hidden layers, is an 
important characteristic of a deep model. In DBN–HMM-based 
speech synthesis [24], the experimental results in Table 1 show 
that increasing the number of layers did not improve the natural-
ness of synthetic speech because of the difficulty of estimating the 
mode of a DBN.

In other works [25], [26], [30], [32], the number of hidden lay-
ers was tuned to minimize the mean squared error between targets 

(data) and outputs (predicted acoustic features) on development 
sets. The results show that multiple hidden layers could achieve 
better prediction accuracy than a single hidden layer. However, the 
optimal depth is commonly not as deep as that used in DNN-
HMM-based ASR. It is reasonable considering that the amount of 
training data for speech generation tasks is limited compared with 
ASR. In the DNN-based approaches, different initialization strate-
gies have been employed, e.g., random initialization for speech 
synthesis [26], structured pretraining using DBNs and NNs for 
voice conversion [28], and pretraining using stacked AEs or RBMs 
for speech enhancement [30], [32]. Considering the heavy compu-
tational cost of training RBMs, DNNs, and other deep models, 
graphics processing unit-based acceleration was applied to reduce 
the training time [25], [26].

A COMPARISON BETWEEN SPEECH SYNTHESIS 
AND RECOGNITION BOTH USING DNN-HMMs
The DNN-HMM is the dominant form of acoustic modeling with 
deep structures for ASR [22]. In this approach, a DNN is trained 
to map input acoustic features (e.g., mel-frequency cepstral 
coefficients, log-filterbank features, etc.) to posterior probabili-
ties of leaf nodes of decision trees at each frame. HMMs are used 
to connect the hidden states with the higher-level linguistic rep-
resentations for decoding with language models at recognition 
time. While there seems to be a converging deep learning 

[TABLE 5] THE AVERAGE LOG PROBABILITIES ON THE 
TRAINING AND TEST SETS WHEN MODELING THE MEL-
CEPSTRA AND SPECTRAL ENVELOPES OF A SPECIFIC STATE 
USING DIFFERENT MODELS [23]. 

MEL-CEPSTRA COEFFICIENTS

AVERAGE LOG PROBABILITY NUMBER OF
PARAMETERSTRAIN TEST

GMM (1)-DIAG −58.176 −56.380 82
GMM (4)-DIAG −51.188 −53.097 328
GMM (16)-DIAG −40.869 −59.492 1,312
GMM (32)-DIAG −29.973 −72.056 2,624
GMM (1)-FULL −30.883 −54.648 902

RBM (1) −56.464 −55.244 83
RBM (10) −52.416 −52.660 461
RBM (50) −51.840 −53.636 2,141
RBM (200) −53.554 −55.020 8,441
RBM (1,000) −55.797 −56.940 42,041

SPECTRAL ENVELOPES

AVERAGE LOG PROBABILITY NUMBER OF
PARAMETERSTRAIN TEST

GMM (1)-DIAG −727.915 −728.647 1,026
GMM (4)-DIAG −599.642 −648.818 4,104
GMM (16)-DIAG −485.072 −665.609 16,416
GMM (32)-DIAG −379.980 −717.523 32,832
GMM (1)-FULL 2,207.177 −89,202.438 132,354

RBM (1) −685.799 −700.938 1,027
RBM (10) −629.906 −649.823 5,653
RBM (50) −587.146 −628.222 30,317
RBM (200) −576.461 −617.480 103,313
RBM (1,000) −562.439 −583.169 514,513

The numbers in the brackets indicate the Gaussian mixture numbers for the GMMs and 
the hidden unit numbers or the RBMS. “DIAG” and “FULL” denote using diagonal and full 
covariance matrices, respectively.
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architecture based on the DNN-HMM for the dominant use in 
ASR, there has been a greater variety of model structures pro-
posed for SPSG using deep learning techniques, where the vari-
ety can be seen in Table 4. Among them, the DNN-based 
conditional modeling approach [26], [32] adopts a model struc-
ture quite similar to the DNN-HMM for acoustic modeling in 
ASR. One main difference is in the activation functions used at 
the DNN’s output layers: the softmax layer for multiclass classi-
fication in ASR versus the linear layer for regression in SPSG.

In DNN–HMM-based ASR, acoustic features are the input to 
a DNN for classification, while DNN-based SPSG predicts acous-
tic features for speech generation. Therefore, the acoustic fea-
tures used in DNN-based SPSG should take into account the 
requirement of reconstructing speech waveforms. Some acous-
tic features that are not adopted in DNN–HMM-based ASR, such 
as excitation-related features [26] and power spectra [32], have 
been used in DNN-based SPSG.

CONCLUSIONS
This article provides an overview of the emerging speech genera-
tion approaches using deep learning techniques. Compared with 
the conventional acoustic modeling methods in SPSG based on 
the use of HMMs and GMMs, deep joint models (e.g., RBMs and 
DBNs) and deep conditional models (e.g., CRBMs and DNNs), 
which we reviewed in this article, are better able to describe the 
complex and nonlinear relationship between the inputs and tar-
gets of the SPSG system and, therefore, improve the naturalness, 
similarity to the target speaker, and quality of the generated 
speech. Various implementations of building acoustic models 
using deep learning for SPSG in the current literature have been 
reviewed and compared. To facilitate a review of the area and to 
offer insights into the different approaches reported in the litera-
ture, we categorize them into three classes, describe and analyze 
each, and make connections in a systematic manner. 

Despite the empirical successes of a range of deep learning 
methods in SPSG as reviewed in this article, there remain 
important issues that need further investigation to make full 
use of the intrinsic strength of deep learning models and meth-
ods in SPSG. For example, current attempts have not achieved 
positive results in modeling and prediction of F0  using deep 
generative models [25], [26]. Considering the different physio-
logical mechanisms between the production of F0  and of spec-
tral features, deep model structures designed specifically for F0

modeling and prediction may be necessary. Furthermore, few 
considerations have been made thus far in deep learning 
approaches to model the temporal dependencies among the 
sequence of acoustic features. We believe that a promising 
direction to pursue in the near future is to apply the deep gen-
erative models with better temporal modeling abilities, such as 
recurrent neural networks, to the SPSG tasks in the future.
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I
n pattern recognition and computer vision, one is often faced 
with scenarios where the training data used to learn a model 
have different distribution from the data on which the model 
is applied. Regardless of the cause, any distributional change 
that occurs after learning a classifier can degrade its perfor-

mance at test time. Domain adaptation tries to mitigate this deg-
radation. In this article, we provide a survey of domain adaptation 
methods for visual recognition. We discuss the merits and draw-
backs of existing domain adaptation approaches and identify 
promising avenues for research in this rapidly evolving field. 

Supervised learning techniques have made tremendous con-
tributions to machine learning and computer vision leading to 
the development of robust algorithms that are applicable in prac-
tical scenarios. While these algorithms have significantly 
advanced the state of the art, their performance is often limited 
by the amount of labeled training data available. Labeling is 
expensive and time-consuming due to the great amount of 
human effort involved. However, collecting unlabeled visual data 

is becoming considerably easier due to the availability of low-cost 
consumer and surveillance cameras, and large Internet databases 
such as Flickr and YouTube. These data often come from multi-
ple sources and modalities. Thus, when designing a classification 
or retrieval algorithm using these heterogeneous data, one has to 
constantly deal with the changing distribution of these data sam-
ples. Examples of such cases include: recognizing objects under 
poor lighting conditions and poses while algorithms are trained 
on well-illuminated objects at frontal pose, detecting and seg-
menting an organ of interest from magnetic resonance imaging 
(MRI) images when available algorithms are instead optimized 
for computed tomography and X-ray images, recognizing and 
detecting human faces on infrared images while algorithms are 
optimized for color images, etc.

This challenge is commonly referred to as covariate shift [1] 
or data set bias [2], [3]. Any distributional change or domain 
shift that occurs after training can degrade the performance at 
test time. For instance, in the case of face recognition, to achieve 
useful performance in the wild, face representation and recogni-
tion methods must learn to adapt to distributions specific to 
each application domain shown in Figure 1. Domain adaptation 
tackles this problem by leveraging domain shift characteristics 

[Vishal M. Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa]
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(a) (b) (c) (d)

[FIG1] (a) Unconstrained face images. (b) Images with expression variations. (c) Images with pose variations. (d) Sketch images. Real-
world object recognition algorithms, such as face recognition, must learn to adapt to distributions specific to each domain shown in 
(a)–(d) [91], [102], [103].

from labeled data in a related domain when learning a classifier for 
unseen data. Although some special kinds of domain adaptation 
problems have been studied under different names such as covari-
ate shift [1], class imbalance [4], and sample selection bias [5], [6], 
it only started gaining significant interest very recently in com-
puter vision. There are also some closely related but not equivalent 
machine-learning problems that have been studied extensively, 
including transfer learning or multitask learning [7], self-taught 
learning [8], semisupervised learning [9], and multiview analysis 
[10]. A review of domain adaptation methods from machine-learn-
ing and natural language processing communities can be found in 
[11]. Our goal in this article is to survey recent domain adaptation 
approaches for computer vision applications, discuss their advan-
tages and disadvantages, and identify interesting open problems.

NOTATION AND RELATED LEARNING PROBLEMS
In this section, we introduce the notation and formulate the 
domain adaptation learning problem. Furthermore, we discuss the 
similarities and differences among the various learning problems 
related to domain adaptation.

NOTATION AND FORMULATION
We refer to the training data set with plenty of labeled data as the 
source domain and the test data set with a few labeled data or no 
labeled data as the target domain. Following [11], let X  and Y
denote the input (data) and the output (label) random variables, 
respectively. Let ,P X Y^ h denote the joint probability distribution 
of X  and .Y  In domain adaptation, the target distribution is gener-
ally different than the source distribution and the true underlying 
joint distribution ,P X Y^ h is unknown. We have two different dis-
tributions: one for the target domain and the other for the source 
domain. We denote the joint distribution in the source domain and 

the target domain as ,P X Ys ^ h and , ,P X Yt ^ h  respectively. The 
marginal distributions of X  and Y  in the source and the target 
domains are denoted by , , , ,P X P Y P X P Ys s t t^ ^ ^ ^h h h h  respectively. 
Similarly, the conditional distributions in the two domains 
are denoted by | , | , | , | .P X Y P Y X P X Y P Y Xs s t t^ ^ ^ ^h h h h  The 
joint probability of X x=  and Y y=  is denoted by 

( , ) ( , ) .P X x Y y P x y= = =  Here, x X!  and ,y Y!  where X
and Y  denote the instance space and class label spaces, respectively.

Let ,, yxS i
s

i
s

i
N

1
s= =^ h" ,  where x Rs N!  denote the labeled data 

from the source domain. Here, x s  is referred to as an observation,
and ys  is the corresponding class label. Labeled data from the tar-
get domain is denoted by ,yxTl i

tl
i
tl

i
N

1
tl

= = ,^ h" ,  where .x Rtl M!

Similarly, unlabeled data in the target domain is denoted by 
xTu i

tu
i
N

1
tu= = ," ,  where .x Rtu M!  Unless specified otherwise, we 

assume .N M=  Let .T T Tl u,=  As a result, the total number of 
samples in the target domain is denoted by Nt, which is equal to 

.N Ntl tu+  Denote , ,x xS s
N
s

1 sg= 6 @ as the matrix of Ns  data points 
from .S  Denote , ,x xTl

tl
N
tl

1 tlg= 6 @ as the matrix of Ntl  data from 
T ,l , ,x xTu

tu
N
tu

1 tug= 6 @ as the matrix of Ntu  data from uT  and 
, ,x xT T Tl u

t
N
t

1 tg= =6 6@ @ as the matrix of Nt  data from .T
It is assumed that both the target and source data pertain to C

classes or categories. Furthermore, it is assumed that all categories 
have some labeled data. We assume that there is always a relatively 
large amount of labeled data in the source domain and a small 
amount of labeled data in the target domain. As a result, .N Ns tl&

The goal of domain adaptation is to learn a function (.)f  that 
predicts the class label of a novel test sample from the target 
domain. Depending on the availability of the source and target 
domain data, the domain adaptation problem can be defined in 
many different ways. 

■ In semisupervised domain adaptation, the function (.)f  is 
learned using the knowledge in S  and .Tl
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■ In unsupervised domain adaptation, the function (.)f  is 
learned using the knowledge in S  and .Tu

■ In multisource domain adaptation, (.)f  is learned from 
more than one domain in S  accompanying each of the first 
two cases.
■ Finally, in the heterogeneous domain adaptation, the 
dimensions of features in the source and target domains are 
assumed to be different. In other words, .N M!

RELATED APPROACHES

COVARIATE SHIFT
One variation of the domain adaptation problem is where, given 
an observation, the conditional distributions of Y  are the same in 
the source and the target domains, but the marginal distributions 
of X  differ in the two domains. In other words, P Y X xt = =^ h

P Y X xs =^ h for all ,x X!  but .P X P Xt s!^ ^h h  This resulting 
difference between the two domains is known as covariate shift [1] 
or sample selection bias [5], [6]. 

Instance weighting methods can be used to address this covariate 
shift problem in which estimated 
weights are incorporated into a loss 
function in an attempt to make the 
weighted training distribution look 
like the testing distribution [11]. To see 
this, let us briefly review the empirical 
risk minimization framework for 
supervised learning [12]. Let !i H  be 
a model family from which we want to 
select an optimal parameter *i  for the 
inference. Let ( , , )g x y i  be a loss 
function. We want to minimize the following objective function:

, , ,arg min P x y g x y*

( , )x y X Y

i i=
#

!
!

i H
^ ^h h/

to obtain the optimal *i  for the distribution ( , ) .P X Y  Since 
( , )P X Y  is unknown, we use the empirical distribution ,P X Yu ^ h

to estimate , .P X Y^ h  A good model it  can be found by minimiz-
ing the following empirical risk:

, , ,arg min P x y g x y
( , )x y X Y

i i=
#

!
!

i H

t u ^ ^h h/

, , ,arg min g x y
i

N

i i
1

i=
!i H

=

^ h/

where ,x yi i i
N

1=^ h" ,  is a set of training instances randomly sam-
pled from , .P X Y^ h  This formulation can be extended to 
domain adaptation by minimizing the following expected loss 
over the target domain distribution to find the optimal model 
parameter for the target domain [11]:

, , , .arg min P x y g x y*

( , )
t t

x y X Y

i i=
#

!
!

i H
^ ^h h/

In domain adaptation setting, the training instances ,x yi
s

i
s

i
N

1
s
=^ h" ,

are randomly sampled from the source distribution , .P X Ys ^ h  As 
a result, we get

,
,

, , ,arg min
P x y
P x y

P x y g x y*

( , )
t

s

t

x y
s

X Y

i i=
#

!
!

i H

^
^ ^

^

h
h h

h
/

,
,

, , ,arg min
P x y
P x y

P x y g x y
( , ) s

t

x y
s

X Y

. i
#

!
!

i H

u
^

^
^^

h

h
hh/

,
,

, , .arg min
P x y
P x y

g x y
s i

s
i
s

t i
s

i
s

i

N

i
s

i
s

1

s

i=
!i H

= ^

^
^

h

h
h/ (1)

As can be seen from (1), weighting the loss of the source samples 
by , / ,P x y P x yt s^ ^^ h hh provides a solution to the domain adapta-
tion problem [11].

Under covariate shift, the ratio ( , ) / ( , )P x y P x yt s^ h can be 
rewritten as:

,
,

P x y
P x y

P x
P x

P y x
P y x

s

t

s

t

s

t
=

^

^

^ ^

^ ^

h

h

h h

h h
.

P x
P x

s

t
=

^

^

h

h

As a result, one can weigh each training instance with 
( ) / ( ) .P x P xt s^ h  Shimodaira [1] explored this approach to 

reweight the log likelihood of each training instance using 
( ) / ( )P x P xt s^ h for covariate shift. Various methods can be used 

to estimate the ratio ( ) / ( ) .P x P xt s^ h

For instance, nonparametric den-
sity estimation [1], [13] and kernel 
mean match-based methods [14] 
have been proposed in the litera-
ture to directly estimate the ratio.

CLASS IMBALANCE
Another special case of the domain 
adaptation formulation assumes that 
P X Y y P X Y yt s= = =^^ hh  for all 

,y Y!  but ( ) ( ) .P Y P Yt s!  This difference is often known as class 
imbalance [4]. Under this assumption, the ratio in (1) can be 
rewritten as:

( , )
( , )

( )
( )

P x y
P x y

P y
P y

P x y
P x y

s

t

s

t

s

t
=

^

^

h

h
( )
( )

.P y
P y

s

t
=

As a result, one only needs to consider ( ) / ( )P y P yt s^ h to weigh the 
instances [15].

Resampling can also be applied on the training instances from 
the source domain so that the resampled data roughly has the 
same class distribution as the target domain. In these methods, 
underrepresented classes are oversampled and overrepresented 
classes are undersampled [11].

TRANSFER LEARNING
Multitask learning or transfer learning is closely related to domain 
adaptation [7], [16]. In multitask learning, different tasks are con-
sidered, but the marginal distribution of the source and target 
data are similar. In other words, assuming L  tasks, the joint prob-
ability of each task { ( , )}P X Yi i

L
1=  is different, but there is only a 

single distribution P X^ h of the observation. When learning the 
class conditional models { ( , )}P Y Xi i i

L
1i =  for L  tasks, it is 

assumed that the model parameters of the individual tasks are 
drawn from a common prior distribution .( )P iH

DOMAIN ADAPTATION IS
A FUNDAMENTAL PROBLEM IN
MACHINE LEARNING AND HAS
GAINED A LOT OF TRACTION IN

NATURAL LANGUAGE PROCESSING, 
STATISTICS, MACHINE LEARNING, 

AND, RECENTLY, IN
COMPUTER VISION.
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Since domain adaptation considers only a single task but dif-
ferent domains, it is a somewhat different problem than multitask 
learning. However, one can view domain adaptation as a special 
case of multitask learning with two tasks, one on the source 
domain and the other on the target domain. In fact, some domain 
adaptation methods are essentially solving transfer learning prob-
lems. We refer you to [16] for a comprehensive survey on various 
transfer learning methods.

SEMISUPERVISED LEARNING
The performance of a supervised classification algorithm is often 
dependent on the availability of a sufficient amount of training 
data. However, labeling samples is expensive and time-consuming 
due to the significant human effort involved. As a result, it is desir-
able to have methods that learn a classifier with high accuracy from 
only a limited amount of labeled training data. In semisupervised 
learning, unlabeled data are exploited to remedy the lack of labeled 
data. This in turn requires that the unlabeled data comes from the 
same distribution as the labeled data. Hence, if we ignore the 
domain difference, and treat the labeled source instances as labeled 
data and the unlabeled target domain instances as unlabeled data, 
then the resulting problem is that of the semisupervised learning 
problem. As a result, one can apply any semisupervised learning 
algorithm [9] to the domain adaptation problem. The subtle differ-
ence between domain adaptation and semisupervised learning 
comes from the following two facts [11]:

■ The amount of labeled data in semisupervised learning is 
small but large in domain adaptation.
■ The labeled data may be noisy in domain adaptation if one 
does not assume P Y X x P Y X xs t= = =^ ^h h  for all ,x
whereas, in semisupervised learning, the labeled data are 
assumed to be reliable.
In fact, there have been several works in the literature that 

extend semisupervised learning methods to domain adaptation. A 
naive Bayes’ transfer classifier algorithm, which allows for the 
training and test data distributions to be different for text classifi-
cation, was proposed in [17]. This algorithm first estimates the ini-
tial probabilities under a distribution of one labeled data set and 
then uses an expectation maximization (EM) algorithm to revise 
the model for a different distribution of the test data which are 
assumed to be unlabeled. This EM-based domain adaptation 
method can be shown to be equivalent to a semisupervised EM 
algorithm [18]. Some of the other methods that extend domain 
adaptation using semisupervised learning include [19] and [20].

SELF-TAUGHT LEARNING
Another problem related to domain adaptation and semisuper-
vised learning is self-taught learning [8], [21]. In self-taught 
learning, we are given limited data for a classification task and 
also large amounts of unlabeled data that are only mildly related 
to the task. In particular, the unlabeled data may not arise from 
the same distribution or share the class labels. This assumption 
essentially differentiates self-taught learning from semisuper-
vised learning. Self-taught learning is motivated by the observa-
tion that many randomly downloaded images contain basic 

visual features, such as edges and corners, that are similar to 
those in the training images. As a result, if one is able to learn to 
recognize such patterns from the unlabeled data, then these fea-
tures can be used for the supervised learning task of interest [8].

A sparse coding-based approach was proposed in [8] for self-
taught learning, where a dictionary is learned using unlabeled 
data. Then, higher-level features are computed by solving a convex 

1, -regularized least squares problem using the learned diction-
ary and the labeled training data. Finally, a classifier is trained 
by applying a supervised learning algorithm such as a support 
vector machine (SVM) on these higher-level labeled features. A 
discriminative version of this algorithm was also presented in 
[22]. Furthermore, an unsupervised self-taught learning algo-
rithm called self-taught clustering was proposed in [23]. Self-
taught clustering aims at clustering a small collection of target 
unlabeled data with the help of a large amount of auxiliary unla-
beled data. It is assumed that the target and auxiliary data have a 
different distribution. It was shown that this algorithm can greatly 
outperform several state-of-the-art clustering methods when 
using irrelevant unlabeled data.

MULTIVIEW ANALYSIS
In many computer vision applications, data often come in mul-
tiple views or styles. For instance, in object recognition, one has 
to deal with objects in different poses (views) and lighting con-
ditions. As a result, one is faced with the problem of classifying 
or retrieving objects where the source (gallery) and target 
(query) data belong to different views. A direct comparison of 
instances across different views is not meaningful since they lie 
in different feature spaces.

In a multiview (also known as cross-view or multimodal)
learning setting, correspondences are assumed to be known 
between the two view samples. In other words, samples are often 
given in pairs corresponding to different views. This assumption 
essentially differentiates cross-view learning from domain adap-
tation, where no correspondences are assumed between the 
domain samples. One popular solution in multiview learning is 
to learn view-specific projection directions using the paired sam-
ples from different views (domains) into a common latent space 
[10]. Classification or retrieval can then be performed in the 
latent space, where both the target and source data share the 
same feature space. Other methods for multiview learning 
include [24]–[28].

VISUAL DOMAIN ADAPTATION APPROACHES
Domain adaptation is a fundamental problem in machine learning 
and has gained a lot of traction in natural language processing, 
statistics, machine learning, and, recently, in computer vision. 
Early visual domain adaptation methods were applied to domain 
shift in videos [29], [30]. In particular, Duan et al. [30] proposed to 
adapt video concept classifiers between news videos collected from 
different news channels. Since then, there have been a plethora of 
approaches proposed in the vision literature for object category 
adaptation. In what follows, we present a number of recent 
domain adaptation strategies for visual recognition.
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FEATURE AUGMENTATION-BASED APPROACHES
One of the simplest domain adaptation approaches is the feature 
augmentation work of Daumé III [31]. The goal is to make a 
domain-specific copy of the original features for each domain. 
Each feature in the original domain of dimension N  is mapped 
onto an augmented space of dimension N3  simply by duplicating 
the feature vectors. The augmented feature maps for the source 
and target domains are defined as

( ) , ( )
0

0x
x
x x

x

x

s
i
s

i
s

i
s

N

t
i
tl

i
tl

N

i
tl

U U= => >H H, (2)

where ,x Si
s ! ,x Ti

tl
l!  and 0N  denotes a zero vector of dimen-

sion .N  The first N-dimensional component of this augmented 
feature corresponds to commonality between source and target, 
the second N-dimensional component corresponds to the source, 
while the last component corre-
sponds to the target domain. Both 
source and target domain features 
are transformed using these aug-
mented feature maps, and the result-
ing feature is passed onto the 
underlying supervised classifier. It 
was shown in [31] that when linear 
classifiers are used, this feature augmentation method is equiva-
lent to decomposing the model parameter ii  for domain i  into 

,i ci i+u  where ci  is shared by all domains. This “frustratingly 
easy” feature augmentation framework can be easily extended to a 
multidomain case by making more copies of the original feature 
space. Furthermore, a kernel version of this method is also derived 
in [31].

A feature augmentation-based method for utilizing the het-
erogeneous data from the source and target domains was 
recently proposed in [32]. The approach taken in [32] is to 
introduce a common subspace for the source and target data so 
that the heterogeneous features from two domains can be com-
pared. In particular, both the source and target data of dimen-
sion N  and ,M  respectively, are projected onto a latent domain 
of dimension l  using two projection matrices W Rl N

1 ! #  and 
,W Rl M

2 !
#  respectively. The augmented feature maps for the 

source and target domains in the common space are then 
defined as

( ) ,x R!U =
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(4)

where ,x Si
s ! ,x Ti

tl
l!  and 0M  is an M-dimensional zero vector. 

Once the data from both domains are transformed onto a com-
mon space, they can be readily passed onto a supervised classifier 
[32]. Figure 2 illustrates an overview of this method.

The general idea behind the frustratingly easy feature augmen-
tation method of Daumé III [31] has been extended to consider a 
manifold of intermediate domains [33], [34]. Manifold-based 
methods for unsupervised visual domain adaptation were first pro-

posed by Gopalan et al. [33]. Rather 
than working with the information 
conveyed by the source and target 
domains alone, [33] proposes using 
incremental learning by gradually 
following the geodesic path between 
the source and target domains. Geo-
desic flows are used to derive inter-

mediate subspaces that interpolate between the source and target 
domains. Figure 3 shows an overview of this method.

It is assumed that the dimension of features in both the source 
and target domains is the same, e.g., .N M=  First, principal com-
ponent analysis (PCA) is applied on S  and ,Tu  which generates two 
l-dimensional subspaces dented by two matrices S1  and ,S2

respectively, where .l N1  The space of l-dimensional subspaces in 
RN  containing origin can be identified with the Grassmann mani-
fold .G ,N l  As a result, S1  and S2  can be viewed as points on .G ,N l

By viewing G ,N l  as quotient space of ( ),SO N  [here, ( )SO N  repre-
sents the special orthogonal group, which is the group of orthogo-
nal N N#  matrices with determinant 1], the geodesic path in G ,N l

starting from S1  is given by a one-parameter exponential flow 
,expt tQ B JW =l l^ ^h h  where exp  refers to the matrix exponential, 

( )SO NQ !  such that Q S JT
1 =  and 

.
0

J
I

,

l

N l l
=

-
= G

Φ s(xs ) =

W1xs

xs

0M

Φ t(xt ) =

W2xt

0N
xt

Source Domain Augmented Feature Space Target Domain

[FIG2] By using two projection matrices W1 and ,W2  one can transform the heterogeneous samples from two domains into an 
augmented feature space [32].

GEODESIC FLOWS ARE USED
TO DERIVE INTERMEDIATE

SUBSPACES THAT INTERPOLATE
BETWEEN THE SOURCE AND

TARGET DOMAINS.
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Labeled Source
Domain (S)

S1 S1, 3

GN, I

S1, 6 S2

Unlabeled Target
Domain (Tu)

[FIG3] An overview of the manifold-based unsupervised domain adaptation method [33]. With labeled data S from source domain 
corresponding to two classes +  and ,#  and unlabeled data Tu  from target domain belonging to class ,#  generative subspaces S1  and 
S2  are derived using PCA. Then, by viewing S1  and S2  as points on the Grassmann manifold G ,N l  (green and red circles), points along 
the geodesic between them (dashed line) are sampled to obtain geometrically meaningful intermediate subspaces (yellow circles).

Here, Il  is a l l#  identity matrix and B  is a skew-symmetric, 
block-diagonal matrix of the form 

0
0

B
A

AT

=
-

,= G
,A R( )N l l! #-  where (.) T  denotes the transposition operation and 

the submatrix A  specifies the direction and the speed of geodesic 
flow. The geodesic flow between S1  and S2  is obtained by comput-
ing the direction matrix A  such that the geodesic along that 
direction, while starting from ,S1  reaches S2  in unit time. The 
matrix A  is computed using the inverse exponential mapping. 
Once A  is computed, the expression for ( )tW l  is used to obtain 
the intermediate subspaces between S1  and S2  by varying the 
value of tl between 0 and .1

Let Sl  be the collection of subspaces , , ,t t1 2S Rt ! # #

which includes S1  and S2  and all intermediate subspaces. Let k
denote the total number of such subspaces. The intermediate 
cross-domain data representations U  are obtained by projecting 
the source data S  and the target data Tu  onto .Sl  The final fea-
ture representation of dimension lk  is obtained by projecting data 
onto k  different subspaces. A model on these extended features is 
learned using partial least squares (PLS), and the assignment of 
target labels is performed using the nearest neighbor method [33]. 
A nonlinear version of this method, as well as an extension to sem-
isupervised domain adaptation, has also been presented in [34]. 
Furthermore, assuming that the domain to which samples belong 
has been identified a priori [35], [36], this method has been 
extended to multidomain adaptation in [34].

Recently, the approach of [33] was kernelized and extended to 
the infinite case, defining a new kernel equivalent to integrating 
over all common subspaces that lie on the geodesic flow connecting 
the source and target subspaces S1  and ,S2  respectively [37]–[39]. 
Furthermore, assuming that the data lie in a union of subspaces in 
both the source and target domains, a framework based on the par-
allel transport of a union of the source subspaces on the Grassmann 
manifold was proposed in [40]. It was shown that this way of model-
ing data with a union of subspaces instead of a single subspace sig-
nificantly improves the recognition performance [40].

FEATURE TRANSFORMATION-BASED APPROACHES
One of the earliest object category adaptation methods was pro-
posed by Saenko et al. [41]. The idea behind this method is to adapt 
features across general image domains by learning transformations. 
Given feature vectors x Ss !  and ,x Tt !  a linear transformation 
W RN M! #  from T  to S  is learned. The inner product similarity 
function between x s  and the transformed xt  is denoted by

( ) .sim x xWs T t
W = (5)

One can view this function as an inner product between the trans-
formed target point xW t  and .x s  The objective is to learn the lin-
ear transformation given some form of supervision and then to 
use the learned similarity function in a classification algorithm 
[41]. A regularization function for the matrix W  is introduced to 
avoid overfitting, which is denoted as ( ) .r W  Assume that the 
supervision is a function of the learned similarity values ,simW  so 
a general optimization problem would seek to minimize the regu-
larizer subject to supervision constraints given by functions ci

( ) ( ) , .min r c i J0 1. .s tW S WTi
T

W
$ # # (6)

Equation (6) can be written as an unconstrained problem

( ) ( ) .min r cW S WTi
i

T

W
m+ / (7)

The regularizer studied in [41] is

( ) ( ) ( ),log detr traceW W W= - (8)

and the resulting optimization problem is solved using an 
information-theoretic metric-learning [42] type of algorithm. One of 
the limitations of this method is that it can only be applied when the 
dimensionalities of the two domains are the same (e.g., ).N M=

This work was extended in [43] by Kulis et al. to the more gen-
eral case where the domains are not restricted to be the same 
dimensionality and arbitrary asymmetric transformations can be 
learned. Their method can deal with more general types of domain 
shifts and changes in feature type and dimension. Furthermore, 
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they show that the method in [41] is a special case of their general 
formulation, producing symmetric positive definite transforma-
tions [43]. It was shown that asymmetric indefinite transformations 
are more flexible for a variety of adaptation tasks than the symmet-
ric transformations.

Recently, a low-rank approximation-based approach for semi-
supervised domain adaptation was proposed in [44]. The basic 
goal of this method is to map the source data by a matrix 
W RN N! #  to an intermediate representation where each trans-
formed sample can be reconstructed by a linear combination of 
the target data samples

,WS T Zl= (9)

where Z RN Ntl s! #  is the coefficient matrix. The following formu-
lation is proposed to solve for the low-rank solution:

( , , ) ( ) ,min rankW Z E Z E ,2 1W, Z, E
m= +t t t

, ,. .s t WS T Z E WW Il
T= + = (10)

where (.)rank  denotes the rank of a matrix, m  is a parameter, 
E RN Ns! #  is the error term, and the ,2 1, -norm is defined as 

.EE , ijj
N

i
N

2 1
2

11
s=
==
//  As a common practice in rank mini-

mization problems, the rank of Z  is replaced by its nuclear norm  
in (10) [44]. The augmented Lagrange multiplier method is pro-
posed to solve the optimization problem.

Once the solution ( , , )W Z Et t t  is obtained, the source data are 
transformed to the target domain as

.WS E-t t (11)

The transformed source data are mixed with the target samples as 
the augmented training samples for training the classifiers. The 
trained classifier is then used to perform recognition on the 
unseen test samples in the target domain [44]. An extension of 
this method for the multiple source domain adaptation problem 
has also been proposed in [44]. Other recent transformation-based 
visual domain adaptation methods include [45] and [46].

PARAMETER ADAPTATION METHODS
Several algorithms have been proposed in the literature that inves-
tigate modifying the SVM algorithms for the domain adaptation 
problem. In particular, Yang et al. proposed an adaptive SVM 
(A-SVM) [29] method in which the source classifier ( )f xS  trained 
on the source data ,x yS i

s
i
s

i
N

1
s= =^ h" ,  is adapted to a new classifier 

( )f xT  for the unseen target data .xTu i
tu

i
N

1
tu= =" ,  The decision 

function is formulated as

( ) ( ) ( ),f f fx x xT S d= + (12)

where ( )f xd  is the perturbation function. It was shown in [29] that 
the perturbation function can be formulated as ( ) ( ),f x xTd i z=

where a feature map z  is used to project x  into a high-dimen-
sional feature vector ( ) .xz  The perturbation function ( )f xd  is 

learned using the labeled data {( , )}yxTl i
tl

i
tl

i
N

1
tl= =  from the target 

domain. To learn the parameter w  of the perturbation function 
( ),f xd  the following optimization problem is solved:

min 2
1

i
i

N
2

1

tl

i a p+
i

=

/

. ,0s.t i $p

, , ,y f y y1x x x Ti
tl

S i
tl

i
tl T

i
tl

i i
tl

i
tl

l6$ !i z p+ -^ ^ ^h h h (13)

where ip  is the penalizing variable and a  is a parameter that deter-
mines how much error an SVM can tolerate. The first term in (13) 
tries to minimize the deviation between the new decision boundary 
and the old one, and the second term controls the penalty of the 
classification error over the training data in the target domain.

This work was improved in [47] for object category detection 
and in [48] for visual concept classification. Domain transfer SVM 
[49] attempts to reduce the mismatch in the domain distributions, 
measured by the maximum mean discrepancy (MMD) while also 
learning a target decision function. Other SVM-based domain 
adaptation methods include [50]–[54].

As discussed previously, several domain adaptation methods 
make use of the kernel methods. The classification performance of 
these kernel-based methods is highly dependent on the choice of 
the kernel. Multiple kernel learning (MKL) can be used to com-
bine multiple kernel functions to obtained a better solution [55]. 
MKL has been shown to work well in many computer vision appli-
cations. However, these methods assume that both training and 
test data come from the same domain. As a result, MKL methods 
cannot learn the optimal kernel with the combined data from the 
source and target domains for the domain adaptation problem. 
Hence, training data from the auxiliary domain may degrade the 
performance of MKL algorithms in the target domain. To deal 
with this, several cross-domain kernel learning methods have 
been proposed in the literature [56]–[58]. 

In [56], adaptive MKL is used to learn a kernel function based 
on multiple base kernels. In [57], a kernel function and a classifier 
are simultaneously learned by minimizing both the structural risk 
functional and the distribution mismatch between the labeled and 
unlabeled samples from the auxiliary and target domains. It was 
shown in [56] and [57] that these domain-adaptive MKL methods 
can significantly outperform traditional MKL and cross-domain 
learning methods.

There are some limitations of the feature-based and parameter 
transfer-based visual domain adaptation methods reviewed in this 
survey. For instance, the transform-based approaches discussed in 
[41], [43], [45], and [46] are based on some notion of closeness 
between the transformed source samples and target samples. They 
do not optimize the objective function of a discriminative classifier 
directly. Also, the computational complexity of these methods is 
highly dependent on the total number of samples used for train-
ing. On the other hand, parameter adaptation-based methods such 
as [29] and [48] optimize the classifier directly but they are not 
able to transfer the adapted function to novel categories. To deal 
with this problem, several methods have been developed in the 
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literature that attempt to optimize both the transformation and 
classifier parameters jointly [59]–[61].

In particular, the max-margin domain transfer method was 
recently proposed by Hoffman et al. in [60], which uses an asym-
metric transform W  to map target features to a new representa-
tion where they are maximally aligned with the source and learns 
the transform jointly on all categories for which target labels are 
available. It provides a way to adapt max-margin classifiers in a 
multiclass setting by learning a common component of the 
domain shift as captured by .W

The goal of this method is to jointly learn affine hyperplanes 
that separate the classes in the source domain and a transform-
ation from the points in the target domain into the source domain 
such that the transformed target data lie on the correct side of the 
learned source hyperplanes. For simplicity, let us consider the 
optimization for the binary problem [60]

{ , , },

min

b

y
b

i N

2
1

2
1

1

1
1 1

x

x

W

W

, ,b
F F

i
s i

s T

s

i
tl i

tl T
T

tl

2 2

W

6 g$ !

i

i

i

+
i

 { , , }y i N1 1s.t 6 g$ !

f

f

p

p

=
=
=
=

G
G
G
G

(14)

where i  denotes the normal of the affine hyperplane and b  is the 
bias term. This formulation can be easily extended to the multiclass 
case by adding a sum over the regularizers on all class-specifics 
parameters and adding the constraints for all categories. The 
resulting optimization problem is not convex. As a result, it is 
solved by alternating minimization on W  and ( , )bi  [60]. This 
work was extended in [61] to include Laplacian regularization 
using instance constraints that are encoded by an arbitrary graph.

Another approach to simultaneous learning of domain-invari-
ant features and classifiers was proposed by Shi and Sha in [59]. 
Their framework is based on the notion of discriminative clustering 
in which both the source and target domains are assumed to be 

tightly clustered and clusters are assumed to correspond to class 
boundaries. It is assumed that for the same class, the clusters from 
the two domains are geometrically close to each other. Their for-
mulation of learning the optimal feature space is based on maxi-
mizing the domain similarity that makes the source and the target 
domains look alike and minimizing the expected classification 
error on the target domain. An information-theoretic framework is 
proposed for solving their formulation [59].

DICTIONARY-BASED APPROACHES
The study of sparse representation of signals and images has 
attracted tremendous interest over the last few years. This is 
partly because signals or images of interest, although high dimen-
sional, can often be coded using few representative atoms in some 
dictionary. In their seminal work, Olshausen and Field [62] intro-
duced the idea of learning a dictionary from data instead of using 
off-the-shelf bases. Since then, data-driven dictionaries have been 
shown to work well for both image restoration and classification 
tasks [63], [64]. The efficiency of dictionaries in these wide range 
of applications can be attributed to the robust discriminant repre-
sentations that they provide by adapting to particular data sam-
ples. However, the learned dictionary may not be optimal if the 
target data have a different distribution than the data used for 
training. Several dictionary-learning-based methods have been 
proposed in the literature to deal with this domain shift problem 
[65]–[68].

A function learning framework for the task of transforming a 
dictionary learned from one visual domain to the other while 
maintaining a domain-invariant sparse representation of a signal 
was proposed in [65]. Domain dictionaries are modeled by a lin-
ear or nonlinear parametric function. The dictionary function 
parameters and domain-invariant sparse codes are then jointly 
learned by solving an optimization problem. Motivated by the 
manifold-based incremental learning work of Gopalan et al. [33], 
[34], Ni et al. [67] proposed an unsupervised domain-adaptive 
dictionary-learning framework by generating a set of intermedi-
ate dictionaries, which smoothly connect the source and target 
domains. One of the important properties of this approach is that 
it allows the synthesis of data associated with the intermediate 
domains while exploiting the discriminative power of generative 
dictionaries. The intermediate data can then be used to build a 
classifier for recognition under domain shifts.

In [66], Shekhar et al. proposed a semisupervised domain-
adaptive dictionary-learning framework for learning a single dic-
tionary to optimally represent both source and target data. As the 
features may not be correlated well in the original space, they pro-
pose to project data from both the domains onto a common low-
dimensional space while maintaining the manifold structure of the 
data. They argue that learning the dictionary on a low-dimensional 
space makes the algorithm faster and that irrelevant information in 
the original features can be discarded. Moreover, joint learning of 
dictionary and projections ensures that the common internal 
structure of data in both domains is extracted, which can be repre-
sented well by sparse linear combinations of dictionary atoms. 
Figure 4 shows an overview of this method [66].

Dictionary-Learning Stage

Target Domain

Common
Latent
Subspace

Shared Discriminative Dictionary

Source Domain

W1 W2

D =

[FIG4] An overview of the domain-adaptive latent space 
dictionary-learning framework [66].
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Given source and target domain data S RN Ns! #  and 
,T Rl

M Ntl! #  respectively, Shekhar et al. learn a shared K  atom 
dictionary, ,D Rl K! #  and mappings W Rl N

1 ! #  and W Rl M
2 ! #

onto a common low-dimensional space, which will minimize the 
representation error in the projected space. Formally, the follow-
ing cost is minimized:

( , , , , )D W W X X W S DXC F1 1 2 1 2 1 1
2= - + W T DXl F2 2

2-

subject to sparsity constraints on X RK N
1

s! #  and .X RK N
2

tl! #  It 
is assumed that rows of the projection matrices, W1  and W2, are 
orthogonal and normalized to unit norm. This prevents the solu-
tion from becoming degenerate, leads to an efficient scheme for 
optimization, and makes the kernelization of the algorithm pos-
sible. Note that this method does not require the data to be of the 
same dimension in the source and target domains. As a result, this 
method is applicable to heterogeneous domain adaptation 
problems [32].

To make sure that the projections do not lose too much infor-
mation available in the original domains after projecting onto the 
latent space, a PCA-like regularization term is added, which pre-
serves energy in the original signal, given as

( , )W W S W W SC F2 1 2 1 1
2T= - + .W W TTl l F

2
2
T

2-

It is easy to show that the costs C1  and ,C2  after ignoring the 
constant terms in ,Y  can be written as

( , , ) ,C D W X WY DX F1
2

= -u u u u u (15)

( ) (( ) ( ) ),traceW WY WYC T
2 =-u u u u u (16)

where

[ ],  ,  [  ] .
0

andW W W Y
S
0 T X X X

l
1 2 1 2= = =u u uc m

Hence, the overall optimization is given as

{ } ( ) ( )arg minD ,W ,X D,W,X WC C1 2
* * *

D,W,X
m= +u u u u u

u u

 ,  , ,,i T j1 2s.t. and xW W I j 0 0i i
T 6#= = u (17)

where m  is a positive constant. An efficient two-step procedure 
is proposed for solving this optimization problem in [66]. Fur-
thermore, this method has been extended to multiple domains 
and kernelized in [66]. Once the projection matrices and the 
dictionary are learned, given a novel test sample form the target 
domain, it is first projected onto the latent domain using W2

and classified using a variation of the latent sparse embedding 
residual classifier (LASERC) algorithm proposed in [69].

DOMAIN RESAMPLING
An unsupervised domain adaptation method was recently pro-
posed in [70] and [71] based on the notion of landmarks. Land-
marks are a subset of labeled data instances in the source domain 
that are distributed most similarly to the target domain [70]. 

The key insight of their method is that not all instances are cre-
ated equally for adaptation. As a result, they pick out and 
exploit the most desirable instances to facilitate adaptation. An 
overview of this method is shown in Figure 5.

A variant of MMD is used to select samples from the source 
domain to match the distribution of the target domain. To identify 
landmarks, Ns  indicator variables { { , }}0 1i !a a=  are used, one 
for each data point in the source domain. If ,1ia =  then xi

s  is 
regarded as a landmark. The vector a  is identified by minimizing 
the MMD metric, defined with a kernel mapping function ( ),xz

( ) ( )min N
1 1x x
i i

i
i

i
s

tu j
j
tu

2

H
a

a z z-
a / / /

,y N y1 1. .s t
i i

i
i

ic
s

ic
ia

a =/ / / (18)

where yic  is the indicator variable for .y cic =  The right-hand side 
of the constraint is simply the prior probability of the class ,c  esti-
mated from the source domain.

The geodesic flow kernel computed between the source S  and 
the target Tu  is used to compose the kernel mapping function 

( )xz  [70]

( ) ( ) ( , )Kx x x xi
T

j i jz z =

{ ( ) ( ) / },exp x x G x xi j
T

i j
2v= - - - (19)

where G  is computed using the singular value decomposition of 
.S ST

1 2  Here, S1  and S2  are the matrices obtained by applying 
PCA on S  and ,Tu  respectively [37].

A set of factors { [ , ]}min maxi i
Q

1!v v v =  is used to select the 
scale factor v  in (19). For each ,iv  (18) is solved to obtain the 
corresponding landmarks L i  whose ia  is equal to one. For each 
set of landmarks, a new domain pair is constructed by moving the 
landmarks from the original source to the target domains. It was 
argued that each auxiliary task is easier to adapt than the original 
pair S  and Tu  [70].

Φ1 (x)

Φ1 (x)⋅ω 1

Φ2 (x)⋅ω 2

Φ2 (x)⋅ω 3

Φ2 (x) Φ (x) =

Φ3 (x)

(a)

(b) (c)

[FIG5] An overview of the landmark-based method proposed 
in [70]. (a) The original domain adaptation problem where the 
instances in red are from the target and those in blue are from the 
source. (b) Landmarks, shown inside the green circles, are data 
instances from the source that can be regarded as samples from 
the target. (c) Multiple auxiliary tasks are created by augmenting 
the original target with landmarks, which switches their color from 
blue to red. Each task gives rise to a new feature representation. 
These representations are combined discriminatively to form 
domain-invariant features for the original domain adaptation 
problem [70].
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The final kernel is then learned as a convex combination of all 
of the kernels from the auxiliary tasks

.0 1s.t. andF Gi
i

i i i
i

$b b b= =/ / (20)

The coefficients ib  are optimized on a labeled training set 
L i

i
/  composed of all landmarks selected at different granu-
larities. Finally, F  is used in an SVM classifier whose accuracy 
is optimized with the standard MKL algorithm to learn ib  [70], 
[71]. Since L i

i
/  consists of landmarks that are distributed 

similarly to the target, it is expected that the classification 
error on L i

i
/  will be a good proxy to that of the target 

domain [70].

OTHER METHODS
Deep neural networks have had tremendous success achieving 
a state-of-the-art performance on a number of machine-learn-
ing and computer vision tasks [72]. This is due in part to the 
fact that deep networks are able to learn extremely powerful 
hierarchical nonlinear representations of the inputs [73], [74]. 
Motivated by recent works on deep learning, several hierarchi-
cal domain adaptation approaches have been proposed in the 
literature [75]–[79].

In [78], multiple intermediate representations are explored 
along an interpolating path between the target and source 
domains. Starting with all the source data samples ,S  intermedi-
ate sampled data sets are generated. For each successive data set, 
the proportion of samples randomly drawn from T  is increased 
and the proportion of samples drawn from S  is decreased. Let 

[ , , ]i k1 g!  be an index set over k  intermediate data sets. Then, 
S Si =  for ,i 1= ,S Ti =  for .i k=  For [ , , ],i k2 1g! -  data 
sets Si  and Si 1+  are created in a way so that the proportion of 
samples from T  in Si  is less than in .Si 1+  Each of these data 

sets can be thought of as a single point on a particular kind of 
interpolating path between S  and .T

For each intermediate data set ,Si  a deep nonlinear feature 
extractor is trained. Once feature extractors corresponding to all 
points on the path are trained, any input sample can be represented 
by concatenating all of the outputs from the feature extractors 
together to create path features for the input. The hope is that this 
path representation will be more effective at domain adaptation 
because it is constructed to capture information about incremental 
changes between the source and target domains similar to [33] and 
[37]. After creating the path representation of the inputs, a classi-
fier is trained on the data generated from the source domain data 
by minimizing an appropriate loss function [78].

Another recent work for visual domain adaptation using hier-
archical networks was recently proposed by Nguyen et al. [77]. 
Their method jointly learns a hierarchy of features together with 
transformations that address the mismatch between different 
domains. This method was motivated by [80] in which multilayer 
sparse coding networks are proposed for building feature hierarch-
ies layer by layer using sparse codes and spatial pooling. Figure 6 
shows an overview of the sparse hierarchical domain adaptation 
method [77]. The network contains multiple layers, each of which 
contains three sublayers. The first sublayer performs contrast nor-
malization and dimensionality reduction on the input data. Sparse 
coding is carried out in the second sublayer. In the final sublayer, 
adjacent features are max-pooled together to produce a new fea-
ture. The output from one layer becomes the input to the next 
layer. This method can be viewed as a generalization of the 
domain-adaptive dictionary learning framework [66] using hierar-
chical networks. An extension of this method to multiple source 
domains has also been presented in [77].

Visual attributes are human understandable properties to 
describe images such as blue, dark, and two-legged. They are valua-
ble as a semantic cue in various vision problems. Recent research 
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[FIG6] An illustration of domain adaptation using a sparse and hierarchical network (DASH-N) algorithm [77]. The source domain is 
RGB images, and the target domain is half-tone images. First, the images are divided into small overlapping patches. These patches are 
vectorized while maintaining their spatial arrangements. (a) Performing contrast normalization and dimensionality reduction using PS

for source images and PT  for target images. The circular feedbacks between PS  and PT  indicate that these two transformations are 
learned jointly. (b) Obtaining sparse codes using the common dictionary .D1  (c) Performing max pooling. The process then repeats for 
(d) and (e) layer 2, except that the input is the sparse codes from layer 1 instead of pixel intensities. At the final stage, spatial pyramids 
with max pooling are used to create image descriptors. Classification is done using a linear SVM.
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explores a variety of applications for visual attributes including face 
verification [81], object recognition [82]–[84], and facilitating 
transfer learning [85]. The existing 
methods [82], [84], [85] assume that 
one model of an attribute is sufficient 
to capture all user perceptions. How-
ever, there are some real perceptual 
differences between annotators. Con-
sider the example shown in Figure 7: 
five users confidently declared that the shoe on the left is formal, 
while five confidently declared the opposite. These differences stem 
from several factors such as the words for attributes are imprecise, 
their meaning often depends on context and culture, and they 
often stretch to refer to quite distinct object categories [86].

To capture the inherent differences in perception, [86] pro-
poses to model attributes in a user-specific way. In particular, 
attribute learning is posed as an adaptation problem. First, they 
leverage any commonalities in perception to learn a generic pre-
diction function using a large margin learning algorithm and data 
labeled with a majority vote from multiple annotators. Then, they 
use a small number of user-labeled examples to adapt the parame-
ters of the generic model into a user-specific prediction function 
while not straying too far from the prior generic model. Essen-
tially, this amounts to imposing regularizers on the learning 
objective favoring user-specific model parameters that are similar 
to the generic ones while still satisfying the user-specific label con-
straints [86]. The impact of this attribute adaptation work is that 
one can capture a user’s perception with minimal annotation 
effort. It was shown that the resulting personalization can make 
attribute-based image searches more accurate [86].

Tommasi and Caputo [87] very recently proposed a naive Bayes’ 
nearest neighbor-based domain adaptation method that iteratively 
learns a Mahalanobis class-specific metric while inducing for each 
sample a large margin separation among classes. Both semisuper-
vised and unsupervised domain adaptation scenarios are presented.

In [88], Jain and Farfade proposed an approach for adapting a 
cascade of classifiers to perform classification in a similar domain 
for which only a few positive examples are available. A cascade of 
classifiers is a classifier f  that is composed of m  stage classifiers 
{ , , }f fm1 g  that are applied in a sequential manner. They are com-
monly used for anomaly detection and one-class classification. It 
was shown that, by adapting classification cascades to new 
domains, one can obtain huge gains in performance in detecting 
faces of human babies and human-like characters from movies.

APPLICATIONS
In this section, we illustrate through different application exam-
ples the uses and capabilities of various visual domain adaptation 
methods. In particular, we focus on object recognition and face 
recognition applications.

FACE RECOGNITION
Face recognition is a challenging problem that has been actively 
researched for more than two decades [89]. The current systems 
work very well when training, and test images are captured 

under controlled conditions. However, their performance 
degrades significantly when the test images contain variations 

that are not present in the training 
images. One of these variations is 
change in pose. Along with the fron-
tal images with different illumina-
tion (source images), if we are also 
given a few images at different poses 
(target images), then the resulting 

face recognition problem can be viewed a domain adaptation 
problem [65], [66], [90].

Face recognition experiments were conducted on the Carnegie 
Mellon University (CMU) multipose, illumination, and expression 
(PIE) data set [91] with images of 129 subjects in a frontal pose as 
the source domain, and five other off-frontal poses as the target 
domain. Images under five illumination conditions across source 
and target domains were used for training with which images 
from the remaining 15 illumination conditions in the target 
domain were recognized. The results provided in Table 1 show 
that the dictionary-based adaptation method [66] compares 
favorably with some of the recently proposed multiview recogni-
tion algorithms [10] as well as many other nonadaptation 
techniques and gives the best performance on average. Note that 
the discriminative dictionary-learning algorithm, Fisher discrimi-
nation dictionary learning (FDDL) [92], does not provide the best 
results here as it is not able to efficiently represent the nonlinear 
changes introduced by the pose variation. 

Furthermore, the learned dictionaries were also used for pose 
alignment where the goal is to align faces from one pose to a differ-
ent pose. This is a challenging problem since actual pose variations 

[TABLE 1] A COMPARISON OF VARIOUS ALGORITHMS
FOR FACE RECOGNITION ACROSS POSE [66].

METHOD PROBE POSE AVERAGE
15° 30° 45° 60° 75°

PCA 15.3 5.3 6.5 3.6 2.6 6.7
PLS [27] 39.3 40.5 41.6 41.1 38.7 40.2
LDA 98 94.2 91.7 84.9 79 89.5
CCA [27] 92.1 89.7 88 86.1 83 83.5
GMLDA [10] 99.7 99.2 98.6 94.9 95.4 97.6
FDDL [92] 96.8 90.6 94.4 91.4 90.5 92.7
SDDL [66] 98.4 98.2 98.9 99.1 98.8 98.7

Boldface indicates the top performing algorithm in each experiment.
LDA: Linear discriminant analysis; GMLDA: generalized multiview linear discriminant 
analysis; and SDDL: shared domain-adapted dictionary learning.

(a) (b)

Formal? More Ornamented?

or
User Labels:
50%
50%

“Yes”
“No”

User Labels:
50%
20%

“First”
“Second”

30% “Equally”

5
5

or
2

[FIG7] Virtual attribute interpretations vary slightly from viewer to 
viewer. For instance, five viewers confidently declare the shoe as 
(a) formal or (b) more ornamented, while five others confidently 
declare the opposite. Attribute adaptation models are proposed to 
take these differences in perception into account [86].

VISUAL ATTRIBUTES ARE HUMAN
UNDERSTANDABLE PROPERTIES TO
DESCRIBE IMAGES SUCH AS BLUE, 

DARK, AND TWO-LEGGED.
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are three dimensional (3-D), whereas the image evidence one has is 
two dimensional (2-D). Sample results are shown in Figure 8. One of 
the interesting features of the dictionary-based adaptation methods 
is that they allow the synthesis of data associated with different 
domains while exploiting the generative power of dictionary-based 
representations. This is essentially what is highlighted in the last two 
rows of Figure 8. The dictionary-based method is robust at high lev-
els of noise and missing pixels. It produces denoised and inpainted 
synthesized images. Additional results on various face recognition 
tasks using domain adaptation can be found in [65] and [67].

OBJECT RECOGNITION
In this section, we compare the performance of various visual 
domain adaptation methods on a benchmark object recognition 
data set that was introduced in [41]. The data set consists of 
images from three sources: Amazon (consumer images from 
online merchant sites), digital single-lens reflex [(DSLR) images 
from a DSLR camera], and Webcam (low-quality images from 
Webcams). In addition, algorithms are tested on the Caltech-256 
data set [93], taking it as the fourth domain. Figure 9 shows sam-
ple images from these data sets and clearly highlights the differ-
ences between them.

Three setups are followed for comparing the performance of 
various algorithms. In the first setup, ten classes: “Backpack,” 
“Touring Bike,” “Calculator,” “Headphones,” “Computer Keyboard,” 
“Laptop 101,” “Computer Monitor,” “Computer Mouse,” “Coffee 
Mug,” and “Video Projector” common to all the four data sets are 
used. In this case, there are a total of 2,533 images. Each category 
has eight  to 151 images in a data set. In the second setup, all 31 

classes from Amazon, Webcam, and DSLR are used to evaluate vari-
ous algorithms. Finally, in the third setup, methods for adaptation 
are evaluated using multiple domains. In this case, the first data set 
is used, and the methods are tested on all 31 classes in it. For both 
cases, we use 20 training samples per class for Amazon/Caltech, 
eight samples per class for DSLR/Webcam when used as source, 
and three training samples for all of them when used for the target 
domain. The rest of the data in the target domain is used for test-
ing. The experiment is run multiple times for random train/test 
splits, and the result is averaged over all the runs. For the unsuper-
vised case, the same setting as semisupervised adaptation described 
earlier is followed but without using any labeled data from the tar-
get domain. (Several recent methods explore both source and tar-
get data at once in a transductive manner rather than splitting the 
data sets into multiple training/testing partitions; see [70] for 
details on the evaluation protocol using this setting.)

SEMISUPERVISED ADAPTATION 
RESULTS USING A SINGLE SOURCE
The semisupervised adaptation recognition results of different 
algorithms on eight pairs of source–target domains and on all 31 
classes are shown in Tables 2 and 3, respectively. The baseline 
results obtained using the hierarchical matching pursuit (HMP) 
method [80] as well as the FDDL method [92], which learn the 
dictionaries separately for the source and target domains without 
performing domain adaptation, are also included.

Compared to the metric-learning-based approach [41], mani-
fold-based feature concatenation methods [33], [37] provide better 
results. This makes sense because, by finding intermediate domain 

Source Pose
Pose-Aligned Images

Target Pose

Dictionary Size
(K = Atoms/Class)

K = 3 K = 4 K = 5 K = 6 K = 7

σ = 0.2 σ = 0.5 σ = 1 σ = 1.5 σ = 2
Noise (σ  = varn)

Missing Pixels
(% Missing)

20% 40% 60% 80% 90%

[FIG8] Examples of pose-aligned images. Synthesis in various conditions demonstrate the robustness of the domain-adaptive 
dictionary-learning method [66].

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [65] MAY 2015

representations, one is able to learn a feature vector that is more 
robust than a feature vector that results by learning a single trans-
formation that minimizes the effect of the domain shift. The SDDL 
method can be viewed as an extension of the FDDL method, which 
simultaneously learns discriminative dictionaries on a latent space 
where both the source and the target data are forced to have simi-
lar sparse representation. As a result, one can clearly see the perfor-
mance gain of the SDDL method over the FDDL method as well as 
the manifold-based methods in Tables 2 and 3.

The HMP method [80] builds a feature hierarchy layer by layer 
using an efficient matching pursuit encoder. It consists of three 

Amazon Caltech

DSLR Webcam

[FIG9] Some example images from the “Keyboard” and “Backpack” categories in Caltech-256, Amazon, Webcam, and DSLR. The 
Caltech-256 and Amazon data sets have diverse images, and Webcam and DSLR are similar data sets with images mostly from offices [66]. 

[TABLE 3] SINGLE-SOURCE SEMISUPERVISED DOMAIN
ADAPTATION RESULTS ON ALL 31 CLASSES.

METHOD A " W D " W W "  D
METRIC [41] 44 31 27
RDALR [44] 50.7 ± 0.8 36.9 ± 19.9 32.9 ± 1.2
SGF [33] 57 ± 3.5 36 ± 1.1 37 ± 2.3
GFK [37] 46.4 ± 0.5 61.3 ± 0.4 66.3 ± 0.4
HMP [80] 55.7 ± 2.5 50.5 ± 2.7 56.8 ± 2.6
SDDL [66] 50.1 ± 2.5 51.2 ± 2.1 50.6 ± 2.6
DASH-N [77] 60.6 ± 3.5 67.9 ± 1.1 71.1 ± 1.7

Boldface indicates the top performing algorithm in each experiment.
RDALR: Robust domain adaptation with low-rank reconstruction.

[TABLE 2] THE SEMISUPERVISED DOMAIN ADAPTATION RESULTS OF DIFFERENT APPROACHES ON FOUR DOMAINS
WITH TEN COMMON CLASSES (C: CALTECH, A: AMAZON, D: DSLR, W: WEBCAM).

METHODS C "  A C "  D A " C A " W W " C W "  A D "  A D " W
METRIC [41] 33.7 ± 0.8 35 ± 1.1 27.3 ± 0.7 36 ± 1 21.7 ± 0.5 32.3 ± 0.8 30.3 ± 0.8 55.6 ± 0.7
SGF [33] 40.2 ± 0.7 36.6 ± 0.8 37.7 ± 0.5 37.9 ± 0.7 29.2 ± 0.7 38.2 ± 0.6 39.2 ± 0.7 69.5 ± 0.9
GFK [37] 46.1 ± 0.6 55 ± 0.9 39.6 ± 0.4 56.9 ± 1 32.8 ± 0.1 46.2 ± 0.6 46.2 ± 0.6 80.2 ± 0.4
FDDL [92] 39.3 ± 2.9 55 ± 2.8 24.3 ± 2.2 50.4 ± 3.5 22.9 ± 2.6 41.1 ± 2.6 36.7 ± 2.5 65.9 ± 4.9
HMP [80] 67.7 ± 2.3 70.2 ± 5.1 51.7 ± 4.3 70 ± 4.2 46.8 ± 2.1 61.5 ± 3.8 64.7 ± 2 76.0 ± 4
SDDL [66] 49.5 ± 2.6 76.7 ± 3.9 27.4 ± 2.4 72 ± 4.8 29.7 ± 1.9 49.4 ± 2.1 48.9 ± 3.8 72.6 ± 2.1
DASH-N [77] 71.6 ± 2.2 81.4 ± 3.5 54.9 ± 1.8 75.5 ± 4.2 50.2 ± 3.3 70.4 ± 3.2 68.9 ± 2.9 77.1 ± 2.8

Boldface indicates the top-performing algorithm in each experiment.
SGF: Subspaces by sampling geodesic flow; GFK: geodesic flow kernel.
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main components: batch tree orthogonal matching pursuit, spatial 
pyramid matching, and contrast normalization. As a result, it is 
robust to some of the variations present in the images such as illu-
mination changes, pose variations, and resolution variations. The 
DASH-N method essentially extends the SDDL and HMP methods 
by learning features directly from data for domain adaptation. As a 
result, it provides a more robust and discriminative representation 
of the data and performs the best on this data set on both settings. 
The dictionary learning-based methods [92], [80] essentially find 
the common internal structure of the data. They inherently have 
the denoising capability and provide robust representation of the 
data. This is one of the reasons why in some cases the FDDL and 
the HMP methods provide better results than metric-learning- and 
manifold-based methods.

SEMISUPERVISED ADAPTATION RESULTS 
USING MULTIPLE SOURCES
As some of the methods reviewed in this paper can also handle mul-
tiple domains, we report results of different algorithms on multiple-
source adaption. Table 4 shows the results for three possible 
combinations. Again, the sparse hierarchical network-based adapta-
tion method [77] performs the best. The incremental learning moti-
vated manifold method [34] also provides good results on 
multidomain adaptation using this data set. It is interesting to see 
that increasing the number of domains can be helpful, especially 
when compared to a single source and single target. Many multid-
omain adaptation methods in Table 4 outperform a single source 
and a single target in many cases, although, in a small number of 
cases, they do not outperform a single source and a single target. 
As a result, a better strategy to deal with multiple domains is 
required in these cases.

UNSUPERVISED DOMAIN ADAPTATION RESULTS
The results of three source–target combinations of the Amazon, 
DSLR, and Webcam data sets are shown in Table 5. The manifold-
based approach [34] outperforms the existing unsupervised 
domain adaptation methods in two of the three source–target 
combinations. The information–theoretic learning method [59] 
for unsupervised domain adaptation also performs well on this 

data set. By comparing the results in Tables 2 and 3 with the 
results in Table 5, we see that the semisupervised adaptation 
results are generally better than in the unsupervised case. Using 
labels in both the intermediate data generation and classification 
stage generally produces better results than using labels only dur-
ing classification [34]. Also, it is interesting to see that, since the 
introduction of this data set in [41], the recognition performance 
has significantly improved in the last few years.

COMPUTATIONAL COMPLEXITY
The main processing steps involved in manifold-based adaptation 
techniques [33], [34], [37] are computing the geodesic between 
the source and target domains, and then sampling points along 
the geodesic to infer intermediate domains that account for the 
domain shift. This involves mapping entities on the manifold to 
the locally Euclidean tangent plane and warping the results from 
the tangent plane back onto the manifold. Computationally effi-
cient algorithms for these steps have been discussed in the litera-
ture for Grassmann manifolds [94]. For orthogonal matrices of 
dimensions ,N N1 2#  the geodesic computation has a complexity 
of O N N1

2
2^ h along with an O N N1 2^ h cost for sampling each 

point along the geodesic.
For deep learning approaches [77], [78], the complexity 

depends, among others, on the number of layers used in the hier-
archy to learn feature correlation for adaptation. While the deep 
network circuits can have different architectures, such as autoen-
coders and restricted Boltzmann machines, there is an active 
stream of work in making the training procedure of these circuits 
computationally tractable. See [72] for a more detailed discussion 
on the complexity of deep architectures.

A major computationally heavy step of dictionary-based domain 
adaptation methods is dominated by sparse coding. Efficient batch 
methods have been proposed to learn dictionaries for large-scale 
problems. For instance, a batch orthogonal matching pursuit-based 
KSVD algorithm for learning dictionaries was proposed in [95]. It 
was shown that the operation count per training iteration for learn-
ing a dictionary of size l K#  with R  number of training signals are 

,R T K lK20
2 +^ h  where T0  is the target sparsity. One can also adapt 

fast 1,  solvers for sparse coding [96], [97] rather than using greedy 
orthogonal matching pursuit algorithms.

For the low-rank approximation-based 
methods, the major computation is in find-
ing the SVD of a matrix. As a result, these 
methods tend to be time-consuming if the 
matrix is large. However, efficient methods 
do exist for finding the low-rank approxi-
mation of large matrices [98]–[100]. 

[TABLE 4] MULTIPLE-SOURCE DOMAIN ADAPTATION RESULTS OF VARIOUS METHODS ON THE AMAZON,
WEBCAM, AND DSLR DATA SETS.

SOURCE TARGET SGF [34] SGF [33] RDALR [44] FDDL [92] SDDL [66] A-SVM [29] HMP [80] DASH-N [77] 
DSLR, AMAZON WEBCAM 64.5 ± 0.3 52 ± 2.5 36.9 ± 1.1 41 ± 2.4 57.8 ± 2.4 30.4 ± 0.6 47.2 ± 1.9 64.5 ± 2.3
AMAZON, WEBCAM DSLR 51.3 ± 0.7 39 ± 1.1 31.2 ± 1.3 38.4 ± 3.4 56.7 ± 2.3 25.3 ± 1.1 51.3 ± 1.4 68.6 ± 3.7
WEBCAM, DSLR AMAZON 38.4 ± 1.0 28 ± 0.8 20.9 ± 0.9 19 ± 1.2 24.1 ± 1.6 17.3 ± 0.9 37.3 ± 1.4 41.8 ± 1.1

[TABLE 5] UNSUPERVISED DOMAIN ADAPTATION RESULTS OF VARIOUS METHODS
ON THE AMAZON, WEBCAM, AND DSLR DATA SETS.

SOURCE TARGET SGF [34] SGF [33] RDALR [44] GFK [37] ITLUDA [59] 
WEBCAM DSLR 71.2 19 ± 1.2 32.89 ± 1.2 49.7 ± 0.5 —
DSLR WEBCAM 68.8 26 ± 0.8 36.85 ± 1.9 44.6 ± 0.3 83.6 ± 0.5
AMAZON WEBCAM 55.6 39 ± 2 50.71 ± 0.8 15 ± 0.4 38.5 ± 1.3
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Many parameter adaptation methods such as A-SVM [29] are 
large-scale quadratic programming problems for which efficient 
implementations do exist in the literature (see [101] for more details).

CONCLUSIONS AND FUTURE DIRECTIONS
This article attempted to provide an overview of recent developments 
in domain adaptation for computer vision, with an emphasis on 
applications to the problems of face and object recognition. We 
believe that the availability of massive data has brought substantial 
opportunities and challenges to the analysis of data sets bias or covar-
iant shifts and domain adaptation problems. We hope that the survey 
has helped to guide interested readers among the extensive literature 
to some degree, but obviously it cannot cover all of the literature on 
domain adaptation, and we have cho-
sen to focus on a representative subset 
of the latest progress made in com-
puter vision. 

Domain adaptation promises to 
be an active area of research, espe-
cially as one of the possible ways to 
quickly propagate semantic annota-
tions to the large-scale visual data 
being acquired every minute. In 
computer vision, researchers have 
identified specific challenges that do not belong to machine 
learning: a major question among them that is rarely addressed 
in traditional domain adaptation research is one of adapting 
structured (nonvector) data representations. In machine learn-
ing or natural language processing, an input sample is usually 
represented as a vector in Euclidean space, different samples are 
treated as independent observations, and the task is typically 
classification. This is, however, not the case in computer vision 
where the representations to be potentially adapted include 
shapes and contours, deformable and articulated 2-D or 3-D 
objects, graphs, and random fields, intrinsic images, as well as 
visual dynamics, none of which is directly supported by vectorial 
domain adaptation techniques. In addition to recognition and 
detection, models and algorithms for segmentation, reconstruc-
tion, and tracking are awaiting mechanisms that do not yet exist 
to be adapted toward emerging new domains. All of these chal-
lenges necessitate continuous efforts on characterizing visual 
domain shift and a paradigm of effective and efficient adaptation 
methods that are dedicated to visual data.

In the meantime, it is generally accepted that domain shifts 
in computer vision are usually due to causes from the imaging 
process that can be explained physically, such as illumination 
changes, sensor changes, and viewpoint changes. We believe 
that incorporating these physical priors into strong statistical 
adaptation approaches will not only lead to a performance 
increase but also to other insights in understanding the 
imaging process. This calls for a physically informed adaptation 
paradigm that better exploits knowledge about image formation 
and better integrates other domain-specific knowledge implied 
by the diverse set of partial, noisy, and multimodal side informa-
tion accompanying the visual data, such as imagery obtained 

from online social media. We hope that by appropriately incor-
porating a physically informed adaptation paradigm, distribu-
tional changes across different sensors (electro-optical/synthetic 
aperture radar, infrared/synthetic aperture radar, electro-optical/
infrared, etc.) can be handled.

Finally, we expect that studies on data characteristics and adap-
tations will produce stronger guidance to developing more desira-
ble data sets for evaluating research in a wider spectrum of 
computer vision problems.
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Resampling 
Methods for 

Particle Filtering

T
wo decades ago, with the publication of [1], we 
witnessed the rebirth of particle filtering (PF) as 
a methodology for sequential signal processing. 
Since then, PF has become very popular 
because of its ability to process observations 

represented by nonlinear state-space models where the 
noises of the model can be non-Gaussian. This methodology 
has been adopted in various fields, including finance, geo-
physical systems, wireless communications, control, naviga-
tion and tracking, and robotics [2]. The popularity of PF has 
also spurred the publication of several review articles [2]–[6].

Using the PF method, we aim to track various distribu-
tions that arise in dynamic state-space models. The track-
ing is carried out by exploring the space of the states with 
randomly generated samples (also called particles). The 

distributions of interest are approximated by the generated 
particles as well as weights assigned to the particles.

There are many PF methods, and almost all of them are 
based on three operations: 1) particle propagation, 2) weight 
computation, and 3) resampling. Particle propagation and 
weight computation amount to the generation of particles 
and assignment of weights, whereas resampling replaces one 
set of particles and their weights with another set.

Particle generation and weight computation are com-
putationally the most intensive steps. However, they are 
application dependent and can be easily implemented in 
parallel if parallel hardware is available. The resampling 
step is universal and generally state-dimension-free but is 
not naturally suitable for parallel processing. The resam-
pling is essential for PF; without this step, PF will quickly 
produce a degenerate set of particles, i.e., a set in which a 
few particles dominate the rest of the particles with their 
weights. This means that the obtained estimates will be 
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inaccurate and will have unacceptably large variances. With res-
ampling, such deteriorations are prevented, which is why it is 
highly important to PF. Consequently, resampling has been 
extensively researched, and, as a result, various resampling 
schemes have been proposed [7]–[10].

Surveys of resampling methods can be found in [11]–[14]. 
These papers, however, only cover a small number of basic resa-
mpling methods and have become somewhat outdated. Further-
more, no classification has been made in these papers. This has 
been a disadvantage to researchers in getting a better grasp of the 
overall picture of resampling and of being able to readily choose the 
scheme that would fit their needs. This article aims to correct these 
shortfalls. More specifically, the main goal of this article is to intro-
duce a new classification of resampling algorithms and provide a 
qualitative comparison of them. An additional goal is to set the 
grounds for further developments in resampling.

We divide the resampling algorithms into sequential and 
distributed/parallel algorithms. The most common are the 
sequential algorithms, where resampling is carried out from 
the approximating distribution using the latest weights. We 
also refer to these algorithms as traditional. However, 
researchers have explored other solutions, such as resampling 
that takes into account the history of the weights, resampling 
from approximate distributions, and resampling from only a 
part of the sampling space. In addition, approaches based on 
different ways of grouping particles have been proposed where 
grouping can be implemented, e.g., by using thresholds or by 
combining adjacent particles. These approaches might be of 
use when it is important to reduce the number of operations 
or to reduce communication between processing elements 
(PEs) in parallel implementations. We also discuss the fre-
quency of resampling.

With multicore processors, the existence of general-purpose 
graphical processing units (GP-GPUs) in almost every computer 
and the emergence of embedded multicore and GP-GPU hard-
ware, parallel processing can be readily implemented. The 
implementations of parallel resampling, however, can vary, 
which, in turn, reflect on their accuracy and speed. Some of the 
efforts in this area are described in this article.

In our view, future research efforts will be directed to specific 
implementations and theoretical analysis of the methods. The for-
mer include simplifying the resampling algorithms, development 
of better schemes with the ultimate goal of improving filtering 
performance, parallelization, and real-time implementations. The 
latter addresses the effects of the resampling algorithms on con-
vergence and accuracy of approximation. As this article focuses 
mainly on providing guidelines to the readers and on qualitative 
description of the solutions, we do not explore issues such as 
robustness and do not provide theoretical proofs of any sort. 

BACKGROUND OF PF AND RESAMPLING

A BRIEF REVIEW OF PF
We start with a brief review of PF and introduce the notation. 
There is a state-space model described by

, ,x g x ut t t1= -^ h (1)
, ,y h x vt t t= ^ h (2)

where t  is a time index and , , ;t 1 2 f= x Rt
dx!  is the state of 

the model that is hidden (not observed); y Rt
dy!  is the observation; 

u Rt
du!  and v Rt

dv!  are white noises that are independent of 
each other; and :g R R Rd d dx u x"#  and :h R R Rd d dx v y"#  are 
known functions. An alternative representation of these equations 
is by the probability distributions of the state, | ,p x xt t 1-^ h  and of 
the observation, | ,p y xt t^ h  which can be obtained from (1) and 
(2) and the probability distributions of ut  and ,vt  respectively. 
The interest is in nonlinear models and where the noises in (1) 
and (2) are not necessarily Gaussian.

The objective of PF is the sequential estimation of distribu-
tions of the state, including the filtering distribution | ,p x y :t t1^ h

the predictive distribution | ,p x y :t t1 1-^ h  or the smoothing distri-
bution | ,p x y :t T1^ h  where .t T1  Here, we focus on the filtering 
distribution. This distribution can be expressed in terms of the 
filtering distribution at time instant , | ,t p x y1 :t t1 1 1- - -^ h  i.e., 
in a recursive form by

| | | | ,p x y p y x p x x p x y dx: :t t t t t t t t t1 1 1 1 1 1? - - - -8^ ^ ^ ^h h h h

(3)

where the symbol ?  signifies ‘‘proportional to.” This update 
cannot be implemented analytically except in a very few cases, 
and, therefore, one resorts to approximations.

We reiterate that with PF, the underlying approximation is to 
represent continuous distributions by discrete random meas-
ures composed of particles ,x( )

t
m  which are possible values of the 

unknown state xt  and weights w( )
t
m  assigned to the particles. 

The distribution |p x y :t t1 1 1- -^ h is approximated by a random 
measure of the form | ,  ,x wt

m
t
m

m
M

1 1 1= - - =t 1-
^ ^h h" ,  where M  is the 

number of particles, i.e.,

| ,p x y w x x: m
M

t t t
m

t t
m

1 1 1 11 1 1. d -- - -= - -^ `^ ^
h jh h/ (4)

where $d^ h is the Dirac delta impulse and all the weights sum 
up to one. With this approximation, the integral in (3) can read-
ily be solved, and we can write 

| | | ,p x y p y x w p x x:t t t t
m

M

t
m

t t
m

1
1

1 1?
=

- -/o^ ^ `^ ^
h h jh h (5)

where ?o  means “approximate proportionality.”
The last expression shows how we can obtain the approxima-

tion |t  of the filtering distribution recursively in time. At time 
instant ,t 1-  one starts the construction of |t  by generating 
particles ,x( )

t
m  which are used for representing | .p x y :t t1^ h  This 

step of PF is referred to as particle propagation because a particle 
x( )

t
m

1-  is moved forward in time and is a parent of .x( )
t
m  For parti-

cle propagation and weight computation, we employ the concept 
of importance sampling [15]. Ideally, the propagated particles 
should be drawn from | ,p x y :t t1^ h  and then they will all have 
equal weights. However, this is infeasible in most cases, and, 
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therefore, one uses an instrumental function .xtr^ h  For exam-
ple, in [1], this function is | .p x xt t 1-^ h

The second basic step of PF is the computation of the particle 
weights. To have correct inference from the generated particles, the 
theory shows that the generated particles from ,xtr^ h  which is differ-
ent from | ,p x y :t t1^ h  have to be weighted [15]. Under mild condi-
tions, one can show that these weights can be recursively computed 
according to

| |
.w w

x

p y x p x x
t
m

t
m

t
m

t t
m

t
m

t
m

1
1

?
r

-

-

^

^ `
^ ^

^

^ ^ ^

h

h j
h h

h

h h h

(6)

Often, the computation of the expression to the right of the pro-
portionality sign is followed by normalization of the weights (so 
that they sum up to one). 

Ideally, the weights of the particles should all be equal. On 
the other extreme, it is most undesirable if all the particles have 
weights equal to zero or one or a 
few particles have most of the 
weight and the rest of the particle 
weights are negligible. This is com-
monly called degeneracy and is 
exactly what eventually happens 
when PF is realized by using only 
the aforementioned two steps. Then, 
as the processing of the observations 
proceeds, the variance of the 
weights increases and reaches a 
point at which the random measure 
is a very poor approximation of the 
filtering distribution. For this rea-
son, PF needs a third step, referred to as resampling.

THE BASICS OF RESAMPLING
With resampling, one aims to prevent the degeneracy of the 
propagated particles by modifying the random measure |t  to 
|t
u  and improving the exploration of the state space at .t 1+

While alleviating degeneracy during resampling, it is impor-
tant that the random measure approximates the original distri-
bution as well as possible and prevents bias in the estimates 
[16]. Although the approximation by |t

u  is very similar to that 
of | ,t  the set of particles of |t

u  is significantly different from 
that of | .t  Resampling means that the particles from |t  with 
large weights are more likely to dominate |t

u  than particles 
with small weights, and, consequently, in the next time step, 
more new particles will be generated in the region of large 
weights. This is the reason for the improvement in exploration 
after resampling. The focus of exploration is shifted to the 
parts of the space with large probability masses. Because of res-
ampling, the propagated particles from |t

u  will have weights 
that are less discriminate than if the propagation was from the 
particles of | .t  This is an intuitive idea with important practi-
cal and theoretical implications.

Formally, resampling is a process in which one samples 
from the original random measure | ,x wt

m
t
m

m
M

1= =t
^ ^h h" ,  to 

create a new random measure | , .x wt
n

t
n

n
N

1= =t
u u u^ ^h h" ,  Then, the 

random measure |t  is replaced with .|t
u  In the process, some 

of the particles of |t  are replicated, and, most likely, they are 
the particles with large weights. The particles of |t

u  are used 
for propagation of new particles, and thus, they are the parents 
of .x( )

t
m

1+  We note that for the approximation of | ,p x y :t t1^ h  it is 
better to use |t  than .|t

u  We also observe that the number of 
resampled particles N  is not necessarily equal to the number 
of propagated particles. Traditional resampling methods keep 
them constant, and, usually, .M N=  Finally, in most of the 
resampling methods, the weights of the particles after resam-
pling are all equal.

Resampling, however, may introduce undesired effects. One 
of them is sample impoverishment. With resampling, low-
weighted particles are most likely removed, and, thereby, the 
diversity of the particles is reduced [1], [9], [12]. For example, if 
a few particles of |t  have most of the weight, many of the resa-

mpled particles will be the same, 
i.e., the number of different parti-
cles in |t

u  will be small. The other 
effect is on the speedup of imple-
mentation of PF. We recall that PF 
is often used for signal processing 
when observations have to be pro-
cessed in real time. A good solution 
for gaining in speed is to parallel-
ize the PF. As will be shown, paral-
lelizing the resampling is rather 
challenging.

The undesired effects of resam-
pling have pushed researchers to 

investigate advanced methods for resampling. These methods 
have many features, including a variable number of particles, the 
removal of the restriction of equal weighting of the resampled 
particles, the avoidance of discarding low-weighted particles, and 
the introduction of parallel frameworks for resampling.

When implementing resampling, several decisions must be 
made. They include choosing the distribution for resampling, 
specifying the sampling strategy, determining the resampled 
size, and selecting the frequency of resampling.

CLASSIFICATION OF RESAMPLING SCHEMES
Our high-level classification of resampling methods with 
representative references is shown in Table 1. We first group 
the methods based on their implementation as sequential 
and parallel. We note that the parallel implementations rep-
resent two or more sequential implementations executed 
simultaneously. The sequential strategies are further classi-
fied based on whether the resampling is from a single distri-
bution or from two or more distributions obtained from 
grouping of the particles (compound sampling). We also 
have a third category, referred to as special strategies. As the 
name suggests, the special strategies have features that sep-
arate them from single and compound sampling. Next, we 
make several remarks, of which the first four are also 
reflected in Table 1 (R1–R4).

WHEN IMPLEMENTING
RESAMPLING, SEVERAL

DECISIONS MUST BE MADE.
THEY INCLUDE CHOOSING THE

DISTRIBUTION FOR RESAMPLING,
SPECIFYING THE SAMPLING

STRATEGY, DETERMINING THE
RESAMPLED SIZE, AND

SELECTING THE FREQUENCY
OF RESAMPLING.
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REMARK 1
One classification is based on the used distribution for resam-
pling. Mainly, this is the distribution represented by | .t Other 
approaches include sampling from an approximate distribution. 
We will point out cases in which resampling is not performed 
from | .t

REMARK 2
Resampling can be performed in the same way on all of the par-
ticles, or it is possible to resample in different ways in different 
parts of the sampling space.

REMARK 3
There are methods that group the particles in some way 
before resampling is performed. In that respect, we distin-
guish among single-distribution sampling schemes (no 
grouping of particles), techniques that combine adjacent par-
ticles (which is the common approach in parallel implementa-
tions of resampling), and techniques that group particles for 
resampling based on some predefined criteria (referred to as 
compound sampling).

REMARK 4
Resampling can also be classified based on whether only particles 
from the current time step are involved in resampling, which is a 
common approach, the particles from previous time instants are 
considered [17], or some future particles are generated and taken 
into account for resampling [18]. Also, resampling can be classified 
based on whether only the weight is taken into account, which is 
the standard approach, or the state and the weight of particles are 
considered together [16].

REMARK 5
Resampling may be applied not in all but only in selected time 
steps. Compensations such as roughening [1] may be imple-
mented with resampling for performance improvement.

REMARK 6
There are deterministic and stochastic resampling methods. 
The deterministic methods lead to a set of particles that are 
always the same for the same input set of particles.

IMPLEMENTATION OF RESAMPLING SCHEMES
In the following sections, we will explain various resampling 
methods and provide pseudocodes for selected algorithms. 
The pseudocodes are presented in a simple and unified way 
but not in forms that optimize the implementation of the 
algorithms. In practical implementations on a specific plat-
form, programming techniques are required to maximally 
speed up the computation. For example, the cumulative sum 
calculation in code 1 can be implemented in MATLAB using 
vectors, which would be faster than the iterative calculation 
shown by code 1. Traditional sampling methods have already 
been described elsewhere; we present them here for complete-
ness and because they are used in the compound, special, and 
parallel methods described later. We assume that the weights 
wt

m^ h  are normalized before resampling, i.e., .w 1
m
M

t
m

1
=

=

^ h/

SINGLE-DISTRIBUTION SAMPLING METHODS
In this category, all the particles are resampled by using a sin-
gle-distribution sampling procedure. The expected number of 
times Nt

m^ h  that the mth  particle is resampled is proportional 
to ,wt

m^ h  i.e.,

[TABLE 1] THE HIGH-LEVEL CLASSIFICATION OF RESAMPLING METHODS.

CLASSIFICATIONS

R1

BASED ON THE
DISTRIBUTION |t

R2

RESAMPLING OF
ALL THE PARTICLES
IN THE SAME WAY

R3

GROUPING

R4

USING INFORMATION
FROM THE CURRENT
TIME INSTANT

Sequential implementation YES YES/NO YES/NO YES/NO

■ SINGLE DISTRIBUTION SAMPLING [1], [7], [8], [10] YES YES NO YES

■ COMPOUND-SAMPLING YES/NO FOR MANY:
DIFFERENT OR NO
RESAMPLING PER
GROUP

BASED ON
COMPOUND
CRITERIATHRESHOLDS/GROUPING-BASED RESAMPLING [11], [12], [24] YES/NO FOR [11] AND [17]

YES

■ SPECIAL STRATEGIES YES

NO NO YES/NO FOR [18]

YES YES

Parallel implementation BASED ON
ADJACENT
PARTICLES■ MAPPING TO SPECIFIC HARDWARE PLATFORMS  

[31]–[33], [35]–[38]
■ DISTRIBUTED RESAMPLING [32], [40]
■
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| .E N w Nwt
m

t
m

t
m

=^ ^ ^ ^hh h h (7)

This constraint is known as the unbiasedness or proper-weighting 
condition [10].

TRADITIONAL METHODS

Multinomial Resampling
The core idea of multinomial resampling [1] is to generate inde-
pendently N  random numbers, ut

n^ h from the uniform distribution 
on (0, 1] and use them to select particles from .|t  In the nth
selection, the particle xt

m^ h is chosen when the following condition 
is satisfied:

,Q u Qt
m

t
n

t
m1 1 #

-^ ^ ^h h h (8)

where

.Q w
k
m

t
m

t
k

1
=

=

^ ^h h/ (9)

Thus, the probability of selecting xt
m^ h is the same as that of ut

n^ h

being in the interval bounded by the cumulative sum of the 
normalized weights as shown in (8). This sampling scheme sat-
isfies the unbiasedness condition. The pseudocode of the cumu-
lative sum of normalized weights is shown by code 1 in Table 2.

Multinomial resampling (see code 3 in Table 2) is also referred 
to as simple random resampling. Since the sampling of each par-
ticle is random, the upper and lower limits of the number of 
times a given particle is resampled are zero (not sampled) and Nt

(sampled Nt  times), respectively. This yields the maximum vari-
ance of the resampled particles.

[TABLE 2] PSEUDOCODES OF MULTINOMIAL, STRATIFIED, SYSTEMATIC, RESIDUAL, BRANCH-KILL, AND ROUNDING-COPY RESAMPLING.

Code 1: Cumulative sum of normalized weights.

Q( )
t
m

m
M

1=6 @" ,  = CumulativeSum w( )
t
m

m
M

1=6 @" ,

Q w( ) ( )
t t
1 1=

FOR :m M2=
Q Q w( ) ( ) ( )

t
m

t
m

t
m1= +-

END

Code 2: Deterministic replication of particles.

,x N( )
t
n

n
N

1 ==u6 @" , Replication ,x N( ) ( )
t
m

t
m

m
M

1=6 @" ,

n 0=
FOR :m M1=

 FOR :h N1 ( )
t
m=

n n 1= +

x x( ) ( )
t
n

t
m=u

 END
END
N n=

Code 3: Multinomial/stratified/systematic resampling.

x( )
t
n

n
N

1 ==u6 @" , Resample , ,x w N( ) ( )
t
m

t
m

m
M

1=6 @" ,

Q( )
t
m

m
M

1 ==6 @" , CumulativeSum w( )
t
m

m
M

1=6 @" ,

n 0=
/Systematic/stratified choice runs: 

m 1=
/Systematic choice runs

~ , /u U N0 10 ^ @
WHILE ( )n N#
/Stratified choice runs

~ , /u U N0 10 ^ @
/Systematic/stratified choice runs

/u u n N0= +
/Multinomial choice runs

~ , ;u U 0 1^ @ m 1=

 WHILE ( )Q u( )
t
m 1

m m 1= +
 END

n n 1= +

x x( ) ( )
t
n

t
m=u

END

Code 4: Residual resampling/residual systematic resampling (RSR).

x( )
t
n

n
N

1 ==u6 @" , Resample , ,x w N( ) ( )
t
m

t
m

m
M

1=6 @" ,

/RSR choice runs
~ , /u U N0 1T ^ @

FOR :m M1=
/Residual choice runs the following two lines

N( )
t
m = Floor N w( )

t
m#^ h

/w w N N( ) ( ) ( )
t
m

t
m

t
m= -t

/RSR choice runs the following two lines
N( )

t
m = Floor N w u 1( )

t
m# T- +^^ hh

/u u N N w( ) ( )
t
m

t
mT T= + -

END

,x N( )
t
n

n
N

t1
t

==u6 @" , Replication ,x N( ) ( )
t
m

t
m

m
M

1=6 @" ,

/Residual choice runs the following four lines
 FOR :m M1=

/ ( )w w N N N( ) ( )
t
m

t
m

t#= -t t

 END
x( )

t
n

n N
N

1t == +u6 @" , (Multinomial)Resample , ,x w N N( ) ( )
t
m

t
m

m
M

t1 -=t6 @" ,

Code 5: Branch-kill/rounding-copy resampling.

x( )
t
n

n
N

1 ==u6 @" , Resample , ,x w Nt
m

t
m

m
M

1 ref=
^ ^h h6 @" ,

FOR :m M1=
/Branch kill choice runs the following five lines

~ , /u U N0 1 ref^ @
N( )

t
m = N wFloor ( )

t
m

ref #^ h

IF ( )N w N u( ) ( )
t
m

t
m

ref# $-

N N 1( ) ( )
t
m

t
m= +

END

/Rounding-copy choice runs
N( )

t
m = N wRound ( )

t
m

ref #^ h

END

,x N( )
t
n

n
N

1 ==u6 @" , Replication ,x N( ) ( )
t
m

t
m

m
M

1=6 @" ,

Note: The different methods are described with different colors, and the black text is common for all of them in each group, except where otherwise stated. Code 3 presents resampling 
methods based on the cumulative sum of the normalized weights (obtained by code 1). Codes 4 and 5 are methods that use deterministic replication (implemented by code 2). All of these 
codes produce resampled particles with equal weights.
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The computational complexity of multinomial resampling is 
of order ,O NM^ h  where the M  factor arises from the search of 
the required m  in (8). It is known that multinomial resampling 
is not efficient [8], and this has motivated a search for faster 
methods. The binary search is explored to execute the search of 
m in (8), which reduces the computational complexity from M
to log M^ h [8]. The variance of the number of times a particle is 
resampled can be reduced by, for example, stratification and 
deterministic sampling.

Stratified/Systematic Resampling
Stratified resampling [7] divides the whole population of particles into 
subpopulations called strata. It prepartitions the (0, 1] interval into N
disjoint subintervals ( , / ] ( / , ] .N N0 1 1 1 1j jg -  The random 

numbers ut
n

n
N

1=
^ h" ,  are drawn independently in each of these subin-

tervals, i.e.,

,~ , , , , ,u U N
n

N
n n N1 1 2t

n
f- =`

^ h B (10)

and then the bounding method based on the cumulative sum of 
normalized weights as shown in (8) is used.

Systematic resampling [7], [8] also exploits the idea of strata 
but in a different way. Now, ut

1^ h is drawn from the uniform dis-
tribution on , / ,N0 1^ @  and the rest of the u  numbers are 
obtained deterministically, i.e.,

~ , ,u U N0 1
t
1

`
^ h B

, , , , .u u N
n n N1 2 3t t

n 1
f= + - =

^ ^h h (11)

The Lengths of the Rectangles Represent
the Weight of the Particles (After Normalization)

0 1

0 1

0 1

0 1

A B C D E
N Arrows,

Uniformly Distributed on (0, 1]

N Arrows, Separately
Distributed in Subintervals

N Arrows, Equidistantly
Distributed in Subintervals

. . .

. . .

. . .

The Distance Between
Any Two Arrows Is Between 0 and 1

The Distance Between
Neighboring Arrows Is Between 0 and 2/N

The Distance Between
Neighboring Arrows Is the Same, 1/N

Multinomial
Resampling

Stratified
Resampling

Systematic
Resampling

Residual Resampling: Sample from the normalized fractions by
using multinomial resampling (proceeded in a separate loop
different to the integer replication).

RSR: Cumulatively add up residuals and sample them by using the
idea of systematic resampling (proceeded in the same loop with the
integer replication).

Branch-kill: If the residual ≥ u~(0, 1/N ],
take it as an integer and replicate it one
time. Otherwise, abandon it.

Rounding-Copy: If the residual ≥ 1/(2N ),
take it as an integer and replicate it once.
Otherwise, abandon it.

Parallel Processing
of Each Particle

Do Not Preserve
Constant Sample Size

A
Residual (<1/N )

Residual resampling,
RSR, branch-kill, and
rounding-copy
replicate the particle based
on the integer parts of each
weight in the same way but
deal with the residual parts
differently.Arrows Are at the Right

Borders of the Subintervals
(i /N, i  = 1...N )

Integer (Corresponding to 1/N )
B

C

D

E

(a)

(b)

[FIG1] A description of the traditional resampling methods. (a) A multinomial, stratified, and systematic resampling based on the 
cumulative sum of the normalized particle weights. The arrows represent sampling locations, and a particle is sampled if it is targeted 
by an arrow. (b) Methods based on residual resampling. They include two parts. The particles from the first part are obtained by 
replicating x Nwt

m
t
m^ ^h h6 @ times if ,Nw 1t

m
$

^ h6 @  and the particles from the second part are generated based on the residual weights.
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Both the stratified and the systematic procedures are presented in 
Table 2. Their complexity is of order ( ) .O N  Note that the system-
atic method is computationally more efficient than the stratified 
method because of the smaller number of random numbers that 
are generated. A visual description of the multinomial, stratified, 
and systematic resampling methods is displayed in Figure 1(a).

The upper and lower limits of the times the mth  particle is 
resampled in the systematic method are N wt

m^ h6 @  and 
,N w 1t

m
+

^ h6 @  respectively, where x6 @ denotes the floor operation 
(the largest integer not exceeding ) .x  By contrast, for stratified res-
ampling, they are ,max N w 1 0t

m
-^ ^ hh6 @  and ,N w 2t

m
+

^ h6 @
respectively, because the variables ut

n
n
N

1=
^ h" ,  are not equidistant, 

and instead u u ut
n

t
n 1T = -
-^ ^h h  for , , ,n N2 3 f=  varies 

between 0 and / .N2  When uT  is close to 0, a particle with a 
very small weight (close to 0 but bigger than )uT  can be res-
ampled twice and when uT  is bigger than / ,N2  a particle 
with weight between /N1  and uT  can be discarded. This 
indicates that the variance of the number of a resampled par-
ticle by the systematic method is smaller than that of the 
stratified method.

Residual Resampling (Remainder Resampling)
Residual resampling [9], [10] consists of two stages. The first is 
a deterministic replication of each particle whose weight is big-
ger than / ,N1  and the second is random sampling using the 
remaining of the weights (referred to as residuals). The code for 
deterministic replication is shown by code 2, where Nt

m^ h repre-
sents the number of times the particle xt

m^ h is replicated in this 
way. With residual resampling, the mth  particle is resampled 
N Rt

m
t
m

+
^ ^h h  times, where Nt

m^ h  and Rt
m^ h  are the numbers of 

replications from the first and second stage, respectively, and 
where .N N wt

m
t
m

=
^ ^h h6 @  The total number of replicated parti-

cles in the first stage is ,NN ( )
t
m

m
M

t 1
=

=
/  and in the second 

stage, .R N Nt t= -  The residual of the weight is obtained from

.w w N
N

t
m

t
m t

m

= -t ^ ^
^

h h
h

(12)

In the second stage, the particles are drawn according to the 
residual weights and by using multinomial resampling (or 
another random sampling method), where the probability for 

selecting xt
m^ h is proportional to the residual weight of that par-

ticle. Residual resampling has two loops taking on the order of 
O M O Rt+^ ^h h time for computing. 

The first stage represents a deterministic replication, and so 
the variation of the number of times a particle is resampled is 
only attributed to the second stage. Thus, the upper and lower 
limits of the number of times that the mth particle is resampled 
are N wt

m^ h6 @ and ,N w Rt
m

t+
^ h6 @  respectively, if the second stage 

is implemented using multinomial resampling. The code of the 
residual resampling method is given by code 4.

VARIATIONS OF TRADITIONAL RESAMPLING
The aforementioned four traditional methods are probably the best 
known and most used. They have been modified in various ways. 
For example, one of them removes the computationally expensive 
multinomial resampling part in residual resampling and imple-
ments resampling in a single loop (see code 4 in Table 2). The 
method is called residual systematic resampling (RSR) [12], [19]. 
RSR accumulates the fractional contributions of each particle in 
the searching sequence until it is large enough to generate a sam-
ple (which is equivalent to the accumulation idea used in system-
atic resampling). Then, no additional procedure is required for the 
residuals. Thus, one can have one iteration loop, and the complex-
ity is of order ( ) .O N

If it is not mandatory to keep the particle size M  constant at 
every time step and instead, the size is allowed to vary, we have 
simple ways of dealing with the particles in parallel and in one loop. 
We describe here two approaches. In the first approach, the num-
ber of replicated particles of xt

m^ h is equal to N Nwt
m

t
m

=
^ ^h h6 @ with 

probability p1 -  or equal to N N w 1t
m

t
m

= +
^ ^h h6 @  with probability 

,p  where .p N w N wt
m

t
m

= -
^ ^h h6 @  This method is called the 

branch-kill procedure [20] or branching [21]. In the second 
approach, Nt

m^ h  is the nearest integer of ,N wt
m^ h  i.e., the rounding 

result of .N wt
m^ h  We refer to this method as rounding-copy resam-

pling [22]. Both methods (see code 5 in Table 2) require no addi-
tional operation and satisfy the unbiasedness condition but 
generate a varying sample size. The upper and lower limits of 
the number of replications of the mth  particle in the branch-
kill, rounding-copy, and RSR methods are all N wt

m^ h6 @ and 
,N w 1t

m
+

^ h6 @  respectively.

[TABLE 3] A COMPARISON OF TRADITIONAL RESAMPLING METHODS (ALL THE RESAMPLED PARTICLES HAVE EQUAL WEIGHTS).

RESAMPLING
METHODS

COMPUTATIONAL
 COMPLEXITY

ABLE TO KEEP
CONSTANT SAMPLE SIZE

NUMBER OF RANDOM
NUMBERS USED

NUMBER OF TIMES A PARTICLE IS REPLICATED

LOWER LIMIT UPPER LIMIT

MULTINOMIAL ( )O NM  (OR ( ))logO N M YES N 0 N

RESIDUAL ( )O M O Rt+ ^ h YES Rt Nwt
m^ h6 @ Nw Rt

m
t+

^ h6 @
STRATIFIED ( )O N YES N ,max Nw 1 0t

m
-^ ^ hh6 @ Nw 2t

m
+

^ h6 @
SYSTEMATIC ( )O N YES 1 Nwt

m^ h6 @ Nw 1t
m
+

^ h6 @
RESIDUAL
SYSTEMATIC

( )O N YES 1 Nwt
m^ h6 @ Nw 1t

m
+

^ h6 @
( )O N NO M Nwt

m^ h6 @ Nw 1t
m
+

^ h6 @
ROUNDING-
COPY

( )O N NO 0 Nwt
m^ h6 @ Nw 1t

m
+

^ h6 @
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A succinct comparison of the properties of the aforemen-
tioned methods is given in Table 3. The computational speeds of 
the methods are presented in [14] and [22].

COMPOUND SAMPLING
The resampling methods addressed so far are based on an 
approach where all the particles are sampled in the same way. This 
entails obtaining relatively similar resampling results. In all of the 
methods, the condition of unbiasedness is satisfied, and the resam-
pled particles are equally weighted. In the following, we describe 
methods where resampling is realized without attempting to sat-
isfy the conditions of unbiasedness and equal-weighting. This may 
entail risks of which the practitioner must be aware.

The compound sampling methods are based on grouping the 
particles by using predefined criteria prior to applying resampling. 
The groups are nonoverlapping, and they represent a partition of 
the whole particle population. The criterion for grouping is usually 
based on weight thresholds so that particles with similar weights 
are put in the same group, and then resampling is performed of 
each group in different ways. The reasons for applying compound 
resampling include decreasing the execution time and preserving 
particle diversity.

Compound resampling has its roots in stratified sampling. We 
will classify the methods based on whether the grouping is per-
formed using a predefined threshold, which is either a constant or 
a function of the weights, or it is based on the particle values. We 
note that particles are often grouped when we implement parallel 
resampling. However, in parallel resampling, the groups are most 
commonly formed just by clustering index-neighboring particles.

THRESHOLD-/GROUPING-BASED RESAMPLING
In this category, particles are placed into different groups based 
on weight thresholds, and one uses different sampling strategies 
for each group to provide more flexibility for resampling. The 
threshold can be dynamic/adaptive or fixed, and there can be 
one or more thresholds.

Dynamic Threshold
The optimal resampling from [24] automatically sets a thresh-
old value ,ct  where ct  is a unique solution of

, ,minN c
w 1

m
M

t

t
m

1
=

=
c

^

m
h

/ (13)

where N  is given, and .N M1  All the particles whose weights 
are above this threshold are entirely preserved rather than repli-
cated. Thus, there are no multiple copies of these particles in 
the final set of N  particles. The other particles are resampled 
with a probability corresponding to their weights and assigned a 
weight .ct  We see that the resampled particles do not have 
equal weights (see code 6). The main advantage of the method is 
that, among the unbiased resampling methods, it is optimal in 
terms of minimizing the squared error-loss function

,wE w
m

M

t
m

t
m

1

2
-

=

/ u^c
^ ^ h m
h h (14)

where wt
mu ^ h  is the new weight of xt

m^ h  when it is resampled; 
otherwise, wt

mu ^ h is equal to zero. The method is appropriate for 
PF that uses increased number of propagated particles, and 
optimal resampling reduces the number to .N M1  A disadvan-
tage of the method is the need for calculating the value of ct  at 
each iteration. Also, the resampled particles may still suffer 
from degeneracy as the variance of the weights remains high.

There are similarities between optimal resampling, rejection 
control (RC) [17] and partial RC (PRC) [11]. In RC, a control 
threshold ct  is computed, which may be a quantity given in 
advance, e.g., the median or a quantile of the weights, and the 
mth  particle is accepted with a probability

p =  min , .c
w1

t

t
m

c
^

m
h

(15)

In PRC, the particles with weights that are greater than or equal 
to ct  are automatically accepted, whereas other particles are 
accepted with probability .p  This can be viewed as a combination 
of the rejection method and importance sampling. An accepted 
particle xt

m^ h  is reweighted with a new weight , ,max c wt t
m^ ^ hh

and the rejected particles are replaced by particles regenerated 
from particles from previous time instances. These two forms of 
RC differ primarily in how far one goes back to regenerate parti-
cles. The RC does it to the earliest time, ,t 0=  while the PRC only 
regenerates particles from time instant t 1-  so that one saves on 
computations. These methods cannot be considered as candidates 
for real-time implementation because they have nondeterministic 
execution time and large memory requirements.

Fixed Threshold
A partial deterministic reallocation approach is proposed in [11] 
based on a fixed threshold, say /N1 , where N  is the desired 
sample size. The mth  particle with a weight larger than / ,N1  is 
replicated N wt

m^ h6 @ (or )N w 1t
m
+

^ h6 @  times, and the weights 

Code 6: Optimal resampling.

,x w( ) ( )
t
n

t
n

n
N

1 ==u u6 @" , (Optimal)Resample , ,x w N( ) ( )
t
m

t
m

m
M

1=6 @" ,

Compute ct  satisfying (13)
;n h0 0= =

FOR :m M1=
IF w c( )

t
m

t$

n n 1= +

;x x( ) ( )
t
n

t
m=u w w( ) ( )

t
n

t
m=u

ELSE
h h 1= +

;A x( ) ( )h
t
m= B w( ) ( )h

t
m=

END
END
N n1 =

x( )
t
n

n N
N

1 == +1
u6 @" ,  (Stratified)Resample , ,A B N N( ) ( )r r

r
h

1 1-=6 @" ,

FOR :n N N11= +

w c( )
t
n

t=u

END
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after resampling are wt
m^ h / N wt

m^ h6 @  (or wt
m^ h / N w 1t

m
+^ ^ hh6 @ )

(this is referred to as particle splitting in the article). The mth
particle with weight smaller than /N1  is sampled with probabil-
ity N wt

m^ h and is weighted as /N1  (see code 7). The resampled 
particles are not equally weighted, and, notably, their weight 
sum is not one (a normalization step is additionally required). 
The sampling method is biased.

To reduce the complexity of hardware realization and the 
required power consumption, resampling is performed on only 
some of the particles. This is the idea behind partial resampling (PR) 
[12]. PR consists of two steps: in the first, the particles are classified 
as moderate, negligible, or dominating; and in the second, different 
resampling strategies are applied to each group of particles. In [17], 
three different resampling functions are proposed for determining 
which particles are resampled/discarded and how to allocate the 
weights, and, to that end, two thresholds are used. To further 
increase the processing speed, the classification of the particles can 
be overlapped with the weight computation (overlapped PR).

Grouping strategies may also be applied to alleviate the 
impoverishment that is practically inevitable in all the resam-
pling methods presented so far. For example, the double system-
atic resampling approach from [25] partitions the particles into 
two groups, in low- and high-weighted particles and where the 
number of particles to be resampled from each group is speci-
fied. In this way, the low-weighted particles are resampled inde-
pendently from the group of high-weighted particles. Obviously, 
this may lead to biased sampling.

There are several other methods from the literature that are 
built on similar ideas. Before their adoption, however, their features 
need to be better understood and firm guidelines for use provided.

RESAMPLING THAT TAKES INTO 
ACCOUNT PARTICLE VALUES
All of the above resampling methods are based on the particle 
weights. A possible way to improve resampling is to exploit the 
particle values (the state information they contain) during res-
ampling. The particle distribution in the state space exhibits 
their diversity and, therefore, is the key for monitoring impov-
erishment. In this category of resampling methods, the parti-
cles are grouped with respect to not only their weights but 
also their values.

Particles in close proximity in values may represent a similar 
state, and, thus, they can be merged to reduce the number of par-
ticles with different values. This is the basis of deterministic resa-
mpling [16], which replaces the second stage of residual 
resampling by merging particles using their residuals. This aims 
at preserving the diversity of the particles so that no particles are 
discarded at all, which is helpful when the number of particles is 
small. Contrary to particle merging, particle splitting replaces a 
particle with a large weight (larger than a threshold) with a set of 
particles with the same values and whose sum of weights is equal 
to the original weight (see Figure 2). Particle merging is imple-
mented before the weight-updating step to reduce the sample size 
to save computation, while particle splitting is applied after 
weight updating as an alternative to resampling to reduce the 
weight variance and to recover the sample size [23]. A main 
disadvantage of these methods is that the dimensionality-free 
property of resampling is destroyed.

Code 7: Reallocation resampling.

,x w( ) ( )
t
n

t
n

n
N

1

*

==u u8 B" , (Reallocation)Resample , ,x w N( ) ( )
t
m

t
m

m
M

1=6 @" ,

n 0=
FOR :m M1=

IF /w N1( )
t
m $

N( )
t
m =Floor N w( )

t
m#^ h(or N( )

t
m =  Floor )N w 1( )

t
m# +^ h

FOR :h N1 ( )
t
m=

n n 1= +

;x x( ) ( )
t
n

t
m=u /w w N( ) ( ) ( )

t
n

t
m

t
m=u

END
ELSE

~ ( , / ]u U N0 1
IFw u( )

t
m $

n n 1= +

;x x( ) ( )
t
n

t
m=u /w N1( )

t
n =u

END
END

END
N n* =

Original Particles Merged Particles Split Particles After Roughening

SplittingMerging SplittingMerging

[FIG2] Particle merging and splitting in a two-dimensional state space. The size of the circles represents the weight of particles.
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COMPARISON OF SEVERAL COMPOUND 
SAMPLING METHODS
We emphasize that the core idea of compound sampling is to 
deal with particles from different groups differently. In Figure 3, 
we provide a succinct overview of different compound sampling 
methods, where the following terms for particles are used:

■ Discarded: Particles that are discarded and not resampled.
■ Preserved: Particles that are preserved with their weights 
being kept unless otherwise stated.
■ Merged: Particles (in a specified space) that are merged to 
one particle with a state value equal to the weighted mean of 
the states of merged particles and with a weight equal to the 
sum of the original weights of the merged particles.
■ Split: A particle that is divided into several copies. The split 
copies have the same state and weight, and their sum of 
weights is equal to the weight of the original particle.

■ Replicated: A particle that is replicated, and each copy has 
the same value as the original particle as well as the same 
weight, unless otherwise stated.
Furthermore, in Table 4, we provide features of some of the com-

pound sampling methods. They include optimal resampling [24], 
(partial) RC [17], reallocation [11], partial resampling [12], deter-
ministic resampling [16], and double systematic resampling [25].

SPECIAL STRATEGIES
As previously mentioned, the key to combating degeneracy 
while avoiding impoverishment by resampling is the introduc-
tion of a compromise between concentration (the replication of 
large-weighted particles) and diversification (the discarding of 
negligible particles). To that end, several strategies have been 
proposed, including modified resampling, variable-size resam-
pling, and roughening.

[FIG3] A comparison of several compound sampling methods. 

Resampling
Methods

Grouping and Sampling Methods Adopted

Benefits Reported Disadvantages

Sampling
Methods (Particles
with Low Weights)

Thresholds
(Defining
Strata)

Sampling Methods
(Particles with High
Weights)

Optimal
Resampling [24] 

Stratified
Sampling

Dynamic, ctWhere ct
Is a Unique Solution
of (13)

Preserved Minimized Squared
Error-Loss Function

Increased
Computational
Intensity

(Partial) RC [17] Replaces Particles
by Regenerating
Them from
Previous Particles

Dynamic, ctWhere ct
May Be a Quantity
Given in Advance or
the Median or a
Quantile of the Weights

Preserved and
Reweighted with a
New Weight
(Reject Sampling) 

Advantageous in
Dealing with
Sudden Changes
in the Dynamic
System

Reallocation [11] Rejection
Sampling

Split 1/N Reduced
ResamplingVariance
(As Compared with
Traditional Resamp-
ling Methods)

Varying
Sample Size

PR [12] (Small
Weight)
Preserved
or
Discarded

Fixed
Threshold 1

(Moderate
Weight)
Preserved
and
Reweighted
with Equal
Weights

Fixed
Threshold 2

(Significant
Weight)
Preserved
and
Reweighted
with Equal
or Different
Weights

Thresholds Need
to Be Carefully
Specified

Reduced
Computational
Complexity

Deterministic
Resampling [16]

Merged 1/N

1/N

Integer Parts (1/N)
Are Replicated and
Residuals Are Merged

Preserved Diversity
of Particles
(Without Discarding
Any Particle)

Sensitive to the
Dimensionality of
the State

Double
Systematic
Resampling [25]

Systematic
Resampling

Systematic
Resampling

Two Independent
Weight Normaliza-
tion and
Resampling

Additional
Computation of (13);
The Sample
Size Decreases

Increased Resam-
pling Flexibility
(Higher Probability
for Drawing
Small-Weighted
Particles)
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In brief, the idea behind modified resampling is to draw parti-
cles from a distribution derived from the weights of the particles. 
The variable-size resampling, as the name suggests, provides a 
different number of samples with time so that a predefined crite-
rion is satisfied (e.g., to reduce computational requirements, one 
uses a smaller number rather than a large number of particles, or 
to improve accuracy of tracking, one draws a larger number of 
particles). Roughening entails perturbing the locations of the res-
ampled particles so that we reduce impoverishment, and, thus, it 
is performed once the resampling is completed. Next, we describe 
each of the strategies in more detail.

MODIFIED RESAMPLING
In generalized resampling [11], particles are resampled accord-
ing to the probabilities .pt

m^ h  The latter are usually equal to the 
particle weights ,wt

m^ h  but more generally, one can draw parti-
cles with probabilities that are functions of the weights, i.e.,

,p wt
m

t
m

?
a

^^ ^ hh h (16)

where .02a  When ,0 11 1a  the low-weighted particles get 
boosted, and the large-weighted particles have suppressed prob-
abilities, and, thereby, the particle diversity improves. By contrast, 

12a  entails increased preference for higher-weighted particles.
Knowledge about the next observation before resampling can 

be implemented via auxiliary weights [18]. In that way, the particles 
that are likely to have higher likelihoods have a better chance of 
surviving. There, the step of generating the auxiliary variable, 
which represents the fitness of the particle, can be viewed as a resa-
mpling step that takes into account both the immediate future and 
present states when carrying out selection. It is an appealing idea to 
fuse the information from the newest observations with the cur-
rent weights while making a decision on the selection of particles.

VARIABLE-SIZE RESAMPLING
The use of a constant number of particles is not always the best 
choice because the complexity of the distributions of interest can 
vary drastically over time. In obtaining the number of particles that 
is both efficient and sufficient for approximating the distribution of 
interest, the underlying idea is to choose a small number of parti-
cles if the distribution is focused on a small part of the state space 
and to adopt a large number of particles if the distribution is much 
more spread out. This is the core rationale of the Kullback–Leibler 
divergence (KLD)-sampling approach [26], which determines the 

needed number of particles based on the KLD between the sample-
based maximum likelihood estimate and a distribution of interest.

The required number N  of particles can be determined so 
that, with the probability ,1 t-  the KLD between the sample-
based maximum likelihood estimate of a desired distribution 
and that distribution is less than a prespecified error bound 
threshold .f  In [26], it is found that

,N q2
1
f

= (17)

where

 ,q F 11 t= -- ^ h (18)

with :F 1- ^ h being the inverse of the cumulative chi-squared dis-
tribution with k 1-  degrees of freedom, and k  the number of bins 
[nonoverlapping (multi)dimensional intervals] used for sorting the 
particles. The value of N  in (17) could be approximately computed 
[26]. In practice, the number of particles for resampling may be 
hard-limited to be not less than a minimum threshold.

Ideally, one would want to use as a desired distribution the 
posterior of the state. In [26], the posterior is approximated by 
the predictive distribution. Theoretically, it is more rigorous and 
flexible to apply (17) during resampling than in sampling, which 
leads to KLD-resampling [27]. There, the particles are resam-
pled one by one until the required amount given by (17) is 
reached. Obviously, the disadvantage of the KLD-based method 
is that the particles need to be sorted out in bins defined on the 
state space, which can be very computationally costly. 

ROUGHENING STRATEGIES
In obtaining an optimal set of particles, instead of designing the 
optimal proposal distribution, one can employ compensation. If 
impoverishment has already occurred after resampling, one 
approach to reducing it is to spread the overcentralized particles 
by roughening or jittering their values. This simply means that we 
add random noise (roughening noise) to the resampled particles. 
The roughening noise is normally Gaussian with zero mean and 
constant covariance. In [1], it is suggested that the noise covari-
ance is diagonal with a standard deviation for a particular state 
component given by ,KDN /d1 xv = -  where D  is the difference 
between the maximum and minimum values of the state compo-
nent, K  is a positive tuning constant chosen by the user, N  is the 
number of particles, and dx  is the dimension of the state. The 
roughening may be applied 1) only at selected steps, 2) only to 
selected particles that are resampled from the same particle, and 

[TABLE 4] THE SPECIAL PROPERTIES OF SEVERAL COMPOUND RESAMPLING METHODS.

BIASED
 SAMPLING

UNEQUAL
WEIGHTED 

VARYING
 NUMBER OF
PARTICLES

STATE
 CONSIDERED UNIQUE/OUTSTANDING HIGHLIGHTS

[11], [12], [17], 
[25] [17], [24], 

[11]: PARTICLE SPLITTING IS APPLIED; THE WEIGHT SUM OF THE RESAMPLED 
PARTICLES IS NOT ONE
[12]: TWO (OR MORE) THRESHOLDS ARE USED

[25]: LOW-WEIGHTED PARTICLES ARE PROTECTED
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3) only in a few dimensions of the state space. Similar ideas for 
diversification can be implemented by using Markov chain Monte 
Carlo (MCMC) sampling. The so-called resample-move algorithm 
from [28] has a move step after the resampling step based on 
MCMC sampling. The move step performs one or more iterations 
on each of the resampled particles, thereby rejuvenating the diver-
sity of particles.

An important alternative to the roughening strategy is the use of 
Gaussian kernels. With the kernels, 
we smooth the posterior density by 
convolving each particle with a diffu-
sion kernel. This is also known as 
regularization, and it amounts to 
replacing the discrete distribution 
defined by the particles and their 
weights with a continuous approxima-
tion [29]. The resampling step is then 
changed to simulations from the continuous distribution, which 
generates a new particle set. All of these approaches produce diversi-
fied copies of the same particles.

PARALLEL PROCESSING
Despite its successful applications, PF often suffers from a heavy 
computational cost, especially when the dimension of the state-
space model is high and the number of used particles has to be 
large. However, the execution of PF can be accelerated through 
parallelization for both offline and real-time processing. An 
important area where parallelized PF also takes place is in sig-
nal processing over networks, where PF operates in parallel at 
the nodes of the network [30]. There, the problems of PF are of 
a different nature than the ones we address here. In this article, 
we focus on describing the parallelization of sequential PF and 
the resampling algorithm.

PARALLEL PROCESSING ARCHITECTURES FOR PF
Parallel hardware devices where PF has been implemented and 
reported in the literature include custom very large-scale integra-
tion (VLSI) chips [31], field-programmable gate arrays (FPGAs) 
[32], multicore processors [33], [34], GP-GPUs [35]–[38], and 
computer clusters/multicomputers [33], [39]. The advantages, dis-
advantages, and potential applications of these platforms for PF 
implementation are shown in Table 5. Hardware implementations 

on VLSI and FPGA result in high-
speed implementation since every 
mathematical function is custom-
ized and implemented in hardware. 
However, VLSI design is very expen-
sive, and, to the best of our know-
ledge, there are no commercial chips 
with implemented PF yet. The num-
ber of floating point units that can be 

executed in parallel on an FPGA is smaller than on state-of-the-art 
GP-GPUs. Also, floating-to-fixed-point conversion is very compli-
cated, and particle filters require a large number of bits in fixed-
point representation. In addition, programming of GPUs is 
simpler than designing hardware for FPGAs. Multicore platforms 
and GP-GPUs are now available on almost every computer so that 
lately we have been witnessing more parallel PF implementations 
on GP-GPUs.

Recently, new chips with embedded multiple processors and 
GP-GPUs have appeared from various companies. They support 
the same programming models as GP-GPUs, including CUDA and 
Open Computing Language (OpenCL). They are intended for 
high-performance embedded applications and have much lower 
power consumption than GP systems. Furthermore, many-core 
chips that have more than 16 processors on a single chip have 
appeared and have started to be used for high-performance 

[TABLE 5] PARALLEL PLATFORMS FOR PF IMPLEMENTATION.

PLATFORM ADVANTAGES DISADVANTAGES APPLICATION
■
FOR SPECIFIC APPLICATION
■

■
■

■ NOT USED YET—SUITABLE 
FOR EXTREMELY LARGE 

FPGA
[32]

■
FOR SPECIFIC APPLICATION

■ LIMITED FLOATING-POINT
CAPABILITIES
■ LONG DESIGN CYCLE AND NEED

HARDWARE DESIGN LANGUAGES

■ PROTOTYPING PLATFORM  
FOR REAL-TIME SYSTEMS

MULTICORE CENTRAL
PROCESSING UNIT
[33], [34]

■ COURSE-GRAINED PARALLELISM 

EASY TO ACCESS AND TO PROGRAM 

■
PROCESSING

■ ACCELERATING SIMULATIONS

GP-GPU
[35]–[37]

■ FINE-GRAINED PARALLELISM  

■

■ EASY TO PROGRAM

■
PROGRAMMING LANGUAGES
SUCH AS CUDA OR OPENCL

■ ACCELERATING SIMULATIONS
AND SOME HIGH-PERFORMANCE
REAL-TIME APPLICATIONS

EMBEDDED GPU ■ PROGRAM IN THE SAME
WAYS AS GP-GPU
■ CANDIDATE FOR PF FOR
EMBEDDED SYSTEMS

■
THAN IN GP-GPU
■
PROGRAMMING LANGUAGES

■ NEW PLATFORMS FOR 
EMBEDDED SYSTEMS SUITABLE  
TO REAL-TIME PERFORMANCE

CLUSTER AND
MULTICOMPUTERS

■ COMPLEX PARTICLE FILTERS  
CAN BE SIGNIFICANTLY
ACCELERATED

■
PROGRAMMING LANGUAGES
SUCH AS OPENMP OR MESSAGE
PASSING INFERENCE

■ ACCELERATING SIMULATIONS

PF OFTEN SUFFERS FROM A
HEAVY COMPUTATIONAL COST, 

ESPECIALLY WHEN THE DIMENSION
OF THE STATE-SPACE MODEL IS

HIGH AND THE NUMBER OF USED 
PARTICLES HAS TO BE LARGE.
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embedded applications. As far as we know, PF has not yet been 
implemented on these embedded platforms.

CHALLENGES
The particle generation and weight updating are computationally 
the most intensive steps and can be implemented in parallel if par-
allel processing hardware is available. Resampling, normalization, 
and computing estimates are inherently sequential, and they limit 
the speedup that can be achieved with parallel processing. An addi-
tional step, called particle allocation, is usually needed for efficient 
parallel implementation. We describe this step with an example. 
Assume that parallel processing is performed using a generic 
architecture with three PEs. Let each PE perform sampling and 
weight computation of an equal number of particles equal to / ,M 3
where /3M  is an integer. After resampling, some particles are rep-
licated, and some are discarded. Now consider a situation where 
all the particles in PE1 and PE3 are discarded, and the majority of 
the particles in PE2 are replicated. When the next observation 
comes, there will be no particles in 
PE1 and PE3 for processing, and 
almost all the processing will occur 
sequentially in PE2, resulting in low 
PE utilization and load imbalance. To 
avoid this situation, particles from 
PE2 need to be redistributed (allo-
cated) to the other PEs so that all the 
PEs have an equal amount of parti-
cles before the next step. The particle 
allocation can be done by sending 
particles and their weights in message-passing architectures or by 
reallocating particles (or their indexes) in the global memory in 
shared-memory architectures. Particle allocation requires addi-
tional time, and, consequently, it affects the speedup.

Major challenges for the parallel implementation of PF include:
■ There might be computationally complex operations in the 
sampling and weight-computation steps, including random 
number generation. Some of these operations might not be 
supported by all processing architectures.
■ Operations such as normalization, computation of output esti-
mates, and computation of cumulative sums in some resampling 
algorithms are sequential and require particles from all PEs.
■ Particle allocation requires frequent communication with 
the global shared memory in shared-memory systems, which 
is a bottleneck. Similarly, the communication between the 
PEs in message-passing systems consumes significant time.
■ Platform-specific challenges are related to the fact that 
every platform requires modifications or implementations 
that are platform specific. For example, design of a hardware 
random number generator is required in FPGA platforms, 
while an efficient parallel software algorithm for random 
number generation is needed for GPUs.

PERFORMANCE METRICS AND TERMINOLOGY
The major objective of parallel implementation is to reduce the exe-
cution time, and the most commonly used metric is speedup [34], 

[35]. We define the execution time of particle filters as the time they 
need to process one observation [31], [32], [36]. The speedup is 
defined as the ratio of the execution time of the best possible serial 
algorithm (on a single processor) to the execution time of the cho-
sen algorithm on a parallel system based on multiple processors. 
The efficiency is defined as the speedup divided by the number of 
processors [33]. System utilization indicates the percentage of 
resources that was kept busy during the execution of a parallel pro-
gram. Communication overhead is defined as the percentage of 
time spent on interprocess communication and all noncomputing 
operations [33]. The degree of parallelism is a measure of the num-
bers of threads of computation that can be carried out simultan-
eously. Data dependencies are the result of precedence constraints 
between operations, and they prevent concurrent execution. For 
example, the degree of parallelism for the weight-computation step 
is equal to the number of particles. A number of papers have been 
devoted to increasing the degree of parallelism and system utiliza-
tion during resampling to decrease execution time.

Other types of performance met-
rics are related to tracking the per-
formance of the parallel particle 
filter. Researchers mainly rely on 
examples to monitor the change of 
the mean square error [32], [34] or 
the effective sample size [33], [40] of 
the parallel versus sequential imple-
mentation of PF. Theoretical work on 
the performance or loss of perform-
ance of PF due to parallel implemen-

tation is still missing. One attempt is made in [45], where the 
analysis of the sample variance of the weights, the distortion of the 
probability measure, and the variance of estimators of a distrib-
uted PF are given. In [33], the mean and standard deviation of the 
log likelihood are calculated to validate that the resampling pro-
cedure does not affect the performance of the particle filter. 

DISTRIBUTED RESAMPLING
Much work has been focused on parallelization of traditional resa-
mpling, referred to as distributed resampling. Two main classes of 
approaches have been applied: 1) the algorithm is modified in a 
way that the result of resampling is not changed in comparison 
with the sequential algorithm, and 2) the algorithm is modified, 
and it has been shown that, mainly through simulations, its paral-
lel implementation provides similar results to the original sequen-
tial resampling. The majority of the algorithmic modifications is 
performed to reduce the communication overhead mainly during 
the particle allocation step.

An example of an algorithm that does not change the result of 
standard resampling is distributed resampling with proportional 
allocation [32]. Here, the resampling step is divided into two steps. 
In the first step, each PE is considered as a particle whose weight 
is the cumulative weight of all the particles of this PE. The resam-
pling is performed only on the cumulative weights to determine 
how many particles each PE needs to generate. Next, local resam-
pling is performed in parallel in each PE. In this way, the degree of 

IF IMPOVERISHMENT HAS
ALREADY OCCURRED AFTER

RESAMPLING, ONE APPROACH
TO REDUCING IT IS TO SPREAD

THE OVERCENTRALIZED
PARTICLES BY ROUGHENING
OR JITTERING THEIR VALUES.
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parallelism for the resampling step is equal to the number of PEs. 
Subsequently, the particle allocation step is performed, in which 
the excess of particles after resampling from some PEs is commu-
nicated or made available to the PEs with the deficiency of parti-
cles. Central (sequential) processing is still needed for the first step 
of resampling, normalization, and computing the output estimate. 
A number of variations of this method have been devised where 
load unbalance and the amount of central processing are reduced. 
The load balancing solution for the 
GP-GPU platform has been proposed 
in [36] using CUDA. All the particles 
are stored in a global GP-GPU mem-
ory, which is a shared memory, and 
writing to it is slow. During the parti-
cle-allocation step, the same repli-
cated particles are written many 
times to the memory. After the par-
ticle allocation, each set of particles 
from the global memory is appor-
tioned to different parallel threads. The optimization performed 
here is architecture (GP-GPU) specific.

The aforementioned methods require some central (sequen-
tial) processing to perform resampling. To further improve the 
speed of resampling, it is desirable to perform local particle alloca-
tion without having a central unit. Localized particle allocation 
produces different results than traditional resampling algorithms, 
but it reduces communication overhead, making it concurrent. In 
localized resampling, only a subset of the particles is exchanged 
between neighboring PEs/threads, and the exchange is preferably 
performed in parallel. The resampling and all the other operations 
are also performed in parallel. Various solutions have been pro-
posed that depend on different parameters, including the number 
of PEs, the number of particles to be exchanged, the types of parti-
cles to be exchanged, and the selection of PEs where the particles 
are sent. Resampling with nonproportional allocation (RNA) [32] 
allows for each PE to perform local resampling and to exchange 
some fixed number of particles with one neighboring PE. The plat-
form where PF was implemented in [32] was an FPGA. RNA-based 
implementation of parallel resampling is carried out in one of the 
first implementations of PF on GP-GPU [37]. In other implemen-
tations, one or several of the largest particles are exchanged with 
neighboring PEs. As an example, [38] presents a GP-GPU imple-
mentation where local sorting is performed to order the particles 
that are being exchanged. In [40], a method is proposed for finding 
the optimal portion of particles for exchange between adjacent 
PEs and for achieving the mixing of the posterior distributions 
among the adjacent PEs, so as to preserve particle diversity.

NORMALIZATION-FREE RESAMPLING 
Serial computation and global communication are inevitable in 
weight normalization, and, therefore, alternatives that are free of 
normalization become attractive. In this category, resampling is 
performed free of weight normalization, differing from all the res-
ampling methods presented so far. In brief, the particles are (re-)
sampled based on their relative magnitude of the (nonnormalized) 

weights, e.g., the ratios between the weights globally, or the abso-
lute weight comparison between local neighboring (two or three) 
particles. The former is globally unbiased sampling, while the lat-
ter is local sampling that is almost surely biased.

Ratios Between Weights
Metropolis [38] and independent Metropolis–Hastings sampling [39] 
require only ratios between weights that do not need to be normal-

ized and therefore threads can process 
in parallel, see code 8, for example. 
The solution presented in [38] 
addresses GP-GPU implementation 
where the amount of parallel compu-
tational resources is abundant, and it 
stresses that even though Metropolis 
sampling is more computationally 
intensive than traditional resampling 
algorithms, it is as fast on a GP-GPU 
because there are no dependent opera-

tions on the weights. There, sampling from ,U M1 f^ h returns a 
value randomly selected from the set { , , } .M1 f

Code 8 is an iterative process of sampling based on con-
structing a Markov chain. More specifically, it uses a Metropolis–
Hastings move step for searching in a particle set for a particle 
with a large weight to replace the current particle. The depth of 
the search (burn-in) is denoted by .B  It is desirable that the 
number of times a particle is sampled is proportional to its 
weight. As in most MCMC algorithms, deeper searching will 
provide better results (closer to the desired distribution).

The selection of B  is a tradeoff between speed and reliability. 
While runtime is reduced with fewer steps, the sample will be 
biased if B  is too small to ensure convergence. Similarly, a num-
ber of additional particles for burn-in (the time during which the 
Markov chain is in a transient state) is needed. The particles that 
are generated in the burn-in period are discarded. A disadvantage 
of this method is that, in most cases, it is difficult to estimate the 
required burn-in period.

Local Neighbor-Comparison Methods
Now, we consider more straightforward local methods that include 
local Monte Carlo [10] and Local Selection (LS) methods [41]. The 

Code 8: Metropolis resampling.

,x w( ) ( )
t
m

t
m

m
M

1 ==u u6 @" ,  (Metropolis)Resample , ,x w B( ) ( )
t
m

t
m

m
M

1=6 @" ,

FOR :m M1=  (can be in parallel)
k m=
FOR :n B1=

~ ( , ];u U 0 1 ~ { , , }l U M1 f
IF /u w w( ) ( )

t
l

t
k#

k l=
END

END
;x x( ) ( )

t
m

t
k=u /w M1( )

t
m =u

END

SERIAL COMPUTATION AND 
GLOBAL COMMUNICATION
ARE INEVITABLE IN WEIGHT

NORMALIZATION, AND, 
THEREFORE, ALTERNATIVES THAT

ARE FREE OF NORMALIZATION
BECOME ATTRACTIVE.
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local methods consist of randomly sampling a particle from a small 
set of successive particles, where the sampling is based only on the 
weights of the particles in the set. The resampled particles preserve 
their weights. Assume, for simplicity, that the number of PEs K  is 
equal to the number of particles M  (if ,K M1  particles allocated 
to the same PE are processed serially), and the mth  PE contains a 
particle ,x wt

m
t
m^ ^h h" , in its memory, where wt

m^ h is not normal-
ized. Before the parallel resampling, a communication step is 
required, where the mth  PE transmits its particle to its two neigh-
boring PEs. Then, each PE contains three particles, and the LS res-
ampling can be realized as by code 9. 
For consistency of description, note 
that w( )

t
0  refers to ,w( )

t
M  while w( )

t
M 1+

refers to .w( )
t
1

Obviously, the number of replica-
tions of each particle in LS is very lim-
ited in local groups and is maximally 
three. This can cause a biased result, especially if high-weighted par-
ticles are next to each other. Then, some of them will be discarded 
and the performance will be degraded.

We note that although weight normalization is avoided in these 
normalization-free resampling approaches, it is still necessary for 
computing the filtering estimates.

OTHER TYPES OF PARALLELIZATION OF PF
We reiterate that the resampling process represents a bottleneck 
in parallel implementations. For this reason, there have been 
efforts to develop PF methods that do not require resampling [see 
first item below] and overlap the operations of multiple PF or the 
steps of the same PF so that all the operations are sequential but 
are executed concurrently (second and fourth items below). More 
specifically, these efforts include the following:

1) Removing the resampling step from PF, such as in nonres-
ampling PF detector [42] and Gaussian PF (GPF) [43], which 
are resampling-free.
2) Running several PFs independently on separate processors 
or a set of agents in a distributed network [30]. Some or all of 

the agents perform local PF and interact with other agents to 
calculate a global state estimate. These decentralized agent 
networks do not include a central unit.
3) Decomposing the state into two parts and considering the 
filtering problem as two nested subproblems. These two 
problems are then handled by separate PFs. This is also 
referred to as decentralized PF [44].
4) Pipelining the sampling and resampling: when a particle is 
resampled, it processes the sampling (particle propagation 
and weight updating) ahead that does not need to wait for 

other particles, i.e., the sampling in 
the next iteration will be produced 
before the resampling is finished.

Before concluding the subsec-
tion on parallel processing, we list 
some topics for further research on 
it. They include:

■ Applying PF to real-world applications by implementing 
them on embedded multicore, embedded GPUs, and many-
core chips and guaranteeing real-time performance (for exam-
ple, current GPUs do not incorporate hard real-time features).
■ Deriving optimization criteria that allow for evaluation of 
the quality of the localized distributed resampling algo-
rithms versus sequential traditional resampling algorithms. 
Evaluating the practical benefit of parallel processing in 
terms of not only computing speed but also filtering accu-
racy. Some initial comparisons of parallel implementations 
of resampling that offer theoretical analysis and simulations 
are available. For example, analysis of resampling via RNA 
and LS in terms of reduction of the sample variance of the 
weights, the distortion of the probability measure, and the 
variance of estimators is given in [45].
■ Devising new parallel algorithms for specific architec-
tures—for example, communication is very expensive in GP-
GPUs, and therefore, one research direction is deriving 
algorithms with reduced communication between the PEs 
that can even be more computationally intensive.

FREQUENCY OF RESAMPLING
The benefits of resampling are accompanied with potential side 
effects such as sample impoverishment and prevention of parallel 
processing as explained above. Thus, resampling should only be 
applied when necessary and therefore it is important to have a 
method for determining how frequently or when to implement res-
ampling. Two schedules for resampling have been proposed: deter-
ministic and adaptive. In a deterministic schedule, one does 
resampling at fixed times ,t1 ,t2 ,f  where ti  is often chosen to be 

.i t1#  In an adaptive schedule, the times at which resampling 
occurs are selected by checking a criterion that assesses the quality 
of the current weights. In that case, whenever the criterion for 
quality is below a given threshold, the resampling step is triggered. 
This tends to produce better performance of PF than deterministic 
scheduling due to its flexibility.

As a key to adaptive schedules, the criterion for implement-
ing resampling is usually based on the variation of the weights, 

Code 9: Local selection resampling.
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THE RESAMPLING PROCESS
REPRESENTS A BOTTLENECK IN
PARALLEL IMPLEMENTATIONS.
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which reflects the degree of weight degeneracy. One such criter-
ion is the effective sample size (ESS) Neff  defined by [46]

,N
w

M
1 Var

, *t
t

eff =
+ ^ h

(19)

where w*
t  is a nonnormalized weight, and the variance is com-

puted with respect to the sampling distribution. Typically, 
obtaining Neff  from (19) is impossible [46]. Instead, one may 
employ the rule of thumb estimate given by

.N w, m
M

t t
m 2

1

1
eff = =

-
^` ^ h jh/ (20)

An application of the Cauchy–Schwarz inequality leads to 
the (intuitive) conclusion that .N M,teff #  It is also clear that 

.N M1 ,teff# #  Resampling occurs when the ESS falls below a 
selected threshold, r .c  If rc  is set to ,0rc =  resampling never 
takes place, and ,Mrc =  meaning that resampling occurs at 
every time step. Several different criteria to calculate the ESS 
have also been proposed; see, e.g., [8], [47], and [48]. It is neces-
sary to note that criteria based on (20) are primarily used in 
tracking low-dimensional states. In high-dimensional problems, 
other metrics may be more appropriate.

CONCLUSIONS
In this article, the state of the art of resampling methods was 
reviewed. The methods were classified and their properties were 
compared in the framework of the proposed classifications. The 
emphasis in the article was on the classification and qualitative 
descriptions of the algorithms. The intention was to provide 
guidelines to practitioners and researchers.

Some final comments:
■ The resampling methods can hardly output much differ-
ent results if they satisfy the unbiasedness condition, pre-
serve a constant number of particles, and equally weight the 
resampled particles.
■ If these restrictions are removed, some benefits may be ob-
tained, e.g., adaptive adjustment of the number of particles, pres-
ervation of particle diversity, and alleviation of impoverishment.
■ Compound sampling and special strategies, such as 
modified resampling and variable-size resampling, and 
compensations after resampling provide more flexibility. 
They balance the necessity for diversity and the need for 
concentration that lies in the center of sample degeneracy 
and impoverishment. They may offer better approximation 
and benefits in practice, but often at the price of higher 
computational costs.
■ The normalization of weights and load imbalance of parti-
cles after resampling are main barriers for parallelization of 
resampling. Ways to carry out normalization, to output filter 
estimate, and to manage communication between PEs distin-
guish existing parallel PF algorithms.
■ An issue that we have not discussed is the theoretical 
effects of resampling on the convergence of the PF esti-
mates. The resampling step is crucial for uniform conver-
gence results, and some recent theoretical results on this 

and related to deterministic and random resampling can be 
found in [49].
■ The research on the resampling of particle filters is going 
in multiple directions:

implementation specific
– simplifying resampling algorithms for real-time 
implementation
– adjustment of the algorithms to specific hardware/
processing architectures
– parallelization of the resampling
– application and acceleration of resampling to non–
PF-based problems such as importance sampling and 
the forward-backward algorithm [50]
theoretical analysis
– analysis of the features of resampling algorithms 
without considering them as a part of PF
– analysis of the effects of different resampling algo-
rithms on the PF convergence and accuracy of tracking.
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[43] J. Kotecha, and P. M. Djurić, “Gaussian particle filtering,” IEEE Trans. Signal 
Processing, vol. 51, no. 10, pp. 2592–2601, 2003.

[44] T. Chen, T. B. Schön, H. Ohlsson, and L. Ljung, “Decentralized particle filter 
with arbitrary state decomposition,” IEEE Trans. Signal Processing, vol. 59, no. 2,
pp. 465–478, 2011.

[45] J. Míguez, “Analysis of parallelizable resampling algorithms for particle filter-
ing,” Signal Process., vol. 87, no. 12, pp. 3155–3174, 2007.

[46] A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputations and Bayesian 
missing data problems,” J. Amer. Statist. Assoc., vol. 9, no. 425, pp. 278–288,
1994.

[47] N. Celik and Y.-J. Son, “State estimation of a shop floor using improved resampling 
rules for particle filtering,” Int. J. Prod. Econ., vol. 134, no. 1, pp. 224–237, 2011.

[48] A. A. Nasir, S. Durrani, and R. A. Kennedy, “Particle filters for joint timing 
and carrier estimation: Improved resampling guidelines and weighted Bayesian 
Cramér-Rao bounds,” IEEE Trans. Commun., vol. 60, no. 5, pp. 1407–1419, May
2012.

[49] R. Douc and E. Moulines, “Limit theorems for weighted samples with applica-
tions to sequential Monte Carlo,” Ann. Stat., vol. 36, no. 5, pp. 2344–2376, 2008.

[50] P. Fearnhead, “Computational methods for complex stochastic systems: A review 
of some alternatives to MCMC,” Stat. Comput., vol. 18, no. 2, pp. 151–171, 2008.

[SP]

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


Digital Object Identifier 10.1109/MSP.2014.2352673

Date of publication: 6 April 2015

T
he problem of phase retrieval, i.e., the recovery of a function given the magnitude of its 
Fourier transform, arises in various fields of science and engineering, including electron 
microscopy, crystallography, astronomy, and optical imaging. Exploring phase retrieval in 
optical settings, specifically when the light originates from a laser, is natural since optical 
detection devices [e.g., charge-coupled device (CCD) cameras, photosensitive films, and 

the human eye] cannot measure the phase of a light wave. This is because, generally, optical measure-
ment devices that rely on converting photons to electrons (current) do not allow for direct recording 
of the phase: the electromagnetic field oscillates at rates of ~1015 Hz, which no electronic measure-
ment device can follow. Indeed, optical measurement/detection systems measure the photon flux, 
which is proportional to the magnitude squared of the field, not the phase. Consequently, measuring 
the phase of optical waves (electromagnetic fields oscillating at 1015 Hz and higher) involves additional 
complexity, typically by requiring interference with another known field, in the process of holography. 

Interestingly, electromagnetic fields do have some other features that make them amenable for algo-
rithmic phase retrieval: their far field corresponds to the Fourier transform of their near field. More spe-
cifically, given a mask that superimposes an image on a quasi-monochromatic coherent field at some 
plane in space, the electromagnetic field distribution at a large enough distance from that plane is given 
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by the Fourier transform of the image multiplied by a known qua-
dratic phase factor. Thus, measuring the far field, magnitude, and 
phase would facilitate recovery of the optical image (the wave 
field). However, as noted before, the optical phase cannot be 
directly measured by an electronic detector. Here algorithmic 
phase retrieval comes into play, offering a means for recovering 
the phase given the measurement of the magnitude of the optical 
far field and some prior knowledge. 

This review article provides a contemporary overview of 
phase retrieval in optical imaging, linking the relevant optical 
physics to the signal processing methods and algorithms. Our 
goal is to describe the current state of the art in this area, iden-
tify challenges, and suggest future directions and areas where 
signal processing methods can have a large impact on optical 
imaging and on the world of imaging at large with applications 
in a variety of fields ranging from biology and chemistry to 
physics and engineering.

HISTORICAL BACKGROUND
Algorithmic phase retrieval offers an alternative means for recov-
ering the phase of optical images without requiring sophisticated 
measuring setups as in holography. These approaches typically 
rely on some advanced information to facilitate recovery. In 1952, 
Sayre envisioned, in the context of crystallography, that the phase 
information of a scattered wave may be recovered if the intensity 
pattern at and between the Bragg peaks of the diffracted wave is 
finely measured [1]. In crystallography, the material structure 
under study is usually periodic (a crystal); hence, the far-field 
information contains strong peaks reflecting the Fourier trans-
form of the usually periodic information. Measuring the fine fea-
tures in the Fourier transform enabled the recovery of the phase 
in some simple cases. In 1978, 26 years later, Fienup developed 
algorithms for retrieving phases of two-dimensional (2-D) images 
from their Fourier modulus and constraints such as nonnegativ-
ity and a known support of the image [2] (see Figure 1). 

In the early 1980s, the idea of phase retrieval created a flurry 
of follow-up work, partly because those times signified great hope 

for realizing an optical computer, of which phase retrieval was 
supposed to be a key ingredient. However, in the late 1980s and 
early 1990s, with the understanding that an optical computer is 
unrealistic, the interest in algorithmic phase retrieval diminished. 
Toward the end of the millennium, optical phase retrieval started 
to come back into contemporary optics research with the interest 
arising from a completely different direction: the community of 
researchers experimenting with X-ray imaging, where new X-ray 
sources (undulators and synchrotrons) were developed. The wide-
spread interest in this field was mainly generated by the first 
experimental recording and reconstruction of a continuous diffrac-
tion pattern (Fourier magnitude squared) of a noncrystalline (non-
periodic) test object by Miao et al. in 1999 [3]. 

The reasons for the revival of optical phase retrieval in 1999 
were actually quite subtle. One goal of optical imaging systems 
is to increase resolution, i.e., to image smaller and smaller fea-
tures. However, as proved by Abbe’s work in 1873, the highest 
attainable resolution in diffraction imaging (the so-called dif-
fraction limit) is comparable to the wavelength of the light. For 
visible light, this diffraction limit corresponds to fractions of 
microns. Consequently, features on the molecular scale cannot 
be viewed with visible light in a microscope. One could argue 
then, why not simply use electromagnetic waves of a much 
shorter wavelength, say, in the hard X-ray regime, where the 
wavelength is comparable to atomic resolution? The reason is 
that lens-like devices and other optical components in this spec-
tral region suffer from very large aberrations and are very diffi-
cult to make because refractive indices of materials in this 
wavelength regime are close to one. On the other hand, algo-
rithmic phase retrieval is of course not limited by the quality of 
lenses; however, it requires very low noise detectors. 

An additional problem is that as resolution is improved (i.e., as 
voxel elements in the recovered image are smaller in size), the 
number of photons per unit area must obviously increase to pro-
vide a reasonable signal-to-noise ratio (SNR). This means that the 
required exposure time to obtain a given signal level must 
increase as ( / ) ,d1 4  with d  being the resolution length, assumed 

(a) (b) (c)

[FIG1] A numerical 2-D phase-retrieval example adapted from Fienup’s 1978 paper [2]: (a) test object, (b) Fourier magnitude, and 
(c) reconstruction results [using hybrid input-output (HIO)—see Figure 3(b) for details]. (Images used with permission from [2].)
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to be larger than atomic scales [4]. This, in turn, creates another 
problem: X-ray photons are highly energetic. The atomic cross sec-
tion for photoabsorption is usually much higher than for elastic 
scattering, meaning that for every photon that contributes to the 
diffraction pattern (the measured Fourier magnitude), a consider-
able greater number of photons are absorbed by the sample. This 
energy dissipates in the sample first by photoionization and the 
breakage of chemical bonds, followed by a cascade of collisional 
ionization by free electrons and, at longer timescales, a destruction 
of the sample due to radiolysis, heating, or even ablation of the 
sample. Such radiation damage hinders the ability to recover the 
structure of molecules: the measured far-field intensity (Fourier 
magnitude) would reflect the structural damages, rather than pro-
viding information about the true molecular structure. 

A solution to this problem was suggested by Solem and Chap-
line in the 1980s. They proposed to record images with pulses that 
are shorter than the timescale for the X-ray damage to occur. They 
predicted that picosecond pulses would be required to image at 
nanometer-length scales [5]. Toward the late 1980s, with the 
growing promise in constructing X-ray lasers that generate ultra-
short pulses on the femtosecond scale, it was suggested that such 
pulses could even outrun damage processes at atomic length 
scales [6]. However, forming a direct image in this way would still 
require high-quality optical components (lenses and mirrors) in 
the X-ray regime, which do not currently exist. This is because 
creating lenses for the hard X-ray wavelength regime requires fab-
rication at picometer resolution, much smaller even than the 
Bohr radius of atoms. Likewise, while mirrors for X-rays do exist, 
their best resolution is on the scale of many nanometers, much 
larger than the features one would want to resolve in the imaging 
of molecules, for example. 

The difficulties outlined earlier in direct X-ray imaging leave no 
choice but to use alternative methods to recover the structure of 
nanometric samples. Here is where phase retrieval can make its 
highest impact. Placing an area detector far enough from the sam-
ple to record the far-field diffraction intensity (which is approxi-
mately proportional to the squared magnitude of the Fourier 
transform of the image if the coherence length of the X-ray wave is 
larger than the sample size [7], [145]), together with appropriate 
constraints on the support of the sample, enable the recovery of the 
image at nanometric resolution. Indeed, the phase information has 
been shown numerically and experimentally to be retrieved in this 
fashion in various examples [2], [8]–[12]. 

The combination of X-ray diffraction, oversampling, and phase 
retrieval has launched the currently very active field called coherent 
diffractive imaging (CDI) [3]. In CDI, an object is illuminated with a 
coherent wave and the far-field diffraction intensity pattern (corre-
sponding to the Fourier magnitude of the object) is measured. The 
problem then is to recover the object from the measured far-field 
intensity (see “Coherent Diffractive Imaging” and Figure S1). Since 
its first experimental demonstration, CDI has been applied to image 
a wide range of samples using synchrotron radiation [13]–[15], 
X-ray free-electron lasers (XFELs) [16], [17], high harmonic genera-
tion [18]–[20], soft X-ray laser [21], optical laser [22], and electrons 
[23], [24]. Recent reviews on the development and implementation 

of phase-retrieval algorithms for the specific application of CDI were 
written by Marchesini [9], Thibault and Elser [25], and Nugent [26]. 
Presently, one of the most challenging problems in CDI is three-
dimensional (3-D) structural determination of large protein mole-
cules [6]. There has been ongoing progress toward this goal over the 
past decade; see, e.g., [16], [17], [27], and [28]. 

Another research field where phase retrieval plays an important 
role is astronomy, where the objects are usually distant stars, 
which are optically incoherent sources. In such cases of incoherent 
waves, the phase is stochastic; hence, the optical signal is the 

COHERENT DIFFRACTIVE IMAGING
In the basic CDI setup (forward scattering), an object is 
illuminated by a quasi-monochromatic coherent wave 
and the diffracted intensity is measured (Figure S1). 
When the object is small and the intensity is measured far 
away, the measured intensity is proportional to the mag-
nitude of the Fourier transform of the wave at the object 
plane with appropriate spatial scaling. 

In optics terms, when the Fresnel number is small 
( ( / ) ,N a d 1F

2 11m=  where a  is a radius confining the 
object in the object plane, d  is the distance between the 
object and the measured intensity plane, and m  is the wave-
length of the light), the relationship between the measured 
intensity Iout  and the wave at the object plane Ein  is given 
by [37] 

( , ) ( , )I x y E d
x

d
y 2

out in?
m m

t

with { }E EFin in=t  and F  denoting the Fourier trans-
form. Once the far-field intensity is measured, the goal 
is to recover Ein  (which is equivalent to recovering the 
object) from .Iout  This requires solving the phase-
retrieval problem, which is attempted using an algo-
rithm such as the ones described in this article.

Far-Field Diffraction Intensity

Object

Coherent

Wave

[FIGS1] A forward-scattering CDI setup: a coherent wave 
diffracts from an object (the sought information) and 
produces a far-field intensity pattern corresponding to 
the magnitude of the Fourier transform of the object.
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intensity of the light (amplitude of 
the complex field squared). This has 
important implications on algorith-
mic phase retrieval in terms of the 
assumptions that can be made on the 
signal (e.g., nonnegativity). One appli-
cation of phase retrieval in astronom-
ical measurements is for adaptive 
optics-based aberration correction, 
caused either by atmospheric turbu-
lence or by imperfections in the opti-
cal imaging system [29]–[31]. Phase retrieval is also used in 
speckle interferometry [32], [33], a method to obtain information 
and later images [34], [35] beyond the diffraction limit of the (tele-
scopic or alike) imaging system. As phase retrieval plays a major 
role in astronomy, there exist several detailed reviews from this 
perspective [31], [33], [36]. 

From a theoretical and algorithmic point of view, phase 
retrieval is a difficult problem, in many cases lacking a unique 
solution. Furthermore, even with the existence of a unique solu-
tion, there is not necessarily a guarantee that it can be found algo-
rithmically. Nevertheless, as reasoned earlier, phase-retrieval 
algorithms and applications have benefited from a surge of 
research in recent years, in large part due to various new imaging 
techniques in optics. This trend has begun impacting the signal 
processing community as well—the past few years have witnessed 
growing interest within this community in developing new 
approaches to phase retrieval by using the tools of modern optimi-
zation theory [38], [39]. More recent work has begun exploring 
connections between phase retrieval and structure-based informa-
tion processing [40]–[45]. For example, it has been shown that, by 
exploiting the sparsity of many optical images, one can develop 
powerful phase-retrieval methods that allow for increased resolu-
tion considerably beyond Abbe’s diffraction limit, resolving fea-
tures smaller than one-fifth of the wavelength [45]. The 
relationship between the fields of sparsity and optical imaging has 
led to an important generalization of the basic principles of spar-
sity-based reconstruction to nonlinear measurement systems [41], 
[44], [46]–[53]. Here too, optics played an important role in signal 
processing: since the phase-retrieval problem is inherently nonlin-
ear (i.e., the signal is related to the measurements nonlinearly), 
employing sparsity-based concepts in phase retrieval required 
modifications to the linear sparsity-based algorithms known from 
the field of compressed sensing [54]. We believe that this field will 
grow steadily in the next few years, with rapid development of 
coherent X-ray sources worldwide [55], [56] and more researchers 
contributing to the theory, algorithms, and practice of nonlinear 
sparse recovery. 

MATHEMATICAL FORMULATION

PROBLEM FORMULATION
Consider the discretized one-dimensional (1-D) real-space distri-
bution function of an object: x CN!  (extension of the formula-
tion to higher dimensions is straightforward). In CDI, for 

example, this corresponds to the 
transmittance function of the object. 
The fact that x  is generally complex 
corresponds physically to the fact 
that the electromagnetic field ema-
nating from different points on the 
object has not only magnitude but 
also phase (as is always the case, for 
example, when 3-D objects are illu-
minated and light is reflected from 
points at different planes). The 1-D 

discrete Fourier transform (DFT) of x  is given by 

[ ] [ ] , , , , .X k x n e k N0 1 1
n

N
j N

kn

0

1
2 f= = -r

=

-
-/ (1)

The term oversampled DFT used in this article will refer to an M
point DFT of x CN!  with M N2

[ ] [ ] , , , , .X k x n e k M0 1 1
n

N
j M

kn

0

1
2 f= = -r

=

-
-/ (2)

The recovery of x  from measurement of X  can be achieved 
by simply applying the inverse-DFT operator. Writing [ ]X k =
| [ ] | ,X k e· [ ]j kz  the Fourier phase-retrieval problem is to recover x
when only the magnitude of X  is measured, i.e., to recover [ ]x n
given [ ] .X k  Since the DFT operator is bijective, this is equivalent 
to recovering the phase of [ ],X k  i.e., [ ]kz —hence the term phase 
retrieval. Denote by xt  the vector x  after padding with N 1-  zeros. 
The autocorrelation sequence of xt  is then defined as 

[ ] , ( ), , .g m x x m N N1 1
{ , }max

i
i m

N

i m
1 1

f= =- - -
= +

-t t/ (3)

It is well known that the DFT of [ ],g m  denoted by [ ],G k  satisfies 
[ ] [ ] .G k X k 2=  Thus, the problem of recovering a signal from 

its Fourier magnitude is equivalent to recovering a signal from its 
autocorrelation sequence. 

Continuous phase retrieval can be defined similarly to its dis-
crete counterpart as the recovery of a 1-D signal ( )f x  from its con-
tinuous Fourier magnitude

.| ( ) | | ( ) ( ) |expF f x j x dx2
R

o ry= -#

Many objects of interest, such as electromagnetic fields, are 
usually described by continuous functions. However, since the 
data acquisition is digitized (by CCD cameras and alike), and 
the processing is done digitally, we mostly treat the discrete 
case here. 

The Fourier phase-retrieval problem is as a special case of the more 
general phase-retrieval problem, where we are given measurements 

| , | , , , ,y k M1a xk k
2 fG H= = (4)

with ak  denoting the measurement vectors. In discrete 1-D Fou-
rier phase retrieval, the measurement vectors correspond to 

.[ ]n ea ( )/kn M
k

j2= r-  For mathematical analysis, it is often easier to 

THE RELATIONSHIP BETWEEN
THE FIELDS OF SPARSITY AND

OPTICAL IMAGING HAS LED TO
AN IMPORTANT GENERALIZATION

OF THE BASIC PRINCIPLES OF
SPARSITY-BASED RECONSTRUCTION

TO NONLINEAR MEASUREMENT
SYSTEMS.
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treat the case where the measurements are random (i.e., ak  are 
random vectors), as this allows uniqueness guarantees that are 
otherwise hard to obtain [38], [50], [57]–[59]. Nevertheless, more 
structured measurements have also been investigated [60]. 

Before proceeding to the mathematical methodology, it is 
important to highlight the significance of knowing the Fourier 
phase. In fact, it is well known that knowledge of the Fourier phase 
is crucial in recovering an object from its Fourier transform [61]. 
Many times the Fourier phase contains more information than the 
Fourier magnitude, as can be seen in the synthetic example shown 
in Figure 2. The figure shows the result of the following numerical 
experiment: two images (that of a cameraman and a woman named 
Lenna) are Fourier transformed. The phases of their transforms are 
swapped and, subsequently, they are inverse Fourier transformed. 
It is evident, for this quite arbitrary example, that the Fourier phase 
contains a significant amount of information about the images. In 
crystallography, this phenomenon is the source of genuine concern 
of phase bias of molecular models (such as those used in molecular 
replacement) in refined structures.

In the remainder of this section, we discuss uniqueness of the 
phase-retrieval problem, i.e., under what conditions the solution 
to the phase problem is unique. It is worth noting that, while the 
discussion of theoretical uniqueness guarantees is important and 
interesting, the lack of such guarantees does not prevent practi-
cal applications from producing excellent reconstruction results 
in many settings. 

UNIQUENESS 

FOURIER MEASUREMENTS
The recovery of a signal from its Fourier magnitude alone, in general, 
does not yield a unique solution. This section will review the main 
existing theoretical results regarding phase-retrieval uniqueness. 

First, there are so-called trivial ambiguities that are always 
present. The following three transformations (or any combination 
of them) conserve Fourier magnitude: 

1) global phase shift: [ ] [ ] ·x n x n e j 0& z

2) conjugate inversion: [ ] [ ]x n x n& -

3) spatial shift: .[ ] [ ]x n x n n0& +

Second, there are nontrivial ambiguities, the situation of 
which varies for different problem-dimensions. In the 1-D setting, 
there is no uniqueness—i.e., there are multiple 1-D signals with 
the same Fourier magnitude. Even if the support of the signal is 
bounded within a known range, uniqueness does not exist [62]. 
Any pair of 1-D signals having the same autocorrelation function 
yields the same Fourier magnitude, as the two are connected by a 
Fourier transform. Consider, for example, the two vectors 

[ ]1 0 2 0 2u T= - -  and .[( ) ( )]1 3 0 1 0 1 3v T= - +  Both of 
these vectors have the same support and yield the same autocorre-
lation function .[ ] [ , , , , , , , , ]g m 2 0 2 0 9 0 2 0 2= - -  Therefore, 
they are indistinguishable by their Fourier magnitude, even 
though they are not trivially equivalent. 

For higher dimensions (2-D and above), Bruck and Sodin [63], 
Hayes [64], and Bates [65] have shown that, with the exception of a 
set of signals of measure zero, a real d 2$  dimensional signal with 
support [ ],N NN d1f=  i.e., , ,[ ]x n n 0d1 f =  whenever n 0k 1
or n Nk k$  for , ,k d1 f=  is uniquely specified by the magnitude 
of its continuous Fourier transform, up to the trivial ambiguities 
mentioned earlier. Furthermore, the magnitude of the oversam-
pled M  point DFT sequence of the signal, with 2 1M N$ -

(where the inequality holds in every dimension), is sufficient to 
guarantee uniqueness. The problematic set of signals that are not 
uniquely defined by their Fourier magnitudes are those having a 
reducible Z transform: denoting the d-dimensional Z  transform of 
x  by ( , , ) , , ,[ ]xX z z n n z z

n nd d
n

d
n

1 1 1
d

d1f g f g= - -

1
/ / ( )X z

is said to be reducible if it can be written as ( ) ( ) ( ),X X Xz z z1 2=

where ( )X z1  and ( )X z2  are both polynomials in z  with degree 
.p 02  It is important to note that, in practice, for typical images, 

a number of samples smaller than 2 1N -  is many times sufficient 
(even 2M N/1 D$  can work, where D is the dimension [66]); how-
ever, the exact guarantees relating the number of samples to the 
type of images remains an open question. 

Magnitude

Magnitude

Phase

Phase

–1

–1

[FIG2] The importance of Fourier phase. Two images, a cameraman and Lenna, are Fourier transformed. After swapping their phases, 
they are inverse Fourier transformed. The result clearly demonstrates the importance of phase information for image recovery.
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Additional prior information about the signal, other than its 
support, can be incorporated and will naturally improve the condi-
tioning of the problem. For example, knowledge of the Fourier 
phase sign (i.e., a single bit of phase information) has been shown 
[67] to yield uniqueness with some restrictions on the signal (spe-
cifically that the signal is real and its Z transform has no zeros on 
the unit circle). A different, popular, type of prior knowledge that 
has been used recently in various applications [54], [68] is that the 
signal x CN!  is sparse—i.e., contains only a small number k  of 
nonzero elements, with .k N%  The exact locations and values of 
the nonzero elements are not known a priori. In this case, it has 
been shown [69] that knowledge of the full autocorrelation 
sequence of a 1-D k-sparse real signal x  is sufficient to uniquely 
define x  as long as k 6!  and the autocorrelation sequence is colli-
sion free. A vector x  is said to have a collision-free autocorrelation 
sequence if  ,[ ] [ [ ] [ ]]x i x j x k x l!- -  for all  distinct 
, , , { , }i j k l N1 f!  that are the locations of distinct nonzero 

values in .x  In addition, under these conditions, only M  Fourier 
magnitude measurements are sufficient to uniquely define the 
autocorrelation sequence and, therefore, the signal ,x  as long as 
M  is prime and M k k 12$ - +  [70]. An interesting perspective 
relating phase retrieval to the Turnpike problem, for example, 
reconstructing a set of integers from their pairwise distances, is 
presented in [71]. Using this approach, the authors prove 
uniqueness with high probability for random signals having a 
nonperiodic support. 

GENERAL MEASUREMENTS
Considering inner products with general non-Fourier (typically ran-
dom) measurement vectors allows simpler derivation of theoretical 
guarantees. There have been several theoretical results relating the 
number and the nature of the measurements that are required for 
uniqueness, mostly dealing with random measurement vectors. The 
work of Balan [40] implies that, for real signals in ,RN N2 1-  ran-
dom measurements are needed, provided that they are full spark, i.e., 
that every subset of N  measurement vectors spans RN  [43]. This 
result was later extended to the complex case [43], where it is conjec-
tured that N4 4-  generic measurements, as defined in [43], are suf-
ficient for bijectivity. In terms of stability, i.e., when the 
measurements are noisy, it is shown in [50] that on the order of 

( )logN N  measurements [or ( )logk N  measurements in the 

k-sparse case] are sufficient for stable uniqueness. Furthermore, 
minimizing the (nonconvex) least-squares objective: | |yi

2-/   
, | | ,a xi

p2G H  with ,p1 21 #  yields the correct solution under 
these conditions [50]. For the noiseless case, any k-sparse vector in 
RN  has been shown to be uniquely determined by k4 1-  random 
Gaussian intensity measurements with high probability [70]. 

To study the injectivity of general (i.e., not necessarily random) 
measurements, the complement property was introduced in [40] 
for the real case. An extension was presented in [43] for the com-
plex setting. A set of measurement vectors { }ai i

M
1=  with a Ri

N!

satisfies the complement property if for every { , , },S M1 f3

either { }ai i S!  or { }ai i SC!  span .RN  It has been shown in [40] that 
the mapping constructed by | , | , , ,y i N1a xi i fG H= =  is injec-
tive if and only if the measurement set satisfies the complement 
property. This poses a lower limit on the number of necessary 
measurements .M N2 12 -

The results reviewed in this section are summarized in Table 1. 
In addition, there is a large amount of work on phase-retrieval 
uniqueness under different conditions, e.g., when the phase is 
known only approximately [72] or from redundant masked Fou-
rier measurements [42], [73]. 

ALGORITHMS
Despite the uniqueness guarantees, no known general solution 
method exists to actually find the unknown signal from its Fourier 
magnitude given the other constraints. Over the years, several 
approaches have been suggested for solving the phase-retrieval 
problem, with the popular ones being alternating projection 
algorithms [2], [74], [75]. In addition, to help regularize the phase-
retrieval problem, different imaging techniques were suggested that 
yield better behaved imaging models. For example, using exposures 
with different masks (e.g., the phase diversity method for aberration 
correction by adaptive optics [29], and also more recently [73]), or 
obtaining images at different propagation planes [31], [76], [77]. 
Another method to obtain additional information is scanning CDI 
(also termed ptychography) [78]–[80], which uses several different 
illumination patterns to obtain coherent diffraction images. Using 
such a modified imaging setup is then followed by applying an 
appropriate algorithm, performing the phase retrieval. 

There are many existing approaches for phase retrieval. In 
this section, we focus on common general algorithms (see the 

[TABLE 1] PHASE RETRIEVAL—UNIQUENESS.

FOURIER
MEASUREMENT

1-D NO UNIQUENESS [62]

≥ 2D UNIQUENESS FOR REAL NONREDUCIBLE SIGNALS. REQUIRES OVERSAMPLING BY ≈2 [64]

k-SPARSE 1-D UNIQUENESS FOR SIGNAL WITH COLLISION-FREE AUTOCORRELATION, (AND K ≠ 6) [69]
M FOURIER MAGNITUDE MEASUREMENTS ARE SUFFICIENT, FOR A PRIME M k k 12$ - + [70] 

GENERAL
MEASUREMENTS

REAL SIGNAL RN SATISFYING THE COMPLEMENT PROPERTY IS NECESSARY AND SUFFICIENT. 2 N-1 FULL-SPARK RANDOM
MEASUREMENTS GUARANTEE UNIQUENESS WITH HIGH PROBABILITY [40]

REAL SIGNAL RN

(NOISY)
N LOG ( )N  MEASUREMENTS(OR k  LOG ( )N  MEASUREMENTS IN THE k-SPARSE CASE) ARE SUFFICIENT
FOR STABLE UNIQUENESS [50]

COMPLEX SIGNAL CN CONJECTURE: 4 N−4 GENERIC MEASUREMENTS ARE SUFFICIENT [43]
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“General Algorithms” section) and sparsity-based methods, i.e., 
techniques exploiting prior knowledge in the form of signal 
sparsity (see the “Sparsity-Based Algorithms” section). We also 
discuss the transport-of-intensity equation (TIE) [81]–[83], 
which considers the recovery of an object’s phase from several 
defocused intensity images. 

GENERAL ALGORITHMS
The general phase-retrieval problem we wish to solve can be for-
mulated as the following least squares problem or empirical risk 
minimization: 

( | , | ) ,min y a x
k

M

k k
1

2 2
x

G H-
=

/ (5)

with y  being the measurements and ak  being the measurement 
vectors defined in (4). In general, we can replace the square in the 
objective by any power .p  Unfortunately, this is a nonconvex prob-
lem, and it is not clear how to find a global minimum even if one 
exists. In this section, we describe several approaches that have 
been suggested to deal with this problem and types of prior infor-
mation that can be incorporated into these methods to increase 
the probability of convergence to the true solution. 

ALTERNATING PROJECTIONS
The most popular class of phase-retrieval methods is based on alter-
nate projections. These methods were pioneered by the work of Ger-
chberg and Saxton (GS) [74], dealing with the closely related problem 
of recovering a complex image from magnitude measurements at two 
different planes—the real (imaging) plane and Fourier (diffraction) 
plane. The original GS algorithm consists of iteratively imposing the 
real- and Fourier-plane constraints, such as the measured real-space 
magnitude [ ] ,x n  and Fourier magnitude | [ ] | ,X k  as illustrated in 
Figure 3(a). The GS iterations are described in Algorithm 1. The 
recovery error, defined as [ ] [ ] ,E Z k X k

ki i
2

= -/  is easily 

shown to be monotonically nonincreasing with i  [75]. Despite this 
fact, recovery to the true solution is not guaranteed, as the algorithm 
can converge to a local minimum. 

Extending the GS projection ideas further, in 1978 Fienup [2] 
suggested a modified version, in which the real-space magnitude 
constraints are replaced by other types of constraints, in addition 
to consistency with the measured Fourier magnitude. The 
real-space constraints may be, e.g., nonnegativity, a known signal 
support, i.e., [ ]x i 0=  for all ,i N02  where N0  is known (or 
approximately known), or both. The basic framework of the Fie-
nup methods is similar to GS—in fact, the first three steps are 
identical. Step 4, however, replaces imposing the real-space mag-
nitude constraint by applying a correction to the real-space 

Algorithm 1: The GS algorithm.

Input: | [ ] | , | [ ] | ,x n X k e

| [ ] |x n -Real-space magnitude 
| [ ] |X k -Fourier magnitude 
e-Error threshold 
Output: [ ]z n - a vector that conforms with both magnitude con-
straints, i.e., : | [ ] | | [ ] | ,z n x n=  and | [ ] | | [ ] | ,Z k X k=  where 

[ ]Z k  is the DFT of [ ]z n
Initialization: Choose initial [ ] | [ ] | ( [ ])expz n x n n0 z=  (e.g., with 
a random [ ])nz
General Step: ( , , ):i 1 2 f=

1) Fourier transform [ ]z ni  to obtain [ ]Z ki

2) Keep current Fourier phase, but impose Fourier magni-
tude constraint: [ ] | [ ] | · [ ] / [ ] .Z k X k Z k Z ki i i=l

3) Inverse Fourier transform [ ]Z kil  to obtain [ ]z nil

4) Keep current real-space phase, but impose real-space 
magnitude constraint: [ ] | [ ] | · [ ] / [ ]z n x n z n z ni i i1 =+ l l

5) Go to 1
Until [ ] [ ]E Z k X k

ki i
2
# e= -/

zi [n] Zi [k ]

zi+1[n ] = |x [n ]| ⋅
zi [n]′

|zi [n]|′

zi [n]′ Zi [k ]
Zi [k ]  = |X [k ]| ⋅′

|Zi [k ]|
–1

Impose
Real-Space
Magnitude
Constraint

Impose
Fourier

Magnitude
Constraint

zi [n] Zi [k ]

zi [n]′
Zi [k ]

Zi [k ]  = |X [k ]| ⋅′
|Zi [k ]|

–1

Apply
Real-Space
Correction

Impose
Fourier

Magnitude
Constraint

zi+1[n ] =
βzi [n]′

zi [n]′

zi [n] –

n ∉γ

n ∈γ

(a) (b)

[FIG3] The block diagrams of (a) the GS algorithm and (b) the Fienup HIO algorithm. The algorithms differ in their fourth (colored) step.
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estimate. Some possible variants to this step were also suggested 
[75]. Here, we describe the one most commonly used, referred to 
as the hybrid input-output (HIO) method, which consists of the 
following correction step: 

4) Obtain [ ]z ni 1+  by applying a correction to the real-space 
image estimate: 

[ ]
[ ],
[ ] [ ], ,

z n
z n
z n z n

n
ni

i

i i
1

"

!b

c

c
=

-
+

l

l
) (6)

with b  being a small parameter and c  being the set of indices for 
which [ ]z nil  violates the real-space constraints.

The real-space constraint violation may be a support violation 
(e.g., a signal is nonzero where it should be zero) or a nonnegativ-
ity violation. 

The Fienup algorithm is represented schematically in 
Figure 3(b). There is no proof that the HIO algorithm converges. 
It is also known to be sensitive to the accuracy of the prior infor-
mation (e.g., the real-space support needs to be tightly known, 
especially in the complex signal case [84]). Nonetheless, in prac-
tice, the simple HIO-based techniques are commonly used in opti-
cal phase-retrieval applications such as CDI [85], [86]. Other 
variants of the correction step include the input–output method, 
and the output–output method [75], corresponding respectively to 

[ ]
[ ],
[ ] [ ], ,

[ ]
[ ],
[ ] [ ], .

z n
z n
z n z n

n
n

z n
z n
z n z n

n
n

i
i

i i

i
i

i i

1

1

"

"

!

!

b

c

c

b

c

c

=
-

=
-

+

+

l

l

l l

'

)
(7)

An important feature of the HIO algorithm is its empirical 
ability to avoid local minima and converge to a global minimum 
for noise-free oversampled diffraction patterns. However, when 
there is high noise present in the diffraction intensity, HIO suf-
fers from several limitations. First, the algorithm sometimes 
becomes stagnant and fails to converge to a global minimum. 
Second, a support has to be predefined. Third, the image 
oscillates as a function of the iteration. Over the years, various 
algorithms have been developed to overcome these limitations, 
including the combination of HIO and the error-reduction (ER) 
algorithm [75], difference map [8], hybrid projection reflection 
[10], guided HIO (GHIO) [87], relaxed averaged alternating 
reflectors (RAAR) [11], noise robust (NR)-HIO [88], and oversam-
pling smoothness (OSS) [12]. 

As an example, the recently proposed OSS algorithm exhibits 
improved performance over HIO and its variants in many set-
tings. OSS is based on Fienup iterations with an added smooth-
ing Gaussian filter applied to the off-support region in the 
real-space object in each iteration. The fourth step in HIO is 
replaced by 

[ ]
[ ],
[ ] [ ], ,

z n
z n
z n z n

n
n

i

i i

"

!b

c

c
=

-
m

l

l
)

[ ]
[ ],

,{ [ ] [ ]},
z n

z n
Z k W k

n
nFi

i

i
1

"

!

c

c
=+

m

m
)

where [ ]W k  is a Gaussian function with its variance decreasing 
with iterations. A quantitative comparison for a specific example 
between OSS and HIO can be found in the section “Quantitative 
Comparison of Alternating-Projection Algorithms.” For a compari-
son and numerical investigation of several alternate projection 
algorithms, see, e.g., [9] and [12]. 

The performance of Fienup methods is dependent on the ini-
tial points. Therefore, it is possible and recommended to try sev-
eral initializations. In [58], the authors consider a clever method 
for initial point selection and show that for the random Gaussian 
measurement case, the resulting iterations yield a solution arbi-
trarily close to the true vector. 

Analyses of iterative phase-retrieval algorithms from a con-
vex optimization perspective can be found in [10] and [89]–[93]. 
In [91], the authors study the ER algorithm by viewing it as an 
iterated projections algorithm onto nonconvex sets. In [10] and 
[92], it is shown that the HIO method can be interpreted within 
different optimization frameworks depending on the constraints 
enforced. For example, given a support constraint, HIO coin-
cides with the Douglas–Rachford algorithm for 1b =  [94], 
[95]. In [10], it is shown that under the same constraint, in the 
more general case of ,1!b  HIO can be formulated in terms of 
projections and reflections. This representation, however, no 
longer holds when nonnegativity restrictions are added. 

SEMIDEFINITE PROGRAMMING ALGORITHMS
An alternative recently developed to solve the phase-retrieval prob-
lem is based on semidefinite relaxation [39], [46], [57], [96]. The 
method relies on the observation that (4) describes a set of qua-
dratic equations that can be rewritten as linear equations in a 
higher dimension. Specifically, define the N N#  matrix 

.X xx= *  The measurements (4) are then linear in X

| , | ( ),y Tra x x a a x x A x A X*
k k k k k k

2G H= = = =* * (8)

where .A a ak k k= *  Our problem is then to find a matrix X xx= *

that satisfies (8). The constraint X xx= *  is equivalent to the 
requirement that X  has rank 1, and is positive semidefinite, which 
we denote by .0X *  Therefore, finding a vector x  satisfying (4) 
can be formulated as 

( ), , , ,

( ) .
,

y k M1

1
0

find
s.t. Tr

rank

X
A X

X
X

k k f

*

= =

= (9)

Equation (9) is equivalent to the following rank minimization 
problem: 

( ), , , ,
.

min
y k M1

0
s.t.

rank ( )
Tr
X

A X
X

k k f

*

= =

(10)

Unfortunately, rank minimization is a hard combinatorial prob-
lem. However, since the constraints in (10) are convex (in fact lin-
ear), one might try to relax the minimum rank objective, for 
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example, by replacing it with minimization of .( )Tr X  This 
approach is referred to as PhaseLift [39]. Alternatively, one may 
use the log-det reweighted rank minimization heuristic sug-
gested in [97], which is the approach followed in [38] and [46]. In 
[38], it is shown that PhaseLift yields the true vector x  with large 
probability when the measurements are random Gaussian and 

.~ ( )logM O N N
An interesting approach is taken in [57], where x  is sepa-

rated into an amplitude component and a phase component, 
and only the phase is optimized. This approach yields several 
variations of existing methods, notably PhaseCut [57], which is a 
relaxation of the MaxCut algorithm [98] obtained by dropping 
the rank constraint. 

The semidefinite programming (SDP) approach requires matrix 
lifting, i.e., replacing the sought vector with a higher-dimensional 
matrix, followed by solving a high-dimensional problem. It is, 
therefore, in principle, more computationally demanding than the 
alternating projection approaches, or greedy methods, which will 
be discussed in the section “Greedy Methods with Sparsity Prior.” 
In addition, in general, there is no guarantee that the rank minimi-
zation process will yield a rank-1 matrix or that the true solution 
will be found even if there is a unique solution.

TRANSPORT OF INTENSITY 
The TIE approach is a method that solves the known propagation 
equation of the electromagnetic field to recover the phase at some 
plane ,z0  from several intensity measurements in the vicinity of 
that plane. Specifically, in the case of light propagation under the 
paraxial approximation (i.e., only small angles from the optical 
axis are considered, implying that the light field varies slowly on 
the scale of the optical wavelength), the TIE is 

,z
I I I2 ·
2
2 d d

m
r z zD=- - (11)

where ( , , )I x y z0  is the intensity distribution in plane ,z0 m  is 
the wavelength of a monochromatic field, ( , )x yd 2 2=  is the 
transverse gradient, x y

2 2 2d 2 2D = = +  is the 2-D Laplacian, and 
( , , )x y z0z  is the phase to be recovered. Recovering z  amounts 

to solving the partial differential equation (11). This can be 
achieved by first numerically estimating the derivative on the 
left-hand side of (11) using the measured intensity at two (or 
more) planes, e.g., ( )I z0  and ( ),I z dz0+  for a small .dz  Then, 
after plugging in ( )I z0  into the right-hand side of (11), a variety 
of methods can be applied to solve for z  using appropriate 

SPARSE LINEAR PROBLEMS 
Finding sparse solutions to sets of equations is a topic that 
has drawn much attention in recent years [54], [68], [105], 
[106]. Consider the linear system 

y Ax= (S1)

with y  being a set of M  linear measurements, A  being an 
M N#  measurement matrix, and x  being the unknown 
length—N  vector. When the system is underdetermined (i.e., 
M N1 ), there are infinitely many possible solutions x .
A key result of the theory of sparse recovery is that adding 
the constraint that x  is sparse, i.e., contains only a few 
nonzero entries guarantees a unique solution to (S1), under 
general conditions on .A  One such condition is based on 
the coherence of A  [107] 

,x 2
1 1 1

0 # n
+c m (S2)

with x 0  being the number of nonzero entries in ,x  and 
the coherence defined by

,
.max

·A A
A A

,i j i j

i j1 2
n = (S3)

Here, we denote by Ai  the ith  column of ,A  and by Ai

its Euclidean norm. 
Under (S2), one can find the unique solution to (S1) by solving 

.min s.t.x y Ax0x
= (S4)

Unfortunately, (S4) is an NP-hard combinatorial problem. How-
ever, many methods have been developed to approximately 

solve (S4). One class of such methods consists of greedy algo-
rithms such as orthogonal matching pursuit [108]. Another 
popular method is based on convex relaxation of the l0  norm 
to an l1  norm [109], which yields the convex problem 

.min s.t.x y Ax1x
= (S5)

In fact, under the condition (S2), it has been shown [107] 
that the solution to (S5) is equal to that of (S4). 

Another important criterion to evaluate the recovery ability 
in sparse linear problems of the form (S1) is the restricted isom-
etry property (RIP) [110] of A . For an M N#  matrix A  (with 
M N1 ), define the restricted isometry constant kd  as the 
smallest value such that for every submatrix Ak  composed of k
columns of A

( ) ( ) , .1 1x A x x x Rk k k
k

2
2

2
2

2
2 6# # !d d- + (S6)

The RIP is therefore a measure of whether A  preserves the 
energy of any k-sparse signal—which is the case if kd  is small. 
In the context of sparse recovery, it is used to prove uniqueness 
and noise-robustness results. For example, if A  is such that 

,2 1k2 1d -  then solving (S5) will yield the unique sparse 
solution to (S1). In practice, it is combinatorially difficult to cal-
culate the RIP of a given matrix. However, certain random 
matrices can be shown to have good RIP with high probability. 
For example, an M N#  independent and identically distrib-
uted Gaussian matrix obeys the k-RIP with high probability, for 

~ ( ( / ))logM O k N k  [105]. This is one of the reasons that ran-
dom matrices are favorable for sparse sensing.
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boundary conditions and further assumptions (a common one 
is that I  is constant in , ,x y  so that I 0d =  inside some bound-
ary) [81]–[83], [99], [100]. 

The TIE approach requires acquisition of several images at 
different (and close) planes. It is relatively simple to implement 
when applicable and can produce phase measurements when the 
coherence of the light is not sufficient for interferometric mea-
surements [101]. However, the necessity of multiple closely 
spaced imaging planes can naturally pose a limitation on possible 
applications, such as applications requiring a fast acquisition 
time or a high SNR. This is because multiple imaging planes 
require the use of beamsplitters, which leads to signal loss. Some 
tradeoffs between different parameters in the TIE approach, e.g., 
the amount of defocus ( )dz  versus recovery accuracy, are dis-
cussed in [102]. 

SPARSITY-BASED ALGORITHMS
A specific kind of prior knowledge that can be incorporated into the 
phase-retrieval problem to help regularize it is the fact that the sought 
real-space object is sparse in some known representation (see “Sparse 
Linear Problems”). This means that the object x  can be written as 

x aW= (12)

with W  being a representation matrix (the sparsity basis), and a
being a sparse vector, i.e., a vector containing a small number of 
nonzero coefficients. The simplest example is when the object is 
composed of a small number of point sources, in which case W  is 
the identity matrix. Equipped with such prior knowledge, one can 
hope to improve the performance of phase-retrieval algorithms 
by limiting the search for the true vector to the set of sparse vec-
tors. There are several different ways that sparsity can be incorpo-
rated, which are described in this section.

ALTERNATING PROJECTIONS WITH SPARSITY PRIOR
The Fienup algorithm described in the section “Alternating Pro-
jections” allows, in principle, for the incorporation of various types 
of general knowledge about the object, including sparsity [41], 
[103]. Sparsity was shown to be a useful prior in phase-retrieval 
algorithms already in 2004 [104] in the iterative charge-flipping 
algorithm, although it was not exploited directly (the electron 
density in [104] is assumed to have extended regions of zeros). 
More explicitly, the method in [103], for example, is based on the 
Fienup iterations, with the first three steps remaining unchanged. 

Step 4 is replaced by projection and thresholding. Assuming an 
invertible W  and a k-sparse vector a  such that :x aW=

4) Obtain [ ]z ni 1+  by projecting [ ]z nil  onto ,W  thresholding, 
and projecting back. 

Calculate .zi i
1a W= - l

Keep only the k  largest elements of | | ,ia  setting the 
rest to zero. 

Set .zi i1 aW=+

Similar to the GS iterations, the error here can be shown to be 
nonincreasing so that convergence to a local minimum is guaran-
teed [103]. 

Note, that while this method is suggested in [103] for an 
orthonormal basis ,W  it can be easily modified to accommodate a 
noninvertible .W  This can be done by replacing the first two 
parts with finding a sparse solution ai  to ,zi iaW=  using any 
sparse solution approach [54]. 

SDP-BASED METHODS WITH SPARSITY PRIOR
SDP methods can also be modified to account for prior knowledge 
of signal sparsity. The incorporation of sparsity may be performed 
in several different ways. The first work to suggest sparsity-based 
SDP phase retrieval came from the domain of optics and dealt 
with partially spatially incoherent illumination [46]. This work 
actually considered a theoretical problem of greater complexity, 
combining phase retrieval with subwavelength imaging. Experi-
mental results on subwavelength CDI can be found in [45], where 
the sought signal is an optical image with subwavelength features, 
and the measured data correspond to the Fourier magnitude sam-
pled by a camera at the focal plane of a microscope lens. 

The method suggested in [46], dubbed quadratic compressed 
sensing (QCS), is based on adding sparsity constraints to the rank 
minimization problem (10). When x  is sparse, the result of the 
outer product X xx= *  is a sparse matrix as well, as shown in 
Figure 4. Therefore, one strategy might be to minimize the l1

norm of the matrix .X  Alternatively, it is possible to further exploit 
the structure of X  by noticing that the number of rows in X  with 
a nonzero norm is equal to the number of nonzero values in .x
This means that the sparsity of x  also implies a small number of 
nonzero rows in .X  Consider the vector p  containing the l2  norm 
of the rows of ,X  i.e., p X

( / )

kj jk
2 1 2

= ` j/  (note that the l2  norm 
can be replaced by any other norm). Since p  should be sparse, one 
might try to impose a low l1  norm on ,p  in the spirit of l1

minimization for the sparse linear problem. This yields the con-
straint ,p Xp

j kjj jk1
2

# h= =
( / )1 2

c m/ //  corresponding 
exactly to a low mixed l1 2-  norm constraint on X  [111]. The 
problem to solve, as cast in [46], is therefore 

| ( ) |

,

, , , ,
,

min
y k M

X

1
0

s.t.
rank ( )
Tr

X
A X

X

kj

k k

jk
2 2

1

f#

#

*

h

e- =

c m// (13)

where e  is a noise parameter and h  is a sparsity parameter, 
enforcing row sparsity of .X[FIG4] The sparse vector outer product yields a sparse matrix.

x xT X

=

1

0.5

–0.5

0

–1

×
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Since finding a rank-1 matrix X  satisfying the constraints is 
NP hard, the solution to (13) is approximated in [46] using the 
iterative log-det heuristic proposed in [97], with an additional 
thresholding step added at each iteration, to further induce signal 
sparsity. Once a low-rank matrix Xt  that is consistent with the 
measurements and the sparse prior is found, the sought vector x
is estimated by taking the best rank-1 approximation of Xt  using 
the singular value decomposition: Decomposing Xt  into 

,X USU*=t  the rank-1 approximation of Xt  is taken as 
,SX U U *

1 11 1 1=t  where S11  represents the largest singular value, 
and U1  is the corresponding column of .U

Similar ideas that add sparse priors to SDP methods have 
been later suggested in [47], [57], and [112]. In [47], the rank mini-
mization objective is relaxed to a convex trace minimization, with 
an additional l1  regularization term to induce sparsity. This for-
mulation yields 

( )
| ) | , , , ,

.

min
y k M1

0
s.t.

Tr
Tr (

X X
A X

X
k k

1

f#

*

m

e

+

- =

(14)

The solution of (14) is shown [47] to be unique in the noiseless case 
( ,)0e =  under the following condition: ( / ) ( ( / )),1 2 1 1X 0 # n+r

where ,X xx= )r r r  with xr  being the true solution to (4). The mutual 
coherence n  is defined by ( , ) / ( ),max B BB B,i j i j i j1 2n =

with B  being the matrix satisfying ,y BXS=  where XS  is the vec-
tor obtained from stacking the columns of .X  The same work also 
relates other recovery guarantees to the RIP criterion. 

In [59] it is shown that for ai  that are independent, zero-mean 
normal vectors, on the order of logk n2  measurements are sufficient 
to recover a k-sparse input from measurements of the form (4), 
using SDP relaxation. In [112], an algorithm is suggested to solve the 
sparse 1-D Fourier phase-retrieval problem based on a two-step pro-
cess, with each step cast separately as an SDP problem: first, the sup-
port of x  is determined from its autocorrelation sequence, and then 
x  is found, given the support. This approach is shown experimentally 
to recover k-sparse signals from ( )O k2  measurements. 

GREEDY METHODS WITH SPARSITY PRIOR
Since matrix-lifting algorithms involve a dimension increase, they 
are not ideally suited for large vectors, where the computational 
cost can become significant. In addition, they are generally not 
guaranteed to converge to a correct solution. An alternative is to 
use sparsity-based greedy methods [48], [51], [113]. One approach 
that is both fast and accurate is greedy sparse phase retrieval 
(GESPAR) [51]. GESPAR attempts to solve the least squares sparse 
quadratic problem (5). That is, it seeks a k-sparse vector x consis-
tent with the quadratic measurements .y  It is a fast, local search 
method, based on iteratively updating the signal support, seeking a 
vector that corresponds to the measurements under the current 
support constraint. A local search method is repeatedly invoked, 
beginning with an initial random support set. Then, at each itera-
tion, a swap is performed between a support and an off-support 
index. Only two elements are changed in the swap (one in the sup-
port and one in the off-support), following the so-called two-opt 

method [114]. Given the support of the signal, the phase-retrieval 
problem is then treated as a nonconvex optimization problem, 
approximated using the damped Gauss Newton method [115]. See 
Algorithm 2 for a general description. 

GESPAR has been shown to yield fast and accurate recovery 
results (see “Sparse Phase-Retrieval Algorithms—A Comparison” 
and Figure S2) and has been used in several phase-retrieval optics 
applications, including CDI of 1-D objects [116], efficient CDI of 
sparsely temporally varying objects [52], and phase retrieval via 
waveguide arrays [53]. A similar approach has been applied to treat 
the combined phase-retrieval and subwavelength imaging prob-
lem [45] (see the section “Subwavelength CDI Using Sparsity”). 

APPLICATIONS IN LENSLESS IMAGING 
In this section, we present several CDI applications with connec-
tion to the phase-retrieval algorithms described previously. The 

Algorithm 2: GESPAR—Main steps.

Input: , , ,y ITERAi i x .

, , , ,i M1 2A Ri
N N f! =# - symmetric matrices.

, , , , .y i M1 2Ri f! =

x-threshold parameter. 

ITER - Maximum allowed total number of swaps. 

Output: x-an optimal (or suboptimal) solution of (5). 

Initialization: Set , .T j0 0= =

1) Generate a random index set (| | )S S s0 0 =

2) Invoke the damped Gauss–Newton method with support 
S0  and obtain an output .z0  Set ,x U zS0 00=  where 
U RS

N s
0 !

#  is the matrix consisting of the columns of the 
identity matrix IN  corresponding to the index set S0

General Step: ( , , ):j 1 2 f=

3) Update support: Let p  be the index from S j 1-  correspond-
ing to the component of x j 1-  with the smallest absolute value. 
Let q  be the index from S j

c
1-  corresponding to the compo-

nent of ( )f x j 1d -  with the highest absolute value, where ( )f xd

is the gradient of the least-squares objective function from (5), 
i.e., ( ) ( ) .f y4x x A x A x*

i i i id = -/  Increase T  by 1, and make 
a swap between the indices p  and ,q  i.e., set Su  to be

.( \ { }) { }S S p qj 1 ,= -
u

4) Minimize with given support: Invoke the damped Gauss–
Newton method [115] with input Su  and obtain an output .zu
Set ,x U zS=u u  where U RS

N s! #  is the matrix consisting of 
the columns of the identity matrix IN  corresponding to the 
index set .S  If ( ) ( ),f fx x j 11 -u  then set , ,S S x xk k= =u u  and 
go to Step 3. If none of the swaps resulted with a better objec-
tive function value, go to Step 1. 

Until ( )f x 1 x  or .T ITER2
The output is the solution x  that yields the minimum value for 
the least-squares objective.
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SPARSE PHASE-RETRIEVAL ALGORITHMS—A COMPARISON 
We simulate sparse-Fienup [103] and GESPAR [51] for vari-
ous values of [ , , ],N 64 2 048!  and .M N2=  The recovery 
probability versus sparsity k  for different vector lengths is 
shown in Figure S2(a) and (b). In both cases, the recovery 
probability increases with ,N  while GESPAR clearly outper-
forms the alternating iteration method. 

We then simulate the recovery success rate of three sparsity-
based phase-retrieval algorithms. We choose x  as a 

random vector of length .N 64=  The vector contains uniformly 
distributed values in the range [ , ] [ , ]4 3 3 4,- -  in k  randomly 
chosen elements. The M 128=  point DFT of the signal is calcu-
lated, and its magnitude-square is taken as ,y  the vector of mea-
surements. To recover the unknown vector ,x  three methods are 
used: a greedy method (GESPAR [51]), an SDP-based method 
[112, Algorithm 2], and an iterative Fienup algorithm with a 
sparsity constraint [103]. The sparse-Fienup algorithm is run using 
100 random initial points, out of which the chosen solution is 
the one that best matches the measurements. xt  is selected as 
the s -sparse output of the sparse-Fienup algorithm with the 
minimal cost ( ) (| | )xf yF x

i i
N 2 2

1
= -

=
i/  out of the 100 runs. The 

probability of successful recovery is plotted in Figure 6(c) for dif-
ferent sparsity levels .k  The success probability is defined as the 
ratio of correctly recovered signals x  out of 100 simulations. In 
each simulation, both the support and the signal values are ran-
domly selected. The three algorithms (GESPAR, SDP, and sparse-
Fienup) are compared. The results clearly show that GESPAR 
outperforms the other methods in terms of probability of suc-
cessful recovery—more than 90% successful recovery up to 

,k 15=  versus k 8=  and k 7=  in the other two techniques. For 
more extensive comparisons, we refer the reader to [51]. 

A major advantage of greedy methods over other techniques 
(e.g., SDP based) is their low computational cost; GESPAR may be 
used to find a sparse solution to the 2-D Fourier phase retrieval—
or phase retrieval of images. Figure S3 shows a recovery example 
of a sparse 195 195# -pixel image comprised of s 15=  circles at 
random locations and random values on a grid containing 225 
points, recovered from its 38,025 2-D Fourier magnitude measure-
ments using GESPAR. The dictionary used in this example contains 
225 elements consisting of nonoverlapping circles located on a 
15 15# -point Cartesian grid, each with a 13-pixel diameter. The solu-
tion took 80 s. Solving the same problem using the sparse-Fienup 
algorithm did not yield a successful reconstruction, and using the 
SDP method is not practical because of the large matrix size.
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[FIGS2] A comparison of sparsity-based phase-retrieval 
algorithms. (a) The sparse-Fienup recovery probability versus 
sparsity ,k  for various signal length ,N  and with .M N2=
(b) GESPAR recovery probability versus sparsity k  for various 
signal length ,N  and with .M N2=  (c) The recovery 
probability for three algorithms: sparse-Fienup, SDP, and 
GESPAR for N 64=  and M 128=  [51].

[FIGS3] A 2-D Fourier phase-retrieval example. (a) A true 
195 195#  sparse circle image (s 15=  circles). (b) The measured 
2-D Fourier magnitude (38,025 measurements, log scale). (c) The 
true and recovered coefficient vectors corresponding to circle 
amplitudes at each of the 225 grid points [51].
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concept of phase retrieval in optical 
imaging arises from the attempt to 
recover images from experimental 
measurements. To this end, it is 
essential to emphasize that, com-
pared to numerical simulations or 
signal processing of digital data, 
phase retrieval of experimentally 
obtained patterns has several addi-
tional challenges. First, the far-field 
intensity distribution (Fourier magnitude) is corrupted by various 
types of noise, such as Poisson noise, detector readout noise, and 
unwanted parasitic scattering from the optics components in the 
system. Second, in single-shot experiments, the measured far-field 
intensity distribution is usually incomplete, including a missing 
center (i.e., the very low spatial frequency information cannot be 
directly recorded by a detector) [85]. Third, when the far-field 
intensity distribution is measured by a detector, each pixel inte-
grates the total number of photons within the solid angle sub-
tended by the pixel, which is not exactly equivalent to uniform 
sampling of the diffraction signal [117]. Additionally, many experi-
ments are carried out using incoherent (but bright) sources. Spa-
tial optical coherence [to distinguish from the term coherence in 
signal processing, as defined by (S3)] is achieved by propagating a 
long distance from the source, but often the experiment is con-
strained to be carried out with a partially incoherent beam [118]. 

All of these issues add complications to algorithmic phase 
retrieval. However, notwithstanding these challenges, successful 

phase retrieval of experimental data 
in optical imaging has been widely 
achieved [3], [13], [16], [17], [23], 
[28], [80], [119], [120]. Next we show 
several examples. 

QUANTITATIVE COMPARISON 
OF ALTERNATING-PROJECTION 
ALGORITHMS 
Quantitative comparisons between 

the OSS, HIO, ER-HIO, and NR-HIO algorithms have been per-
formed using both simulated and experimental data [12]. Figure 5 
shows a noise-free oversampled diffraction pattern (Fourier mag-
nitude squared) calculated from a simulated biological vesicle 
[Figure 5(c)]. High Poisson noise was then added to the diffraction 
intensity [Figure 5(b)]. Figure 5(d)–(g) shows the final reconstruc-
tions by HIO, ER-HIO, NR-HIO, and OSS, respectively. Visually, 
OSS produced the most faithful reconstruction among the four 
algorithms [see the insets of Figure 5(d)–(g)]. The recovery error 
was quantified using consistency with the measurements 

| [ ] [ ] | / | [ ] | ,E z n z n z n
n

r m
n

m= -/ / (15)

where [ ]z nr  is the final reconstruction and [ ]z nm  is the model 
structure. The value for E  of the HIO, ER-HIO, NR-HIO, and OSS 
reconstructions is 0.28, 0.24, 0.16, and 0.07, respectively. 

Next, the four algorithms were compared using an experimen-
tal diffraction pattern measured from a Schizosaccharomyces 

Model

(a) (b) (c)

NR-HIO OSS

(f) (g)

HIO ER-HIO

(d) (e)

[FIG5] A quantitative comparison between the HIO, ER-HIO, NR-HIO, and OSS algorithms. (a) A noise-free oversampled diffraction 
pattern calculated from simulated biological vesicle. (b) The high Poisson noise added to the oversampled diffraction pattern. (c) The 
structure model of the biological vesicle and its fine features (inset). (b) The final reconstruction of the noisy diffraction pattern in (b) 
by (d) HIO, (e) ER-HIO, (f) NR-HIO, and (g) OSS [12].

SINCE MATRIX-LIFTING
ALGORITHMS INVOLVE A

DIMENSION INCREASE, THEY 
ARE NOT IDEALLY SUITED FOR
LARGE VECTORS, WHERE THE

COMPUTATIONAL COST
CAN BECOME SIGNIFICANT.
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pombe (S. pombe) yeast spore cell [12]. The experiment was con-
ducted on an undulator beamline at a third-generation synchro-
tron radiation facility (Spring-8) in Japan. A coherent wave of 
5 keV X-rays was incident on a fixed, unstained S. pombe yeast 
spore. An oversampled X-ray diffraction pattern was acquired by a 
CCD detector. Figure 6(a) shows the experimental diffraction pat-
tern in which the centrosquare represents the missing low spatial 
resolution data [86]. By using a loose support, phase retrieval was 
performed on the measured data with the HIO, ER-HIO, NR-HIO, 
and OSS algorithms. For each algorithm, five independent trials 
were conducted, each consisting of 100 independent runs with 
different random initial phase sets. In each trial, the reconstruc-
tion with the smallest error metric RF  was chosen as a final 
image, where RF  is defined as 

.[ ] [ ] / [ ]R Z k Z k Z kF e r
k

e
k

g= -/ / (16)

Here, [ ]Z ke  is the measured Fourier magnitude, [ ]Z km  is the 
recovered Fourier magnitude, and g  is a scaling factor. 

For each algorithm, the mean and average of the five final 
images were used to quantify the reconstruction. Figure 6(c)–(j) 
shows the average and variance of five final images obtained by 
HIO, ER-HIO [75], NR-HIO [88], and OSS [12], respectively. The 
average RF  and the consistency of five independent trials are 
shown in Figure 6(b). Both visual inspection and quantitative 
results indicate that OSS produced the most consistent recon-
structions among all four algorithms. 

XFEL CDI
The majority of imaging experiments at XFEL sources use the 
method of CDI. The lensless nature of CDI is actually an advan-
tage when dealing with extremely intense and destructive 
pulses, where one can only carry out a single pulse measure-
ment with each object (say, a molecule) before the object 

Algorithm Average RF  (%) Consistency (%)
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[FIG6] The phase retrieval of an experimental diffraction pattern from a biological sample. (a) An oversampled X-ray diffraction pattern 
measured from an S. pombe yeast spore cell. (b) The average RF  and the consistency of five independent trials of phase retrieval using 
four different algorithms. The average reconstruction of five independent trials using (c) HIO, (d) ER-HIO, (e) NR-HOP, and (f) OSS. 
The variance of five final images with (g) HIO, (h) ER-HIO, (i) NR-HOP, and (j) OSS [12].
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disintegrates. In such cases, often one cannot use any optical 
components at all, because any component, e.g., a lens, would 
be severely damaged by the extremely high flux of X-ray pho-
tons, and the damaged components will distort the measured 
data. CDI solves these problems: it works without the need for 
optical components. In this vein, CDI also facilitates reliable 
imaging of moving objects. Indeed, in many experiments, the 
objects move (flow) across the X-ray beam, for example, when 
the X-ray laser beam hits a focused aerosol beam or nanoparti-
cles in a liquid jet. In such an exper-
iment, the particle density is usually 
adjusted so that the X-ray laser 
pulse is more likely to hit a single 
particle than several. A particle is 
hit by chance by a pulse, but this is 
not known until the diffraction pat-
tern is read out from the detector, 
which is done on every pulse. The 
stream of data is then analyzed and 
sorted to give the single-particle 
hits, which contain the meaningful measured data, while all 
other data are ignored. 

There are two generic classes of these “single particle” CDI 
experiments: imaging of reproducible particles and imaging of 
unique particles. The first category includes particles such as 
viruses. Assuming that these particles are not aligned in the same 
direction, the collected data represent diffraction patterns of a 
common object, but in random orientations. If the orientations 

can be determined, then the full 3-D Fourier magnitude of the 
object can be determined, which in turn could be phased to give a 
3-D image. A proof of concept of this experiment was carried out 
by Loh et al. [121]. 

An example of the second class of flash diffractive imaging is 
imaging airborne soot particles in flight in an aerosol beam [28]. 
Several diffraction patterns of soot particles and clusters of poly-
styrene spheres as test objects are shown in Figure 7 along with 
the 2-D reconstructions of the objects. The experiments were car-

ried out at the Linac Coherent Light 
Source using the Center for Free-
Electron Laser Science-Advanced 
Study Group multipurpose instru-
ment [122] at the atomic, molecular, 
and optical science beam line [123]. 
Pulses of about 1012 photons of 1.0-nm 
wavelength were focused to an area 
of .10 m2n  The X-ray detectors (pnCCD 
panels) were placed to give a maxi-
mum full-period resolution of 13 nm 

at their center edges. 
In these experiments, the phase retrieval of the patterns was 

carried out using the RAAR [11] algorithm and shrinkwrap proce-
dure [124], which determines and iteratively updates the support 
constraint used. The objects were such that it was possible to 
apply an additional constraint that the image is real valued. Strik-
ingly, the X-ray coherent diffraction patterns have a very high 
contrast. The intensity minima are close to zero. This has an 

41 nm 45 nm 37 nm 28 nm

27 nm 24 nm 24 nm

(a) (b) (c) (d)

(e) (f) (g) (h)

32 nm

[FIG7] The diffraction patterns from single X-ray FEL pulses from particles in flight and reconstructed images: (a)–(d) clusters of 
polystyrene spheres with radii of (a) and (b) 70 nm, and (c) and (d) 44 nm; (e) and (f) ellipsoidal nanoparticles; (g) a soot particle; and 
(h) a salt–soot mixture [28].

SPATIAL OPTICAL COHERENCE
IS ACHIEVED BY PROPAGATING
A LONG DISTANCE FROM THE

SOURCE, BUT OFTEN THE
EXPERIMENT IS CONSTRAINED
TO BE CARRIED OUT WITH A

PARTIALLY INCOHERENT BEAM.
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enormous effect on the ability to recover the phase of these pat-
terns reliably. This reliability is quantified in the phase-retrieval 
transfer function (PRTF) [125], which compares the magnitude 
of the complex-valued average of patterns phased with different 
starting guesses to the square root of the measured diffraction pat-
tern. If, at a particular pixel of the diffraction pattern, the phases 
are consistently reconstructed, then the sum over N  patterns will 

give a magnitude N  times higher than the measured magnitude, 
and so the PRTF will be unity. If the phases are random, then this 
sum will be close to zero. For patterns generated with XFELs, this 
function is often close to unity and is lower primarily in areas 
where the SNR is low. 

Because the signal is limited, ultimately, so is the resolution; an 
estimate of the achieved resolution is given by the white dotted 
circle on each pattern in Figure 7. The reconstructed images are 
sums of ten independent reconstructions. These complex-valued 
sums have the property that their Fourier spectrum is effectively 
modulated by the PRTF and, hence, any artifact due to noise (or 
even due to forcibly truncating the data to a lower resolution) is 
unlikely to show up in the recovered image. 

TABLETOP SHORT WAVELENGTH CDI
To date, most CDI experiments are carried out in third-generation 
synchrotron and XFELs. However, limited access and experimen-
tal time hinder the development and applications of CDI using 
these methods. Thus, over the past several years, CDI microscopes 
based on tabletop sources of coherent extreme ultraviolet and soft 
X-rays are also being developed [126]. Figure 8 shows the first 
tabletop CDI experiment with extreme UV wavelength. 

Phase retrieval, i.e., obtaining Figure 8(d) from (c), is achieved 
using the GHIO algorithm [87]. In GHIO, the standard HIO is first 
run in parallel starting from several (16 in this case) random ini-
tial points, for a set number of iterations (2,000). This is genera-
tion zero of the algorithm. Then, the best output (in the sense of 
distance from the measurements) is selected to serve as the seed 
for the next generation. The inputs for the first generation are 

(b) (c) (d)

Ti: Sapphire
1 mJ, 25 fs, 3 kHz

Vacuum Vacuum
Noble Gas AI AI

Flat EUV Mirror

Curved EUV
Mirror

Sample

Movable
Beamblock

X-Ray
CCDVacuum Chamber

(a)

Al: Aluminum

EUV: Extreme Ultraviolet

[FIG8] The first tabletop short-wavelength CDI. (a) The experimental setup. Coherent extreme UV radiation is generated through the 
process of high harmonic generation. A single harmonic order at wavelength 29 nm is selected and focused onto a sample by a pair of 
multilayer mirrors. The scattered light is detected by the X-ray CCD camera. (b) The original image, used to analyze the performance of 
the CDI process, obtained with a scanning electron microscope (SEM). The image shows a masked carbon film placed on a 15-μm 
diameter pinhole. (c) The recorded multiframe diffraction pattern [corresponding to Fourier magnitude squared of the object shown in 
(b)]. (d) CDI reconstruction using the GHIO algorithm with 214-nm resolution [18].

Free Space Propagation

Object

LPF

Recovery Measurement

Sparse
Phase

Retrieval
| ⋅ |2

[FIG9] The sparsity-based subwavelength CDI. A 2-D object 
consisting of an arrangement of nanoholes (100 nm in diameter) 
is illuminated by a 532-nm laser, and the Fourier plane 
magnitude is measured. High spatial frequencies are lost during 
propagation, because the features (the circles as well as their 
separation) are smaller than ~ /2m . Using an iterative greedy 
algorithm, and exploiting the prior knowledge that the object is 
sparse in a dictionary made of 100-nm circles, the phase is 
retrieved and the object is recovered from its low-pass-filtered 
Fourier magnitude [45].
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obtained by multiplying the seed with each of the 16 images and 
taking the square root of the product. The same procedure is 
repeated for the next generations. The result in Figure 8(d) was 
obtained after the eighth generation, for which the 16 recon-
structed images became consistent. 

SUBWAVELENGTH CDI USING SPARSITY
Prior knowledge of object sparsity can help regularize the phase-
retrieval problem as well as compensate for loss of other kinds of 
information. Here, we consider a 
problem in which the high spatial 
frequencies are lost. As described 
before, when an object is illuminated 
by coherent light of wavelength ,m
the far-field intensity pattern is pro-
portional to the magnitude of the 
object’s Fourier transform. In addition, features in the object that 
are smaller than ~ /2m  are smeared due to the diffraction limit. 
Consequently, the intensity measured in the far field corresponds 
to | | ,y LFx 2?  where L  represents a low-pass filter at cutoff fre-
quency / ,1co m= F  represents the Fourier transform, and | · | 2

stands for elementwise squared absolute value. 
Figure 9 (adapted from [45]) shows the recovery of a sparse 

object containing subwavelength features (100-nm holes illu-
minated by a 532m = -nm laser) from its experimentally mea-
sured low-pass-filtered Fourier magnitude. The prior knowledge 
used for recovery is that the object comprises a small number of 
100-nm diameter circles on a grid, illuminated by a plane wave. 
The exact number, locations, and amplitudes of the circles are 
not known a priori. The recovery is performed using a greedy 
algorithm that iteratively updates the support of the object, 
finds a local minimum, and removes the weakest circle until 
convergence [45]. 

Another type of information loss in CDI, for which the prior 
knowledge of object sparsity can be helpful, is low SNR. In nonde-
structive X-ray CDI measurements, it is not uncommon for signal 
acquisition time to be on the order of tens of seconds [18], [20], 
[127] to achieve sufficiently high SNR. This poses a severe limitation 
on the temporal resolution attainable with such measurements, 
restricting the types of dynamical phenomena accessible by X-ray 
CDI. Exploiting sparsity in the change that an object undergoes 
between subsequent CDI frames has been recently suggested as a 
means to overcome high noise values and, consequently, signifi-
cantly decrease acquisition time [52]. In other words, the fact that an 
object is sparsely varying can be used as prior information to effec-
tively denoise sequential Fourier magnitude measurements. In [52], 
CDI of a sparsely varying object is formulated as a sparse quadratic 
optimization problem and solved using GESPAR [51]. Numerical 
simulations suggest a dramatic potential improvement in temporal 
resolution. In an example consisting of a 51 51# -pixel object with 
five randomly varying pixels between frames, an improvement of two 
orders of magnitude in acquisition time is possible [52]. 

Finally, in [53], an experimental proof of concept is presented 
for an optical system in which discrete phase retrieval is per-
formed using a small number of intensity measurements. The 

system considered is a model multiple-input, multiple-output 
communication system: an array of coupled optical waveguides 
in which a small (sparse) number of input waveguides is excited. 
As the light propagates through the array, the energy couples into 
neighboring waveguides until, ultimately, at the output plane, the 
energy is distributed among many of the waveguides. The purpose 
is to recover the complex input field, i.e., which waveguides were 
excited, and at what amplitude and phase, given output intensities 
of only a subset of the waveguides. This problem is formulated as 

a discrete phase-retrieval problem, 
and the loss of information, both of 
phase and of unmeasured wave-
guides, is compensated by a sparsity 
prior. The phase is then retrieved 
using GESPAR [51]. 

OTHER PHYSICAL SETTINGS, 
BOTTLENECKS, AND VISION 
This review article is focused on the simplest physical setting for 
phase retrieval in optical imaging (Figure 2), CDI: an unknown 2-D 
optical image is recovered algorithmically from a single measure-
ment of its far-field intensity pattern, given a known image support 
(or other prior information). In terms of signal processing, this 
problem corresponds to recovering a 2-D object from measure-
ments of its Fourier magnitude. However, the issue of phase 
retrieval in optical imaging and, in a more general sense, in optics 
is far broader and includes other physical settings that naturally 
translate into signal processing problems that are different than the 
standard phase-retrieval formulation. This section provides a short 
overview of those physical settings, defines the various problems in 
terms of signal processing, and provides some key references. We 
conclude with a discussion on the main challenges and bottlenecks 
of phase retrieval in optical imaging, followed by an outlook for the 
upcoming years and long-term vision. 

NON-FOURIER MEASUREMENTS 
The simplest optical phase-retrieval problem assumes that the 
measured data corresponds to the Fourier magnitude. In optical 
settings, this means that the measurements are taken in the Fou-
rier domain of the sought image, which physically means per-
forming the measurements at a plane sufficiently far away from 
the image plane (the so-called far field or the Fraunhofer regime)
or at the focal plane of an ideal lens [37]. In reality, however, the 
measurements can be taken at any plane between the image 
plane and the far field, which would yield intensity patterns that 
are very different than the Fourier magnitude of the signal. This 
of course implies that new (or revised) algorithms—beyond those 
described in previous sections—must be used, which naturally 
raises issues of conditions for uniqueness and convergence. At 
the same time, these measurements have some interesting 
advantages, which can be used wisely to improve the perfor-
mance of phase retrieval. Let us begin by describing the relevant 
physical settings. 

As stated earlier, the optical Fourier plane corresponds to a plane 
sufficiently far away from where the object (the sought signal) is 

KNOWLEDGE OF THE FOURIER
PHASE SIGN HAS BEEN SHOWN TO

YIELD UNIQUENESS WITH SOME
RESTRICTIONS ON THE SIGNAL.
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positioned. Far away here means asymptotically at infinite distance 
from the object plane or at the focal plane of a lens. However, the 
entire propagation-evolution of electromagnetic waves from any 
plane to any other plane is known: it is fully described by Maxwell’s 
equations. As such, one can formulate the problem through a 
proper transfer function of the electromagnetic wave that is differ-
ent than the Fourier transform. 

In this context, the most well-
studied case is the regime of Fresnel 
diffraction, where the transfer func-
tion is expressed in an integral form 
known as the Fresnel integral [37]. 
This regime occurs naturally at a 
range of distances away from the 
object plane, which naturally also 
includes the Fraunhofer regime where the transfer function 
reduces to a simple Fourier transform. Going beyond the Fresnel 
regime is also possible. This means that the (magnitude squared of 
the) electromagnetic wave will be measured at some arbitrary 
plane away from the object. A more general case arises by express-
ing the scalar transfer function of the light in a homogeneous 
medium, at any plane z  as 

( , , ) [ ( ) ] .expT k k z iz k k kx y x y
2 2 2= - - + (17)

Here, / ,k c~=  with ~  being the frequency of the light, c  being 
the speed of light in the medium, and ,k kx y  describe the trans-
verse wavenumbers. The field at any arbitrary plane ,z ( , , ),E x y z
is then given by inverse Fourier transforming the spectral func-
tion at that plane ( , , )F k k zx y  [namely, the Fourier transform of 

( , , )E x y z  with respect to , ,]x y  which is related to the spectrum 
at the initial plane by 

( , , ) ( , , ) ( , , ) .F k k z F k k z T k k z0x y x y x y= =

With the transfer function (17), one can now formulate a new 
phase-retrieval problem, where the measurements are conducted 
at some arbitrary plane ,z  giving | ( , , ) | ,E x y z 2  and the sought 
signal is .( , , )E x y z 0=  This approach can be extended to 
include polarization effects, in which the transfer function is vec-
torial, thereby describing the propagation through Maxwell’s 
equations with no approximation at all. The optical far field—
where the measurement corresponds to the Fourier magnitude of 
the image at the initial plane (i.e., the measurement is propor-
tional to | ( , , ) | )F k k zx y

2 —is obtained for distances z  larger than 
some minimum distance z0  that depends on the spectral extent of 

( , , ),F k k z 0x y =  and only within a region close enough to 
the z-axis in the measurement plane. 

It is interesting to compare these more general phase-retrieval 
problems to the generic problem of recovering a signal from its 
Fourier magnitude. In terms of algorithmics, the generic problem 
is much simpler and was extensively studied throughout the years, 
whereas the general case is considerably more complex and was 
studied only sporadically. However, in terms of optics, the mea-
surements in the general case can provide more information. 

Namely, measurements of | ( , , ) |E x y z 2  can be taken at multiple 
planes (multiple values of ),z  and each measurement adds more 
information on the signal. In contrast, for the generic problem, 
once the measurements are taken in the optical far field, taking 
more measurements at further away distances does not add addi-
tional information because all of the far-field measurements corre-

spond to the Fourier magnitude (to 
within some known scaling of coor-
dinates in the measurement planes). 
As such, performing phase retrieval 
of optical images in the most general 
(non-Fourier) case can be beneficial 
as it leads to multiple measurements, 
possibly relaxing the conditions on 
oversampling and/or the advance 

knowledge on the support in the image plane. 
Historically, these ideas on non-Fourier measurements have 

been known to the optics community since the early days of 
optical phase retrieval [2]. They are currently being used in the 
context of improving the convergence of phase retrieval by tak-
ing non-Fourier measurements at several planes [14], [128]. 
Alternatively, one can take measurements at several different 
optical frequencies ,~  which would be expressed as different 
values of /k c~=  in the general transfer function given before. 
In this multifrequency context, it is important that the frequen-
cies are well separated, each having a narrow bandwidth, to 
conform the high degree of coherence required for CDI. These 
ideas are now being pursued by several groups [19], [118], 
[129]. Interestingly, the multifrequency idea also works in the 
continuous case of broad bandwidth pulses centered on a single 
frequency. In this case, the power spectrum of the pulse must 
be known in advance [118], [129], [130]. In a similar vein, 
recent work has demonstrated scanning CDI, where the beam is 
scanned through overlapping regions on the sample to allow 
imaging of extended objects, a method known as ptychography
[80], [131]–[133]. 

More sophisticated physical settings also exist, where the 
medium within which the waves are propagating is not homoge-
neous in space. Famous examples are photonic crystals, wherein 
the refractive index varies periodically in space, in a known fashion, 
in one, two, or three dimensions. Obviously, in such settings, the 
transfer function for electromagnetic waves is fundamentally dif-
ferent from the transfer function in free space. The phase-retrieval 
problem in such systems, albeit less commonly known, is no less 
important. For example, photonic crystal fibers can in principle be 
used for imaging in endoscopy. The measurements in such sys-
tems correspond to the magnitude squared of the field at the mea-
surement plane, which would be very different than the Fourier 
magnitude of the image. Still, once the transfer function is known, 
complicated as it may be, the phase-retrieval problem is well 
defined and can be solved with some modifications to the algo-
rithms described earlier; see, e.g., the pioneering work on phase 
retrieval in a photonic crystal fiber [134], and very recently, work 
on sparsity-based phase retrieval and superresolution in optical 
waveguide arrays [53]. In addition to these, the concept of CDI has 

THE MULTIFREQUENCY 
IDEA ALSO WORKS IN THE

CONTINUOUS CASE OF BROAD
BANDWIDTH PULSES CENTERED

ON A SINGLE FREQUENCY.
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also been extended to other schemes, such as Bragg CDI, suitable 
to periodic images to reconstruct the structure and strain of nano-
crystals [135]–[138]. 

PHASE RETRIEVAL COMBINING 
HOLOGRAPHIC METHODS 
As explained earlier, optical settings always suffer from the inability 
of photodetectors to directly measure the phase of an electromag-
netic wave at frequencies of terahertz and higher. A partial solution 
for this problem is provided through 
holography, which was invented by 
Denis Gabor in 1948 [139], who was 
awarded the Nobel Prize in Physics in 
1971. Holography involves interfering 
an electromagnetic field carrying 
some image, ,Eimage  with another 
electromagnetic field of the same fre-
quency and a known structure, 
denoted as .Eref  Typically, the so-
called reference wave, ,Eref  has a very simple structure, for exam-
ple, approximately a plane wave (wave of constant amplitude and 
phase). The detection system records | | .E E 2

image ref+  Originally, 
such holographic recording was done on a photographic plate that 
was made from a photosensitive material whose transmission, 
being sensitive to the intensity of the light, became proportional to 
the recorded pattern | | .E E 2

image ref+  Such a photographic plate is 
called a hologram, wherein the information contained in the image 
wave Eimage  is embedded in transmission function of the hologram. 
To see the recording, the wave of the known pattern, ,Eref  is gener-
ated (which is possible because its structure is simple and fully 
known) and made to illuminate the hologram. The magnitude of 
the wave transmitted through the illuminated hologram is there-
fore proportional to | | .E E E·2

image ref ref+  One of the terms is 
| | .E E·2

ref image  Since | |E 2
ref  carries virtually no information, i.e., 

it is just a constant, this transmitted wave reconstructs the image 
times that constant. This is the principle of operation of hologra-
phy. Over the years, it has been shown that it is almost always bene-
ficial to record not the actual image but its Fourier spectrum; 
hence, the reconstructed information is the Fourier transform of 
the image, and the image itself is recovered either in the far field (as 
explained in the beginning of this article) or at the focal plane of a 
lens. This process is termed Fourier holography [140]. 

In the context of phase retrieval, holography is used to add 
information in the measurement scheme. Because in most cases 
the measurements used are Fourier magnitudes, which physically 
imply far-field measurements, the natural inclusion of holographic 
methods is through Fourier holography. For example, adding a tiny 
hole (a delta function) at a predetermined position in the sample, 
close to where the sought image resides, creates an additional wave 
in the far field with a tilted phase that arises from the displacement 
between the hole and the sought image. The far-field intensity, 
therefore, now corresponds to the absolute value squared of the 
sum of the Fourier transform of the sought image and the known 
wave. As such, it introduces additional prior knowledge that can be 
used for increased resolution of the algorithmic recovery or for 

relaxing the constraints on the prior knowledge on the support. 
These ideas have been exploited successfully using X-rays and elec-
trons by several groups [141]–[143]. 

CHALLENGES
The current challenges can be briefly defined as higher resolution, 
the ability to recover more complex objects, improved robustness 
to noise, and real-time operation. The very reason phase retrieval in 
optical imaging has recently become so important is owing to the 

vision to be able to one day directly 
image complex biological molecules, 
track their structural evolution as it 
evolves over time, and even view the 
dynamics of the electronic wave func-
tions bonding atoms together. The 
reasoning is obvious: to understand 
biology at the molecular level and to 
decipher the secrets of how their 
atomic constituents bond together 

and how they interact with other molecules. The current state of 
the art is far from those goals: imaging resolution is not yet at the 
atomic (subnanometer) level, and—at nanometric resolution—
imaging cannot handle objects that are bounded by a support that 
is extremely large compared to the resolution. In terms of being 
able to perform real-time experiments, state-of-the-art measure-
ments have demonstrated extremely short optical pulses: tens of 
attoseconds (10 18-  s, on the order of the passage of a photon 
through a distance comparable to the size of an atom). Pioneering 
experiments have even started to probe the dynamics of electrons 
in molecules and tunneling processes on these timescales. But, as 
of today, none of these ultrafast methods was applied to imaging of 
even a simple molecule, let alone complex biological structures. 

Clearly, the underlying physics and engineering pose great chal-
lenges to meet these goals. Generating coherent radiation in the 
hard X-ray regime is still a major obstacle, often requiring very 
large enterprises such as the X-ray sources at the SLAC National 
Accelerator Laboratory. These facilities around the world are con-
tinuously improving their photon flux at shorter wavelengths, 
thereby constantly improving imaging resolution. The fundamental 
limits on the coherent X-ray flux possible with current methods 
(such as synchrotrons, XFELs [55], [56], and the process of high 
harmonics generation [144]) are not even known. But the steady 
improvement does give hope for imaging at the atomic level in the 
near future. Taking the CDI techniques to the regime of attosecond 
science is an important challenge. These pulses are extremely short, 
and, hence, their bandwidth is huge. Therefore, the coherent dif-
fraction pattern is a superposition of their multispectral contents, 
which requires new algorithmic methods. As described earlier, 
these issues are currently being explored by several groups. But the 
problem is fundamentally more complicated because the process of 
scattering of light by molecules at these short wavelengths and 
ultrashort timescales is not like passing light through a mask on 
which an image is imprinted. Rather, many issues related to light-
matter interactions under these conditions are yet to be understood 
(e.g., tunneling ionization of atoms by laser pulses). 

THE CURRENT CHALLENGES
CAN BE BRIEFLY DEFINED AS
HIGHER RESOLUTION, THE

ABILITY TO RECOVER MORE
COMPLEX OBJECTS, IMPROVED
ROBUSTNESS TO NOISE, AND

REAL-TIME OPERATION.
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Finally, the long-term vision must include imaging the dynam-
ics within complex biological systems at the atomic level and in 
real time. But such systems are extremely complex to handle, in 
terms of details on many spatial and temporal scales simultane-
ously, in terms of the statistical nature and huge redundancy in 
the physical processes taking place within such complexes simul-
taneously, and even in terms of the quantum mechanics govern-
ing the dynamics at those scales. This is where the signal 
processing community can make a large impact—by devising new 
and original methods for recovering the information from 
experimental measurements. Clearly, the algorithms will have to 
be tailored to the specific physical settings. 
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ccurate measurements of precipitation are essential for many applications, 
ranging from flash-flood warnings to water resource management. How-

ever, the accuracy of the existing tools is limited by various technical 
and practical reasons. Percipitation monitoring has traditionally been 
known to rely on gauges, weather radars, and satellites. Recently, a 

new approach has begun to be examined, the usage of commercial wireless communi-
cation networks (CWCNs), which enjoys the lack of any need for deployment proce-
dures or costs, and which is already widely spread across countries.

The goal of this article is to present a critical survey of the existing papers and works 
on this topic. We emphasize the works relating this topic to multidimensional signal pro-
cessing. The importance of precipitation (rain, sleet, hail, snow, and any other outcomes 
of the condensation of water vapor that falls by virtue of gravity) is clear to any layman. 
Whether it is required for the purpose of precisely measuring past precipitation quanti-
ties or for generating future predictions, monitoring such phenomena has been of inter-
est to humankind since early biblical days.
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The differences between the various types of monitoring meth-
ods are vast and become crucial when deciding which method to 
use, when to use it, and where to use it. The difference between the 
tools ranges from their measurements’ precision to their spatial 
and temporal nature (local-/short- versus global-/long-range) and 
even deployment prices [1]. Such differences are the provenances 
of a multitude of active research fields. These include numerical 
techniques for reconstructing rain maps, methods for assimilating 
the various monitoring methods, and, naturally, the development 
of new and more advanced measurement systems.

The first evidence of intentional rain gauge usage dates back to 
the fourth century B.C. in India [2]. Yet, contemporary rain gauges 
(tipping bucket and electronic gauges) are still being improved. 
The development of designated microwave (MW) radar dates back 
to the late 1940s [2], [3], and the development of cheaper, more 
precise radar has been a work in progress ever since. 

Satellite-based measurements entered the environmental 
monitoring turf in the 1960s. Since then, the challenge of gain-
ing precise measurements from these satellites has been a great 
effort. However, lowering the prices of satellite-based monitoring 
systems still seems to be a distant goal, and precipitation meas-
urements from satellites are still not frequently updated.

Recently, much interest has grown around the subject of using 
existing CWCNs for rain monitoring [4]–[6]. Such rain-monitor-
ing systems benefit mainly but not solely from not needing to 
deploy any sensors. Making use of the existing commercial (e.g., 
cellular) wireless networks is the equivalent of deploying a very 
high density of dedicated sensors but without any extra cost. Such 
an amount of sensors, used for precipitation monitoring, is 
unprecedented and can provide high temporal and spatial resolu-
tion sensing and better area coverage as well as a diversity of 
measurements in given points. Moreover, by applying advanced 
signal processing algorithms, which exploit the diversity in the 
data, overcoming many of the disadvantages of the previous moni-
toring methods now seems realizable. Such algorithms also bene-
fit from the recent rising interest in wireless sensor networks.

NEW MONITORING APPROACH

MICROWAVE LINKS MEASUREMENT SYSTEMS
Recently, a new approach has entered the discipline of precipita-
tion monitoring: using MW attenuation measurements for recon-
struction of rainfall fields, which was initially suggested by Giuli et 
al. [7], [8]. Reference [7] suggested a custom design of MW links, 
which was set to ensure a proper reconstruction of rain fields.

A project named Microwave Attenuation as a New Tool for Improv-
ing Stormwater Supervision Administration (MANTISSA) [9] set out 
to test the feasibility of using MW signals to estimate rainfall. These 
signals are inherently path averages since they are the result of an inte-
grated sample of the signal along the MW’s path. MANTISSA aspired to 
use these averaged rainfall estimates as a complement to radar data 
and to improve the available input data to hydrological models for 
forecasting the response of urban and rural drainage systems.

A novel method, suggested by Messer et al. [4] in 2006, fol-
lowed by Leijnse et al. [6] in 2007, involving existing CWCNs 

suggested the usage of the backhaul communication links for the 
sake of precipitation monitoring. In other words, Messer et al. sug-
gested using existing cellular networks’ equipment for the sake of 
meteorological monitoring of rainfall. This suggestion alleviated 
the problem of the costs of the MW-based systems by using the 
existing links, which changed their high deployment price to zero.

Evidently, the received signal level (RSL) strength at which each 
antenna receives its pair’s transmitted signal may be stored. Moreo-
ver, it is indeed often stored and kept for offline inspection. Messer et 
al. [4] proposed the usage of these cellular networks’ built-in moni-
toring facilities. Being a widely distributed observation network, 
operating in real time with minimum supervision and without addi-
tional cost [4], motivated the attempt to use these data from the 
CWCNs. The theoretical justification for such attempts is a power 
law that relates the signal attenuation to the rain rate [10]. The 
power law relating the attenuation to the rain rate was shown to be 
an approximation, which holds in convective rains and in communi-
cation systems operating in midrange frequencies (above 1 GHz and 
below the optical range). The exact relation between the attenuation 
and rain rate is given by a series relation dependent on the fre-
quency, the temperature, and the drop size distribution (DSD). 
Later, Olsen et al. [10] also showed that using the approximation of

A aRb= (1)

is good, where A  is the logarithmic attenuation per kilometer 
A /dB km6 @ and R /mm h6 @ is the rain rate, and they evaluated its 
usage with experimental results. The A– R  relation is often con-
sidered completely linear, approximating the power coefficient b
to 1, when operating at around 1-cm wavelengths. In the dedi-
cated MW links, which were suggested by Giuli et al. [7], [8], the 
frequencies were chosen to ensure a linear A– R  relation.

In the system devised by Giuli et al., the geometry of the links 
was designed to ensure a proper reconstruction of rain maps 
inside an area of 400 km2. In the CWCN system suggested by 
Messer et al., the links geometry was designed for any arbitrary 
means. Placement of communication links, as performed by net-
work technicians, is an intricate task. The execution of this task 
usually balances between attempts to minimize the number of 
calls that will be lost due to a lack of reception and attempts to 
minimize the number of links to reduce network establishment 
costs. Such an optimization target unsurprisingly generates a 
completely undefined geometry of a spatial distribution of links. 
Figure 1 depicts the Giuli link system geometry compared with 
the link distribution in Israel. Such arbitrary distributions hint at 
the challenges that CWCN-based reconstruction induces.

In a CWCN, dedicated pairs of antennas communicate with 
each other to transfer various types of data (audio data, billing 
data, etc.). The RSL strengths at which each antenna receives its 
dedicated pair’s transmitted signal are sampled and logged. 
Assuming a sufficient quantity of antennas are contained in an 
area of interest, and a satisfactory amount of samples are in hand, 
a reconstruction of the rain in this area of interest may be 
achieved using the RSL data. An attempt to reconstruct rainfall 
maps by processing the recordings of the RSLs of the CWCN 
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backhaul links was then proven to be feasible by Zinevich et al.
[11]. The logs containing the RSLs were processed and converted, 
using the A– R  law, to depict rain rates along a link. These values 
were then spatially interpolated to reconstruct a rain map.

COMMERCIAL WIRELESS NETWORK 
MEASUREMENT SYSTEMS
Attempting to reconstruct rain maps using the data that were 
obtained from the CWCNS requires an understanding of the 
processing that each RSL value undergoes. Such processing 
clearly depends on the equipment that is used in the cellular 
network. Here, we describe a representative subset of the pro-
cesses to which each RSL sample is subject.

As digitally stored data dictate, the RSL value undergoes quanti-
zation. The RSL values are often saved after being quantized to a res-
olution of 1 dB, but a quantization of 0.1 dB may also be commonly 
found. The effects of the atmosphere and weather on the perfor-
mance of a millimeter-wave communication link have been analyzed 
by Frey [12]. It has been found that the attenuation due to heavy rain 
at frequencies below 1 GHz is negligible. In fact, the rain-induced 
attenuations are in the order of the quantization and hence may not 
be measured properly using CWCNs. However, at frequencies above 
15 GHz, the attenuation as a function of the rain rate is large enough 
to be measured. At frequencies of around 20 GHz, the attenuations 
go beyond the quantization magnitude, which enables a proper mea-
surement of various rain rates using the CWCNs.

The backhaul operating frequencies of cellular networks vary 
depending on the communication technology. These are usually 
in the range of 20 GHz for longer-range links and may reach up 
to 40 GHz for short links where two antennas are closer 
together. This means that we may indeed use the logged back-
haul RSL samples to measure rain rates.

The sampling rates of the RSL greatly vary from once per 
minute to a mere once per day. Sampling the minimal and max-
imal RSL data in a 15-minute interval is also common. In such 
cases, one must take into consideration that sampling the mini-
mal and maximal values is a nonlinear process, making the 
reconstruction algorithms much more complex.

A central difference between the traditional monitoring meth-
ods and the CWCN sampling process is the fact that RSL attenua-
tions are a product of an integration of the rainfall along a linear 
path. This is a result of the fact that the communication signal is 
transmitted using a highly directional antenna. As a result of the 
directivity of the antenna, raindrops cause interference to the sig-
nal when they enter its path, which may be modeled as propagat-
ing along a line. Rain along a line on which the signal propagates 
is the cause of the attenuation of the RSL. However, there is no 
reason to consider the rain rate constant along such a line. The 
sampled RSL is the integration of all rain-induced attenuations 
along a line connecting two antennas. Variations along the line 
on which a projection of the rain field has been applied may or 
may not be restored. Treatment of this issue is discussed in the 
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[FIG1] (a) A map of Israel shows the distribution of CWCN links in 2012. Different networks are depicted in different colors. Green: Cellcom 
(sampled once per day, magnitude resolution 0.1 dB); red: Cellcom (sampled once every 15 minutes, magnitude resolution 1 dB); blue: 
Cellcom (sampled once every 15 minutes, magnitude resolution 0.1 dB); black: Pelephone (sampled once per minute, magnitude resolution 
1 dB); and orange: Orange (sampled once per day, magnitude resolution 0.1 dB). (b) The monitoring system devised by Giuli et al. [7].
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following sections. In this sense, it is clear 
that short links are preferred. Shorter 
links’ RSL attenuations, on the other hand, 
are closer to the quantization magnitudes.

Attenuation along a link is naturally 
also caused by the propagation of the MW 
signal in space. To observe rain, we need 
to differentiate between any attenuation 
caused by nonprecipitation and the atten-
uation caused by precipitation. To do so, 
we need to measure the RSL data during 
times when no rain was present. How-
ever, these values also tend to vary. Wind, 
which moves the antenna, scintillation 
effects, temperature drifts, and other 
atmospheric conditions are the causes of 
these variations. The calibration of the 
attenuation level during times when no 
rain is present is usually named zero level 
or baseline determination and involves 
setting or choosing an RSL level that 
includes attenuation from all sources 
except the rain-induced ones.

Figure 2 shows the RSL data from two links that are located 
in Ramle, Israel. These RSL samples were taken during the same 
time, in two links that are roughly 2 km apart. One may easily 
notice that the signal strengths, given in decibel milliwatts, are 
different. While one link exhibits signal levels that decrease about 
40 dB, from about −40 to −80 dBm, the second link introduces a 
dynamic range of only about 6 dB, from −35 to −41 dBm. The 
signal drop occurs at slightly different times but depicts the 
same rain event. These differences are mostly due to the differ-
ent link lengths or link frequencies. We stress that the vast dif-
ference in RSLs is also due to the difference in link lengths and 
does not necessarily imply vastly different rain rates.

One may also notice the ringing effects in the short link 
[Figure 2(b)] that are caused by the 1-dB link quantization 
incurring quantization noise. To detect the rain event, a zero 
level of −40 dBm may be chosen in the left link’s RSL. The 
added attenuation may be attributed to the rain event and may 
be converted to rain rate. However, in the right link’s RSL, a 
zero level of between −35 and −37 dBm may be a good choice. 
The added attenuation is in the range of 5 dB. So  the zero-level 
choice range is in the order of the added attenuation due to 
rain. Indeed, 1–2 dB of error in the calibration of the zero level 
seem negligible. However, a common link, operating at 15 GHz 
(which implies that the power law coefficients to use are 
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Hence, the calibration of the zero level is crucial for proper 
rain-rate measurement. This figure also depicts the temporal 

and spatial dynamicity of the rain. After having evolved along a 
2-km path, from the first link to the second, the second link 
measured an event that is distinctly different (the difference in 
link lengths is too small to be attributed solely to the difference 
in RSL measurements).

Fluctuations in the zero level are mainly attributed to variations 
in the water vapor density, ducting, and atmospheric scintillations 
[13]. Additional sources include changes in temperature that cause 
MWs to bend their propagation direction as a result of the change 
in the air’s refractive index [12]. Winds that cause antenna deflec-
tions also result in RSL fluctuations [16].

OPPORTUNISTIC WIRELESS 
SENSOR NETWORK
During the past decade or so, advances in wireless communica-
tions have allowed the development of low-power, low-cost sen-
sors built for the task of general-purpose sensing. Such sensors 
are found today in various applications, ranging from soil anal-
ysis [17] to the monitoring of sensitive wildlife and habitats 
[18], rainfall monitoring [19], and many more.

The desire to monitor phenomena for a long period of time, 
combined with the fact that, in many cases, the exact moment 
when the monitored phenomenon occurs is unknown, poses chal-
lenges in the energy budget of each sensor. Cases where the sen-
sors cannot be replaced or treated often call for smart power 
management schemes.

In many wireless sensor networks, many nodes are deployed over a 
large area. To reduce the power consumption caused by the need to 
transmit the measurement results back to a base station (which may 
be located far from the sensor), the sensors can communicate with 
each other and deliver messages back and forth from other sensors. By 
doing so, real-time data over a wide area can be sampled. This implies 
that a common denominator in wireless-sensor-network-based 
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[FIG2] The RSL data of two nearby links: (a) link 13 and (b) link 14. Both links are located 
in the city of Ramle in Israel. The RSL data depict a rain event. Link 13 is 18.36 km, 
whereas link 14 is 4.55 km long. Neither link uses automatic power control.
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applications is the need to deploy a large amount of sensors. This 
increases the need for a cost optimization.

A central deficiency in such networks is caused by the need 
to monitor large areas. Because of the large number of deployed 
sensors, which are densely deployed in the monitored area, a 
substantial data redundancy among the sampled data will be 
present. And again, transmitting these data to a base station 
consumes energy and bandwidth. It is therefore necessary to 
develop efficient ways in which nodes can collaborate to send 
the relevant data only once.

According to [20], there are two main issues that rightly 
attract attention and differentiate sensor networks from the net-
works we know and understand: the limited power consump-
tion and the potential to deploy networks with a large number 
of sensor nodes.

Corke et al. [21] studied a number of technological chal-
lenges that wireless sensor networks have presented in the past 
years and concluded that, in retrospect, the factors that have 
been found most critical to the applications’ success are the 
optimization of power consumption and the need to efficiently 
cover a wide area of interest.

In fact, algorithms for optimization of the sensor topology, in 
an attempt to minimize redundant data and/or power consump-
tion, are an active research area (see, e.g., [22]–[25]). A thorough 
survey discussing wireless sensor networks may be found in [26].

The newly suggested CWCN measurement system may be 
considered a wireless sensor network. It consists of a multitude 
of sensors that may be used for the purpose of monitoring the 
environment. However, a fundamental difference distinguishes 
it from other wireless sensor networks. The sensors are already 
deployed, have zero cost, and are fed by an infinite power 
source. This is the reason we call such a network an opportunis-
tic wireless sensor network (OWSN).

Many inherent characteristics differentiate the OWSN and the 
typical wireless sensor network. In a typical sensor network, the 
sensors are optimized for the task of monitoring a specific phe-
nomenon. In the OWSN, no such optimization can take place. The 
sensors are optimized for communication quality of service. Their 
sensitivity, for example, is far from optimized for the monitoring 
task. For example, if we were to attempt to monitor a slight drizzle 
by measurements taken from a sensor operating at 26 GHz, we 

would need a measurement resolution or quantization of ~0.02 dB 
(see [12]). Common sensors in OWSNs have a sensitivity/
quantization of 0.1 or 1 dB. Such limitations may be alleviated by 
considering the amount of data available. It is reasonable to believe 
that the large quantization, for example, may be mitigated by aver-
aging the measurements of a large amount of sensors. Some of the 
papers we describe in the following sections have accepted the sen-
sors with their many limitations and turned to statistical signal 
processing tools to cope with them.

Another central limitation from which the OWSN suffers is 
the highly irregular manner by which the sensors are spread 
across land. This is depicted in Figure 1. This presence of areas 
with insufficient coverage gives rise to the problem of data assim-
ilation. The sampling of insufficiently covered areas may be 
achieved by assimilating rain gauge data and/or weather radar or 
even data from different commercial network service providers. 

Another factor that makes the monitoring task difficult is the fact 
that the communication systems employ an automatic power con-
trol and adjust the transmission power according to the measured 
signal power. This automatic tuning must be taken into account 
when attempting to infer the proper values of the monitored phe-
nomena. Table 1 summarizes the central differences between the 
newly suggested OWSN and typical wireless sensor networks.

SOURCES OF ERRORS
A systematic source of error in the monitoring and observation of 
rain with CWCN is due to the approximation that yielded (1). 
Furthermore, the calibration of the ,a b  coefficients for the A– R
relation must be carefully applied for gaining a proper rain-rate 
measurement from the RSL data. If we were to properly measure 
the rain-induced attenuation, we would apply a relation that inte-
grates the rain along the path that connects two links, rather 
than assuming that the rain is constant along such a line.

The question of how we are to consider the rain rate that we 
measured using an RSL reading arises. The returned rain rate is 
usually treated as a path-averaged rain rate along this line. However, 
to the best of our knowledge, no reconstruction algorithm currently 
suggests a method for an exact reconstruction of the rain rates 
along the path of integration. Some algorithms do divide a line into 
several points [13], [14], but no algorithm fully reproduces the rain 
rates along the line in a continuous manner. The analysis of the abil-
ity to reconstruct rain maps by Sendik et al. [15] hints at methods to 
do so. Consequently, an algorithm that postulates that the rain rate 
along the path is equal to the path-averaged rain rate is probably 
erroneous. This suggests that the longer the path along which the 
rain rate is considered to be constant, the larger the errors.

Longer link distances are usually found in more rural areas, 
where a smaller population density makes use of the cellular 
network. This means that, usually, when links are long, they are 
also less dense and render monitoring algorithms prone to 
errors. Figure 1 shows that in the northern, southern, and east-
ern parts of Israel, where population densities are lower, longer 
links are more common, and their density is noticeably lower, 
whereas in the central part of Israel, where the population den-
sity is high, the links are short and quite dense.

[TABLE 1] OPPORTUNISTIC VERSUS TYPICAL WIRELESS 
SENSOR NETWORKS.

CHARACTERISTIC OPPORTUNISTIC TYPICAL

POWER CONSUMPTION NO LIMITATION A CENTRAL LIMITATION

AMOUNT OF SENSORS THOUSANDS TENS TO HUNDREDS

SENSOR COST ZERO COST OPTIMIZED FOR COST

DEPLOYMENT COSTS ZERO COST OPTIMIZED FOR COST

MEASUREMENT
SENSITIVITY

INSENSITIVE HIGHLY SENSITIVE

GEOMETRIC
DISTRIBUTION
OF SENSORS

NO CONTROL OPTIMIZED FOR 
COVERAGE

*Blue indicates good and red indicates poor characteristics.
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As mentioned previously, the temporal sample rates of the RSL 
vary greatly depending on the type of equipment used by the net-
work service providers. Sample rates as low as once per day are 
incontrovertibly inadequate for reproducing rain maps. Perhaps 
the 15-min resolution sample rate is sufficient for some applica-
tions. This is yet to be determined, as the number of reconstruction 
algorithms that account for temporal effects is still small [27].

The highly dynamic spatial and temporal natures of rain couple 
between sources of error, which are caused by the link averaging 
because of its length and the sample rates. By simulating CWCN 
RSL data from path-averaged radar samples, both temporal and spa-
tial errors were analyzed by Leijnse et al. [28]. Applying a sample 
rate of 15 min, they have shown that errors increase with link 
length, as the dynamic spatial nature of rain causes an increase in 
the rain-rate variations along the link. They also showed that differ-
ent sampling strategies have a crucial role in controlling sources of 
error. For example, they proved the inferiority of a sampling scheme 
that simply returns an instantaneous RSL, when compared to a 
time-averaged RSL. An analysis of the errors due to the spatial vari-
ability of rainfall was applied by Berne et al. [29]. By using a stochas-
tic simulator of the DSD, they analyzed the influence of the link’s 
frequency, length, and DSD spatial variability on the rainfall estima-
tion. They showed that the error due to the usage of the power law 
to connect the RSL and the rain rate is negligible for frequencies 
between 10 and 50 GHz for links longer than 15 km. However, in 
urban areas, links that  span only several kilometers may induce 
errors of up to 4%. Zinevich et al. [30] showed that the most domi-
nant source of error (assuming an effect called the wet-antenna 
effect, which we discuss in the following paragraph, is corrected for) 
is the spatial nature of the rain, surpassing the errors that are caused 
by quantization, zero-level uncertainty, DSD variability along the 
link, and others. Alleviating this source of error requires using a 
large amount of densely distributed sensors, a requirement that is 
easily achieved using the CWCN-based monitoring system.

The proper calibration of the zero level is also a crucial fac-
tor for an accurate rain measurement. Events with low rain 
rates induce only a minor additive attenuation and, hence, 
require exact zero-level calibration to enable their detection. 
Longer links have more rain along their path, causing larger 
signal attenuations. This eases the detection of low rain rates.

Another widely discussed source of error is the wet-antenna 
effect. Humidity sources cause moisture to accumulate on the 
antenna radome and cause an added attenuation. Applying a model 
originated by Kharadly and Ross [31], Minda and Nakamura [32] 
have suggested an exponential model relating the actual rain atten-
uation to the total attenuation induced by both rain and the wet-
antenna effect. Their equation suggests that, for a constant amount 
of accumulated humidity on an antenna, a constant value of added 
attenuation is caused. Hence, time-averaging the RSL values in the 
process of zero-level calibration will not cancel this effect. In [28], it 
was shown that the wet-antenna effect is most probably the great-
est source of error for short links. The added attenuation is in the 
order of magnitude of common rain events and completely biases 
the rain-rate measurement. Schleiss et al. [33] have shown that the 
wet antenna, which affects the CWCN links, increases in an 

exponential manner during rain and decreases exponentially back 
toward zero once the rain stops.

The RSL values are logged after being quantized. The 
received strength levels given within a resolution of 0.1 dB are 
surely precise enough to measure rain rates. Precipitation other 
than rain, such as fog or dew, however, generates attenuations 
that are significantly less than those caused by rain. Hence, the 
RSL’s quantization is a source of error that must be considered 
before attempting to observe such phenomena.

Often, nonlinear processing is applied to the RSL samples before 
logging. An RSL that is sampled once every 15 min commonly 
undergoes a min/max thresholding. In other words, only the mini-
mal and/or maximal value of the RSL is saved every 15 min. It is 
indubitable that such nonlinear processing applied on a signal may 
incur reproduction errors. For short link lengths or links using low 
frequencies, the natural fluctuations of the zero-level attenuation 
have the same order of magnitude of a quantization interval of 
1 dB. Because of the nonlinear processing in addition to the quanti-
zation, the error in the baseline estimations may affect an entire 
rain event, which may introduce a bias in the estimation of rainfall.

To summarize, following the analysis applied by Zinevich et al. 
[13], the most dominant source of error is the spatial rain variabil-
ity, which causes errors if the CWCN is not distributed in a suffi-
ciently dense manner. Hence, this may be relatively easily resolved 
within areas with a high density of links that have a wide range of 
lengths. The second source of error in magnitude is the zero-level 
choice, which must be carefully calibrated. After properly calibrat-
ing the zero level, the DSD and wet-antenna effect are the most 
dominant sources of error, followed by the quantization of the RSL 
values. Table 2 presents a comparison between the properties of 
the CWCN and traditional precipitation-monitoring systems.

SIGNAL PROCESSING

CALIBRATION
As previously mentioned, estimating rain rates from the RSL 
data requires calibrating the baseline or zero level. Various tech-
niques for such a calibration may be found in the literature 
[34]–[39]. Perhaps one of the most paramount advantages of the 
CWCN approach to precipitation monitoring is the presence of a 
multitude of data. Using a network of sensors (many links) that 
sample the same rain event may be of help when attempting to 
determine the baseline. Methods that make use of more than 
one RSL time series for properly calibrating the baseline are 
presented in [14] and [34]–[37].

The first to show the advantage of using two links with close 
frequencies were Rahimi et al. [34]. They suggested the use of dual-
frequency MW links for measuring path-averaged rainfall. They 
presented a baseline determination method, which leaned on the 
assumption that rainy periods are short. These methods included a 
self-updating baseline attenuation level for each frequency during 
the dry periods. The latest dry period was used as a baseline level 
for the upcoming rainy period, which may then be refined using 
the subsequent dry period. For this, they need to properly detect 
wet/dry periods. Hypothesising that the correlation between RSL 
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time series of the two frequencies during wet periods is higher, they 
found that

■ in dry events, the median of the correlations is under 0.25
■ in wet events, the median of the correlations is above 0.79.
They then calibrated the baseline value, choosing the attenua-

tion measured just before a wet event, and they refined it using the 
baseline that preceded the wet event. Overeem et al. [35] proposed 
a method for zero-level calibration in the case of min/max RSL 
data. The RSLs of 57 commercial MW links around the city of Rot-
terdam, The Netherlands, were sampled during 15-min intervals, 
and the minimal and maximal values were logged at 0.1-dB resolu-
tion. Analyzing links shorter than 10 km, they defined two terms:

■ the difference between the instantaneous minimum RSL 
and the maximum of the minimum RSL during a 24-h 
period: maxP P Pmin min

24 h
D = - " ,

■ the link length normalized difference: / .P P LLD D=
They identified a transition to a wet period by requiring that 

the medians of PD  and PLD  be under predetermined values. 
Such a transition into a wet period was extended as long as

.max P P 2 dBmin min
24 h

2-" ,

Hadar [36] suggested employing hidden Markov models 
(HMMs) to identify dry/wet periods. The RSL measurements 
were the HMM observations and the hidden state was either wet 
or dry. Having detected dry and wet periods, the baseline was set 
to the value just before a transition from a dry to a wet period. 
The CWCN RSL data, after subtracting the zero-level attenua-
tion for proper rain-rate measurement, were correlated to rain 
gauge data and were found to correlate well, yielding correla-
tion values at about 0.7. Yet another HMM-based approach for 
inferring dry and rainy periods from telecommunication MW 
link signals was suggested by Wang et al. [40].

Methods for baseline determination that do not incorporate 
the multitude of data inherent in CWCNs are also found in the lit-
erature [38], [39]. Schleiss and Berne’s [38] method of differenti-
ating between dry and rainy periods comprised a calculation of 
the standard deviation of the RSL data in a predetermined win-
dow of 15–35 min. Chwala et al. [39] suggested a spectral 

approach that involved applying a short-time Fourier 
transform to the RSL signal and considering its power 
spectrum. Dividing the spectrum into a low region and 
a high region, the power in each region was calculated. 
If the difference between powers in the two regions 
exceeded a preset threshold, the event was considered 
a wet one. This is motivated by the hypothesis that rain 
events impel high-frequency RSL samples.

Kaufmann and Rieckermann [41] have discussed 
three different methods for baseline determination. 
These included 1) a moving window algorithm, 2) a 
statistical classification algorithm using random for-
ests, and 3) an algorithm based on a Gaussian factor 
graph. The first method, which included a moving 
window algorithm, is, in essence, a modification of 
the algorithm that was previously suggested by 

Schleiss and Berne [38]. The second method, which included 
random forests, required defining a set of attributes or proper-
ties of the RSL data from which a classification into a wet or dry 
event may be applied. These attributes are then thresholded 
while entering a tree of classification decisions. A tree leaf yields 
a final classification. The third method, which they applied, was 
based on the Gaussian factor graph. This approach involves 
modeling the rain process in the state space in which the state 
space vector was chosen to include the RSL value and its slope. 
By recursively relating between past and present RSL observa-
tions, an RSL sample may be effectively denoised and then re-
constructed. This in turn enables classifying the event as either 
wet or dry. A dry classification means that the current recon-
structed sample is part of a baseline. Important assumptions for 
their approach are that the data belonging to the baseline are 
locally smooth and periodic.

Holt et al. [42] have determined an RSL baseline by employ-
ing the assumption that the RSL data from two frequencies are 
very highly correlated during rain events. They therefore classi-
fied events as dry in cases where correlations were below 0.8 and 
where there was no record of any rainfall at added rain gauges.

Another effect that raises the need for calibration is the wet-
antenna effect. Zinevich et al. [13] calibrated the wet-antenna 
coefficients, assuming its independence in frequency, by using 
rain gauge data as ground truth for rain rate. These coefficients 
were found optimal for accounting for wet-antenna effects dur-
ing rain (due to accumulation of raindrops on the antenna 
radome during the presence of a rain event). However, these 
coefficients are inappropriate when accounting for wet-antenna 
attenuation, which is caused due to nightly dew or any other 
source of accumulated drops. In general, the correction and 
calibration of the wet antenna effect is understudied and 
requires a more profound study, especially after acknowledging 
the findings in [28].

Other than the zero level and the wet-antenna effect, the 
power law coefficients must also be calibrated. However, most 
reconstruction and/or estimation algorithms make use of values 
similar to those suggested by [10]. Common algorithms do not 
correct for temperature drifts or DSD variations.

[TABLE 2] THE CHARACTERISTICS OF PRECIPITATION  
MEASUREMENT SYSTEMS.

RAIN
GAUGE

WEATHER  
RADAR SATELLITE CWCN

PRICE (PER UNIT) LOW MID HIGH VERY LOW

DEPLOYMENT COMPLEXITY HIGH MID HIGH VERY LOW

CALIBRATION COMPLEXITY LOW MID MID MID

DATA PROCESSING COMPLEXITY LOW MID HIGH MID

SPATIAL RESOLUTION LOW MID MID HIGH

TEMPORAL RESOLUTION LOW MID MID HIGH

SHORT/LOCAL MONITORING  
SUITABILITY

LOW MID MID HIGH

LONG/GLOBAL MONITORING
SUITABILITY

HIGH MID HIGH HIGH
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DETECTION
Once a CWCN system has been calibrated for proper measure-
ment, we may use it to detect various types of precipitation. For 
example, the ability to provide essential rainfall information from 
regions prone to flash floods was exemplified by David et al. [43]. 
Preliminary results concerning fog monitoring using commercial 
MW systems have been shown by David et al. [44], applying the 
Rayleigh approximation to relate fog to attenuation per kilometer.

The detection of vegetation diurnal cycles by using a custom-
built CWCN was demonstrated by Hunt et al. [45]. Setting out to 
measure vegetation characteristics, they deployed a network of 
seven rain gauges in a cornfield north of Ames, Iowa. To avoid the 
manual collection of data from the gauges, they transmitted the 
rain gauge data to a tower. Coincidentally, they found that the sig-
nal strengths reveal cycles. Investigating these cycles, they found 
that the RSLs indicate whether vegetation is present in the signal 
propagation path. Differentiating between periods where the vege-
tation was harvested and periods before the harvest, they found the 
RSLs to have considerable differences and used these differences to 
prove that the signal strengths may be used for vegetation moni-
toring. Moreover, they showed that the signal strength is inversely 
proportional to the vegetation water content. Harel et al. [46] 
applied an extended multifamily likelihood ratio test for precipita-
tion detection, discriminating between wet and dry periods.

ESTIMATION
Estimating rainfall rates from RSL samples has been treated 
both by approaches that make use of the already deployed 
CWCNs [6], [37], [47]–[51] and by approaches that deploy cus-
tom-built equipment [34], [39], [48].

In essence, the problem of transforming RSL values to rain 
rates is simple. It most practically involves setting a baseline, 
choosing power law-coefficients, and applying the inverse of 
the power law given in (1). The main drawback of this method 
is that it implicitly states that the rain rate along the link line 
is constant.

However, in practice, one must consider other phenomena 
that may sabotage such straightforward attempts. The wet-
antenna effect, outlier samples, mismatches in the power law 
coefficients and many more real-life processes may affect the 
RSL data and result in incorrect rain rates.

Leijnse et al. [6], being one of the first to present actual 
rain-rate estimation from CWCN RSL data, have recognized a 
systematic overestimation, which they reasoned is partly due 
to the uncertainty in the baseline signal level settings, but 
they stated that it is more likely the result of extra attenuation 
caused by the wet antennas, which can cause several dBs of 
additional attenuation [31].

Having acknowledged the baseline determination issue, 
Rahimi et al. [34] applied two different methods for zero-level set-
ting on custom MW equipment that measured signal attenua-
tions. To properly asses the feasibility of their custom-built 
equipment, they searched for a method to compare MW path-
averaged samples to rain gauge point samples. To do so, the rain-
gauge data were converted into path-averaged data by allocating 

each portion of the link to its nearest gauge. However, one must 
comprehend that such a conversion is required for the sole pur-
pose of comparison and observation quality assessments. For a 
fully operational system that observes rain rates from CWCN data, 
no such conversion is required.

Kuntsmann et al. [48] recognized the fact that CWCN-
based precipitation observation systems may be of great 
assistance in regions with either a course station network 
density or high spatial precipitation variability, and stated 
that the water resource management community may be 
greatly aided by CWCN-based monitoring systems. They 
applied a CWCN-based precipitation-monitoring system in an 
orographically complex terrain, the prealpine region of 
southern Germany, where precipitation fields derived using 
radar data are erroneous. This is due to the inability of the 
radar signal to track the terrain slopes. They set out to build 
a cell phone provider-based system reinforced by hydrologi-
cal and meteorological radar and rain gauge data from an 
observation site. For the purpose of feasibility studies, they 
built a polarimetric transmission device, set to investigate 
the interaction of MWs with precipitation.

Interested, too, in the alpine and prealpine region of south-
ern Germany, Chwala et al. [39] used custom MW-based equip-
ment and applied their novel baseline determination technique 
for precipitation observation. When comparing to rain gauges, 
they succeeded in acknowledging the fact that an indication of 
dry periods by rain gauges does not necessarily mean that there 
was no rain along the link at all; the link RSL data represent a 
path-integrated rain rate, whereas gauges are point samples.

Rayitsfeld et al. [37] compared two methodologies for long-
term rainfall monitoring by CWCNs. Their first methodology 
used simple RSL data from a single link, applied the power law, 
and compared the outcome results to data from the closest rain 
gauge. The second methodology followed Goldstein et al. [14] and 
used a modified inverse distance weighted interpolation to calcu-
late rainfall at the rain gauge point based on the RSL values from 
all of the nearby links. In general, the results indicated that the 
two methods improve as the density of the links increases, which 
is most probably one of the cardinal advantages of CWCN-based 
monitoring systems, a multitude of links or sensors. However, 
strictly speaking, such methods are not considered estimation 
techniques but rather reconstruction methods as they involve the 
generation of new data (such as rain rates in locations where 
links do not exist). The method described by Goldstein et al. is 
discussed briefly in the following sections.

Ostrometzky [52] established a method for robust precipita-
tion estimation, regardless of the specific water phase (liquid, 
solid, or a mixture of both). Ostrometzky, having recognized the 
function of attenuation versus snow rate ,ASnow  which was given 
by Frey [12], suggested a simple additive attenuation model, 

, ,A A A A A/dB km Rain Snow Rain Snowc= + + ^ h6 @
where ARain  is given by the power law in (1), and ,A ARain Snowc^ h is 
a sleet interaction term, which causes sleet-induced attenuation. 
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Then, by exploiting the presence of a multitude of data, Ostrometz-
ky applied a least-square process to estimate the rain, snow, 
and sleet rates.

Luckily, part of the commercial MW links have a quantization 
error of . / .0 1 dB km6 @  David et al. [43], [53] realized that during 
typical conditions the attenuation caused by the water vapor is 
~ . /0 2 dB km6 @ and exploited this for estimating water vapor. How-
ever, the technique suggested by David et al. is restricted to 
weather conditions that exclude rain, fog, or clouds along the 
propagation path, and the determination of the RSL zero level is 
done using side information. In other cases, a classification or 
separation phase must be invoked before the estimation attempt.

CLASSIFICATION AND SEPARATION
Once attenuation is introduced by precipitation, the use of the 
power law for converting RSL into rain rate is applicable. However, 
how is one to know that the observed precipitation is, indeed, rain? 
The research of MW attenuation by precipitation has not been lim-
ited to rainfall. Cherkassky et al. [54] have proposed a detection/
classification system capable of detecting wet periods, with the 
ability to classify the precipitation type as rain or sleet (a mixture 
of rain and snow), given an attenuation signal from spatially dis-
tributed CWCN links. They divided the classification process into 
two stages. In the first, events are classified into wet or dry events. 
Then, in the second stage, wet events are further classified into 
sleet or rain events. Cherkassky et al. have used the RSL signal fea-
tures (such as fade duration, fade magnitude, and fade slope) for 
the purpose of classification. Following the assumption that sleet 
and rain events may be distinguished by observing the fade 
dynamics, a feature vector for classification was chosen.

ASSIMILATION
Often, various types of RSL samples are present. CWCNS, which 
are constructed using various manufacturers, may cause the 
multitude of RSL samples to consist of differently sampled data. 
This may also be caused when one is attempting to reconstruct 
rain maps while using data from various service providers at 
once. In Figure 1, a map of the MW links in Israel is depicted. 
The green links are sampled once per day with 0.1-dB resolu-
tion, red links are sampled once per 15 min with 1-dB 
resolution, blue links are sampled once per 15 min with 0.1-dB 
resolution, and black links are sampled once per minute with 
1-dB resolution. Thus, if we are to reconstruct a rainfall map 
out of the multitude of links, we must consider the problem of 
assimilating the various types of data into one map.

To the best of our knowledge, the problem of assimilating the 
various types of data has not been treated in the scope of rain 
monitoring using CWCNs. CWCN-based observation systems will 
probably not be able to monitor the oceanic regions of the earth. 
This is because cellular antennas are not deployed over interna-
tional regions in general and over oceans, in particular. This fact 
may be a cause for the need to assimilate between satellite and 
CWCN data for a global outlook on weather. Again, to the best of 
our knowledge, no research work has been applied on the prob-
lem of assimilating CWCN data from traditional observation tools.

RECONSTRUCTION
Algorithms that attempt to reconstruct rain maps from RSL 
data are most easily found in the literature. Algorithms that do 
not account for any temporal evolution of convective clouds but 
rather display a converted value of the instantaneous RSL to 
rain rates are given in [11] and [14].

In [11], Zinevich et al. have proposed a nonlinear tomo-
graphic model that treats the problem of the variability of the 
cell sizes (a cell is defined as the area enclosed between CWCN 
links), accounting for the irregularity of the network topology, 
observation quantization, and nonlinearity of the power-law 
equation for different links.

Their algorithm begins by dividing an area covered with links 
into cells. Conventional tomographic algorithms use rectangular 
grids, which do not fit in this case, as the spatial distribution of 
the links is highly irregular. Such an algorithm will benefit from 
the fact that a relatively constant number of links will appear in 
each final cell instead of having cells with many links in urban 
areas and cells with few links in rural areas.

Figure 3(a) depicts the radar rain map, Figure 3(b) the 
CWCN-based map, and Figure 3(c) the division of the area into 
cells by the algorithm above. A general consent between the 
radar map and the CWCN-based map may easily be noticed.

Another algorithm for rain-map reconstruction was sug-
gested by Goldstein et al. [14]. The proposed algorithm consisted 
of preprocessing the links’ data, followed by a weighted least-
squares algorithm to extract the rain level at any given point in 
space. In Goldstein’s approach, similar to that of Zinevich, each 
link was divided into K intervals in order not to impose the con-
stancy along the link. Each rainfall value is then reconstructed 
by using more than one point in space, taking into consideration 
neighboring links. A weighting of the original rain rates, which 
are attained from the RSL values, was also applied. The weight 
was chosen as an inverse of the point’s distance from an actual 
link. A functional was then iteratively minimized for the sake of 
rain-map reconstruction.

More approaches to the problem of reconstructing a rainfall 
map from MW link measurements have been suggested by 
Overeem et al. [47], [49] and Watson and Hodges [55]. Overeem 
et al. suggested a method for reconstructing countrywide rain-
fall maps from CWCNs and applied it on minimum and maxi-
mum RSL samples with a temporal resolution of 15 min. 
Having adjusted the RSL levels by rain gauges and path-aver-
aged radar, rainfall intensities were derived.

Watson and Hodges [55] formalized the reconstruction prob-
lem as a problem of finding an orthogonal basis of functions, 
which spans a rain-field function. They were then left with 
extracting the coefficients, which are the projections of the rain 
map onto the basis functions. These coefficients then enabled a 
proper reconstruction of the rain map as a linear combination of 
the basis of functions, which spans the rainfall map solution by 
applying a least-squares technique.

None of the previously mentioned reconstruction algorithms 
exploit the temporal nature of rain fields. An algorithm that 
depicts the temporal evolution of the rain fields was suggested 
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by Zinevich et al. [27]. Assuming a translational rain field evolu-
tion model, under the assumption that the rainfall advection is 
driven by wind, the extended Kalman filter was used to deter-
mine the wind velocity and direction at the storm steering level 
using the RSL data. By doing so, Zinevich explored the concept 
of recovering the rainstorm dynamics from CWCN links.

Another algorithm specifically developed for CWCNs in urban 
areas, where a large number of MW connections is typically 
found, was presented by Cuccoli et al. [56].

Sendik and Messer [15] addressed the problem of the abil-
ity to reliably reconstruct a two-dimensional function (e.g., a 
rain map) being sampled by projections along lines, without 
any restrictions on the line types. They then applied their 
analysis to the problem of reconstructing rain maps from 
CWCN links. Their solution to the question regarding the abil-
ity to reconstruct a two-dimensional function, which is sam-
pled by an arbitrarily set of lines involved employing a series of 
three separate stages, which consist of first solving a problem 
of sampling with a regular grid but with arbitrary types of 
lines. In the second and third stages, they portrayed the prob-
lem of a nonregular grid as one with missing samples. Essen-
tially, these three stages enabled the consideration of the 
CWCN sampling scheme as a case of regular sampling with 
missing samples, which have been sampled by a linear func-
tional, which is the mathematical representation of the line 
along which the projection had occurred.

Applying these three stages yielded an answer stating whether the 
set of links can be used for reconstructing rain maps without errors. 
The process above also enables the derivation of the maximal fre-
quency, which can be sampled without causing any aliasing errors. 
This work, which made use of the Papoulis generalized sampling 
expansion stating the exact reconstruction kernel, may, perhaps, be 
used for future algorithms that attempt to reconstruct rain maps.

OPEN CHALLENGES

SENSOR-BASED CHALLENGES
Previous sections dealt with a wide range of signal processing chal-
lenges to which the usage of RSL data gave rise. However, many of 
the algorithms and/or techniques described above still do not truly 
use the vast amounts of RSL data that are present in urban areas.

The raison d’etre of the CWCN, in our opinion, is the availabil-
ity of a large amount of data that must be exploited for generating 
robust and exact estimates. Linking between sensor networks and 
CWCN-based precipitation-monitoring systems is a direction that 
should be fully examined and exploited. It is generally acknowl-
edged that the advantages of using sensor network techniques 
include the ability to cope with failures of sensors, robustness to 
outliers, and the ability to monitor a wide variety of phenomena 
through the application of statistical signal processing methods 
(based on the multitude of data). This avenue is yet to be exam-
ined in the scope of CWCN-based monitoring systems.
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A CWCN is composed of low-cost, spatially distributed autono-
mous sensors. Hence, it is, in essence, a wireless sensor network 
that enables using tools and results from the wireless sensor 
network community. Using the CWCN sensor network as an 
opportunistic one and, in particular, its diversity of measure-
ments, should enable applications that a single senor simply can-
not provide.

A major challenge is the study of the dependencies between an 
actual situated network of sensors topology and the monitoring 
accuracy. It is intuitive that the denser the network of sensors, 
the better the reconstruction accuracy. Hence, a central question 
is regarding the sufficient sampling set for properly reconstruct-
ing environmental phenomena sampled by an arbitrary geometry 
of a CWCN. An answer to this question enables the ability to both 
analyze existing CWCNs but also the ability to synthesize CWCNs. 
That is, in cases where the answer regarding the sufficiency of a 
CWCN is found to be insufficient, one may want to consider the 
locations to add sensors to render the CWCN sufficient for a 
proper reconstruction. For example, a rain gauge may be added 
in locations where the CWCN density is low and found to yield an 
insufficient sampling scheme.

This result also gives rise to assimilation challenges. In a case 
where a rain gauge was added to amend an improper sampling 
scheme of a CWCN, generating a map of the observed precipita-
tion requires assimilating the rain gauge data together with the 
RSL data. While the idea of assimilating the measurements of a 
single link, rain gauges, and radar has been studied [57], [58], 
integrating an entire CWCN with other meteorological measure-
ments is still an open research question.

CWCNs are often composed of links with various time and 
power resolutions. The question of how to assimilate these 
various CWCN links to reconstruct a single environmental phe-
nomenon is yet another open problem.

The methods described by David [43], [44], [53], [63] prove 
the feasibility of using CWCNs for purposes other than rain-rate 
estimation. However, the techniques suggested by David are 
restricted to weather conditions that exclude rain or clouds along 
the propagation path. In essence, we feel that the classification 
and separation problem is still an open problem that must be 
treated in the presence of various precipitation types, all mea-
sured at once.

The problem of data assimilation seems inevitable because  
the growing popularity of CWCN observation methods will 
require large amounts of RSL data. Whether we wish to assimi-
late RSL data sampled by different sampling schemes or to recon-
struct global rain maps, which require assimilating between 
satellite and CWCN data, a rigorous treatment of the assimilation 
of CWCN data is necessary.

Also, as previously stated, for precise reconstruction of rain 
maps, algorithms cannot impose constant rain rates along the path 
of the link. All of the algorithms to date do not address this issue.

VECTOR SENSORS
In most of the papers mentioned here, only the magnitude of 
the CWCN data was used, in other words, the RSL. However, 

electromagnetic waves are also characterized by their phase, 
which may be altered because of propagation effects. The benefits 
from making use of the phase data in CWCN-based data are yet to 
be determined. Bringi et al. [59] examined the propagation effects 
in rainfall on radar samples at frequencies of 3, 5.5, and 10 GHz, 
simulating the difference of attenuations and difference of phase 
between horizontal and vertical polarizations. They found that a 
near-linear relation exists between attenuation and the differential 
propagation phase.

This motivates the incorporation of vector sensors. In other 
words, a CWCN that logs both RSL and phases for more than one 
polarization may be found foundational for a stable, error-proof, 
precipitation-monitoring system. It may also be found that differ-
ential phase data suffer less from quantization errors and thus 
enable a precise monitoring of phenomena other than rain. As 
David et al. [53] stated, the attenuation caused by the water vapor 
is . / ,0 2 dB km6 @  giving rise to the desire for more precise mea-
surements, which may be attained by incorporating phase and 
polarization data.

MONITORING PHENOMENA OTHER THAN RAIN
In the sections above, we have discussed mainly the monitoring 
of rain. The fact that most of the works treat the problem of rain 
observation is not coincidental but is related to the fact that out 
of the variety of precipitation types, rain yields the largest atten-
uation amplitudes. However, as shown above, David et al. [43], 
[44], [53], [63], [64] suggested CWCN-based methods to observe 
water vapor and, potentially, even fog, and they have the poten-
tial to enhance the ability to cope with flash floods. To date, no 
rigorous treatment of the problem of observing hail, snow, 
graupel, or dew has been completed.

Errors in monitoring rain in heavy storms are caused by the 
slight shifts of the antennas by the storm winds. Monitoring 
winds by measuring the attenuations induced by these slight 
shifts may, perhaps, be found practical.

Phenomena other than precipitation may also be monitored 
by CWCN-based systems. Ghobrial and Sharief [60] discussed 
the electrical properties of dust and derived expressions for 
attenuation and phase shifts for a medium with precipitating 
dust particles in terms of visibility and wavelength for vertical 
and horizontal polarizations. They found that the dust-induced 
attenuation is related to the width of the dust layer by the wave-
length and the visibility. They concluded that dust storms 
resulting in visibilities of 10 m or less introduce considerable 
attenuation. This may be a window to the detection of dust 
storms using CWCN RSL data.

Andrews [61] measured the absorption of MWs by both car-
bon monoxide (CO) and nitrogen dioxide (N2O) at a frequency of 
9.75 GHz and found that the power absorption was found to 
increase with density in both CO and N2O. As is widely known, 
motor vehicle emissions are composed of CO and nitrogen 
oxides (N2O and nitrogen monoxide). This may advocate the 
ability to monitor air pollution densities by a CWCN.

Burning wood reacts with oxygen, producing carbon diox-
ide (CO2) and water (H2O), which are both released as gases in 
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the air. The attenuation induced by water is the fundamental 
effect on which rain monitoring is based. Can this reaction 
give rise to CWCN-based systems for monitoring forest burns? 
Time is yet to determine whether or not the avenues suggested 
above will indeed evolve into operational monitoring CWCN-
based systems.

CONCLUSIONS
We have presented the physical basis that led to founding the 
new precipitation-monitoring approach, the CWCN-based sys-
tem. An aggregation of techniques and algorithms for making 
use of the CWCN RSL data may be found. These include meth-
ods for detection of wet versus dry periods, estimating local rain 
rates, reconstructing countrywide rain maps, detecting flash 
floods, fog, and more. Inherent error sources such as the proper 
treatment of the wet-antenna effect still need to be addressed to 
build proper and precise precipitation-observation systems. 

The problem of data assimilation seems inevitable and will 
soon require a thorough understanding and treatment, if the 
CWCN-based system for precipitation monitoring is to replace 
the traditional systems. Such treatment must include both the 
assimilation of various RSL data types and the assimilation of 
CWCN RSL data with traditional sampling systems. The assimi-
lation of various RSL data types requires either interpolating or 
downsampling of samples that have been sampled differently. 
The problem of assimilating between samples that have been 
processed nonlinearly (minimum and maximum values) is a 
more complex problem.

CWCN-based observation systems currently lack the ability to 
monitor international regions such as oceans. This generates the 
need to know how to properly assimilate between traditional mon-
itoring systems such as satellite data and the CWCN RSL data.

The most striking issue, in our opinion, is the fact that none 
of the papers currently in the literature recognized that the 
CWCN is, in essence, a sensor network. As a result, none of the 
methods described has truly made full use of the potential that 
is hidden in the multitude of available data. Applying stochastic 
signal processing algorithms may enable more precise, robust, 
and stable reconstruction algorithms.

Hints on the feasibility of the CWCN-based monitoring system 
to monitor phenomena other than precipitation were discussed. 
These included fire detection, pollution detection, and perhaps 
even dust-storm detection. All of these require only RSL mea-
surements or, in other words, only amplitude samples. If the 
CWCN someday logs phase data, its links may then be treated as 
vector samplers, which may be found to enable a wider range of 
applications. Yet, all of these new avenues are challenging and 
still far from being implementable. To conclude, we believe the 
CWCN system is only in its beginning, depicting only a very small 
portion of its full potential.
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T
he lack of availability of 
radio spectrum for wireless 
communication purposes is 
becoming a serious problem 
as more wireless systems and 

services are being developed and operate in 
crowded spectral bands. The scarcity of useful 

radio spectrum is mainly due to the static allo-
cation and rigid regulation of the spectrum use 
rather than the spectrum being actually fully in 

use. Flexible spectrum use and cognitive radio 
technologies provide an approach to alleviating 
this problem by allowing for secondary spectrum 

use while the spectrum is underutilized by its pri-
mary licensed users. Idle spectrum is a time–fre-
quency–location varying resource. It is a resource 

that also depends on the relative locations of the pri-
mary and secondary receivers and transmitters as 
well as the instantaneous propagation conditions. By 

acquiring awareness about the current radio environ-
ment and the other spectrum users, cognitive radios 
can more efficiently exploit idle spectrum and manage 

interference. Doing so requires a means to explore the 
spectrum to identify high-quality and persistent local 
spectral resources and access and share them among a 

number of users while strictly controlling the interference 
caused to others, in particular, licensed primary users 
(PUs). Situational awareness about the state of the spectrum 

allows for optimal exploitation of underutilized spectrum. 
For example, idle subbands may be allocated, and waveform 
parameters may be chosen to maximize the sum-rate for the 
cognitive users while making sure no harmful interference is 

caused to the other users of the spectrum.
The purpose of this article is to present recent advances in 

spectrum exploration and exploitation. The goal is to jointly opti-
mize the identification and access of underutilized spectrum in 
multiband and multiuser environments where the state of the 
spectrum may vary rapidly. Cognitive users may acquire the neces-

sary information about the state of the spectrum by sensing it and 
sharing the results among the users. Reviews of spectrum sensing 
can be found in [4] and [5]. Spectrum sensing is a key enabler of 

spectrum exploration through which situational awareness about the 
spectrum is developed and the behavior of the PU traffic is learned as a 
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function of time, location, and frequency. Spectrum exploration 
and exploitation over multiple frequency bands may be considered 
an optimization or machine-learning problem. A reward or utility 
function is maximized to guide the exploration and exploitation 
such that the idle spectrum is used as efficiently as possible while 
managing the interference. In cooperative multiband and mul-
tiuser scenarios, spectrum sensing and access policies allocate and 
divide the sensing, learning, and interference management tasks 
among the network nodes and different subbands of the spectrum 
so that idle spectrum may be optimally identified and exploited. In 
noncooperative competitive environments, the network nodes 
compete for the available spectrum to maximize their own utili-
ties. An acquired awareness of the state of the spectrum may be 
used for scheduling, waveform selection, and radio resource man-
agement purposes as well.

ADVANCED SPECTRUM SENSING TECHNIQUES
Spectrum sensing using a single sensor to identify idle spectrum is a 
widely addressed topic in signal processing and wireless communica-
tions research; see [4] and [5]. Commonly used methods include 
energy detection and methods relying on statistical or structural 
properties of communications waveforms such as cyclostationarity 
(see “Cyclostationarity-Based Spectrum Sensing”), low-rank signal 
structure, or statistics of eigenvalues of a correlation matrix. 

Moreover, the autocorrelation structure induced by the modulation 
scheme, such as the cyclic prefix in orthogonal frequency division 
multiplexing (OFDM), and known pilot waveforms have been used. 
Wireless standards typically specify all of the employed waveforms in 
detail. Efficient methods used for signal detection or classification 
purposes may be derived based on such specifications. Spectrum 
sensing may also collect valuable information to create awareness of 
the state of the spectrum. Spectrum awareness may be used for 
interference modeling and management, power control, scheduling, 
resource allocation, and routing purposes.

In this article, we focus on finding and accessing idle spec-
trum in multiband and multiuser scenarios. Multiple sensors 
or cognitive radios in different locations sense multiple sub-
bands to identify idle bands that may be used for data transmis-
sion. Not all of the radios should sense the same band at the 
same time. Instead, the sensing tasks need to be allocated 
among the users and bands in an efficient manner to speed up 
the sensing and provide the desired diversity gains. After an idle 
band is identified, the cognitive radios have to decide who gets 
access to the unoccupied spectrum and whether it should be 
accessed at all if low-quality channels are observed or con-
straints imposed on harmful interference caused to the other 
users may be violated. We first consider the multiuser spec-
trum sensing problem.

CYCLOSTATIONARITY-BASED SPECTRUM SENSING
Cyclostationarity-based distributed spectrum sensing allows for 
distinguishing among secondary user (SU) and PU waveforms 
exhibiting cyclostationarity at different cycle frequencies, 
relaxes the assumptions on noise statistics, and exhibits a reli-
able performance in difficult propagation environments. Coop-
erative cyclostationarity-based detection algorithms based on 
generalized log-likelihood ratio (GLLR) have been proposed in 
[33]. The proposed local multicycle detectors are based on test-
ing whether the cyclic autocorrelation of the received signal is 
nonzero at the cycle frequencies of interest. The cyclic autocor-
relation of a received complex-valued signal ( )y k  at cycle fre-
quency a  and delay x  may be estimated as

( ) ( ) ( ) ,R N y k y k e1 *
y

S k

N
j k

1

2
S

x x= +a ra

=

-t / (S1)

where NS  is the number of observations.
The local GLLR test is given by [33]

,T N r rS y y y
T

H

H
1

0

1

U pR= -t t t (S2)

where p  is the test threshold, ryt  is a M1 2#  vector consisting 
of stacked real and imaginary parts of estimated cyclic auto-
correlations ( )Ry x

at  at the cycle frequencies of interest A!a
for a set of time lags { },i j i

N
1
,jx =
x  for each ,Aj !a  and yRt  is an 

estimate of the asymptotic covariance matrix of ryt  that can 
be obtained, e.g., using frequency-smoothed cyclic periodo-
grams. Thus, .M N ,

| |A
jj 1

= x
=
/

In a multiuser scenario with independent users, the GLLR at a 
fusion center (FC) is the sum of the local GLLRs T TN k

N

1
=

= i,/

where iT  is the GLLR of SU .i  This sensing approach may be 
made more energy efficient by using censoring. The SUs com-
municate only those GLLRs exceeding the censoring threshold 

i}  to the FC as described in (4) and (5). Figure S1 illustrates that 
censoring combined with the multicycle detector in (S2) results 
in only a small performance loss even with very strict communi-
cation rate constraints.
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[FIGS1] The probability of detection versus the average SNR 
(dB). This is done to detect an OFDM signal in a Rayleigh fading 
channel with log-normal shadowing using cyclostationarity-
based local detectors [33] and different communication rate 
constraints for SUs communicating sensing results to the FC. 
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OVERVIEW OF DISTRIBUTED SENSING
Distributed sensing involving multiple geographically displaced 
sensors and an FC has been studied in the sensor network and 
radar research communities [47], [60]. Recently, it has found 
applications to cooperative spectrum sensing in cognitive radio 
systems; see, e.g., [9], [21], [26], [33], and [68]. Distributed spec-
trum sensing is particularly suitable for creating awareness of the 
state of the radio environment since idle spectrum is a local 
resource that varies as a function of time, location, and frequency. 
Understanding the state of the spectrum is crucial for interfer-
ence management, scheduling, and resource allocation.

Cooperation in multiuser spectrum sensing has several 
advantages. It provides diversity gains in the face of demanding 
propagation environments such as fading, shadowing, and the 
hidden node problem. Various propagation effects make it harder 
to detect the signals, as the signal attenuation caused by them 
may be of the order of tens of decibels. The gains obtained by 
cooperative sensing follow from spatial diversity in the same way 
as in multiantenna (multiple-input, multiple-output) wireless 
communications. If the sensor displacement is sufficiently large, 
the sensing channels can be assumed to be independent from sen-
sor to sensor. Distributed sensing leads to improvement in the 
detector performance in terms of fewer false alarms (type I errors) 
and missed detections (type II errors) and a shorter detection time 
at the specified performance level. Multiple sensors also provide 
inherent redundancy, which leads to higher reliability and robust-
ness. However, by increasing the number of cooperating sensing 
nodes, the amount of overhead traffic will increase and the 
amount of system resources needed in fusing the sensing results 
increases as well. Thus, one may be able to determine an optimum 
number of cooperating sensors, beyond which the sensing perfor-
mance improvement does not compensate for the increased use of 
resources [11], [36]. Optimizing the use of sensing resources has 
also been considered, e.g., in [25] and [44].

Mobile terminals intended for agile spectrum use may have a 
spectrum sensing capability. Then, multiple devices can form a dis-
tributed sensing system. Cooperation facilitates the use of a simpler 
and more energy-efficient sensor in each node. Hence, an extended 
battery life may be achieved. On the other hand, exchanging control 
information and sharing the sensing results with the FC or the 
other nodes increases the energy consumption in the network. Fur-
thermore, policies used for sensing and accessing the spectrum also 
play a crucial role in determining the overall power consumption.

There are many ways to characterize the gains obtained 
through spatial diversity. A suitable quantitative measure for coop-
erative detection in cognitive radio networks is the probability of 
detection PD as a function of the logarithm of the signal-to-noise 
ratio (SNR) t  for different numbers of cooperating sensors. We 
may define the spatial diversity order (D) as [41]

( , ),maxN P ND D
dB

dB2
2
t

t=^ h (1)

where ,log10 10dB _t t / ( )dB2 2t  denotes the partial derivative 
with respect to (w.r.t.) ,dBt  and N  is the number of sensors. 
Figure 1 depicts the spatial diversity as a function of the number 

of cooperating sensors for cooperative energy detection (radiome-
try) using equal-gain combining (EGC) in independent and identi-
cally distributed (i.i.d.) Rayleigh fading channels. It can be clearly 
seen from the figure how the slope of the probability of detection 
curve grows as the number of cooperating nodes sensing the same 
band increases. Adding more sensors to observe a subband yields 
diminishing returns, however. The achieved gain also depends on 
the fusion rule used in combining the local sensing information as 
well as the local propagation conditions.

CENTRALIZED OR DECENTRALIZED PROCESSING
Distributed sensing systems can be either centralized or decentral-
ized. In a centralized system, all of the local sensors transmit all of 
the locally observed data to a central node that performs the data 
fusion needed for detection or parameter estimation tasks. The sen-
sors in a decentralized system are capable of processing the data 
locally before transmitting the results to an FC. Local hard (binary) 
decisions or some other compact statistic, e.g., a sufficient statistic, 
characterizing the state of the spectrum may be sent to the FC. 
Consequently, the FC of a decentralized system has only part of the 
information received from the sensors, whereas, in a centralized sys-
tem, the FC has all of the information. The channel capacity require-
ments of a centralized scheme in which all sensing results are 
transmitted to the central processor may be prohibitive in practice. 
Therefore, we focus on decentralized distributed spectrum sensing 
for cognitive radios. In such systems, the nodes typically collaborate 
in identifying and exploiting the underutilized spectrum.

In distributed sensing systems, the most common topologies 
with an FC are serial, parallel, and tree topologies [60]. The serial 
topology is not robust since a single link failure or missing node will 
cause severe performance degradation. In the parallel topology, the 
sensors do not typically communicate with each other, and no feedback 
is provided from the FC to the sensors. The sensors use mapping 
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[FIG1] The spatial diversity order may be defined as the 
maximum slope of the probability of detection curve as a 
function of the logarithmic SNR dBt  [41]. In this case, there are N
i.i.d. Rayleigh channels, and the employed detection scheme is 
energy detection with . .P 0 01=FA
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rules ( ),yui i io= , , ,i N1 f=  where [ , , ]y y y, ,i i i N
T

1 Sf=  is an 
NS-dimensional vector of the observations made by sensor i  and N
is the number of sensors, and then pass the local mappings, ui, to 
the FC. The mapping compresses the data, for example, by sending a 
local binary decision to the FC. Sensing nodes that are close to each 
other may also form a cluster that sends summary information 
about the state of the spectrum to the FC. In an ad hoc configura-
tion, there is no dedicated FC and the sensing information is distrib-
uted to all of the nodes. Hence, each node will have the same 
information needed to decide if the spectrum is idle. Distributing the 
information to all nodes potentially over multiple hops may cause 
unacceptable delays in decision making. Similar robustness to node 
failures is obtained with consensus algorithms [51], [64] in which 
the sensors exchange information locally over multiple rounds to 
reach a consensus on some global function of the data, such as a 
global decision on spectrum occupancy. A drawback to this approach 
is its iterative nature, which is both time and energy consuming.

The distributed spectrum sensing problem is typically modeled 
as a binary hypothesis test. The selected decision-making strategy, 
such as Neyman–Pearson, minimax, or Bayes, is also related to con-
trolling interference. If missed detections occur frequently, there 
will be collisions with the primary signal and, as a result, retrans-
missions by both the PUs and the SUs are needed. Many false 
alarms mean that the opportunities to use idle spectrum are over-
looked. Therefore, the improvements in spectrum efficiency 
obtained by the secondary spectrum use are reduced. As an exam-
ple, the Neyman–Pearson scheme for distributed detection can be 
stated as follows: For a predefined global probability of false alarm 
level ,PFA  find (optimum) local and global decision rules 

{ ( ), ( ), , ( )},y yu N N0 1 1 fo o oC =  where ( )·0o  is the global deci-
sion rule and ( ), , ,i N1·i fo =  are the local rules that minimize 
the global probability of missed detection .PMD

A key assumption that facilitates finding a tractable solution to 
the distributed detection problem is the conditional independence 
of observed sensor data conditioned on the hypothesis. If this 
assumption holds, the local mapping rules as well as the global 
decision rule at the FC become likelihood-ratio-based threshold 
rules; see [60]. The null hypothesis H0  at the FC is that the spec-
trum is idle (noise only), and the alternative hypothesis H1  is that 
a primary signal is present. The decision between these two is 
made by comparing the likelihood ratio ( )uK  to a threshold value 

.0}  From conditional independence, it follows that ( )uK  may be 
given in a factored form

( ) ( )
(

,
)

p u H
p u H

u
i

i

i

N

01

1

;
;

K =
=

% (2)

where (·)p  is used to denote probability densities or mass func-
tions of its argument(s). However, if the conditional independence 
assumption is not valid, the optimal tests are no longer simple 
threshold rules based on the likelihood ratios at the individual 
sensors. Conditionally dependent sensor data could arise, for 
example, because of correlated shadowing if the local sensors are 
in close proximity to each other. A comprehensive treatment of 
shadowing and other propagation issues in cognitive radio net-
works can be found in [5, Ch. 3].

If the local decision variables are binary, the global decision 
rule is a Boolean rule and the log-likelihood ratio (LLR) at the FC 
can be written as a weighted sum of local sensor decisions

( ) ( ) ,log log logu P
P

u P
P1 1 1u ,

i i
i

N

1 FA,i

MD i

FA,i

MD,iK =
-

+ -
-

=

; E/ (3)

where ui  is the binary local decision of the ith  sensor (i.e., 0 or 1), 
PFA,i  is the probability of false alarm at the ith  sensor, and PMD,i  is 
the probability of missed detection at the ith  sensor. The weights 
depend on the performance of individual sensors that may not be 
known in practice. Computationally simpler decision rules are 
obtained by using well-known Boolean K-out-of-N  rules such as 
OR, AND, and MAJORITY. The detector is commonly designed so 
that the levels of PFA  and PMD at the FC are controlled; see [60].

The local sensors may also compress the local observations by 
calculating and transmitting the local likelihood ratios. Under the 
conditional independence assumption, the optimal global deci-
sion rule is a likelihood ratio test and the global likelihood ratio is 
the product of the local likelihood ratios. In practice, the likeli-
hood ratio may include unknown nuisance parameters. Hence, a 
generalized likelihood ratio (GLR) test obtained by replacing the 
unknown parameter values with their estimates is often used. 
The resulting test statistic at the FC is simply the product of the 
local GLRs. Also, belief propagation techniques have been 
employed in combining. Two commonly employed linear com-
bining schemes for cooperative detection are EGC and maximal 
ratio combining (MRC) [35]. The MRC-based fusion scheme is 
attractive in the low SNR regime, while the EGC-based fusion 
scheme is a good choice for combination under limited knowl-
edge of channel state information.

In wireless networks, user terminals are typically battery 
operated. Thus, low power consumption is a desirable design 
goal. In spectrum sensing, the power consumption depends obvi-
ously on the employed sensing algorithms and their implementa-
tion including the radio frequency-intermediate frequency front 
end, the duty cycle used in sensing, the employed sensing policy, 
and the power used in reporting the sensing results. In addition, 
deciding if and how the idle spectrum is accessed plays a key role 
in prolonging battery life. For example, if the SU is experiencing 
poor channel quality even if the channel is decidedly idle, it may 
make sense not to access the channel for transmitting with a low 
rate while using high transmit power.

Censoring reduces power consumption by sending only suffi-
ciently informative decision statistics to the FC [47]. An SU sends 
its test statistic to the FC only when its test statistic, denoted here 
by ,log iK  is above a censoring threshold defined by the commu-
nication rate constraint specified by the designers

, , , ,logP H i N1i i i0 f2 #;} lK =^ h (4)

where 1i #l  is the communication rate of user i  and i}  is the 
upper limit of the censoring (no-send) region of the user .i  The i}

is chosen such that the probability of user i  transmitting the test 
statistic to the FC under H0  is .il  In the cooperative sensing con-
text, we may use the following censoring test statistic (L-out-of-N
users transmit) [33]:
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,D log dN
i

L

i i
i L

N

1 1
K= +

= = +

/ / (5)

where it is assumed that the first L  users with sufficiently infor-
mative decision statistics transmit and log logd Ei i i; #K K= 6

, Hi 0} @ is the conditional mean of the local LLR of the ith  SU in 
the no-send region under the null hypothesis. The no-send region 
is not ignored but captured by a single quantity, i.e., the condi-
tional mean of the log-likelihood in the no-send region, which is 
optimal in the minimum mean-square error sense. In practice, 
there is no need to transmit di  as it can be calculated at the FC 
since the limits i}  are determined by the communication rate 
constraints .il

Using binary (hard) local decisions in a distributed decentralized 
detection system reduces the communication cost at the expense of 
loss of information. Using soft decisions, such as LLRs or their 
quantized versions, typically leads to an improvement in perfor-
mance. It is commonly argued that using soft decisions signifi-
cantly increases the amount of data to be transmitted and, hence, 
the power consumption. This is not necessarily true since there 
may be significant overhead related to frame structure and different 
layers of the communication protocol stack used in transmitting 
the sensing results to the FC. That overhead will be present even if 
only binary decisions are transmitted. As a result, the difference in 
the transmission and bandwidth requirements between hard and 
soft decision statistics may be small. Individual sensors may also 
convey information about interference levels, channel quality, and 
occupancy to build awareness of the state of the spectrum.

The analytical studies in [10] indicate that by using $  4 bits 
for the quantization of the likelihood ratios, the performance 
loss remains negligible. Error-free reporting channels and a 
local autocorrelation-based detector exploiting the cyclic prefix 
of the OFDM modulation are assumed in [10]. The impact of 
quantization on distributed detection has also been analyzed in 
[60]. Reporting channels may introduce errors. Powerful chan-
nel coding and higher transmit power levels are obvious solu-
tions to reduce these. However, this may not be practical if low 
power consumption is needed. The impact of reporting channel 
errors in cooperative sensing has been studied in [10] and [26]. A 
phenomenon known as the bit-error probability (BEP) wall was 
reported in [10] for both hard- and soft-decision-based coopera-
tive sensing. If the BEP of the reporting channel exceeds the 
BEP wall value, then, irrespective of the received signal quality 
on the listening channel or the sensing time at the SU, con-
straints on the detector performance cannot be met at the FC. 
Soft-decision-based systems are more robust in the face of 
reporting channel errors.

SEQUENTIAL SENSING METHODS
Sequential and quickest detection techniques have applications in 
a number of fields, such as radar, fault detection, finance, and 
clinical trials, among others [23], [46]. In cognitive radio systems, 
sequential detection (SD) techniques are important for detecting 
changes in the state of the spectrum, i.e., rapidly identifying new 
spectral opportunities as well as vacating a specific frequency 
band quickly when the PU becomes active. Sensing time is an 

important parameter in finding idle spectrum. Reducing the time 
spent for sensing allows the time used for transmission to be 
increased. Furthermore, fewer energy resources are spent for 
sensing. SD aims at minimizing the detection time for a desired 
performance level. In a nonsequential test, the sample size is 
fixed, whereas, in the case of a sequential test, it varies depending 
on the data. In cognitive radio systems, SD may be used for both 
single-user and collaborative distributed detection tasks. More-
over, in the collaborative case, SD algorithms may be used either 
only at the local sensors, the FC, or both.

We will briefly consider two sequential analysis approaches. 
Classical SD aims at distinguishing between two hypotheses from 
a sequence of i.i.d. random observations. The objective is to make 
a decision as quickly as possible given specified error levels. An 
alternative formulation is the quickest detection problem in which 
the objective is to detect a change in the distribution of the data, 
i.e., find the change point, with minimal detection delay.

Let , , ,y y1 2 f  be a sequence of i.i.d. random observations with 
a common distribution F0  or .F1  The binary test of hypothesis 
H0  against H1  may be formulated as

 : ~ , , , ,

 : ~ , , , .

H y F n

H y F n

1 2

1 2
n

n

0 0

1 1

f

f

=

= (6)

Let p0  and p1  denote the probability density functions associated 
with F0  and ,F1  respectively. SD aims at choosing between these 
two hypotheses in a way that minimizes the number of observa-
tions given constraints on the type I or II errors. The sequential 
probability ratio test (SPRT) of Wald requires the minimal average 
number of observations under both hypotheses among all tests 
with equal (or smaller) error probabilities [61]. The stopping time 
of the SPRT is given by

{ | },infN n B A1 orS n n$ # $K K= (7)

where ( ) / ( )p y p y
k

n
n k k11 0K =

=
%  is the likelihood ratio and A

and B  are upper and lower stopping boundaries, respectively. 
Thus, after each sample, the SPRT accepts H1  if ,An $K  or 
accepts H0  if .Bn #K  If ,B An1 1K  it takes an additional 
observation. The stopping boundaries A  and B  may be chosen 
based on the target levels of the probability of false alarm and the 
probability of missed detection, respectively. The idea of the SPRT 
is illustrated in Figure 2.

The hypotheses have to be simple and the distributions com-
pletely specified under both hypotheses for the SPRT to be optimal. 
In cognitive radio applications, however, there are often unknown 
nuisance parameters related to transmit powers, propagation condi-
tions, adaptive modulation and coding schemes employed, and dif-
ferent PU modes. Thus, there have been numerous efforts to design 
SD tests for the case of composite hypotheses, such as sequential 
GLR tests [23] and minimax tests [6]. Moreover, it is often necessary 
to ensure that a decision is reached within a certain time frame. 
Hence, a truncated test [57] may have to be employed. A truncated 
test uses a final decision rule to decide between the two hypotheses 
if a predefined upper limit on the number of observations is reached 
before a decision has been made by the SPRT.
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A decentralized SPRT (D-SPRT) scheme in which both the local 
sensors and the FC employ SPRTs is proposed in [18]. The local 
sensors employ repeated SPRTs. After making a local decision (i.e., 
the SPRT stops), the local detector transmits the binary decision to 
the FC and starts a new local SPRT on its subsequent observations. 
The FC employs an SPRT on the received local decisions. Figure 3 
illustrates the benefit of sequential testing in a decentralized sys-
tem of [9] in comparison to fixed-sample-size (FSS) testing by plot-
ting the number of SU statistics used at the FC versus SNR. An 
SPRT at the FC is used, and each local sensor employs an autocor-
relation-based detector for OFDM signals [9]. The SUs transmit 
their local LLRs to the FC. The probability of false alarm is set to 

. ,0 05a =  and the probability of missed detection is set to 
. .P1 0 05b = - =D  Transmission is assumed to take place over an 

additive white Gaussian noise (AWGN) channel.

QUICKEST DETECTION
Let , , ,y y1 2 f  be a sequence of independent random observations 
with an unknown change point ,m  such that , ,y ym1 1f -  have a 

common distribution F0  and , ,y ym m 1 f+  have another common 
distribution .F1  Let p0  and p1  denote probability density func-
tions of F0  and ,F1  respectively. Both Bayesian and non-Bayesian 
quickest detection approaches have received considerable atten-
tion in the research community; see [46]. Page’s cumulative sum 
(CUSUM) test [43] is the most commonly used non-Bayesian 
quickest detection method. The stopping time of the CUSUM test 
for detecting a change is given by

,infN n U1S n$ ; $ }= " , (8)

where ( ) / ( )max pU y p y
i k

n
n k n i i1 1 0= # # =

%  and 0$}  is the test 
threshold. The CUSUM test statistic Un  may be updated recur-
sively via { , } ( ) / ( ), , .maxU U p y p y n U1 1 1n n n n1 1 0 0$= =-  The 
threshold value may be chosen appropriately depending on the 
detection strategy, for example, to obtain optimality in the mini-
max sense [37]. Page’s CUSUM scheme considers the change point 
m  to be an unknown constant. An alternative Bayesian formula-
tion is obtained by treating the change point as a random parame-
ter with a prior distribution [53].

In cognitive radio applications, it is often unrealistic to 
assume exact knowledge of the distributions under both hypothe-
ses. The optimum quickest detection algorithms are particularly 
sensitive to uncertainty in distribution parameters. Many of the 
approaches dealing with unknown distribution parameters are 
based either on nonparametric approaches [45] or GLR-based 
algorithms [23] or are derived assuming least favorable pre- and 
postchange distributions [58].

A variety of single-user quickest detection methods for cogni-
tive radio systems have been developed; see, e.g., [22]. Multiband 
scenarios are considered in [67]. In [27], the goal is to detect the 
new activity of PUs and to choose the best frequency band to 
sense. A tradeoff between the minimization of false alarms and 
detection delays is found. Dynamic programming is employed to 
obtain a control policy for selecting which frequency band to 
sense and when to declare that a PU has become active.

Collaborative quickest detection schemes for cognitive radio 
systems have been introduced, e.g., in [15] and [59]. Each local 
sensor uses the CUSUM algorithm for change detection [15]. The 
sensors communicate with the FC only after a change in the dis-
tribution is detected, and the FC declares a change after receiving 
at least one message from the sensors. This approach has been 
shown to be asymptotically optimal as the mean time between 
false alarms tends to infinity.

OPTIMIZATION OF SPECTRUM EXPLORATION 
AND EXPLOITATION
We will now provide an overview of optimized spectrum explo-
ration and exploitation. This problem can be formulated as a 
sensing and access policy design problem. We will begin by first 
formulating the single- and multiuser spectrum sensing and 
access problems. Then, we will describe various approaches to 
solving these problems. The described techniques are dynamic 
programming, bandit problems, reinforcement learning, and 
game-theoretic approaches.

1 2 3 4 75 6 8 9 10 NS12 13
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[FIG2] An illustration of the SPRT.
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[FIG3] A comparison of the theoretical average number of SU 
decision statistics for SD using the SPRT at the FC and FSS 
detection needed for equal performance [9]. The sequential 
method requires significantly fewer decision statistics than FSS 
detection for the same error probabilities.
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SINGLE-USER SENSING AND ACCESS PROBLEM 
FORMULATION: MARKOV DECISION PROCESSES
In this article, we consider multiband spectrum sensing and 
access problems in which the spectrum of interest may be 
extremely wide and noncontiguous. Hence, we consider that each 
SU can sense and access only part of the spectrum at each time. 
In such single-user multiband spectrum sensing and access prob-
lems, the decision maker, e.g., an SU or FC, has to decide which 
frequency bands to sense or access at each time. These are sto-
chastic sequential decision problems that can be modeled as Mar-
kov decision processes (MDPs). A finite MDP consists of

■ a sequence of discrete time steps , , ,n 0 1 2 f=

■ a decision maker i
■ a finite set of possible states of the environment s S!
■ a finite set of possible actions in each state a A!
■ a state transition function : [ , ]S A S 0 1"# #{  that 
defines the transition probability ,P s s an n n1 ;+^ h

■ a reward/payoff function :r S A S R"# #  that gives 
reward/payoff rn 1+  for taking action an  in state sn  resulting 
in new state .sn 1+

As an example, a multiband and multiuser spectrum sensing 
problem could be modeled as an MDP as follows. The decision 
maker is the FC. The FC chooses which frequency band each SU 
senses at each time. Thus, actions correspond to sensing a particu-
lar set of frequency bands by the SUs. The states of the environ-
ment would be formed by the PU occupancy of the frequency 
bands. Thus, if each frequency band can be either vacant or occu-
pied, there are in total 2NB  different states, where NB  is the num-
ber of different frequency bands. Finally, the FC would get a 
reward equal to one for each frequency band sensed vacant and 
zero for the other frequency bands. Note that this example is just 
one way of formulating this problem. Many different variations of 
this basic formulation could be obtained by defining the variables 
differently. For example, assuming that there is feedback from the 
spectrum access, the rewards could depend on the obtained 
throughput or the action space could be expanded by allowing an 
idle action to be chosen to conserve the SUs’ batteries in mobile 
applications or by allowing the sensing time to be chosen.

The goal of the decision maker is to find an optimal policy *r

that determines in each state s S!  the optimal action a A!  so 
that a particular objective function is maximized; see Figure 4. A 
policy r  is, thus, a stochastic or deterministic function that 
determines how the decision maker selects its action an  in each 
state .sn  Taking the action an  in state sn  results in a new state 
sn 1+  and a scalar reward rn 1+  for the agent. A suitable objective 
function for spectrum sensing and access problems is the 
expected sum of discounted rewards over an infinite horizon 
given an initial state s sn =

,J E r s sn
k

k
n k n

0
1c= =

3

=

+ += G/ (9)

where rn  is the reward at time n  and ,c ,0 11# c  is the dis-
count rate. This objective function gives decreasing weight to 
future rewards. Other possible objective functions include (dis-
counted) expected reward over a finite time horizon, average 

expected reward over an infinite time horizon, and regret [24], 
which measures the expected loss compared to an optimal policy. 
Returning to our previous example, MDP formulation of a multi-
band and multiuser spectrum sensing problem, the quantity (9) 
would be the expected sum of the discounted number of fre-
quency bands found vacant or the expected sum of obtained 
throughputs over the frequency bands if feedback is available and 
would place more importance on finding vacant frequency bands 
or maximizing the obtained throughput at the present time than 
in the more distant future.

In general, the state transition probabilities are unknown in spec-
trum sensing and access problems. Moreover, because of limited 
sensing resources, the spectrum state may not be fully observable 
either. The partially observable MDP (POMDP) [20] is a generaliza-
tion of the MDP in which the decision maker cannot directly observe 
the state. Instead, the decision maker receives observations that 
depend on the state through some stochastic function. In spectrum 
sensing problems, instead of observing the state directly, the SUs 
observe the PU state through sensing results subject to errors.

MULTIUSER SENSING AND ACCESS PROBLEM 
FORMULATION: GAME THEORY
Game theory can be used to model the interaction of multiple 
users in spectrum sensing and access problems. Game theory 
provides models for both noncooperative and cooperative users. 
In fact, game theory can be divided into noncooperative and 
cooperative game theory. This categorization is, however, some-
what misleading since cooperation is allowed in both noncooper-
ative and cooperative games. The main difference between 
noncooperative and cooperative games is that, in noncooperative 
games, the players act independently and cooperation cannot be 
enforced, while, in cooperative games, the players act as groups 
and cooperation within the group can be enforced. Hence, nonco-
operative games are suited for scenarios in which the cognitive 
radio users compete with each other and make decisions inde-
pendently, while cooperative games fit scenarios with cooperative 
users that aim to jointly optimize the spectrum utilization. 
Therefore, both of these games have uses in modeling particular 
multiuser spectrum sensing and access problems.

NONCOOPERATIVE GAMES
In spectrum sensing and access problems, noncooperative games 
are ideally suited to scenarios in which the SUs operate 

Reward
rn

Action
anState

sn

rn − 1

sn − 1 sn + 1

rn + 1

an − 1

[FIG4] A Markov decision process. In each state ,sn  the decision 
maker chooses an action an  that results in reward rn 1+  and new 
state .sn 1+  The goal of the decision maker is to maximize a 
given function of the rewards, such as the expected sum of 
discounted rewards over a finite or infinite horizon.
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independently and are interested only on maximizing their own 
throughputs. Thus, the SUs are competing for the available spec-
trum and would generally cooperate with other users only if it 
improves their own utilities and throughputs.

The most basic model for the interaction of multiple decision 
makers is a strategic game that consists of 

■ a set of players { , , }N N1 f=

■ a set of strategies (actions) for each player ,Ai Ni ! ; a 
strategy a Ai i!  is a complete plan of action for each situa-
tion in the game; the combined strategy space is the set of 
strategy profiles A A AN1 # #g=

■ reward/payoff functions : ,Ar Ri " ,Ni !  that give the 
players rewards/payoffs ri  for the joint strategies , , .a aN1 f

For example, a multiband and multiuser spectrum access 
problem could be formulated as a strategic game as follows. The 
SUs would be the players in the game. The set of strategies 
could involve the choice of frequency band to access or, for 
example, the employed transmit power on each frequency band. 
The reward could then be each SU’s individual sum throughput 
over the different frequency bands.

The objective of each player is to find a strategy that maxi-
mizes its reward .ri  The Nash equilibrium is a central concept 
in noncooperative game theory for establishing the outcome of 
a game. The Nash equilibrium defines each player’s best 
response strategy given the other players’ strategies, i.e., a Nash 
equilibrium is defined as a strategy profile a A* !  such that

( , ) ( , ), , ,r a a r a a i a A* * *
i i i i i i i i6$ !- - (10)

where a i-  denotes the strategies of all players except player .i  The 
Nash equilibrium states that a player cannot improve its reward by 
unilaterally changing its strategy if the other players follow the 
Nash equilibrium strategies.

A player’s strategy may be either a pure or mixed strategy. 
A pure strategy is a deterministic strategy determining the 
action in any possible situation. A mixed strategy assigns a 
probability to each pure strategy, and, thus, the player chooses 
randomly which pure strategy to play. Every game with finitely 
many actions has at least one mixed-strategy Nash equilibrium 
[38]. Since there may be multiple equilibria, finding the best 
one is important. However, because of the competitive nature 
of the game, defining the optimality criterion for an equilib-
rium is not straightforward. One such criterion is Pareto opti-
mality. An equilibrium is Pareto optimal if there exists no 
other strategy profile that would increase at least one player’s 
reward without decreasing any other player’s reward. For 
more information on Pareto optimality and other criteria and 
techniques for choosing an equilibrium and improving ineffi-
cient equilibria, see [31].

NONCOOPERATIVE GAMES FOR 
SPECTRUM SENSING AND ACCESS
In [52], a class of nonconvex, noncooperative games is proposed 
for a multiuser and multiband spectrum sensing and 

access problem. In the proposed formulation, the SUs compete to 
maximize their own throughputs by jointly choosing their sensing 
durations, detection thresholds, and power allocations on the fre-
quency bands. To facilitate decentralized optimization with global 
PU interference constraints, a pricing mechanism is introduced 
that penalizes the SUs for their contributions to the total interfer-
ence. Sufficient conditions for the existence and uniqueness of a 
Nash equilibrium are derived, and distributed algorithms are pro-
posed for solving the games.

COOPERATIVE GAMES
In general, if the players are interested in maximizing the mutual 
payoff instead of maximizing only their individual payoffs, coopera-
tion among the players has the potential of improving the overall 
cumulative payoff compared to that obtained in noncooperative 
games. In cognitive radio systems, the SUs may cooperate in various 
ways: the users may share their local sensing results to make finding 
idle spectrum more efficient, or they may coordinate their sensing 
and access choices to improve the overall throughput. In addition, 
the users may help each other, e.g., in routing, packet forwarding, 
and interference management. Coalitional games constitute one of 
the most common and important forms of cooperative games.

Coalitional games are cooperative games in which the players 
form coalitions to improve their rewards. A coalition is a group of 
players that may enforce cooperation within the coalition. A coali-
tional game can be seen as a game between coalitions instead of 
between the individual players. A coalitional game consists of a 
finite set of players { , , }N N1 f=  and a coalition value function 
y  that quantifies the value of each coalition .S N3

The value of a coalition may, in general, depend also on the 
other players outside the coalition. However, we will first consider 
coalitional games in which the value of a coalition S  depends 
only on the members of .S  Such coalitional games are said to be 
in characteristic form. Characteristic-form coalitional games are 
widely used, partly because of their simpler structure. Moreover, a 
coalitional game, regardless of whether it is in characteristic form 
or not, may have either transferable or nontransferable utility. 
For a coalitional game in characteristic form with transferable 
utility the value ( )Sy  of a coalition S  is a real number. The value 

( )Sy  quantifies the total reward/payoff of the coalition S  that 
may be divided arbitrarily among its members. In spectrum sens-
ing and access problems, the value of a coalition could, for exam-
ple, be equivalent to the vacant bandwidth found by the SUs in 
the coalition that then could be shared among the coalition 
members using some fair rule. This fair rule would ensure that 
the effort a user contributes to the coalition would be rewarded 
through sharing the common resources. For example, if a user is 
able to find a lot of idle spectrum for the coalition, this may be 
taken into account when scheduling users. Alternatively, we 
could also define the value of a coalition as the sum throughput 
of its members. However, dividing the secondary system through-
put arbitrarily among the coalition members is not generally 
straightforward since the throughput of each individual user 
depends on the channel quality between the corresponding 
receiver and transmitter pair as well as on the local interference. 
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Thus, the utility (throughput) cannot be arbitrarily transferred 
among the coalition members. Games having this latter charac-
teristic are called coalitional games with nontransferable utility.
In this case, the value of a coalition S  is represented as a set of 
payoff vectors, ( ,)S R | |S3y  that the members of S  can achieve. 
Each element ri  of a payoff vector ( )Sr ! y  corresponds to a pay-
off member i  can receive in coalition .S

A coalitional game, in characteristic form, is superadditive if 
the value of a coalition formed by joining two disjoint coalitions 
is always at least equal to the value obtained by the two disjoint 
coalitions separately. Hence, cooperation is always beneficial, and 
a grand coalition, i.e., a coalition involving all the players, is the 
optimal coalition with the highest value. A coalitional game in 
characteristic form with superadditivity is called a canonical 
coalitional game. Canonical coalitional games focus on studying 
the stability of the grand coalition and finding a reward allocation 
that ensures that the players do not have an incentive to leave the 
grand coalition. A fundamental solution concept for canonical 
coalitional games is the core. The core of a coalitional game is a 
similar concept to the Nash equilibrium in noncooperative 
games. The core of a canonical coalitional game with transferable 
utility is a reward allocation { , , }r r rN1 f=  defined as

: ( ) ( ), ,C N S S Nr r rand
N S

i
i

i
i

6_ $ 3yy=
! !

' 1/ / (11)

where , ,r rN1 f  are the individual rewards of the players. Thus, no 
group of rational players has an incentive to leave the grand coali-
tion whose reward allocation r  is in the core of the game. The 
core of a coalitional game with transferable utility is obtained by 
solving the following linear program (if the core exists):

, ( ), .NS Smin r rs.t.
SN

r i
i

i
i

6$ 3y
! !

/ / (12)

The core can be defined for other coalitional games as well.
Formulating a game such that the grand coalition is optimal 

may not always be the most appropriate model. In spectrum sens-
ing and access problems, different costs and gains associated with 
cooperation combined with the local nature of the spectrum state 
may result in a situation in which the optimal coalition structure 
is not the grand coalition. Coalitional games in partition form are 
appropriate models for such scenarios. A coalitional game is in 
partition form if the value of a coalition S  depends also on the 
players outside the coalition ,S  i.e., players in \ ,N S  and how 
they are partitioned to other coalitions. That is, the value 

( , )Sy P  of a coalition S  depends on both the coalition S  and 
the network partition .P

A comprehensive treatment of coalitional games and their 
applications in communication networks can be found in [49].

COALITIONAL GAMES FOR JOINT 
SPECTRUM SENSING AND ACCESS
In [50], coalitional games in partition form with nontransferable 
utility have been proposed for joint multiband spectrum sensing 
and access in cognitive radio ad hoc networks. SUs form coalitions 

to share local sensing statistics, coordinate the local sequential fre-
quency band sensing orders, and cooperatively distribute their 
powers so that the total sum-rate of the coalition is maximized.

Each user maintains an ordered list of frequency bands in 
decreasing order of preference in which they would like to sense 
the frequency bands. In [50], the preference is modeled by 
weights ,w g, ,i k k i ki=  where ki  is the probability that frequency 
band k  is available and g ,i k  is the channel gain experienced by 
SU i  on frequency band .k  In a coalition, the individual fre-
quency band sensing orders of the coalition members are then 
chosen cooperatively based on the local preference lists. The 
coalition members sort their lists starting from the highest-
ranked frequency band and proceeding until the end as follows 
[50, Algorithm 1]: At each rank (i.e., list position), those SUs 
whose choices do not conflict with others are assigned these fre-
quency bands. In case of a conflict, the user with the highest 
weight w ,i k  is assigned the frequency band. The remaining users 
repeat the procedure with the remaining frequency bands until 
each user has been assigned a frequency band for that particular 
rank in the list. If during this procedure a user is left without any 
possible frequency band in a current rank, the user selects the 
frequency band with the highest weight from frequency bands 
not already on its list (this results in interference with at least one 
other coalition member). This procedure is repeated for each 
rank of the ordered lists until each coalition member has a new 
cooperatively sorted sensing order.

Given the new sensing orders, the SUs then proceed to sense 
the frequency bands in the order of their lists until they find an 
available frequency band to access. The coalition members find 
available frequency bands simultaneously and then share their 
sensing results and cooperatively allocate their transmit powers 
on these frequency bands so that their total sum rate is maxi-
mized. The payoff of an SU i  in a coalition S  is modeled as [50]

( ,) ( ),Sr C 1S S
i i ixP = -r (13)

where P  is the network partition, CS
ir  is the average capacity, 

which depends on channel gains, interference, sensing order, and 
frequency band availability, and i

Sx  is the average fraction of time 
spent for sensing, which depends on the sensing order and fre-
quency band availability. Therefore, the user payoffs depend on the 
network partition, which affects the coordination of sensing and 
access and, thus, the interference experienced by the users.

To maximize their payoffs, the SUs have to find an optimal net-
work partition. In [50], this is addressed through a coalition forma-
tion algorithm in which potential coalition switches are 
periodically initiated in a random order by individual SUs. A switch 
from one coalition to another is approved only if the payoff of the 
switching SU is strictly increased without decreasing the payoff of 
any existing member of the new coalition. The users also maintain 
a history of their previous coalitions to ensure that they do not 
revisit any of the previous coalitions with smaller payoffs. The pro-
posed algorithm is shown in [50] to converge to a Nash-stable par-
tition in which no user has an incentive to switch to a different 
coalition. Furthermore, in practice, the proposed coalition forma-
tion algorithm can be run periodically with reset history tables. 
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This ensures discovery of new neighbors and adaptation to environ-
mental changes.

The simulation results in [50] show that the proposed 
coalitional games result in a significantly higher average pay-
off than noncooperative sensing and access. The simulation 
results also show that the proposed coalition formation game 
is likely to converge to network partitions consisting of many 
small coalitions. This indicates that the grand coalition is not 
the optimal coalition and increasing the coalition size too 
much decreases the chances of exploiting the best frequency 
bands due to a less favorable frequency band ordering within 
the coalition.

REPEATED GAMES
All of the games we have considered so far are single-stage games, 
i.e., the games are played for only one round. A repeated game is a 
game in which the same-stage game is repeated multiple times. 
In repeated games, the players have to take into account the 
impact of their current actions on the future rewards. The most 
interesting form of repeated games for spectrum sensing and 
access problems is an infinitely repeated game. In infinitely 
repeated games, the players’ objective functions can be, e.g., dis-
counted sums of rewards.

STOCHASTIC GAMES
Although infinitely repeated games can be used to model continuous 
multiuser spectrum sensing and access problems, they still lack the 
dynamic nature common to these problems. In cognitive radio appli-
cations, the state of the spectrum and the surrounding radio envi-
ronment is dynamically changing as a function of time and location. 
In repeated games, and all of the other games described in this arti-
cle, the players are faced with the same-stage game each time. 
Hence, the players’ strategies do not depend on the state of the envi-
ronment. Stochastic games can be used to model the dynamic envi-
ronments faced in the most general spectrum sensing and access 
problems. In stochastic games, the environment has multiple states 
that change stochastically during the course of the game. Thus, the 
players’ strategies depend on the current state.

Stochastic games are extensions of MDPs to the case of multi-
ple players. A stochastic game consists of

■ a sequence of discrete time steps , , ,n 0 1 2 f=

■ a set of players { , , }N N1 f=

■ a set of possible states s S!
■ a set of possible actions for each player in each state 

, ;Na A ii i! !  the combined action space is A A AN1 # #g=

■ a state transition function : [ , ]AS S 0 1"# #{  that de-
fines the state transition probability , , ,P s s a a, ,n n n N n1 1 f;+^ h

■ reward (payoff) functions : ,Ar S S Ri "# # Ni !  that 
give the players rewards r ,i n 1+  for the joint action , ,a a, ,n N n1 f

of the players in state sn  resulting in new state .sn 1+

Similarly to POMDPs, stochastic games can be generalized 
to partially observable stochastic games [16] in which the state 
is observable only through a stochastic function. Stochastic 
games form the basis for modeling multiagent reinforcement 
learning problems.

STOCHASTIC GAMES FOR SPECTRUM 
SENSING AND ACCESS
In [14], the multiuser and multiband spectrum sensing and access 
problem is formulated as a noncooperative partially observable 
stochastic game in which the SUs compete for spectrum opportu-
nities. Each SU is able to sense only one frequency band in each 
time slot, which results in partial observability of the PU state. The 
existence of a symmetric Nash equilibrium in which all SUs play 
the same strategy is established. In addition, a Stackelberg game is 
proposed for improving the Nash equilibrium. A Stackelberg game 
is a game consisting of a leader (network manager), who plays 
first, and followers (SUs), who play second. In [14], the network 
manager aims to maximize the average total throughput by con-
trolling the apparent availability of the PU frequency bands. That 
is, the network manager can reserve a PU frequency band which 
then appears to the SUs as being occupied. This results in 
decreased competition among the SUs, which then increases the 
average total throughput.

DYNAMIC PROGRAMMING
Dynamic programming refers to an optimization approach in 
which an original multistage sequential decision problem is bro-
ken down into smaller, simpler single-stage decision problems 
that are then solved in a recursive manner. Here, we consider solv-
ing finite MDPs using dynamic programming. Therefore, dynamic 
programming can be used to solve spectrum sensing and access 
problems formulated as finite MDPs.

We will consider the maximization of (9), i.e., the expected 
sum of discounted rewards given an initial state .s sn =  The value 
of a policy r  starting from state s  is defined by

( ) | ,V s E r s sk

k
n k n

0
1c= =

3
r

r

=

+ +; E/ (14)

where ·Er 6 @ denotes the expectation when the policy r  is fol-
lowed. The value function can be broken down as follows:
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where the last form in (15) is called the Bellman equation for 
( )V sr  [56]. The optimal value function V*  is equal to the expected 

return of the best action in state s sn =

( )  ( ) , .V Vmaxs E r s s s a a* *
a n n n n1 1 ;c= + = =+ +6 @ (16)

This is called the Bellman optimality equation [56].
From (15) and (16), we see that successive states have a recur-

sive relationship. Moreover, the optimal policy from any state 
sn 1+  does not depend on what happened before that state was 
reached. Thus, the original problem can be solved recursively 
using the Bellman optimality equation. In finite-horizon prob-
lems, we can start from the last time step and work recursively 
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backward using the Bellman optimality equation. This is called 
backward induction. Figure 5 illustrates backward induction in a 
problem of finding the longest path in a network of nodes.

In infinite horizon problems, the main solution approaches 
are value iteration and policy iteration. Value iteration is a gener-
alization of backward induction in which the Bellman optimality 
equation is used iteratively to update the value function until it 
converges. Policy iteration starts from an arbitrary policy that is 
then successively evaluated and improved through greedy action 
selection in each state until it converges. Each successive policy is 
guaranteed to be strictly better than the previous policy until the 
optimum is found. For more information on value and policy 
iteration, see [56].

Dynamic programming is computationally more efficient 
than evaluating all possible policies. Nevertheless, the computa-
tional and memory requirements of dynamic programming 
grow exponentially as the number of states and actions 
increases, i.e., dynamic programming suffers from the curse of 
dimensionality. Moreover, in general, the state transition proba-
bilities and rewards have to be known to evaluate the Bellman 
equations. Thus, the applicability of dynamic programming is 
mostly limited to problems involving only small state and action 
spaces with known state transition probabilities and rewards. 
However, dynamic programming provides insight into the opti-
mal solution that can then be employed to obtain practical near-
optimal reduced-complexity algorithms and learning methods.

DYNAMIC PROGRAMMING-BASED OPTIMIZATION OF THE 
SENSING ORDER OVER MULTIPLE FREQUENCY BANDS
In [19], a dynamic programming solution has been proposed for 
the problem of selecting the sequential order of sensing different 
frequency bands in a multiband single-user cognitive radio sys-
tem. The goal is to maximize the throughput of the SU that 
senses frequency bands in a sequential order until it finds a fre-
quency band that is both vacant and has acceptable channel qual-
ity. In [19], this problem is formulated as a sequential decision 
problem and dynamic programming is employed to solve it. The 
solution is obtained with backward induction similar to the lon-
gest path example in Figure 5. Thus, the optimal sensing order is 
found by working backward from the end of the sensing order 
and selecting at each stage the sensing order for the remaining 
frequency bands that maximizes the expected throughput. In this 
case, the states correspond to the sets of frequency bands already 
sensed. Scenarios with both known and unknown frequency band 
availability probabilities are considered.

BANDIT PROBLEMS
Bandit problems are sequential decision problems in which the  
name originates from the similarity to the traditional slot 
machines used in casinos, called one-armed bandits. Bandit prob-
lems can be modeled as MDPs. Hence, bandit problems are appro-
priate models, in particular, for single-user multiband spectrum 
sensing and access problems. That is, multiband spectrum sens-
ing and access problems can be modeled as multiarmed bandit 
problems in which the arms of the multiarmed bandit correspond 

to different frequency bands and choosing an arm to play corre-
sponds to sensing or accessing a particular frequency band.

In the following, we will consider Markovian multiarmed ban-
dit problems in which the conditional state transition probability 
depends only on the current state, and, thus, they can be modeled 
as MDPs. There are K  arms and a decision maker controlling the 
selection of the arms to play. In each state ,sn  the decision maker 
selects one arm ai  to play and receives a reward rn 1+  for it. In 
classical multiarmed bandit problems, the state of the nonplayed 
arms does not change and the stochastic processes for the differ-
ent arms are independent of each other.

Gittins and Jones [13] showed that the optimal policy maxi-
mizing the expected sum of discounted rewards with known 
rewards and state transition probabilities is given by an index 
structure in which a priority index, called the Gittins index, is cal-
culated for each state of each arm of the multiarmed bandit. The 
Gittins index of each arm depends only on that arm’s underlying 
stochastic process. Thus, the original K-dimensional optimization 
problem is reduced to K  one-dimensional optimization problems. 
Once the Gittins indices have been calculated, the optimal policy 
reduces to selecting the arm with the largest Gittins index at each 
time. The Gittins index for the kth  arm is given by

( )
( )

,maxs
E s

E r s s
k

k
n

n
k

n
n n

k
n
k k
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0

0
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(17)

where the maximization is over the set of all stopping times 
.02x  Here, ( )r sn

k
n
k

1+  denotes that the reward of the kth  arm 
rn

k
1+  depends only on the state of the kth  arm .sn

k  Moreover, if an 
arm is not played its reward is zero. The Gittins index, thus, finds 
for each arm the optimal stopping time in terms of maximizing 
the expected discounted reward normalized by the expected dis-
counted number of plays. Several algorithms have been proposed 
for efficient calculation of Gittins indices; see, e.g., [39] and the 
references therein. Note, however, that calculating the Gittins 

s1 s2 s3 s4
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d

e

f
3

2
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2
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[FIG5] A dynamic programming example: finding the longest path 
from a  to .f  The thicker arrows indicate the longest path from 
each state to .f  The longest path from a  to ,f  i.e., ,a b e f" " "
has length 13. This optimal path can be found recursively 
starting from :f  Setting ( ) ,V f 0=  it follows from the Bellman 
optimality equation (with )1c =  that ( ) ( , ) ( )V Vd r d f f 3= + = +
0 3=  and ( ) ( , ) ( ) .V Ve r e f f 7 0 7= + = + =  Now, the Bellman 
optimality equation for s b2 =  gives ( ) { ( , ) ( ),V Vmaxb r b d d= +
( , ) ( )} { , } .V maxr b e e 5 3 3 7 10+ = + + =  Similarly, one can 

calculate ( ) .V c 9=  The final result ( )V a 13=  follows again from 
another recursive application of the Bellman optimality equation.
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indices requires, in general, full knowledge of the rewards and 
state transition probabilities for the arms.

The classical multiarmed bandit problem has a few limitations 
that make it not the most appropriate model for multiband spec-
trum sensing and access problems. First, and most importantly, the 
state of an arm can change only when it is played. Second, only one 
arm can be played at a time. In multiband spectrum sensing and 
access problems, the state of a frequency band depends on the 
PU activity and, hence, it can change at any time regardless of 
SU actions. Furthermore, the SUs may have the capability to 
sense or access multiple frequency bands simultaneously 
depending on the transceiver front-end properties. In the follow-
ing, we focus on restless multiarmed bandit problems that 
remove both of these limitations.

RESTLESS MULTIARMED BANDIT PROBLEMS
The restless multiarmed bandit problem is a generalization of the 
classical multiarmed bandit problem in which the decision maker 
may simultaneously play multiple L K#  arms and the nonplayed 
arms may change state and give rewards [63]. This complicates the 
problem significantly and renders the Gittins index policy subopti-
mal. The problem is further complicated if the arms are dependent. 
In the following, we will, however, focus on restless multiarmed 
bandit problems in which the arms are independent. For this prob-
lem when the rewards and state transition probabilities are known, 
Whittle proposed in [63] an index policy based on a Lagrange multi-
plier approach that is optimal for the average expected reward over 
the infinite horizon criterion under a relaxed constraint that the 
average number of played arms is equal to .L  However, calculating 
the Whittle indices may be very difficult in practice. Moreover, the 
problem may not even be indexable, i.e., the ordering of the arms 
given by the Whittle index may not be consistent and thus mean-
ingful. In the following, we will illustrate through an example [29] 
how the single-user multiband spectrum sensing and access prob-
lem can be formulated as a restless multiarmed bandit problem.

WHITTLE INDEX POLICY FOR SINGLE-USER 
MULTIBAND SPECTRUM SENSING
In [29], a single-user multiband spectrum sensing problem is for-
mulated as a restless multiarmed bandit problem with NB  arms 
each corresponding to a single PU frequency band. The SU senses 
K NB#  frequency bands in each time slot (either sequentially or 
simultaneously). For the vacant frequency bands, the user 
receives a reward equal to the transmission rate ,ri , , ,i N1 Bf=

that is in general different for every frequency band. For the 

other frequency bands, the reward is zero. Sensing is assumed to 
be error free. The goal of the SU is to maximize the reward over 
the infinite time horizon; two performance criteria are consid-
ered in [29]: the expected discounted reward over the infinite 
horizon and the expected average reward over the infinite hori-
zon. The PU occupancies on the frequency bands are modeled using 
independent Markov chains with two possible states [vacant (1) and 
occupied (0)] and known state transition probabilities ( , ),P Pi i

01 11

, , ;i N1 Bf=  see Figure 6. The user observes the frequency band 
states only after sensing and, hence, needs to infer the state from its 
past decisions and observations to make decisions. The conditional 
probability that a frequency band is in state 1 given all past deci-
sions and observations is a sufficient statistic [55]. The vector of 
conditional probabilities is referred to as the belief vector 

[ , , ] .n n n
N1 Bf~ ~X =  The belief n

i~  that the frequency band ,i
, , ,i N1 Bf=  is vacant can be updated recursively [29]

,
,
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=
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Consequently, the state of the ith  arm at time n  is given by the 
belief state .n

i~  This restless multiarmed bandit problem is shown 
to be indexable in [29]. Moreover, the Whittle index has been 
obtained in [29] in closed form for both of the reward criteria.

This problem can also be viewed as a POMDP with indepen-
dent frequency bands. A more general POMDP formulation of 
single-user spectrum sensing and access with possibly corre-
lated frequency bands can be found in [12] and [65] where an 
optimal solution with known state transition probabilities is 
also derived. In addition, a scenario with nonideal sensing is 
considered. In both cases, the computational complexity of the 
optimal solution grows exponentially with the number of fre-
quency bands [65].

In general, calculating the Whittle index requires full knowl-
edge of the transition probabilities P i

11  and Pi
01  as well as the 

rewards .ri  However, for i.i.d. arms (i.e., all arms have equal tran-
sition probabilities and rewards), the Whittle index policy has been 
shown in [29] to be equivalent to a myopic (greedy) policy.

MYOPIC SPECTRUM SENSING POLICIES
A myopic policy chooses at each time the action maximizing the 
expected immediate reward while fully ignoring the impact on 
any future rewards [1], [30], [66]. Thus, there is no exploration. A 
myopic policy is always exploiting the action that gives the high-
est expected reward. The myopic action [ , , ],a a an n n

N1 Bf=t t t

{ , }a 0 1n
i !t  for sensing M  frequency bands at time ,n  is given by

, ,arg maxa r a Ms.t.
,

an n
i

i a

N

i n
i

i

N

1 0 1
n

n
i

B B

~= =
!= =

t / / (19)

where n
i~  is the belief state of frequency band ,i a 1n

i =  denotes 
that frequency band i  is sensed, and a 0n

i =  does the opposite. If 
the arms are i.i.d., the myopic policy admits a queue structure that 
depends only on the ordering of P11  and P01  [30], [66]. The order-
ing of the frequency bands is maintained with a queue, and, at each 

Vacant
(1)

Occupied
(0)

P00

P01 = 1 − P00

P10 = 1 − P11

P11

[FIG6] A two-state Markov chain model for frequency band 
occupancy.
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time, the M  frequency bands at the head of the queue are sensed. 
Hence, the belief states do not need to be updated, and the exact 
values of state transition probabilities are not needed. Only the 
ordering of P11  and P01  has to be known. This makes the myopic 
policy computationally very efficient to employ in practice. Figure 7 
depicts the queue structure of the myopic policy.

For positively correlated ( )P P11 01$  i.i.d. frequency bands, the 
myopic sensing policy is optimal for any M  [1], [66]. This opti-
mality holds for discounted expected reward over finite and infi-
nite horizons and for average expected reward over the infinite 
horizon [1]. For negatively correlated ( )P P11 011  i.i.d. frequency 
bands, the myopic sensing policy has been shown in [1] to be opti-
mal for N 2B =  and N 3B =  and M 1=  but, in general, not 
optimal for .N 4B 2

All of the results are under the assumption of error-free sens-
ing. The myopic policy with imperfect sensing has been consid-
ered in [30]. In this case, the myopic policy follows the same 
queue structure as in the case of perfect sensing under a certain 
condition on the false alarm probability. Moreover, it remains 
optimal at least for N 2B =  [30]. The performance of the myopic 
policy in [66] is evaluated in the next section (Figure 8).

UPPER CONFIDENCE BOUND ALGORITHMS 
FOR SPECTRUM SENSING AND ACCESS
A branch of bandit problem research has focused on deriving 
index policies based on upper confidence bounds for multiarmed 
bandits with unknown state transition probabilities and rewards 
[2], [8], [40]. Most of this work assumes that the rewards for each 
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[FIG7] The structure of the myopic sensing policy for i.i.d. frequency bands when (a) P P11 01$  and (b) P P11 011  [30].
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[FIG8] Normalized median weak regret averaged over more than 1,000 randomly chosen Monte Carlo experiments for different 
sensing policies. The number of frequency bands is ten with each frequency band producing different randomly chosen (a) i.i.d. 
Bernoulli ( ~ ( , )P 0 1Uniform11  and )P P100 11= -  and (b) Markovian ~ ( . , . )[P 0 7 0 75Uniform11  and ~ ( . , . )]P 0 65 0 7Uniform00  rewards. 
Upper confidence bound algorithms have good performance in scenarios in which it is likely that one frequency band is clearly better 
than the rest (a). In (b), the frequency bands are close to identical, and, hence, any single-arm policy sought by the upper confidence 
bound algorithms is substantially worse than the myopic policy that is optimal for i.i.d. frequency bands with Markovian rewards. 
However, the myopic policy fails completely when there is a significant disparity among the frequency band statistics as in (a).
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arm are i.i.d. over time, albeit in 
general different for each arm. How-
ever, the ideas and the correspond-
ing policies can be used also with 
other types of reward distributions 
such as Markovian rewards. The 
goal of these policies is to find the 
best arm producing the highest 
average rewards. In these policies, 
the index for each arm consists of the average reward and a 
confidence term. The confidence term grows as a function of 
time and reduces when the arm is played. For example, in [40], 
a single-user spectrum sensing policy was proposed that pro-
ceeds as follows:

1) Sense each frequency band, , , ,i N1 Bf=  once. Thus, 
.n NB=

2) For n NB2  sense, the band with the highest index

, , , ,lnI r n
n i N1, ,i n i n

i
Bf= + =r ` j (20)

where r ,i nr  is the average obtained reward for frequency band i
(the rewards r ,i n  are assumed to be bounded in [ , ],0 1 , )i n6

and ni  is the last time instant when band i  was sensed.
We can observe from (20) that the role of the second term on 

the right-hand side is to promote exploration of suboptimal fre-
quency bands at least occasionally and, thus, obtain a desired bal-
ance between exploitation and exploration. In this case, the time 
difference between two sensing instances of a suboptimal frequency 
band grows exponentially in time. This also means that the policy 
asymptotically achieves a logarithmic order of weak regret [40]. 
Asymptotically logarithmic order of regret is the optimum that can 
be achieved for i.i.d. rewards [24]. Note, however, that in weak 
regret the loss in performance is not compared to the globally opti-
mal policy but to the optimal single-arm policy that plays only the 
arm with the highest expected reward. The optimal single-arm pol-
icy is the globally optimal policy for i.i.d. rewards. Another reason 
weak regret is commonly employed is that the optimal policy for 
weak regret is also much easier to obtain in the general case.

Figure 8 shows a performance comparison of several different 
upper confidence bound algorithms and the myopic policy [66] 
for multiband single-user spectrum sensing. The results show 
that the upper confidence bound algorithms are good for scenar-
ios in which there is one dominating frequency band, while in 
scenarios with i.i.d. frequency bands with Markovian rewards, 
other policies, such as the myopic policy [66], are more suitable.

DECENTRALIZED MULTIUSER SENSING AND ACCESS 
POLICIES BASED ON BANDIT PROBLEMS
Although bandit problems are best suited for modeling and solving 
multiband single-user sensing and access problems, they can also be 
used in multiuser sensing and access problems. In [28], decentralized 
multiuser and multiband sensing and access policies have been pro-
posed based on upper confidence bounds as well as on deterministic 
sequencing of exploration and exploitation. The SUs operate indepen-
dently without constant information exchange but possibly with 

some preagreement about sharing the 
frequency bands. The requirement for 
preagreement can be relaxed with ran-
domization during exploitation that 
results in a bounded loss in perfor-
mance [28]. Thus, the proposed policy 
achieves logarithmic order of weak 
regret even without preagreement 
[28]. Collisions are assumed to occur 

when multiple SUs try to sense and access the same frequency band 
at the same time. Moreover, the users are assumed to be able to 
detect collisions, which, in practice, is difficult to achieve.

REINFORCEMENT LEARNING
Reinforcement learning is a trial-and-error machine-learning 
approach in which the decision maker, called the agent, observes the 
state of the environment and chooses actions that lead to rewards 
and new states. Actions leading to desired outcomes are given higher 
rewards, which reinforce these actions, thus making them more 
likely to be chosen again in similar situations in the future. Conse-
quently, in reinforcement learning, the agent or agents are faced 
with the exploitation versus exploration tradeoff, i.e., whether to 
exploit the current best action or to explore other actions in hope of 
finding a better one. Single-user reinforcement learning problems 
can be modeled as MDPs while multiagent reinforcement learning 
problems can be modeled using stochastic games. Bandit problems 
comprise one of the simplest reinforcement learning problems.

SINGLE-AGENT REINFORCEMENT LEARNING
The goal of single-agent reinforcement learning is for the agent to 
learn a policy that optimizes the cost function, such as the 
expected sum of discounted rewards (9). One way of achieving this 
is to learn an optimal action-value function. The action-value 
function ( , )Q s a  evaluates the value of each action in a given 
state. It is defined as the expected return of taking an action a  in 
state s sn =  and then following policy ,r  i.e.,

( , ) | , .Q s a E r s s a ak

k
n k n n

0
1c= = =

3
r

r

=

+ +; E/ (21)

The optimal action-value function Q*  satisfies the Bellman opti-
mality equation [56, p. 76]

[ ( , , ) ( , )],Qr s a s s ac= +

( , ) ( , )

,

Q Qmax

max

s a s a

P s s a

*

*

s S a
;

=

!

r

r

l l l l
l

l
^ h/ (22)

where ( , , )r s a sl  is the reward function. Once the agent has com-
puted the optimal action-value function ,Q*  it can employ the 
greedy policy, which always chooses the action maximizing Q*  in 
the current state, i.e., ( , ),Qarg maxa s a*

a A= !t  to achieve its goal.
One of the key concepts in reinforcement learning is temporal-

difference learning, and Q-learning [62] is its most celebrated 
algorithm. Q-learning is a model-free off-policy temporal-differ-
ence learning algorithm. The action-value updates of Q-learning 
for each state-action pair are given by

STOCHASTIC GAMES CAN
BE USED TO MODEL THE

DYNAMIC ENVIRONMENTS
FACED IN THE MOST GENERAL 

SPECTRUM SENSING AND
ACCESS PROBLEMS.
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a+

( , ) ( , )
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( , ) ,

Q Q
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s a s a
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n n n n n n

n n n n

n n n
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8
B (23)

where na ( )0 1n1 #a  is a step size parameter (learning rate). 
The action-value function update of Q-learning is given by the 
temporal difference between the current estimate ( , )Q s an n n  and 
the target value ( , )Qmaxr s an a A n n1 1c+ !+ + ll  multiplied by the 
step size .na  Hence, knowledge of 
the state transition probabilities 
and the reward function is not 
required. The action-value function 
of Q -learning approximates the 
optimal action-value function Q*

regardless of the followed policy. 
Thus, Q -learning is an off-policy 
temporal-difference algorithm.

In Q-learning, the policy fol-
lowed can essentially be any policy as 
long as all state-action pairs are visited infinitely many times. 
Opposite to this are on-policy algorithms in which the action-
value function updates are based on the policy followed by the 
agent and the state-action pairs visited. Sarsa [48] is an example of 
an on-policy temporal-difference algorithm. The action-value 
updates of the one-step Sarsa algorithm are defined by

( , ) ( , )

( , )

( , ) .

Q Q
Q

Q

s a s a

r s a

s a

n n n n n n

n n n n n

n n n

1

1 1 1a c

-

=

+ +

+

+ + +6
@ (24)

The update is given by the temporal difference between the 
Q-values of two consecutive state-action pairs visited by the algo-
rithm at times n  and n 1+  multiplied by .na

The convergence of the action-value function Qn  to the opti-
mum Q*  in stationary environments has been established for 
Q-learning in [62] and for one-step Sarsa in [54]. The conver-
gence to Q*  is guaranteed with probability one if the agent 
employs a lookup-table to store the Q-values for every state-action 
pair, visits every state-action pair infinitely many times, and the 
step size parameter is chosen such that nn 0

3a =
3

=
/  and 

.<nn
2

0
3a3

=
/  Furthermore, to ensure the convergence of one-
step Sarsa, the learning policy must become greedy in the limit. 

Thus, both Q-learning and Sarsa require a learning policy that 
balances between exploitation and exploration. The e-greedy 
action selection is one of the most commonly employed policies in 
Q-learning and Sarsa. It is a simple method that balances between 
exploitation and exploration by selecting the action that maximizes 
the action-value function, i.e., ( , ),Qarg maxa s a*

a=  with a proba-
bility ,1 e-  or a random action, uniformly, with probability e
regardless of the action-value function estimates. Another commonly 
employed simple action selection method is the softmax action 
selection method. The softmax method chooses action a  in state s
with probability

( , )
( ( , ) / )
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Q
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x
=
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l
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where a A!  and x  is a positive temperature parameter control-
ling the weighting of different actions. Low temperatures increase 
the differences in the action selection probabilities, while high 
temperatures cause all actions to be almost equiprobable. In the 
limit, when ,0"x  the softmax method corresponds to greedy 
action selection, and when ," 3x  the actions are selected ran-

domly from a uniform distribution.
In practice, the learning environ-

ment in cognitive radio applications is 
usually nonstationary. Thus, the goal 
is to track a nonstationary state of the 
spectrum. A practical approach is to 
use a constant step size , .nn 6a a=

A constant step size does not satisfy 
the previously described conditions for 
convergence. However, it guarantees 
that the more recent samples have 

larger weights than the ones in the distant past, which facilitates 
tracking the solution of a nonstationary problem. In addition, it is 
important to continue to explore in nonstationary environments. 
This can be accomplished, for example, by employing the e-greedy 
algorithm with a constant nonzero .e

MULTIAGENT REINFORCEMENT LEARNING
A multiagent reinforcement learning problem can be formulated 
as a stochastic game. In reinforcement learning, the players of 
the stochastic game are called agents, as in the single agent case. 
A multiagent reinforcement learning problem is much more 
complicated than a single-agent reinforcement learning problem. 
In a multiagent reinforcement learning problem, the rewards and 
state transitions depend, in general, on the joint actions of all the 
agents. Thus, the objective function, e.g., the expected sum of dis-
counted rewards in (9), depends also on the joint actions of all the 
agents. Hence, the agents have to adapt their own policies not 
only to the environment but to the other agents’ policies as well.

Multiagent reinforcement learning problems can be either non-
cooperative or cooperative. If the reward functions of the competing 
agents sum to zero, the problem is fully competitive. If the interests 
of the different agents are fully aligned, the reward functions are 
identical for all agents and the problem is fully cooperative. Problems 
without any restrictions on the reward functions of the agents are 
the most general ones and can have elements of both competition 
and cooperation. Most of the existing multiagent reinforcement 
learning algorithms are based on Q-learning [7]. Different algo-
rithms include different levels of coordination in both learning 
algorithm and action selection. In cooperative problems, the level of 
coordination among the agents has a significant effect on both the 
stability of the learning process and the adaptation to the other 
agents’ policies. The level of coordination depends also on the 
application and its restrictions. In some tasks, there may be explicit 
coordination in the form of pre-established preferences toward 
certain joint actions, or actions may, e.g., be selected in turn and 

A KEY ASSUMPTION THAT
FACILITATES FINDING A TRACTABLE

SOLUTION TO THE DISTRIBUTED
DETECTION PROBLEM IS THE

CONDITIONAL INDEPENDENCE
OF OBSERVED SENSOR DATA
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communicated to other agents. In the absence of any explicit coordi-
nation mechanism, the agents may try to learn a model of the other 
agents’ policies provided that they are able to observe the other 
agents’ actions. For a comprehensive review of different multiagent 
reinforcement learning algorithms and their characteristics, see [7].

MULTIAGENT REINFORCEMENT LEARNING FOR 
DISTRIBUTED MULTIBAND SPECTRUM SENSING
In [34], the multiuser multiband 
spectrum sensing problem is for-
mulated as a partially observable 
stochastic game among the SUs. 
The proposed game consists of a 
group of SUs, a set of possible PU 
states (idle or occupied for each fre-
quency band), a set of possible actions (which band to sense for 
each SU), observations corresponding to sensing decisions for 
the sensed frequency bands, a state transition function, reward 
functions (the number of frequency bands sensed vacant), and 
observation (sensing decision) probability functions. In the pro-
posed formulation, the SUs cooperate to maximize the expected 
amount of (discounted) vacant spectrum found locally at each 
SU under a constraint on the probability of PU detection. The 
SUs may sense only a subset of the frequency bands in each 
sensing period. Moreover, the SUs employ local detection algo-
rithms subject to decision errors. These two limitations make 
the PU state only partially observable.

The cooperation among the SUs is achieved through local 
interaction in [34]. The SUs exchange information for two reasons. 
First, the SUs exchange their local sensing statistics to enable col-
laborative distributed detection. Second, the SUs exchange the 
indices of the frequency bands they are going to sense in the next 
sensing period to coordinate their actions.

The proposed cooperative multiagent reinforcement learning 
approach is based on Sarsa with linear function approximation. In 
linear function approximation, the action-value function Q  is 

approximated with a linear function. In [34], the linear function is 
given by 
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where n
ki  is a parameter vector and ( , )f an

k
n
k~  is a feature vec-

tor depending on the belief state n
k~  and the actions of SU k

and its neighbors. The belief state 
n
k~  indicates SU k ’s belief that 

each frequency band is vacant. The 
actions an

k  correspond to the indi-
ces of the frequency bands sensed 
by SU k  and its neighbors. The 
belief state update follows a similar 

form as (18) but is more complicated since it also takes into 
account the probabilities of detection errors and involves learn-
ing the state transition probabilities. The feature value depends 
on both the SU’s belief that the spectrum is vacant and the 
probability of a false alarm, and is given by [34]
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where ( ) ,h m p1 ,fa m= -  with p ,fa m  the false alarm probability 
obtained with m  SUs sensing, and I[ ]a it=  is an indicator func-
tion having value 1 if a in =  and 0 otherwise. Thus, the argu-
ment of the function h  is the number of SUs in group k Gk,

sensing the frequency band i  in the time slot n  where Gk

denotes SU k’s neighbors.
The obtainable false alarm probability depends on the propaga-

tion environment and the local sensing algorithm. In difficult 
propagation environments, a larger number of SUs is required to 
achieve a low probability of false alarm. As a result, the SUs also try 
to learn the optimal level of sensing cooperation for each fre-
quency band in each particular location so that the expected 
amount of idle spectrum found is maximized.

Approximating the action-value function Q  with a linear func-
tion transforms the problem of learning the action-value function 
Q  to the problem of learning the parameter vector .ni  In [34], 
the learning algorithm is gradient-descent-based Sarsa with 
e-greedy action selection.

Figure 9 shows the spectrum sensing performance of the 
learning approach proposed in [34] in a cognitive radio scenario 
with ten cooperating SUs and seven PU frequency bands in both 
AWGN and Rayleigh fading PU to SU channels.

OTHER REINFORCEMENT LEARNING-BASED 
SENSING AND ACCESS POLICIES
In [42], a single-agent reinforcement learning-based cooperative 
multiuser and multiband sensing policy is proposed. The pro-
posed sensing policy consists of two stages both coordinated by 
an FC. In the first stage, the goal of the FC is to choose the fre-
quency bands with the highest expected throughput for sensing 
to maximize the throughput of the cognitive radio network. In 
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[FIG9] The average sensing performance over 1,000 Monte Carlo 
runs of the algorithm proposed in [34] relative to an optimal 
genie in AWGN and Rayleigh fading PU to SU channels with 
ten SUs and seven PUs. In the Rayleigh fading propagation 
environment, the learning of the state transition probabilities is 
slower because of lower sensing reliability. This also affects the 
overall sensing performance in the beginning of the simulation.

STOCHASTIC GAMES FORM
THE BASIS FOR MODELING

MULTIAGENT REINFORCEMENT
LEARNING PROBLEMS.
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the second stage, the FC assigns the SUs to sense the frequency 
bands selected in the first stage such that the probabilities of 
missed detection are minimized on the chosen frequency bands. 
The learning approach employed in [42] uses single-state Q-
learning with e-greedy action selection.

In [32], a cooperative single-band sensing approach based on 
single-agent temporal-difference learning is proposed. The goal of 
the FC controlling the sensing policy is to find an optimal subset 
of SUs to perform sensing in an optimal sequential order so that 
the reporting delay and overhead are minimized.

CONCLUSIONS AND FUTURE DIRECTIONS
In this article, we have provided an overview of spectrum explo-
ration and exploitation methods for cognitive radio systems. In 
the first part of the article, we provided a brief introduction to 
advanced spectrum sensing techniques, such as distributed 
detection, SD, and quickest detection. Distributed detection is 
important for mitigating propagation effects and, thus, improv-
ing the reliability of spectrum sensing. Sequential and quickest 
detection techniques aim at minimizing the time spent in sens-
ing a particular frequency band and, hence, facilitate using 
more time for transmissions and increase the throughput. In 
the second part of the article, we presented various different 
approaches for spectrum sensing and access policy design in 
cognitive radio networks. We have shown how to formulate the 
spectrum sensing and access problems as MDPs or using game 
theory. We have provided brief introductions to dynamic pro-
gramming, bandit problems, reinforcement learning, and game 
theory, and have reviewed the various state-of-the-art spectrum 
sensing and access policies based on these techniques.

This tutorial article shows that considerable advancement 
has been achieved in recent years in the field of flexible spec-
trum use. However, further progress is still needed to fully 
realize the goal of secondary opportunistic spectrum use and 
efficient spectrum exploration and exploitation. We expect the 
following three important design aspects to play a major role 
in the future development of joint spectrum sensing and 
access algorithms and methods:

1) Dynamic problem formulation: The radio-frequency 
spectrum is a time-varying resource. Thus, dynamic game-the-
oretic models, such as stochastic games, will play an important 
role in modeling realistic multiuser spectrum sensing and 
access problems.
2) Partial observability and other limitations: In practical 
cognitive radio systems, the SUs operate with limited 
resources. This results in partial observability of the spec-
trum state. Furthermore, the observations are subject to 
errors. Taking these aspects into account and analyzing how 
they will affect the performance of learning algorithms and 
various other approaches will be vital to the development of 
practical systems.
3) Spatial dimension and location dependence: The radio-
frequency spectrum is space–time–frequency varying. Thus, 
in a reasonable size cognitive radio network, the spectrum 
state will inevitably be different at different parts of the 

network. How to acquire location information and fully 
exploit spatial diversity are crucial for interference manage-
ment as well as maximal exploitation of spectrum 
opportunities.
In addition to these design issues, issues that require fur-

ther attention are the coexistence of various heterogeneous SU 
networks and computational complexity and energy- and 
bandwidth efficiency of multiuser cooperative spectrum sens-
ing and access policies. Furthermore, time synchronization 
and temporal allocation of resources in finding and accessing 
idle spectrum are important issues in managing the compli-
cated problem of flexible spectrum use.

Finally, we note that, in this article, we could only provide 
short introductions to the many interesting and important tech-
niques for spectrum sensing and access. More comprehensive 
treatments of the different techniques introduced in this article 
can be found in [3], [5], and [17].
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nyone who has served as a technical pro-
gram committee (TPC) chair for a 

conference (or program man-
ager for a funding agency) 

understands  that paper 
(or proposal panel) review assignment is a 
demanding job that takes a lot of time, 
and reviewers are rarely satisfied 
with the end results. This article 
presents signal processing tools 
for two critical “mass assign-
ment” tasks: assigning papers (or 
proposals) to reviewers in a way that 
matches reviewing expertise to scientific 
content while respecting the reviewers’ 
capacity constraints and splitting accepted 
papers (or submitted proposals) to sessions 
(panels) while adhering to session (panel) 
capacity constraints. The basic idea is to use fea-
ture vectors to represent papers and reviewers. Fea-
tures can be key words or phrases (e.g., optimization or 
sensor networks) or other types of attributes (e.g., time-
liness). This viewpoint enables optimal assignment 
problem formulations that make sense from a scientific 
and practical point of view. While optimal solutions are 
hard to compute for a large number of papers and 
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reviewers, high-quality approximate solutions of moderate com-
plexity are developed here using familiar signal processing and opti-
mization tools. These algorithmic solutions easily outperform days 
of expert manual work as demonstrated in experiments with real 
conference data.

The credibility of our scientific enterprise relies heavily on the 
peer-review system. Whereas many contributions are eventually 
still individually judged (e.g., when submitted for journal publica-
tion), there are at least two important modes of mass peer review 
at the center stage of scientific innovation: proposal review panels 
and conference reviewing. Paper and proposal review assignment 
is a difficult and tedious job that takes a lot of time, and, despite 
good intentions, often results in some awkward assignments. 

A TPC chair’s job includes 1) assigning reviewers to each paper, 
making every effort to match reviewing expertise to paper content 
while respecting the reviewer capacity constraints; 2) reading the 
submitted reviews and making an accept/reject decision for each 
paper, keeping in mind the target acceptance rate and the number 
of papers that can be presented at the conference; and 3) splitting 
the accepted papers into sessions, such that each session has a 

coherent theme, while adhering to session capacity constraints. 
The latter is the paper-to-session assignment problem. A program 
manager’s job likewise includes 1) splitting the list of submitted 
proposals into smaller thematic batches to be assigned to review 
panels while adhering to panel capacity constraints (the proposal-
to-panel assignment problem), 2) selecting reviewers to invite for 
each panel, and 3) assigning panelists to each proposal, trying to 
match reviewing expertise to the proposal content while respecting 
the panelist capacity constraints.

Given the difficulty and effort it takes to effectively solve these 
assignment problems, it is hard to believe that most TPC chairs 
and many program managers still operate without using the appro-
priate algorithmic aids to get the job done faster and better. There 
are two main reasons for this: 1) it is hard for a machine to nail 
down the essence of a submitted research paper or proposal and 
make a scientifically sound call on what is an appropriate set of 
reviewers, and 2) conference- or program-specific constraints 
require custom coding.

Generic computerized assignment algorithms (e.g., Cyberchair) 
are available, but these rely on reviewing “bids” or preference rat-
ings, or a scalar similarity score between the contents of each paper 
and the expertise of each reviewer. Given the similarity (or affinity) 
paper-reviewer matrix, an assignment that maximizes the total 
affinity can be formulated as an integer linear programming prob-
lem. This formulation has been shown to be a totally unimodular 
program, which implies that an optimal solution can be computed 
at a modest complexity [1]; see also [2]. Using reviewer preferences 
for assignment certainly keeps the reviewers happy; however, it has 
two important pitfalls.

1) Each paper or proposal usually requires multiple types of 
expertise for proper review. For example, a paper on cross-layer 
resource allocation in wireless networking requires expertise in 
physical layer wireless communication, optimization, and net-
working. Using an aggregate preference or similarity score per 
reviewer can (and does) result in assignments where no 
reviewer covers a certain aspect of the paper (e.g., networking). 
This is, of course, highly undesirable, as already noted in some 
earlier work on automated review assignment [1], [3], [4]. 
A typical situation is depicted in Figure 1, which clearly shows 
the deficiency of total similarity/affinity score-based assign-
ments. [While it is conceptually possible that one might be able 
to judiciously design a paper-reviewer score matrix that prohib-
its such bad assignments when used in conjunction with the 
totally unimodular programming approach in [1] and [2], this 
seems like a daunting task. Entry ( , )p r  of such a matrix should 
not only depend on the feature vectors of paper p  and reviewer 

;r  it should be a function of the feature vectors of potentially all 
papers and all reviewers.]
2) Reviewers tend to down-weight past experience in favor of 
their current interests when clicking on topical areas to sum-
marize their expertise and generally bid to review papers or pro-
posals that are close to their current interests, “in fashion,” or 
from well-known researchers, without regard to the collective 
reviewing needs of the conference or panel. The TPC chair or 
program manager often has to tap a reviewer’s past expertise to 

Precoding
Networking

CSI

Networking
Cognitive

Precoding
Cognitive

Game
Cognitive

CSI

Reviewer 4

Reviewer 3

Reviewer 2

Reviewer 1

Game
Precoding
Networking
Cognitive

Paper 1

[FIG1] An example of what usually happens when one tries to 
maximize reviewer satisfaction (or similarity score) alone: Both 
green and red assignments have the same affinity score, but only 
the assignment in red ensures a scientifically sound paper review.
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ensure a fair and unbiased assignment to the extent possible. 
These factors are very difficult to capture by reviewing prefer-
ences or aggregate similarity scores.
The first step toward a more pragmatic approach is a multidi-

mensional description of each reviewer and each paper or proposal, 
in a common feature space that captures the essential dimensions 
of expertise for the specific scientific domain. In other words, we 
advocate viewing reviewers and papers/proposals as points in a 
higher-dimensional vector space. The canonical coordinates in this 
vector space are key words or phrases used to represent papers and 
reviewers (e.g., optimization or sensor networks), or other types of 
attributes (e.g., timeliness). This concept is illustrated in Figures 2 
and 3, and it is central to our approach (see also “Visualizing Papers 
and Reviewers”). Note that feature vectors are widely used in the 
machine-learning literature; see, e.g., [5] and [6].

The list of keys for the papers (dimensions of the feature vec-
tor) can be produced as follows:

■ The list can be prepared by the TPC chair before submis-
sion, in which case authors can mark the features relevant to 
their paper at the time of submission. This would correspond 
to a refined Editors’ Information Classification Scheme.
■ They can be compiled by taking the union of standard plus 
free-text key words provided by the authors at submission 
time, followed by stemming to consolidate synonyms.
■ They can be parsed from the list of submitted paper titles. 

This parsing can be done manually by the TPC chair (for up to a 
few hundred papers—a seasoned chair can process about three 
papers per minute), or it can be automated using text retrieval 
[7] and consolidation tools [8]. Natural language processing will 
likely be helpful in this context, but this remains to be seen in 
practice. At any rate, spending a couple of hours producing a 
list of keys and marking papers is far less than what is needed 
for producing a well-rounded technical program from the list of 
accepted papers, let alone producing a scientifically sound 
review assignment.
■ Most conferences and workshops recur annually or periodi-
cally; therefore, a prepared list of key words for the previous edi-
tion can serve as an excellent starting point for the next one, 
with the addition of a few key words for emerging topics and 
possible deletion or consolidation of those that are obsolete.
Drawing upon this multidimensional description of papers and 

reviewers, this article aims to present signal processing tools for 
paper-to-reviewer assignment and paper-to-session assignment. We 
examine these two problems in the remainder of this article.

A PRIOR ART

PAPER-TO-REVIEWER ASSIGNMENT
In addition to the key works [1], [9] and related follow-up work, 
such as [2], there are several more references on mass review 

VISUALIZING PAPERS AND REVIEWERS
The number of key words/features used to describe papers 
and reviewers will typically be in the order of dozens, mak-
ing it hard to visualize the distribution of papers and 
reviewers in a feature space. One approach is to compute 
the first two or three principal components and project 
those points onto the principal subspace for visualization. 
Another tool that is commonly used for visualization is mul-
tidimensional scaling (MDS). Given a matrix of pairwise dis-
tances between m  objects, MDS computes a map of m
points in two-dimensional (2-D) [or three-dimensional (3-D)] 
space that approximately preserves the given distances.

Figure S1 shows 2-D MDS maps of points corresponding to 
papers and reviewers from the Signal Processing for 

Communications and Networking Technical Committee 
(SPCOM TC) track of the International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP) 2009, for which 
Nicholas D. Sidiropoulos served as TPC chair. The dimension of 
the vector space is N 44= —that is, there are 44 key words, 
and each paper or reviewer is represented by a (sparse) 
44 1#  vector. Figure S1 shows a map of (a) papers, (b) review-
ers, and (c) a joint map of papers and reviewers. Notice how 
papers are clustered in (a), but this is not evident from the 
joint map (c). The reviewers are almost uniformly scattered, 
which speaks for the difficulty of optimal assignment: real 
data do not nicely fall in clusters. This situation is typical in 
our experience.

[FIGS1]  (a) An MDS visualization of papers, (b) reviewers, and (c) joint papers and reviewers.
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assignment, e.g., [10] and the references therein. Those that are 
related to our viewpoint are reviewed in this article. Our vector space 
viewpoint of review assignment is implicit in [3], which considered 
representing each reviewer and each proposal with a list of key words 
or terms in a common term space and proposed evaluating review-
ing assignments and making additional reviewer recommendations 
by measuring how the assigned reviewers collectively cover a pro-
posal’s key words; see also later work in [4]. The work of Hettich and 
Pazzani [3] is in fact a lucid and very insightful account of lessons 
learned in designing and implementing an early review aide system 
at the National Science Foundation (NSF) several years ago. What 
is missing from [3] (and [4]) is formulating review assignment 
as a joint optimization problem subject to reviewing capacity 
constraints, addressing complexity issues, and coming up with 
suitable algorithms to solve it. Instead, a simple greedy hill- 
climbing approach to making individual recommendations one 
reviewer at a time is discussed in [3]. Paper-to-session/proposal-
to-panel assignment is not discussed at all in [3] and [4].

Today, several NSF program managers use a tool developed in 
[11] for review assignment. The approach in [11] is based on panelist 
reviewing preferences and uses a generalized assignment formula-
tion with a branch-and-bound solution technique that is complex for 
large problems; however, it is tailored for the NSF panel review and 
complexity is not a major issue for modest panel sizes. On the other 
hand, it does not account for the need to cover all bases in reviewing 
a particular proposal or the bias that is typical in reviewing prefer-
ences. Additional work related to review assignment can be found in 
[12]; see also [13] for a recent overview of assignment problems.

PAPER-TO-SESSION ASSIGNMENT
Fitting the accepted papers into sessions is a clustering problem 
under equality constraints on the number of points per cluster—
because each session has a fixed capacity. In this article, we focus on 
clustering using a centroid model, in which each cluster is repre-
sented by a single mean vector, and we have a given number of data 
points per cluster. In our context, each cluster corresponds to a ses-
sion, and its centroid reflects the key words that are dominant in that 
session, thereby serving as a crude session title (which can be pol-
ished later by the TPC chair). The traditional signal processing and 
computer science literature treats clustering mostly using the well-
known k-means algorithm [14], which cannot be directly applied in 
our context due to the presence of the session capacity constraints. 
Modifications of k-means to account for must-link/cannot-link con-
straints are discussed in [15], distance-type constraints on the cluster 
centers are discussed in [16], and lower-bound constraints on the 
number of points per cluster are discussed in [17]. As an alternative 
to alternating optimization-based k-means, approximation algo-
rithms based on convex (semidefinite) optimization [18] are also 
known; see, e.g., [19] and the references therein.

Our formulation of paper-to-session assignment can be called a 
capacitated k-means problem. Whereas the general literature on 
clustering is immense [20], [21], we did not find any prior work on 
capacitated k-means, likely because there is no motivation to 
specify cluster sizes a priori in most applications of unsupervised 
clustering—where we typically know little about the clusters we 

are trying to find. Imposing a lower bound on cluster size may 
seem reasonable to avoid degeneracy, but an upper bound does 
not make sense in most other applications.

In practice, paper-to-reviewer assignment naturally precedes 
paper-to-session assignment. Paper-to-reviewer assignment is 
more challenging than paper-to-session assignment because there 
are typically many more papers submitted than accepted and many 
more reviewers than sessions in the final program. Furthermore, 
paper-to-reviewer assignment quality is more important from a sci-
entific and ethical point of view. Yet the paper-to-session assign-
ment problem is important and hard in its own right (we will show 
that it is NP-hard, in fact). There is also something special about 
the paper-to-session assignment problem: it is near and dear to our 
signal processing hearts. We will show how to modify k-means to 
account for strict cluster capacity constraints and produce a very 
practical and efficient low-complexity algorithm. We will also 
develop a more sophisticated one-shot approximation that can be 
used in smaller paper-to-session assignment problem instances. 
For these reasons, and despite the conceptual order of the two 
problems, we will start from the paper-to-session assignment prob-
lem. Before proceeding to the mathematical formulations, we first 
briefly review the mathematical tools that will be used. 

MATHEMATICAL PRELIMINARIES
Assignment problems are optimization problems of a combinato-
rial nature; some have a special structure that enables efficient 
solution, while others are provably hard, even though they may 
not look all that different at first sight. The good news is that some 
of these problems can be well approximated (albeit not optimally 
solved) using convex optimization tools.

One way to deal with an optimization problem that is hard to 
solve is to efficiently obtain an approximate solution through 
convex relaxation. This comprises two steps (if the cost function 
of the original problem is not convex, then an additional transfor-
mation is required). In the first step, one replaces the feasible 
region of the original problem with a convex superset (hence the 
term relaxation); then the resulting problem is solved using con-
vex optimization algorithms. In the second step, one converts the 
solution of the relaxed problem into a good admissible solution 
for the original problem through suitable postprocessing. The 
postprocessing step involves projection of the solution of the 
relaxed problem (and possibly related candidates generated via 
randomization) onto the feasible set of the original problem. 
Obviously, the optimal value of the relaxed problem provides a 
bound on the optimal value of the original problem; one goal is to 
find the tightest such bound (make the relaxation as tight as pos-
sible), as this impacts the quality of the final solution. We now 
illustrate how the idea of convex relaxation applies to both paper-
to-session and review assignment.

RELAXATION OF PAPER-TO-SESSION ASSIGNMENT
The main algorithm is given in the section “Proposed Algorithm 
for Paper-to-Session Assignment” and is based on alternating opti-
mization; see [16] and the references therein. This is an iterative 
procedure for optimizing a cost function by alternating 
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conditional updates of different subsets of variables given the rest 
of the variables. However, we also show in the section “Gauging 
the Optimality Gap: Semidefinite Relaxation” that paper-to-session 
assignment can be equivalently rewritten as a quadratically con-
strained quadratic program (QCQP). This has the form

: ,  , , ,b i n1 1

minimize

subject to

x Qx

x C x
x

i i

T

T f# = + (1)

with Q  and C Ri
n n! #  symmetric matrices and bi  scalar quantities.

Casting paper-to-session assignment as a QCQP is interesting since 
there are many tools available in the literature for quadratic 
optimization and they are well understood. The best convex 
relaxation bounds for (1) are based on semidefinite relaxation 
(SDR) [22]: one starts by 1) rewriting the quadratic cost in (1) as 

( ) ( )Tr Trx Qx QxxT T=  (and similarly rewriting every quadratic 
constraint), and then 2) lifting the problem in a higher dimen-
sional space using the change of variables .X xxT=  This lifting iso-
lates the nonconvexities of the original QCQP into a single rank-1 
constraint. The rank-1 constraint is subsequently relaxed into a 
convex, positive semidefinite cone constraint [18], or even simply 
dropped, thereby producing a convex (relaxed) problem. This is the 
main idea of SDR—the details of the transformation along with the 
corresponding postprocessing step, which produces the final 
approximate solution, are described in the section “Gauging the 
Optimality Gap: Semidefinite Relaxation.”

PAPER-TO-REVIEWER ASSIGNMENT
As we explain in detail in the section “The Review and Assignment 
Problem,” the associated optimization problem has the following form:

 ( )

: , { , } ,

f

0 1

minimize

subject to

x

Ax b x n
x

) ! (2)

where :f R Rn "  is a convex piecewise linear function in the 
variables ,x Rn!  and )  indicates componentwise inequality. 
The set defined by the inequality Ax b)  is convex and is called a 
polyhedron [18]. Note that, even though the cost in (2) is con-
vex, the design variables are Boolean, either zero or one. Bool-
ean constraints are nonconvex constraints; in fact, it is often 
convenient to write them explicitly as quadratic equalities since 

{ , } ( ) .0 1 1 0x x xi i i,! - =

In the first step, we produce the tightest convex relaxation (to be 
concise, the phrase “tightest convex relaxation” should be inter-
preted as “tightest relaxation in the class of Langragian relaxations”; 
see [18]) of (2): it can be shown that this is tantamount to replacing 
the Boolean constraints on the xis with the interval ones 
0 1xi# #  [18, Ch. 5]. We refer to this relaxation as linear pro-
gramming relaxation because the resulting problem can be cast as 
a linear program (LP). Since the relaxed solution is not guaranteed 
to be Boolean, in the second step (the postprocessing), we make use 
of the structure of A  and the nature of b  to efficiently compute the 
Euclidean projection of the relaxed solution onto the feasible set of 
(2). This is the main idea—we defer the details to the section “The 
Review Assignment Problem.”

PAPER-TO-SESSION ASSIGNMENT: A CLOSER LOOK
Recall from Figure 2 that we use feature vectors to represent papers. 
If N is the number of features (key words), then feature vectors 
are nonnegative vectors in .RN  Let pi  be the N 1#  feature vec-
tor for paper , , ,i I1I f! _ " ,  where I  is the total number of 
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[FIG2] Representing a paper as a point (feature vector) in the key word space. In this illustration, the feature vector is Boolean, with 1 if 
the paper possesses the specific key word and 0 otherwise.
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(accepted) papers. Define the N I#  matrix : , , .P p p I1 g= 6 @   
The capacity of session , ,j J1J g! _ " ,  is denoted j ;c

,Ic
j

J
j1
=

=
/  i.e., the total number of accepted papers.

The design variables are the N J#  matrix of session centers 
: , , ,S s s J1 g= 6 @  where js  is the center (profile, or title) of session 

;j  and the J I#  paper-to-session assignment matrix X . The ele-
ments X ji  of X  must satisfy the following constraints:

, , , ,i j0 1X I Jji 6! ! !" , (3a)

, ,i1X I
j

J

1
ji 6 !=

=

/ (3b)

j, .c jX J
i

I

1
ji 6 !=

=

/ (3c)

Here, 1X ji =  means that paper i  is assigned to session .j  The 
constraint 1X

j

J

1 ji ==
/  ensures that paper i  will be assigned to 

the one and only one session, whereas jcX
i

I

1 ji ==
/  enforces the 

capacity constraint for session .j
For brevity, let A  denote the set of matrices X R J I! #  that 

satisfy (3a)–(3c). With these definitions, the paper-to-session (or 
technical program optimization) problem can be posed as follows: 
assign papers to sessions (pick )X  and find the appropriate “ses-
sion titles” (pick )S  to

,minimize P SX F
2

,S X
- (4a)

 .subject to: X A! (4b)

See “Distance Considerations” for a discussion on the choice of 
distance measure.

A property worth pointing out explicitly is that any matrix fea-
sible for (4) is row-orthogonal. To see this, define the vector of ses-
sion capacities , , ,c c cc T

J1 2 g= 6 @  and the J J#  matrix 
( ),Diag cK =  with the entries of the vector c  on its main diago-

nal and zero elsewhere. Then, we have that

.X XXA T(! K= (5)

This observation will be useful on multiple occasions later on, in 
the problem transformations.

REMARK 1
Note that, in principle, one can place inequality constraints on the 
session capacities instead of the equality constraints (3c). Inequality 
constraints on the capacities make sense perhaps for poster sessions, 
but not for oral sessions, where a fixed number of papers should be 
presented. Although using inequalities instead of equalities is possi-
ble, the overall treatment of the problem (in particular, the material 
in the section “Gauging the Optimality Gap: Semidefinite Relax-
ation”) becomes more involved. We choose to work with equality 
constraints to simplify exposition; after all, the TPC chair can explore 
minor reallocations of poster session capacities by running the pro-
posed algorithms a few times if so desired. Also note that collisions 
(an author having to present simultaneously in two parallel sessions) 
are usually handled at the end by permuting the order of the presen-
tation of papers in oral sessions or manual reallocation to a different 
session if a poster presentation is involved. Such scheduling conflicts 
are usually rare and also depend on the metadata, such as who is the 
presenting coauthor, and session time-scheduling, which in turn 
depends on the session content, the number of parallel tracks, room 

DISTANCE CONSIDERATIONS 
Returning to (4),

j
j

,min minminP SX p s
, ( )

F
j

J

i
i I

2

1
2
2

S X sX XA A
j

,- -
! !

!=

/ /

the use of the Euclidean distance can be motivated as follows. 
Assume that the pi ’s are drawn from J  classes, with each class 
represented by a class mean, .js A paper drawn from class j
follows a multivariate Gaussian distribution .( , )s IN j

2v  Differ-
ent papers are independently distributed, and we know the 
number of papers in each class (the session capacities). Then, 
maximum likelihood joint paper classification and class mean 
estimation reduces to the above formulation, as can be easily 
seen by taking the log-likelihood and invoking independence.

The Gaussian assumption/Euclidean distance can be motivated 
in many ways; a testament to its ubiquity is that classical k
-means uses Euclidean distance. But there are many alternatives 
that might be worth investigating. If clusters appear to be ori-
ented, then a Mahalanobis distance (quadratic form involving 
the inverse cluster covariance matrix) is more appropriate, but 
the cluster covariance(s) should be estimated as well. If the pi ’s 
can be modeled as probability mass functions, then the Kull-
back–Leibler divergence can be well-motivated; see also [40] for 
a tutorial overview of clustering with Bregman divergences.

In our numerical experiments, we have limited ourselves to 
using binary feature vectors, mainly because this is enough 
to capture the essence of the problems considered. Richer 
alphabets are needed to capture the degree of expertise 
required in each latent dimension—some papers may only 
need common expertise in a particular area, while others 
may demand much deeper understanding. If we stay with 
binary features, however, then a more natural metric is the 
Hamming distance ( , )d p sH i j = .j( ( ) ( ))n n1 p s

n

N
i1
!

=
/  This 

corresponds to saying that the probability of drawing pi

from class j  is ,( )q q1( , ) ( , )d N dp s p sH i j H i j- -  for some . ,q 0 51  so 
the more likely vectors are those with few bit flips. If we also 
force the estimated js s to be 0-1 binary, the Hamming dis-
tance reduces to 1, -distance, i.e., the sum of absolute values. 
Then, the conditional update of each js  is the elementwise 
median of the vectors in the cluster. Although not shown 
here, in many of these variations, the conditional update of 
X  given S  is also tractable, i.e., it reduces to a totally uni-
modular LP.

The appropriateness of any assumption and engineering 
design is ultimately judged by how well it performs in prac-
tice. Euclidean distance works well enough in our context, 
as illustrated in our experiments with real conference data.
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capacities, etc. While it is possible to incorporate some of these 
aspects in the problem formulation, we prefer to keep the exposition 
simple and address the core problem instead.

COMPLEXITY OF OPTIMAL 
PAPER-TO-SESSION ASSIGNMENT
If we drop the session capacity constraints (3c) from (2), a classic 
k-means problem emerges. k-means is NP-hard; in loose terms, 
this means that we cannot expect to solve an arbitrary instance of 
k-means in time polynomial in the number of papers .I  In the 
signal processing community, k-means is also known as vector 
quantization (VQ), usually dealt with using the celebrated (gener-
alized) Lloyd–Max (GLM) [23], [24] or Linde–Buzo–Gray (LBG) 
algorithm [25], which is an alternating optimization procedure. 
The reason we usually resort to LBG is precisely because the prob-
lem is hard, and the LBG iteration offers an attractive simplicity-
performance-complexity tradeoff. Proof that k-means is NP-hard 
was only recently provided [26], [27].

Here, we are actually dealing with a restriction of the 
VQ/ k-means problem due to the session capacity constraints, 
which will always be active. We show next that, unfortunately, this 
restriction is also an NP-hard problem. Given a feasible ,X  let 

( )I Xj  denote the indices of papers falling in session .j  Then,

min minminP SX P SXF F
2 2

S,X SX
,,- -$ .

j
j

.min min
( )

s
j

J

i
i I1

2
2

X Xj!=

p s-/ /

The solution of the inner minimization for js  is clearly the mean 
of those vectors falling in session .j  Setting js  equal to this mean, 
i.e., setting js  equal to

| ( ) | ,I
1s X p

( )
j

j I Xj

_* ,

,!

/

it can be easily shown by expanding the squares that

| ( ) | ,I2
1p s X p p

( ) ( )( )
i j

i I j
i k

k Ii I
2
2

2
2

X XXj jj

- = -*

! !!

/ //

where ·  denotes cardinality. If all session capacities are equal, we 
may thus use the following criterion instead:

,min p p
( )( )

i k
k Ii Ij

J

2
2

1X XX jj

-
!!=

///

which is to be optimized over .X A!  This is now what is 
known as the minimum k-clustering sum problem (in our 
context J  plays the role of ),k  which is in the list of NP-hard 
problems [28]; see also [29]—The poor TPC chair souls were 
right all along.

Claim 1
Technical program optimization (paper-to-session assignment, 
capacitated k-means) is NP-hard.

The implication is that we cannot expect to solve an arbitrary 
instance of (2) in complexity polynomial in the number of papers .I
It has been shown in [29] (see also [28]) that the minimum 
k -clustering sum problem can be approximated within a factor 
of 2—but the algorithm that provides this approximation guarantee 
has exponential complexity in .J  Since J  is not small in our context, 
we will instead explore familiar signal processing tools to obtain con-
ceptually simple and performance-wise satisfactory solutions.

PROPOSED ALGORITHM FOR 
PAPER-TO-SESSION ASSIGNMENT
The GLM/LBG algorithm is typically used for VQ design. 
GLM/LBG alternates between optimizing the codebook S  for a 
given assignment X  and optimizing the assignment X  for a given 
codebook .S  GLM/LBG exploits necessary optimality conditions, 
implying that js  should be the mean of those pi s assigned to ses-
sion ,j  and pi  should be assigned to the closest j ;s  these yield 
simple conditional updates. The GLM/LBG iteration converges in 
terms of fit, but the quality of the final solution depends heavily 
on the initialization.

GLM/LBG cannot be directly applied in our present context 
because of the presence of the session capacity constraints. In the 
following, we propose one possible iteration that explicitly takes 
these constraints into account. 

Given a feasible assignment ,X  the update for S  is simple and, 
in fact, identical to the corresponding update in GLM/LBG. The 
step that requires closer scrutiny is the update of X  given S

minimize P SX F
2

X
- (6a)

: .subject to X A! (6b)

Fortunately, it turns out that an optimal point for (6) can be 
computed easily, without having to search over all feasible assign-
ments .X  To explain how this is possible, note first that the objective 
function in (6a) can be expressed as P SX PF F

2 2= --

,2Tr P SX SX F
2T +^ h  and observe that the quadratic term SX F

2
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[FIG3] Representing a reviewer as a point (feature vector) in 
the same key word space. The feature vector in this particular 
illustration is Boolean.
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remains constant for any feasible assignment .X  This is because of 
the property in (5), since Tr TrSX X S SX XX S SF

2 T T T T= = =^ ^h h

.Tr S STK^ h  Thus, the conditional update of X  given S  can be done 
by solving the Boolean LP

maximize  Tr P SXT

X
^ h (7a)

: .subject to X A! (7b)

Problem (7) is the so-called semiassignment problem, and there 
are many efficient algorithms for its solution. For example, the 
shortest augmenting path algorithm from [30] is applicable, 
which computes the solution of (7) at complexity .( )O JI2

Although the shortest augmenting path algorithm from [30] 
is arguably one of the best choices (among the applicable algo-
rithms) for carrying out the X -update, we here also discuss how 
this can be done using linear programming. We believe that this 
discussion offers more insights and demonstrates an interesting 
connection between convex and combinatorial optimization. 
Observe first that the system of equations in (3b)–(3c) is linear 
and, therefore, can be written in the form ,Gx d=  where 

.vecx X_ ^ h  [The operation ( )vec X  stacks the columns of the 
matrix X  into a vector.] Now, the coefficient matrix G  is totally 
unimodular, i.e., every square submatrix has a determinant of 
value , ;0 1!  and d  is a vector of integers. As a result [31], 
the polyhedron

, ,i j0 1X I Jji 6# # ! !

, i1X I
j

J

1
ji 6 !=

=

/

,c jX J
i

I

j
1

ji 6 !=
=

/

is the convex hull of all assignments .X A!  This result implies 
that the linear programming relaxation

maximize  Tr P SXT

X
^ h (9a)

 , ,i j0 1subject to: X I Jji 6# # ! ! (9b)

, i1X I
j

J

1
ji 6 !=

=

/ (9c)

j,c jX J
i

I

1
ji 6 !=

=

/ (9d)

is always exact [i.e., problems (7) and (9) are equivalent]. The situ-
ation is graphically illustrated in Figure 4, which shows the geom-
etry of (9) in relation to the geometry of (7).

Since (9) is an LP, it follows that either an interior point 
method or the simplex method can be used for solving (7). 
When using an interior point method, one should be mindful 
of cases where there are multiple Boolean solutions with the 
same (optimal) objective value because the interior point algo-
rithm may converge to the center of a polyhedral facet 
(instead of a vertex), yielding a noninteger solution. We actu-
ally need a basic solution of the LP [32], and advanced interior 

point LP solvers include means of identifying such a solution, 
e.g., [33]. These subtleties are avoided altogether if one uses 
the simplex method or, better yet, the shortest augmenting 
path algorithm [30], which has favorable low-order polynomial 
complexity even in the worst case. If only a general interior 
point LP solver is available, then a random perturbation heu-
ristic can be applied, see [2].

The overall algorithm for (4) is now clear: one starts from a 
suitable initialization and iterates between updating S  and updat-
ing X.  For initialization, one can use regular VQ/ k-means to 
come up with an initial S  without regard to capacity constraints. 
The sessions can be ordered according to population, and excess 
papers can be moved to the next session in line to produce an ini-
tial feasible assignment. Updating can start from X  or from ,S
and continue as long as the cost is reduced. Finally, initialization 
does matter (and VQ/ k-means is itself sensitive with respect to 
initialization), so the overall algorithm should be initialized from 
different starting points 10–30 times to get close to the best possi-
ble results. The solution with the smallest cost is then chosen as 
the final one. At this point, the reader might rightfully wonder 
how well this algorithm works in practice, compared to expert 
human assignment. To get a sense of the kind of results that can 
be expected, see “How Well Does This Work? The ICASSP 2009/
SPCOM TC Case Study.”

GAUGING THE OPTIMALITY GAP: 
SEMIDEFINITE RELAXATION
Even though the capacitated k-means clustering problem in (4) is 
NP-hard, it is possible to efficiently obtain a nontrivial lower 
bound on its optimal value. Notice that a tight lower bound also 
serves as a nice exploratory tool, e.g., it can be used to evaluate the 
performance of the GLM/LBG-based approximation algorithm. In 
obtaining this lower bound, we first demonstrate that the capaci-
tated k-means clustering problem in (4) can be cast as a QCQP. 
This is an important link because the literature on quadratic opti-
mization is rich and the tools that have been developed in the field 
of quadratic optimization are well understood.

In particular, we show that the capacitated k-means clus-
tering problem in (4) can be cast in a form that closely resem-
bles the (in)famous quadratic assignment problem (QAP) [34], 
[35]. Unlike the classical QAP, however, ours is a semiassign-
ment problem, due to the particular structure of our set of 
admissible assignment matrices .A  Nonetheless, many relax-
ation strategies that have been developed for the QAP can be 
applied in our context as well. The best convex relaxations 
known for QAP are based on SDR. We also apply an SDR 
method [22], [36]–[39] to our problem. It is worth noting that 
a different SDR approach to (unconstrained) k -means cluster-
ing was pursued in [19].

The main reason why the capacitated k-means clustering 
problem (4) can be cast as a QCQP is that the optimal S*  can be 
analytically derived as a function of ;X  that is, the cost function 
can be concentrated with respect to S  for a given .X  There are no 
constraints on ;S  therefore, the minimizer is given by ,S PX=* @

where X@  denotes the Moore–Penrose pseudoinverse of .X  It 
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follows that the conference program optimization problem in (4) 
can be written equivalently as

minimize P PX X F
2

X
- @ (10a)

.subject to: X A! (10b)

Since any X A!  is full row rank, the pseudoinverse has the 
form .X X XX 1T T=@

-^ h  Using the property (5), this reduces to 
the simpler form .X XT 1K=@ -  It follows that (10) is equivalent to 
the problem

minimize P PX X F
2T 1

X
K- - (11a)

.subject to: X A! (11b)

Expanding the squares in the objective of (11), we get 
P PX X F

2T 1K- =-

)

,
2
2Tr (
Tr ( )

P P PX X PX X
P P PX X PX
P PX /

T
F F

F F

F F

2 1 2

2 2

2 1 2 2

T T 1

T T 1 T 1/2

T

K K
K K

K

= - +

= - +

= -

- -

- -

-

where we have used ,Tr ( )Y YYF
T2 =  so

,Tr ( )PX X PX XX XPF
T T2T 1 T 1 1K K K=- - -

and, since in this particular case, ,X XT 1K = @-

)Tr (PX X PX XPF
T2T 1 T 1K K=- -

) .Tr (PX XP PXT
F
2T 1/2 1/2 T 1/2K K K= =- - -

Hence, the problem in (11) can be expressed equivalently as

minimize P PXF F
2 2T 1/2

X
K- - (12a)

:  .subject to X A! (12b)

This is now a quadratic minimization problem subject to Boolean 
constraints, which is intractable [formally, the NP-hardness of 
(12) follows from its equivalence to (4)]. The form (12) closely 
resembles the QAP: The difference is that, in (12), X  is con-
strained to lie in A  instead of the set of permutation matrices, as 
in the classical QAP.

To illustrate how one can apply SDR to the problem above, we 
write it first in a more clear form using simple algebraic manipu-
lations. Problem (12) can be written equivalently as

)minimize v (ecP P X/
F
2 1 2

2
2

X
7K- -^ h (13a)

:  ,subject to X A! (13b)

where 7  denotes the Kronecker product operation, and vec the 
operator that stacks the columns of a matrix into one vector. Recall 
that the linear system of equations (3b) and (3c) can be written in 
the form ,Gx d=  where vecx X= ^ h and define the matrices

HOW WELL DOES THIS WORK? THE ICASSP 2009/SPCOM TC CASE STUDY
The list of accepted papers from the SPCOM TC track of 
ICASSP 2009 is used for validation. There were 132 papers 
accepted, which were to be split among a total of 14 ses-
sions: six lectures and eight poster sessions, containing six 
and 12 papers each, respectively. The algorithmic results will 
be compared to the final technical program that was manu-
ally produced by Nicholas D. Sidiropoulos, who chaired 
SPCOM TC at the time.

The list of key words (features) was manually produced by 
the authors, parsing the list of paper titles. Each title was 
examined, existing key words were added to the paper as 
appropriate, and new key words were created and added to 
list of key words as needed. The final list contains a total of 
44 key words:

optimization, cross-layer, networking, resource, QCSI, 
game, precoding, DSL, distributed, sensor, sparse, MIMO, 
detection, performance, blind, cognitive, cooperative, 
capacity, network, coding, security, multiuser, beamform-
ing, downlink, relay, uplink, CDMA, OFDM, synchroniza-
tion, turbo, quantization, equalization, interference, 
estimation, training, tracking, localization, consensus, 
diversity, PAR, STBC, FH, scheduling, communications.
The feature vector of each paper is ,44 1#  with ones in 

the positions corresponding to features it possesses, and 
zeros elsewhere. The median number of (nonzero) features 
per paper was three.

The computer-generated conference program (using the 
algorithm in the section “Proposed Algorithm for Paper-to-
Session Assignment”) for ICASSP 2009/SPCOM TC is listed as 
Appendix A (available as supplementary material accompany-
ing this article in IEEE Xplore). Session pseudotitles were pro-
duced by session centroid thresholding. If a key word is 
included in more than 30% of the papers in a session (the cor-
responding centroid element is greater than 0.3), then the key 
word is included in the session pseudotitle. Note that the 
order of key words in the pseudotitles is arbitrary (one could 
list them in order of importance, determined by the magni-
tude of centroid elements). The listed computer-generated 
program attains a (sum-of-squares) cost of 148.1 (after 30 ini-
tializations). The actual technical program that was manually 
produced by Sidiropoulos attains a cost of 187.25, primarily 
because, after two days of manual optimization and with a 
looming deadline ahead, he gave up and used an “umbrella” 
poster session for papers that did not fit elsewhere but other-
wise had little in common. This is avoided in the solution 
listed in the supplementary material (Appendix A) available in 
IEEE Xplore, and in several other suboptimal solutions, which 
typically have a few discrepancies but avoid umbrella sessions. 
Note also that the running time of the algorithm in the sec-
tion “Proposed Algorithm for Paper-to-Session Assignment” 
was less than 1.5 minutes (on a Dell E64000 laptop) for this 
data set, for 30 runs from different initial points.
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,  .andQ P L
G G
d G

G d
d d

/1 2
T

T

T

T7_ _K
-

-- = G
With these definitions, (13) can be written equivalently as

minimize P x Q QxF
2 T T

x
- (14a)

) ,subject to:    diag(xx xT = (14b)

.0Gx d 2
2 =- (14c)

This is now a standard form QCQP, the quadratic constraints in 
(14b) ensuring that all variables xi  are Boolean. Let us illustrate 
how one can apply SDR to the above problem step by step.

TECHNICAL DETAILS OF SDR
Using the fact that Tr ( ) Tr ( )x Q Qx x Q Qx Q QxxT T T T T T= =  and 
the change of variables

1
,W

xx
x

x W
W

W
W

T

T
1,1

1,2
T

1,2

2,2
= == =G G (15)

problem (14) is reformulated in a higher dimensional space as follows:

minimize TrP W Q QF
2

1,1
T

W
- ^ h (16a)

) ,  ,1subject to:   diag(W W W, , ,1 1 1 2 2 2= = (16b)

,0Tr ( )LW = (16c)
, ( ) .10 rankW W* = (16d)

Here, W ,1 1  denotes the JI JI#  upper-left block, W ,1 2  the JI 1#
upper-right block, and W ,2 2  the 1 #  1 lower-right block of the 
( ) ( )JI JI1 1#+ +  matrix .W  Problem (16) is equivalent to (14), 
since any rank-1 matrix satisfying (16b) can be factored according 
to the definition in (15), and, hence, the solution of (14) can be 
easily constructed from the solution of (16) and vice versa. The 
only difficult part of (16) is the nonconvex rank-1 constraint on 

.W  Dropping this constraint yields an SDR of (16)

minimize TrP W Q QF
2

1,1
T

W
- ^ h (17a)

:  ) , ,1subject to diag(W W  W, , ,1 1 1 2 2 2= = (17b)

,0Tr ( )LW = (17c)
.0W * (17d)

In contrast with (16), problem (17) is convex (in fact, a semidefinite 
program), and it can be readily solved in polynomial time using 
efficient interior point methods [18]. If the solution W*  of this 
semidefinite program turns out to have rank 1, then it is a solution 
for (16) as well. However, because of the relaxation, W*  will not 
always be a rank-1 matrix; hence, the optimal value of (17) gener-
ally provides a lower bound on the optimal value of (16) [note that 
(4) and (16) have the same optimal value].

Given ,W*  an approximate solution for the technical program 
optimization problem in (4) can be produced using a procedure 
known as Gaussian randomization [37]. This procedure consists of 
three main steps: 1) draw a random vector , ,v vv 1 1

T
JIg= +6 @  from 

, ,0 WN *^ h  2) form the new vector p  consisting of the first JI
entries of v  divided by ,v 1JI+  and 3) find the vector that is closest to 
p  and is feasible for (14), i.e., the vector x  that minimizes x 2

2p -

subject to (14b)–(14c).
This three-step procedure can be repeated a number of times, 

and the vector that gives the smallest objective value in (14) can be 
eventually chosen as an approximate solution. The intuition behind 
randomization is that it will generate candidate solutions that are 
close to the eigenvector of W*  that corresponds to the largest eigen-
value, but will also take the other eigenvalues into account when 
these are large enough. Randomization has been widely used in the 
quadratic optimization literature, and its merits are well docu-
mented; see [37, Section IV] for an excellent discussion on this issue.

The rounding problem in step 3) seems hard, but it is not. To 
explain this, note that for any x  feasible for (14), we have that 

,Ix x2
2

2
2 Tp p p- = - +  and therefore, rounding corresponds to

maximize xT
x

p subject to: (14b)–(14c). (18)

Notice that the constraint in (14c) is equivalent to the convex con-
straint ,Gx d=  and, since G  is a totally unimodular matrix, prob-
lem (18) can be solved efficiently in polynomial time, using, e.g., 
the shortest augmenting path algorithm from [30]. The same dis-
cussion as that for problem (7) applies for (18) as well.

COMPLEXITY CONSIDERATIONS
It is important to recognize that the alternating optimization algo-
rithm in the section “Proposed Algorithm for Paper-to-Session 
Assignment” is much cheaper and faster than the SDR approach in 
the section “Gauging the Optimality Gap: Semidefinite Relaxation.” 
This is similar to classical k-means, and it is the reason why alter-
nating optimization is so popular in applications of k-means clus-
tering. For alternating optimization, the conditional update of S  is 
very simple; the most expensive part in every iteration is the condi-
tional update of .X  The shortest augmenting path algorithm from 
[30] can carry out the X-update in time .( )O JI2  Linear program-
ming (either with an interior point or with a simplex method) can 
be effectively used for the X-update as well. In relation to the alter-
nating optimization algorithm of the section “Proposed Algorithm 

[FIG4] The feasible set of (9), which is a polyhedron, is shaded 
and denoted as .P  The objective P SXTr T^ h is linear, and the 
point X*  is optimal; it is the point in P  as far as possible in the 
direction .P ST  As illustrated in the figure, the polyhedron P  is 
such that its vertices are all points in the set ,A  and thus 
Boolean (see the corresponding definition of A  in the text).

PTS

X*
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for Paper-to-Session Assignment,” the computational disadvantage 
of SDR in the section “Gauging the Optimality Gap: Semidefinite 
Relaxation” stems from the fact that it lifts the problem in a higher 
dimensional space [in (15)–(16)], and this lifting squares the num-
ber of variables. This implies much higher complexity. Two impor-
tant advantages of the SDR approach, on the other hand, are that it 
yields an approximation in one shot (read: with a predictable num-
ber of interior-point iterations for the relaxed convex problem), and 
it also yields a bound on how far any solution is from an optimum 
one. The latter is something that cannot be gauged from alternat-
ing optimization.

VARIATIONS OF THE BASIC FORMULATION
There are several variations of the basic formulation that one can readily 
envision. We now briefly mention a few interesting alternatives.

WEIGHTING
In some cases, the TPC chair may wish to highlight emerging or 
important areas in the technical program. This can be accom-
plished via feature weighting, i.e., optimizing a weighted least 
squares cost of the form

,D P SX F
2-^ h

where D  is a full-rank diagonal matrix holding the feature 
weights. Such weighting can be absorbed in P  and ,S  and, since 
the latter is unconstrained, it does not change the essence of the 
proposed solutions. It is clear that the proposed GLM/LBG algo-
rithm can be readily modified to handle this extension. Following 
steps similar to (10)–(12), it is a simple exercise to verify that the 
SDR approach can be extended as well.

ALIGNMENT WITH ORGANIZATIONAL STRUCTURE
Organizations such as the NSF often prefer to form panels that 
reflect their organizational structure. For example, for a large 
cross-disciplinary solicitation that falls under the auspices of multi-
ple divisions (sometimes even across directorates), from a logistics 
point of view, it makes a lot of sense to produce panels that are rea-
sonably well aligned with the constituent programs. This can be 
accomplished by anchoring panel centroids in S  not to deviate too 
far from the constituent organizational unit profiles, stored in ,So

i.e., by augmenting the cost function in (4) with a penalty term as

.P SX S SF o F
2 2t- + -

By varying the penalty parameter ,02t  one can trade off between 
alignment and homogeneity. Notice that this augmentation does 
not fundamentally change the nature of our solutions. In fact, the 
optimal session centroid matrix S*  is still given in simple closed 
form as .( ) ( )S PX S Io

1T t tK= + +* -  As a result, both the alter-
nating optimization algorithm and the proposed SDR approach can 
be easily modified to account for this penalty term.

DIVIDE-AND-CONQUER AND TREE-STRUCTURED VQ
For the special case where we are interested in splitting the papers 
into just J 2=  sessions, the conditional update of X =

x x R I2
1 2

T ! #6 @  given S s s RN
1 2

2!= #6 @  takes a very simple 
form. This simplification can be used to construct a divide-and-
conquer algorithm for paper-to-session assignment, reminiscent 
of hierarchical clustering approaches and tree-structured VQ [20], 
[21]. Consider the conditional paper-to-session assignment prob-
lem for J 2=  sessions only. Using the equivalence shown in (6) 
and (7), the optimization problem is

,maximize  Tr [ ] [ ]P s s x x T
,

T
1 2 1 2x x1 2

^ h (19a)

( ) , , ( ) , , ,i i i0 1 0 1subject to: x x I21 6! ! !" ", , (19b)

( ) ( ) , ,i i i1x x I1 2 6 !+ = (19c)

( ) , ( ) .i c i c I cx x
i

I

i

I

1
1

1 2
1

2 1= = = -
= =

/ / (19d)

Using the constraints (19b)–(19d) and the fact that Tr ( )AB =
,Tr ( )BA  one can eliminate variable x2  from (19), yielding the 

simpler problem

maximize  ( )x P s s1
T T

1 2x1
-

( ) , , ,i i0 1subject to: x I1 6! !" ,

( ) ,i cx
i

I

1
1

1=
=

/

from which it is clear that the optimal solution is to allocate the 
c1  units to the c1  largest elements of .( )P s sT

1 2-  These can be 
found using a sorting operation, at complexity ( ),logO I I  or by 
direct parsing at .( )O Ic1

Now, using the above result for ,J 2=  we can construct a 
potentially appealing divide-and-conquer solution for the paper-to-
session assignment problem for J 22  as follows: We start with 
regular VQ/k-means to produce an initial centroid matrix ,S  the 
columns of which are then ordered according to paper population. 
In the divide step, we first process the columns of S  (e.g., using 
plain 2-means) to produce two new (super)centroids, then use the 
sorting-based algorithm to assign papers to these two centroids in a 
way that respects the session capacity constraints. We then recur-
sively refine and conquer the subproblems in a similar manner. 
Once we produce the final assignment, we update S  and repeat the 
procedure. This algorithm is fast and can be quite effective, mainly 
depending on the quality of the initialization point.

THE REVIEW ASSIGNMENT PROBLEM
The review assignment stage is even more difficult than put-
ting together the final technical program simply because it 
involves (a lot) more papers and every paper must be reviewed 
by more than one reviewer. Suppose that I  papers are to be 
assigned for review to (at most) J  reviewers. Reviewer j  has a 
fixed vector profile js  representing the reviewer’s expertise 
and reviewing interests, and a prenegotiated reviewing capac-
ity .jr Every paper should be reviewed by, say, three reviewers. 
Our goal here is to minimize the paper-to-reviewer mis-
matches, i.e., a paper should be assigned for review to three 
reviewers whose individual vector profiles cover as much as 
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possible the paper profile .pi  At the same time, and of equal 
importance, is that the reviewer profiles should collectively 
cover the paper profile pi  as much as possible.

One can thus pose the review assignment problem as follows:

( )1 1minimize P SX
{ , }

* *
T

i

I
i i

0 1 1

3

3X J I3
m- -

! = +#
` jc m/

,1 P S X X X* * * *
T

i

I

i i i i
1

3 2 3 1 3m+ - + +
=

- - +^ h6 @/ (21a)

, ,  , ,i j0 1subject to: Xij 6! " , (21b)

, { , , },i I1 1 3X
j

J

1
ji 6 f!=

=

/ (21c)

j , { , , },r j J1X
i

I

1

3

ji 6 f# !
=

/ (21d)

, { , , },j J1 1X
i k

k

3 1

3 3

ji 6 f# !
= +

+

/

{ , , },k I0 16 g! - (21e)

( , ) .i j0X COIij 6 != (21f)

Here, P  is the matrix of paper profiles, , ,S s s RJ
N J

1 g != #6 @  is 
the matrix of the reviewer profiles, and X* i  denotes the ith  col-
umn of .X  The symbol · +^ h  denotes projection to the non-
negative orthant, ·^ h denotes the ceiling function, and 1 denotes 
the N 1#  vector of all ones.

Let us now explain the mathematical formulation of the review 
assignment problem in detail. Observe that the cost function in 
(21a) comprises two sums. The first aims to minimize the paper 
key words not covered by the associated reviewers individually, 
while the second (the collective span term) accounts for the paper 
key words that are not covered by the sum of profiles of the associ-
ated reviewers. The two cost factors are weighted using a suitable 
regularization parameter .0 11 1m

The inequality constraints in (21e) protect each paper from 
being assigned to the same reviewer twice, while the constraints 
(21c) and (21d) ensure that each paper P* i  will be assigned for 
review to three reviewers, while respecting the reviewer capacity 
constraints. In particular, columns , ,i i i3 2 3 1 3- -  in 

{ , }0 1X J I3! #  comprise Boolean variables, which select three dif-
ferent reviewers for paper i  [see (21c) and (21e)]. Moreover, the 
ceiling operation /i 3^ h repeats three times the ith  column of P
(paper )i  to calculate its mismatch with each of the three individ-
ual assigned reviewers [see (21a)].

Finally, note that reviewers should not have a conflict of inter-
est (COI) with the papers they are reviewing (e.g., they cannot be 
from the same department as any of the paper’s authors). In case 
there is a COI between a reviewer and specific papers, additional 
COI constraints must be included in the optimization. These are 
taken into account by the constraint in (21f), which enforces the 
pertinent assignment variables to be equal to zero.

The review assignment problem as posed in (21) is combinato-
rial, but it has a convex objective function, and also the constraints 
in (21c)–(21f) are convex constraints. Interestingly, replacing the 
Boolean constraints in (21b) by the convex inequality constraints 
0 1X ji# #  leads to a relaxation problem whose feasible set is a 
polyhedron with Boolean vertices only (we shall call this the 
review assignment polyhedron). This can be seen by noting that 
the coefficient matrix of the set of linear inequalities (21c)–(21f) is 
totally unimodular (see, e.g., [31]). Even so, problem (21) is diffi-
cult to solve due to the collective span term in the objective, which 
is a nonlinear function of .X  One can construct, however, an 
approximate solution through convex relaxation and rounding. 

Before we explain this approach in detail, let us first discuss sev-
eral interesting points that can be gauged from the problem formula-
tion in (21). To simplify exposition and better highlight these points, 
we temporarily confine attention to the case of Boolean matrices P
and .S  We emphasize, however, that the convex relaxation approach 
that we propose for (21) holds for general matrices P  and .S

REMARK 2: PAPER AND REVIEWER UTILITY FUNCTIONS
One may think of the review assignment problem in terms of util-
ity functions. To see this, it is convenient to introduce some 
mathematical notation first. Suppose that both P  and S  are 
Boolean. Moreover, suppose that assignment X  assigns paper pi

to the reviewer set ( )XRi (with | ( ) | )3XRi =  and the same 
assignment X  assigns to reviewer j  the paper set N j (with 

.j| )( ) | rXN j#  Let ( )u 1 1X p p s
( )

T T
p
i

i i kk XRi
= - -

! +
` j/  be the 

utility function of paper i  (in case of Boolean P  and S  this is 
paper i ’s collective key word coverage resulting from assignment 

),X  and let j( ) ( )u 1 1X p p s
( )r

j
k kk

T T
XN j

= - -
! +6 @/  be the utility 

function of reviewer j  (in case of Boolean P  and ,S  this is the 
total number of key word matches between the reviewer and all 
papers assigned to the reviewer). Maximizing reviewer satisfac-
tion and paper utility can be conflicting objectives, as illustrated 
in Figure 5 and exemplified in Figure 6. The tradeoff between the 
two is captured in the problem formulation (21) because the 
objective function in (21a) can be written in terms of the 
{ ( )}u Xp

i
i
I

1=  and { ( )} ,u Xr
j

j
J

1=  by regrouping terms accordingly. 

Key Word
Pool

Reviewers
Game

Precoding
Distributed

Sensor
Optimization
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Beamforming
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Papers

up (X)1

up (X)2
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[FIG5] An illustration of the “dual” nature of the problem in 
terms of utility functions. Each paper has as utility its key word 
coverage (collectively, from all assigned reviewers), and each 
reviewer has as a utility the aggregate amount of key words 
matched from his/her assigned papers.
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REMARK 3
Observe that for Boolean matrices P  and S  the first sum term in 
(21a) can be replaced by a function linear in X  since, for any feasi-
ble assignment X  and Boolean matrices P  and ,S  it holds that 

1 1P SX P P* ( / ) * * ( / ) * ( / )i
I

i i
I

i ii
I

i1
3

3 1
3

3 31
3T T T- = -

= + = =
^ h^ ^ ^h h h/ / / .SX* i

In other words, this sum attempts to maximize the total affinity 
between papers and reviewers, which is reminiscent of the 
approach followed in [2]. 

Let us now turn the discussion to general P  and ,S  and 
describe explicitly the convex relaxation approach for (21). Let X*

denote the solution to the relaxation program where the Boolean 
constraints { , }0 1X ji !  are replaced by the interval ones, 

.0 1X ji# #  This relaxation yields a convex problem, which can 
be reformulated as an LP and solved efficiently. To see this, intro-
duce for every individual summand in (21a) an associated slack 
variable ,ti  and note that ( , )max x t x t0 i i,# #  for .t 0i $

The constraint ( , )max x t0 i#  will always be satisfied with equal-
ity at the optimum, which yields the LP reformulation. 

Unfortunately, however, X*  is not guaranteed to be Boolean 
(the LP emerging after introducing the slack variables is not 
guaranteed to be totally unimodular); therefore, we need a way of 
converting the solution of the relaxed program into a good 
admissible solution for (21). This can be done by finding an 
assignment ,X  which is as close as possible (in a Euclidean 
sense) to ,X*  i.e., by finding an X  that minimizes X X F

2- *

subject to (21b)–(21f). This rounding problem seems hard, but it 
is not. To explain this, note that for any assignment X  feasible for 
(21), we have that ,I3TrX X X X XF F

2 2 T- = - +* * *^ h  and, 
therefore, rounding corresponds to

maximize Tr X XT *^ h subject to (21b)–(21f).

The above problem is equivalent to its linear programming relax-
ation (and is therefore easy to solve), since the polyhedron arising 
from the relaxation has only Boolean vertices [which are precisely 
the feasible set (21b)–(21f)]. To appreciate how well the proposed 
review assignment method works, see “How Well Does Auto-
mated Review Assignment Work? A SPAWC 2010 Case Study” and 
“Quantitative Assessment of Review Assignment Quality.”

SOME VARIATIONS OF THE BASIC FORMULATION

ALTERNATIVE COST FUNCTIONS
For simplicity, we use the sum of inconsistencies in the cost of 
our formulation in (21). An interesting alternative would be to 
employ the sum of squares of inconsistencies, essentially putting 
more emphasis (and penalizing more) the bad assignments. Note 
that using the sum of squares of inconsistencies would still lead 
to a convex cost function.

CONTROLLING THE WORST MATCHING
It is possible to design the assignment while explicitly 
imposing an upper bound T*  on the cost of the worst paper-
reviewer matching

, ,T i1 P S X X X* * * *i i i i3 2 3 1 3
T 6#- + + *

- - +^ h6 @

in addition to (21b)–(21e). This imposes a stricter requirement but 
changes the nature of the feasible set, as for general (even Bool-
ean) P  and ,S  the new polyhedron is not guaranteed to have only 
Boolean vertices.

A more flexible approach to this issue is to consider varying m
in the cost function of (21) to trade off reviewer satisfaction for 
paper key word coverage. One can easily check the quality of a 
particular assignment after the optimization, by producing statis-
tics, most notably how many key words of each paper have been 
collectively covered by its respective reviewers. If the result is not 
satisfactory, one can resolve the problem by changing m  so as to 
strike a more appropriate tradeoff. In fact, one can associate a dif-
ferent parameter 0i 2m  to each paper ,i  if that is desired.

CONCLUSIONS

WHAT WE LEARNED
By viewing papers as vectors in a suitable feature space, the loosely 
defined tasks of paper-to-session and paper-to-reviewer assignment 
have been formulated as optimization problems that are strikingly 
familiar in many ways. The core problem underlying paper-to-ses-
sion assignment is capacitated k -means, i.e., clustering under 
capacity constraints, and is NP-hard. For paper-to-reviewer assign-
ment, it was shown that ensuring scientifically sound reviews (each 
aspect of each paper covered by at least one assigned reviewer) and 

[FIG6] A green assignment: paper #1 utility = 3 + paper #2 
utility = 3 &  total paper utility = 6; reviewer utilities 2+2+2 (for 
paper #1) + 2+2+2 (for paper #2) &  total reviewer utility = 12. 
Red assignment: paper #1 utility = 4 + paper #2 utility = 3 &
total paper utility = 7; reviewer utilities 2+2+2 (for paper #1) + 
2+2+1 (for paper #2) &  total reviewer utility = 11. So, the 
green assignment is better in terms of reviewer utility, but the 
red one is better in terms of paper utility. This explains why 
the two objectives can be conflicting.
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maximizing reviewer satisfaction can be (and often are) conflicting 
objectives that must be traded against each other. The resulting 
paper-to-reviewer assignment problem is generally hard (albeit 
reducing it to a known NP-hard problem is not straightforward). 
Still, it was shown that it is possible to generate good suboptimal 
solutions using familiar signal processing tools. While there is cer-
tainly a lot more work to be done (e.g., automatic key word 
retrieval and paper mark-up, exploration of alternative problem for-
mulations), our results indicate that computer-generated technical 
programs outperform expert manual work at a fraction of the time 
and with very limited input by the chair.

WHY IT IS IMPORTANT?
If you are a TPC chair, spend some time to come up with the right 
set of key words that capture what is happening in your area, invite 
enough good reviewers (a margin of 20% more reviewing capacity 

is always helpful, so do secure a few more reviewers; if you do not 
need all that reviewing power, reduce everyone’s quota—they will 
be thankful). We have tested our algorithms with actual conference 
data, producing review and program assignments that TPC chairs 
have found very useful. We will make our algorithms freely available 
to the research community at the time of publication of this article.

As a final note, one can envision many other interesting appli-
cations of clustering under capacity constraints:

■ assigning students to classrooms or study groups accord-
ing to educational background, level of accomplishment in 
math/science/language, interests, etc.
■ production-line packaging according to product quality 
features (e.g., tolerances)
■ design of stock performance indices based on market sec-
tor, segment, capitalization, exposure to commodity price 
fluctuations, etc.

QUANTITATIVE ASSESSMENT OF REVIEW ASSIGNMENT QUALITY
We now discuss various performance metrics and statistics to 
appreciate the quality of the computer-generated solution.

DEFINITION: We define the quality index (QI) of a particular 
reviewer, as the average percentage of key word matches 
between the reviewer’s profile and his/her assigned papers. As 
an example, suppose that a certain reviewer is assigned two 
papers for review, the papers having five and six key words, 
respectively, and let us assume that there are two key word 
matches from the first paper and three matches from the sec-
ond. The reviewer’s QI is then calculated as the average 
(( / / ) / ) % %.2 5 3 6 2 100 45#+ =

The reviewers’ QIs for the SPAWC 2010 case study can be found 
in the supplementary material (Appendix B), together with the 

optimized assignment. One can observe that 39/60 utilized 
reviewers had a QI above 80%, 54/60 reviewers had a QI above 
70%, and all 60 utilized reviewers had a QI above 40%. From the 
collective span point of view, note that 187/203 papers ( %)92.

were fully covered (collectively) by their respective reviewers; the 
few papers that were not fully covered are marked with an 
asterisk in Appendix B.

As a final measure of the quality of the overall assignment, we 
compute the percentage of the overall key word matches, i.e., 
the total number of paper key words covered collectively by all 
assigned reviews. The percentage ratio (covered key words/total 
key words) was 98.1% for the SPAWC 2010 computerized 
assignment, indicating the high quality of the solution.

HOW WELL DOES AUTOMATED REVIEW ASSIGNMENT WORK? A SPAWC 2010 CASE STUDY
The submitted paper list and reviewing pool of SPAWC 
2010 was used for validation. There were 203 submitted 
papers, and the reviewing pool comprised 64 reviewers 
(20+2+42 reviewers of capacity 8|15|16 papers, respec-
tively). The list of key words (features) was manually pro-
duced by the authors by updating the previous list for 
ICASSP 2009; the final SPAWC key word list contained a 
total of 50 key words:

beamforming, blind, capacity, CDMA, classification, coding, 
cognitive, consensus, cooperative, cross-layer, detection, dis-
tributed, diversity, downlink, UWB, DSL, equalization, esti-
mation, feedback, FH, game, joint source-channel, 
localization, MIMO, multiuser, network coding, networking, 
OFDM, optimization, par, performance, QCSI, quantization, 
random matrix, relay, resource, RFID, scheduling, security, 
sensor, sparse, speech-image, STBC, synchronization, time-
varying, tracking, training, turbo, underwater, uplink.
The feature vector of each paper and each reviewer is 

,50 1#  with ones in the positions corresponding to features it 
possesses, and zeros elsewhere. Feature vectors for the 

reviewers were created by Nicholas D. Sidiropoulos (acting as 
TPC chair), using his knowledge of their expertise. Feature vec-
tors for the papers were partially entered by the respective 
authors, using a separate key word-clicking system that was set 
up for this purpose; however, not all authors obliged, so fea-
tures for papers were also entered by Sidiropoulos after look-
ing at paper titles. Parameter m  in the algorithm was set to 

. .0 5m =  It is worth mentioning that the ratio between the 
objective value of the linear programming relaxation and that 
of the rounded final solution was 98.7% [hinting that the final 
assignment was (at least) close to the optimal one]. The run-
ning time of the algorithm (relaxation +  rounding) was less 
than two minutes for this data set, on a Dell E64000 laptop. 
The computer-generated review assignment is listed as Appen-
dix B in the supplementary document accompanying this arti-
cle in IEEE Xplore. Perusing this assignment, one can observe 
that four out of 64 reviewers were not assigned any paper at 
all in the final solution. In the cases where we have spare total 
reviewing capacity, we may consider adding a penalty term to 
avoid fully loading some reviewers and idling others. 
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FURTHER INFORMATION
This article has supplementary downloadable material available in 
IEEE Xplore; see http://ieeexplore.ieee.org. The material includes a 
computer-generated conference program and a computer-generated 
review assignment using the methods presented in this article. Con-
tact nicos@umn.edu for further questions regarding this work. In 
addition, a companion Web site is under development, and a link will 
be posted at http://www.ece.umn.edu/~nikos/.
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40 Years with the Ungerboeck Model: A Look at Its Potentialities

I
t has been about 40 years since 
Gottfried Ungerboeck published his 
paper [1] on an alternative maxi-
mum-likelihood (ML) detector for 
intersymbol interference (ISI) chan-

nels. The ISI model used by Ungerboeck 
is commonly referred to as the Unger-
boeck model. Ungerboeck’s ML detector 
has equivalent performance compared 
to Forney’s detector, which was pub-
lished two years earlier in [2], but 
received lesser considerations. Perhaps 
the best example of this is the fact that a 
BCJR algorithm [3] operating on the 
Ungerboeck model was derived as late as 
2005 [4]. However, the Ungerboeck 
model has many strong aspects and has 
therefore been rediscovered over the last 
few decades.

SCOPE
In this lecture note, we give a number of 
illuminating examples where the Unger-
boeck model is essential. We hope that 
this column will lead to increased aware-
ness and use of the Ungerboeck model 
among the signal processing community.

RELEVANCE
Essentially all communication systems are 
modeled by a discrete-time model. The 
white-noise model is the predominant 
choice of model today. When low-com-
plexity algorithms are used, the choice of 
model plays a role. In some cases, superior 
performance and/or lower complexity can 
be achieved by the very same algorithm, 
but where the white noise model has been 
replaced by another model. Awareness of 
models other than the white-noise model 

is of great value to engineers and research-
ers, especially to those working in the bor-
derline of signal processing and wireless 
communications.

PREREQUISITES
This lecture note assumes basic knowl-
edge of signal space descriptions of 
communication systems, about Viterbi- 
and Bahl-Cooke-Jelinek-Raviv (BCJR)-
type algorithms for communication 
channels with memory, and about factor 
graphs (FGs) and the sum-product algo-
rithm (SPA).

SUMMARY OF DETECTION 
THEORY RESULTS
In the following, we will denote by ( )p $
[respectively, ( )]P $  the probability density 
function (pdf) [respectively, the probability 
mass function (pmf)] of a continuous 
(respectively, discrete) random variable. In 
addition ( )R $  and ( )I $  denote the real 
and imaginary part of a complex number 
whereas ( ) *$  and ( ) T$  stand for transpose 
conjugate and transpose, respectively. Let 

[ , , ]x x x0 1 g=  be a sequence of modula-
tion symbols drawn from a discrete alpha-
bet |.  These symbols are transmitted over 
a communication channel via a modula-
tion format. Let z  be an arbitrary suffi-
cient statistic properly extracted from the 
received signal. Maximum a posteriori 
(MAP) sequence and symbol detection 
strategies are based on the following deci-
sion rules: 

( | )

( | ) ( )

argmax

argmax

x x z

z x x

P

p P
x

x

=

=

t

(1)

and 

|

| ,

argmax

argmax z

x P x z

p x P x

k
x

k

x
k k

k

k

=

=

t ^

^ ^

h

h h (2)

respectively. They minimize the sequence 
and symbol error probability, respectively. 
In case of communication systems with 
finite memory, they can be implemented 
through the Viterbi [5] and the BCJR algo-
rithm [3], respectively.

Without loss of generality, in the fol-
lowing we will often assume that modula-
tion symbols xk" , are independent and 
uniformly distributed (i.u.d.). As a conse-
quence, all a priori probabilities can be 
safely discarded from the aforementioned 
MAP strategies and they become perfectly 
equivalent to the corresponding ML strat-
egies [6].

DETECTION ON INTERSYMBOL 
INTERFERENCE CHANNELS
The continuous-time ISI channel may be 
described, assuming the use of a linear 
modulation, by means of the following 
complex baseband equation: 

( ) ( ),y t x t kT w tqk
k

= - +^ h/ (3)

where ( )tq  is the received pulse, ( )w t  is 
complex white Gaussian noise with two-
sided spectral density ,N0  and T  is the 
symbol time.

In 1972, Forney showed that ML detec-
tion of x  can be carried out by an applica-
tion of the Viterbi algorithm (VA) [2]. 
Forney first applied a matched filter and 
sampling operation to the signal ( )y t   
to form the discrete-time model 

( ) ( ) .y y t t kT tq d*
k = -

3

3

-
#  Each sample 

yk  can be expressed as 

,y g x nk k k
L

L

= +, ,

,

-

= -

/ (4)

where ( ) ( ) .g t t T tq q d* ,= -
3

3
,

-
#  The 

variable L  specifies the memory of the 
system and is the smallest value such 
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that , | | .g L0 , 2=,  The noise in the 
model (4) is not white, but is correlated 
according to [ ] .n n N gE *

k k 0= ,+ ,  To 
obtain white noise, Forney filtered the var-
iables yk  with a whitening filter { },fk

which yields 

.r f y h x wk k k k

L

0
= = +, ,

,

, ,

,

- -

=

/ / (5)

In the model (5), the zero-mean noise var-
iables { }wk  are uncorrelated with variance 

.N0  The channel impulse response is 
causal and is related to { }g,  as 

,g h h*
k kk

L
0

=, ,+=
/  i.e., [ , , ]g g gL Lf= -

is the autocorrelation sequence of 
[ , , ] .h h hL0 f=  Both samples { }yk  and 

{ }rk  represent a sufficient statistic and can 
thus be employed for detection. Through-
out this lecture note, the three letters 
( , , )y g n  imply that we are discussing the 
model (4), while we are discussing (5) if 
we use ( , , ) .r h w

Forney next observed that each sam-
ple rk  only depends on the current chan-
nel input xk  and the L  most recent 
channel inputs , , .x xk k L1 f- -  There-
fore, the signal can be described by 
means of a trellis where each state is 
defined as ( , , ) .x xk k k L1 fv = - -  Thus, 
the number of states is | | L| .  As an 
example, when { , }0 1| =  and ,L 2=  a 
section of the corresponding trellis 
between the discrete-time instants k
and k 1+  is shown in Figure 1. In this 
figure, trellis transitions driven by sym-
bol x 0k =  are denoted by using dashed 
lines, whereas solid lines correspond to 
transitions driven by .x 1k =

Due to the fact that samples rk  are 
conditionally independent, the conditional 
probability density function ( | )r xp
required for the implementation of the 

strategy (1) can be expressed in a recursive 
factorization of the form 

( | )

.exp

r xp

N N
r h x1 k k

L

k 0 0

0

2

r
= -

- , ,, -=f p% /

(6)

Based on (6) it is straightforward to set 
up the VA. In fact, under the assumption 
of i.u.d. modulation symbols and taking 
into account that the logarithm is a mono-
tonic function, the strategy (1) can be 
expressed as 

|

| ,

argmax

argmax ln argmin

x r x

r x

p

p
x

x x
k

k
n

=

= =

t ^

^

h

h /
(7)

where 

r h xk k k

L

0

2

n = - , ,

,

-

=

/ (8)

is the so-called branch metric of the VA.
In turbo equalization applications [7], 

one may resort to the MAP symbol detec-
tion strategy. In this case, it is sufficient to 
replace the VA with the BCJR algorithm, 
possibly implemented in the logarithmic 
domain [8]. It will make use of the same 
branch metric .kn

However, a demodulator may just as 
well take as starting point the model (4) 
as already shown by Ungerboeck in 1974 
in [1]. The model is commonly referred 
to as the Ungerboeck model, while the 
white-noise model (5) is referred to as 
the Forney model—a nomenclature we 
will follow. The noise variables { }nk  are 
still Gaussian, but are colored. However, 
the noise color is irrelevant since the 
critical issue for the application of a 

VA-type-detector is that the conditional 
pdf ( | )r xp  has a recursive factorization 
that can be expressed in terms of the sig-
nal .y  This is indeed the case as can be 
seen by expanding (6) (see [1] for further 
details). See (9) in the box at the bottom 
of the page, where ( ) ,N

k1 0
1c r= -%

2c = ( / ),exp r N1
2

0c -  and where we 
used y h r*k k

L
0

= , ,, +=
/  in the last equal-

ity. Note that 2c  is independent of xk" ,

and can be neglected. Again, under the 
assumption of i.u.d. modulation symbols, 
the strategy (1) can be expressed as 

|

,

argmax

argmax

x r xpIn
x

x
k

k
h

=

=

t ^ h

/ (10)

where this time the branch metric is 

.y x x g x g x2
1R * *

k k k k k k

L
2

0
1

h = - - , ,

,

-

=

) 3/
(11)

Again, we see that only the L  most recent 
channel inputs , ,x xk k L1 f- -  are needed 
at each time epoch .k  Ungerboeck’s and 

k k + 1

σk
(0, 0)

(1, 0)

(0, 1)

(1, 1)

[FIG1] An example of a trellis section.

( | )
| |

exp

exp

exp

r xp
N

r

N
x h r

N
x x h h

N
x h r

N
x x g

N
y x x g x g x

2 1

2 1

2
2
1

R

R

R

* * * *

, ,

* * *

* *

k
k

k k

L

k
k k

k

k k

L

k
k k

L

L

k

k k k k k k

L

1
0

2

0 0 0

2
0 0 0

2
0

2
0

1

c

c

c

= - + -

= -

= - -

, ,

,

, , , ,

, ,

, ,

,

, ,

,

, ,

,

-

=

- -

+

=

-

= -

-

=

l l

l

f

e

e o

o

p

)

)

)

3

3

3%

/
// /

// //

/ (9)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://i.u.d
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


[lecture NOTES]

IEEE SIGNAL PROCESSING MAGAZINE [158] MAY 2015

Forney’s ML sequence detectors involve 
different computations, but they traverse 
the very same trellis, and their final out-
puts are identical. Two strong aspects of 
the Ungerboeck model are that no squar-
ing operations are needed and that no 
whitening is needed.

It is interesting to note that while the 
BCJR already became available for the 
Forney model by 1974 with [3], the story 
differs remarkably for the Ungerboeck 
model. An equivalent algorithm to the 
BCJR that operates on the Ungerboeck 
model and employs the same branch 
metric (11) was demonstrated as late as 
2005 in [4]. As a consequence, turbo 
equalization based on Ungerboeck’s model 
was not available before 2005. The Unger-
boeck model has a number of strengths 
and has been rediscovered several times 
during the recent past. Before we turn our 
attention to three short examples that illu-
minate its strengths, we first extend it into 
a model for general linear channels.

DETECTION ON GENERAL 
LINEAR CHANNELS
Let us write (5) as a matrix equation, 

.r Hx w= + (12)

In the ISI case, the matrix H  is a Toeplitz 
matrix that represents the convolutional 
operator. However, (12) can also represent 
any other linear channel, such as multiple-
input, multiple-output (MIMO), intercarrier 
interference (ICI), MIMO-ISI etc. Irrespective 
of from where the model (12) came, the cor-
responding conditional pdf has expression 

.expr x
r Hx

p N1
0

2

c= -
-

^ eh o (13)

One can reach a tree structure, suitable for 
demodulation, by a QL factorization H QL=

of the channel, which makes the model (12) 
“causal” in the vector index. This gives 

,r Q r Lx w*= = +u u

which enables a recursive factorization, 
similar to (6), 

( | )

.exp

r xp

N N
r L x1 ,k k

k

k 0 0

1

2

r
= -

- , ,,=

u

u
f p% /

(14)

A tree search procedure can now be 
reached. In the case of a channel with 
finite memory, i.e., , ,L k L0,k , 2= -,

the VA or the BCJR can be applied since 
the tree collapses into a trellis with X L

states. Hence, we refer to (12) as the For-
ney model for a linear channel.

To avoid computation of a QL factori-
zation of the channel matrix, [9] proposed 
to first multiply the vector r  with a 
matched filter ,y H r Gx n*= = +  where 

,G H H*=  and n  is colored Gaussian 
noise with covariance matrix .GN0  How-
ever, in view of (4), this is nothing but an 
extension of the Ungerboeck model for ISI 
into a formulation for a general linear 
channel. Next, [9] proceeds with the deri-
vation of a recursive factorization, suitable 
for a tree search, and finally obtains 

( | )

,

expr xp N x y

x G x G x

2

2
1

R *

,
*

,

k k
k

k k k k k

k

2
0

2

1

c=

- - , ,

,=

f

p

)

4

%

/

(15)

where, again, 2c  is irrelevant for decision. 
This we recognize as the extension of 
Ungerboeck’s (9) into a formulation for 
general linear channels.

PROBLEM STATEMENT
Is the choice of model relevant? Is there 
any example of practical systems where the 
Ungerboeck model is more convenient? We 
now give a few examples of systems where 
the Ungerboeck model can offer superior 
performance and/or lower complexity.

SOLUTION

CHANNEL SHORTENING DETECTION
Since the VA is often of prohibitive com-
plexity, Falconer and Magee [10] proposed 
in 1973 to make use of the following 
reduced-complexity scheme: 1) filter the 
signal (5) with a filter that aims at reduc-
ing the memory of the effective impulse 
response from L  to K L1  and 2) apply 
the VA to the filtered signal, but based on 
the shorter effective channel. Thus, the VA 
traverses a trellis with X K  states rather 
than the full trellis of size .X L  In terms 

of a general linear channel, what is done is 
that the conditional pdf (13) is replaced by 
the mismatched version 

( | ) ,expr x
Wr Fx

T N0

2

? -
-

c m (16)

where W  is the channel shortener, F  is a 
matrix that has K  nonzero consecutive 
diagonals, and the normalization constant 
has been neglected. This specifies a trellis 
with X K  states so that the VA or the 
BCJR can be applied. The operations of 
such VAs or BCJR algorithms are specified 
by (14) with ru  and L  being replaced by 
Wr  and ,F  respectively.

However, instead of using (14), we can, 
with identical complexity, use (15). By 
expanding the square magnitude in (16) 
and neglecting the irrelevant terms we 
can express ( | )r xT  as 

( | ) expr x F Wr F FxT N
x x2R * * * *

0
?

-c m
" ,

(17)

and then execute the trellis processing via 
(15) by replacing y  and G  with F Wr*

and ,F F*  respectively.
If the processing is done via (15), only 

the matrices F W*  and F F*  are relevant, 
and not the matrices W  and F  them-
selves. We can therefore relax the struc-
ture of F W*  and F F*  so that we replace 

( | )r xT  in (17) with 

( | ) { } ,expr x x H x G x
T N

r2R * *
r r

0
?

-c m

(18)

where Hr  is arbitrary and Gr  is a Hermit-
ian matrix with only the main K2 1+
diagonals holding nonzero values. The 
strength of replacing F F*  with Gr  is that 
the matrix Gr  needs not to be positive 
semidefinite, unlike the matrix F F*  which 
is positive semidefinite by construction. 
This allows for a wider class of mismatched 
conditional pdfs than what can be reached 
by (16); based on (16), one is restricted to 
have a positive semidefinite Gr  matrix.

As far as the derivation of Gr  and Hr

according to a proper optimality criterion 
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is concerned, we refer the reader to [11]. 
Importantly, to find optimal Gr  and Hr  is 
much simpler than finding optimal W  and 

.F  Somewhat surprisingly, the optimal Gr

matrix to choose is often in-definite so that 
a mismatched conditional pdf of the form 
(16) is inferior to the form (18).

In brief, channel shortening has been 
studied since 1973, but the starting point 
has always been the Forney model. This is 
suboptimal, as the optimal solution for an 
Ungerboeck-based channel shortening 
receiver can not, in general, be reached 
with the Forney model.

MAX-LOG-MAP DEMODULATION 
OF MIMO CHANNELS
The computation of the pdf (13) required 
for the implementation of the strategies 
(1) or (2) requires the computation of 
metrics r Hx 2-  for all possible values 
of .x  How many complex multiplications 
are needed to do this task? If we assume 
an M M#  channel matrix, we have 
X M  vectors x  to test. For each vector 

we need M2  multiplications to form ,Hx
and then M  more to compute the norm. 
Hence, a brute force evaluation would 
give about ( )M M1X M

+  complex mul-
tiplications. In [12], a much more effi-
cient computation is presented by a 
clever rewriting of the associated terms 
of computing each metric .r Hx 2-  To 
exemplify how the metric is rewritten for 
simplifying the calculations, we consider 
the case of a 2 2#  MIMO system. The 
received signal, the channel matrix, and 
the transmitted data vector, all complex 
valued, are expressed as 

{ } { }
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respectively. With that, in [12] the metric 
is expressed in the following manner [see 
(19) in the box at the bottom of the page]. 

Notice that we neglected the term 
,r 2  which is irrelevant for detection. 

Although never mentioned in [12], this is 
precisely the Ungerboeck model, but in a 
real-valued formulation. In fact, as defined 
in the section “Detection on General Lin-
ear Channels,” it is y H r*=  and 

,G H H*=  and thus y r H r H* *
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which is exactly the argument of the expo-
nential in (15) in real-valued formulation.

Based on the formulation (19), [12] 
developed a methodolgy to calculate all 
the X M  metrics by only ( )M M2 2 32 +

M2-  multiplications. This remarkable 
result relies on the structure of the Unger-
boeck model (15), which allows for a hier-
archical formulation of the minimum 
metric terms, using submetrics in an effi-
cient manner avoiding duplication of cal-
culations. The Ungerboeck metric is 
utilized in such a way that parallelization 
is achieved and multiple calculations are 
done in one clock cycle. Furthermore, a 
doubly recursive evaluation of submetrics 
is used; for a detailed description of this, 
see [12]. In [12], it is also shown that an 
efficient implementation of a soft output 
max-log MAP detector for a M2 #  MIMO 
system with quadrature amplitude modu-
lation (QAM) inputs reduces the number 
of candidate tests by a factor of X  by 
rewriting the minimum metric expression 
in a hierarchical manner. The remaining 
candidate tests are performed in a recur-
sive fashion avoiding multiplications alto-
gether. As a result, the computational 
complexity for the metric calculations has 
been reduced by a factor of 250 for a 

M2 #  MIMO system with Gray-coded 
64-ary QAM (64QAM). Furthermore, it 
was estimated that with 10-bit quantiza-
tion of the metric component values, 
64QAM, and a 2 2#  MIMO system, a 
chip area of 0.031 mm2 would be 
required for a clock frequency of 125 
MHz and 65-nm complementary metal–
oxide–semiconductor (CMOS) technol-
ogy. For more details and applications to 
the IEEE 802.11n standard, see [12].

FACTOR-GRAPH-BASED DETECTOR 
WITH LINEAR COMPLEXITY IN THE 
NUMBER OF INTERFERERS
As said earlier, optimal detection by means 
of the VA or the BCJR algorithm works 
over a trellis with X L  states. Channel 
shortening tries to transform the original 
channel into a shorter one before detec-
tion. In addition to channel shortening, 
other approaches to complexity reduction 
have been based on a reduced search over 
the original trellis or on a search over a 
reduced trellis obtained from the original 
one through a partial representation of the 
symbols in the trellis state definition. Many 
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papers have investigated these approaches 
(as an example, see [13] and the references 
therein). They all have in common that 
they work on the Forney observation 
model. An attempt with scarce success has 
been tried in [14] to adapt some of them to 
the Ungerboeck observation model. The 
reason is related to the fact that the partial 
metric of the VA algorithm does not have, 
in the case of the Ungerboeck observation 
model, a probabilistic meaning.

However, the Ungerboeck model allows 
a different approach to complexity reduc-
tion [15]. Neglecting the factors in (9) that 
are irrelevant for detection, we can write 

( | ) expr xp N y x

x g x g x
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Thus, the joint a posteriori probability of the 
transmitted symbols can be factorized as 

( ) ( ) ( )

( , ),

x rP P x F x

I x x,

k k k k
k

k k k k

L

1

?

, ,

,
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%

% (25)

where ( )P xk k  is the a priori probability of 
symbol .xk

The factorization (25) can be visualized 
through an FG; an example is given in 
Figure 2. In this graph, variable and factor 
nodes are represented through circles and 
squares, respectively. An edge connects a 
variable node xk  with a factor node if and 
only if that variable is an argument of the 
factor corresponding to that factor node. 
In the figure, we used dashed lines to rep-
resent edges involving nodes not explicitly 
represented in the graph. The meaning of 
bold edges will be explained below. Note 
that, when ,g 0=,  the factor I ,k k ,-  is 
equal to one and can thus be dropped 
from the factorization (25). In practice, 
the node I ,k k ,-  must be included in (25) 
only when ,g 0!,  i.e., only when xk  and 
xk ,-  interfere with each other.

The factorization (25) is exact, since 
no approximation was adopted in its deri-
vation. On the other hand, the marginali-
zation of (25), required for computing the 
a posteriori probabilities ( | ) ,rP xk" ,  can-
not be exactly carried out by applying the 
SPA to the FG in Figure 2, since it con-
tains cycles. One of these cycles is indi-
cated in the figure in bold. It is easy to 
prove that the FG corresponding to (25) 
cannot contain any cycle of length lower 
than six, irrespective of the number of 
symbols that interfere with each other. In 
fact, being factor nodes of at most degree 
two, the necessary and sufficient condi-
tion for the arising of a cycle of length 
four is to have two factor nodes of degree 
two connected to the same couple of vari-
able nodes, and this is clearly not possible, 
by definition of .I ,k k ,-  Hence, in this 

case, the SPA may lead to favorable 
results since it is generally expected to 
provide a good approximation of the exact 
marginalizations when the length of the 
cycles is at least six.

The algorithm resulting from the 
application of the SPA to the described FG 
is iterative and has a complexity per itera-
tion, which is linear in the number of 
interferers. This is related to the adopted 
factorization having the appealing prop-
erty that nodes ( , ),I x x,k k k k, ,- -  whose 
number linearly increases with the num-
ber of interferers, have degree two (i.e., 
they have two edges) irrespective of the 
number of interferers.

CONCLUSIONS
Although the Ungerboeck and the Forney 
observation models are equivalent when-
ever optimal ML receivers are employed, 
the two models have different properties 
with suboptimal receivers. Almost all 
reduced-complexity receivers take the For-
ney model as the basis for complexity 
reduction. The best example is that it took 
more than three decades from the time 
that the Ungerboeck model was published 
until a BCJR was derived for it. Thus, no 
reduced-complexity Ungerboeck-based 
BCJRs could have been researched until 
only recently. Meanwhile, the amount of 
research devoted to reduced-complexity 
Forney-based BCJRs is impressive. We 
believe that many algorithms can benefit 
from being implemented in the Unger-
boeck model and that there is much to gain 
if the awareness of the model is increased. 
As a step in this direction, we have dis-
cussed three examples where the key build-
ing block is the Ungerboeck model.
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[FIG2] Three sections of the FG corresponding to (25), for the case .L 2=
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consideration. The separation of sea level 
and land motion change is a matter of great 
importance for global change research, Löf-
gren says. “How much does the sea level 
change in different parts of the world and 
what are the causes of this change?”

The researchers note that existing 
coastal GNSS stations, installed primarily 
for the purpose of measuring land move-
ments, can be easily adapted to make sea 
level measurements. “We have success-
fully tested a method where only one of 
the antennas is used to receive the radio 
signals,” Löfgren says. “That means that 
existing coastal GNSS stations—there are 
hundreds of them all over the world—can 
also be used to measure the sea level.”

Löfgren regards signal processing as 
essential to his research. “What I want to 
do is to convert my GNSS measurements 
into measurements of sea level in the most 
accurate way possible,” he remarks. “Most 
of the signal processing is more or less 
standard in the GNSS world, but I have 
applied it on a new and different data set.”

For the two-antenna technique, Löf-
gren determines the vertical distance 
between the upward-looking and the 
downward-looking antenna (the down-
ward-looking antenna will appear to be a 
virtual antenna below the sea level, since 
the reflected signal will travel an addi-
tional path compared to the direct 

signal). “The signal processing is done by 
analysis of the phase of the recorded sig-
nals,” he says. “An observational model is 
set up for the difference in recorded phase 
between the two antennas (incorporating 
clock differences in the receivers, differ-
ences in geometry and differences in the 
phase ambiguity parameter), and it is 
then fitted in a least squares sense to the 
phase observations.”

For the one-antenna technique, a differ-
ent type of signal processing is applied. 
“The interference between the direct and 
the reflected signals can be seen as oscilla-
tions in the signal-to-noise ratio (SNR) 
observable,” Löfgren says. “With the 
assumption of a horizontal non-moving sea 
level, the frequency of these oscillations is 
constant with respect to the sine of the sat-
ellite elevation angle.” This means that the 
oscillations first need to be found and 
extracted from the data. Next, the oscilla-
tions’ frequency content (with respect to 
the sine of the satellite elevation angle 
instead of the usual time) should be found 
either by Fourier transform or a Lomb-
Scargle periodogram (LSP), Löfgren says. 
Finally, the main oscillation frequency 
must be converted to the distance between 
the antenna and the reflection point, which 
is directly proportional to the sea level.

“In both the one- and two-antenna 
methods, the actual installations that 

measures reflected signals are already set 
up,” Löfgren says. This means that the 
geodetic GNSS receivers are first applying 
some kind of signal processing when they 
record the satellite signals. “What I am 
using as techniques are least squares anal-
ysis [for the] two-antenna technique, and 
LSP [for the] one-antenna technique.”

For the project’s next step, the 
researchers are looking toward developing 
multi-GNSS solutions, possibly even com-
bining GPS and GLONASS signals 
together to increase the number of obser-
vations in a combined phase delay analy-
sis, providing more accurate sea level 
estimates. The combination of GPS and 
GLONASS for SNR analysis is expected to 
increase the temporal resolution of the 
corresponding sea level results.

After that step is accomplished, the 
goal will be to use multi-GNSS, multi-
frequency, phase delay, and SNR analysis 
in a filter approach. “Doing so, we expect 
that it will be possible to derive continu-
ous and accurate absolute GNSS sea level 
time series in a wide range of wind 
speeds,” Löfgren says.
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Practical and Useful Tips on Discrete Wavelet Transforms

T
he discrete wavelet transform 
(DWT) [1] is one of the most 
powerful tools for time-fre-
quency signal analysis. Its ap-
plicability is extremely relevant 

in various areas of science, as exemplified in 
[2], with digital signal processing (DSP) as 
the most notable one. After teaching this 
topic for many years, I have noted that nei-
ther young DSP students nor experienced 
researchers have perceived several interest-
ing aspects of the DWT from a practical 
point of view. Thus, the objective of this arti-
cle is to construe such relevant aspects, pro-
viding useful tips to calculate the transform 
in one (1-D) and two (2-D) dimensions. The 
entire discussion is also valid to the discrete 
wavelet-packet transform (DWPT), which 
extends the decomposition carried out by 
the DWT so that a finer time-frequency 
analysis takes place, and also to the discrete 
shapelet transform (DST) [3], which extends 
the properties of the DWT and DWPT so 
that a joint time-frequency-shape signal 
analysis becomes possible.

THE TIPS
The tips given herein come after a short re-
view, which is necessary to understand them. 

1-D DWT CALCULATION
Mallat’s algorithm [4] is the commonly 
used method to calculate the DWT of a 
certain discrete-time signal f[ ]$^ h of 
length .N  The procedure, consisting of 
a simple matrix multiplication, spans 
both the required convolutions of f[ ]$

with h[ ]$  and with ,g[ ]$  which repre-
sent, respectively, a low-pass filter and 
a high-pass filter, and the downsam-
plings by two, all possible due to the 
reduction of the signals bandwidths 

[1]. Filters h[ ]$  and g[ ]$  form the analysis 
filter pair, which have, most of the time, 
the same length ,M  and form a quadra-
ture mirror filter (QMF) [4] set that pres-
ents an orthogonality condition and 
half-band cutoff frequencies. The complete 
process to transform f[ ]$  is shown in the 
boxed equation at the bottom of the page.

As the matrix ,A[ ][ ]$ $  formed by the fil-
ters coefficients, advances from the first 
pair of lines until the last one, a shift to the 
right becomes necessary so that h[ ]$  and 
g[ ]$  start to be written two positions ahead 
in each subsequent pair. In case some of 
the coefficients fall beyond the length of a 
row, e.g., at the bottom of  matrix ,A[ ][ ]$ $

they are pushed back at the beginning of 
the same row and the remaining positions 
are set to zero. This is known as wrap-
around. The procedure explained consists 
of the way the convolutions and the 
downsamplings were implemented. 

After performing the calculations 
above, the resulting DWT corresponds to 
the concatenation of the subsignal 
formed by the even indexes of ,r[ ]$  desig-
nated approximation of length / ,N 2^ h  fol-
lowed by that formed by the odd indexes 
of ,r[ ]$  designated detail of length / .N 2^ h

Thus, DWT ( ) { , , , ..., ,f r r r r r[ ] N0 2 4 2 1=$ -

, , ..., },r r rN3 5 1-  registering the same length 
of the input signal, i.e., .N  This corresponds 
to the first-level DWT ( ) .f[ ]$  If the detail sub-
signal is kept intact and the approximation
subsignal is considered as being a new input 
to the same algorithm, then two other sub-
signals of length /N 4^ h are obtained. Their 
concatenation, following the same process 
described above, generates one subsignal of 
length /N 2^ h that replaces the original 
input of the same length. The new complete 
signal is of length N  and corresponds to 
the second-level DWT ( ) .f[ ]$  The process 
can be repeated ( ) / ( )log logN 2^ h times, 
i.e., until the length of the approximation 
subsignal at the current level becomes 1.

The aforementioned process is one we 
can easily find in literature, however, if the 
reader tries to calculate a DWT by hand, to 
check if he or she has learned the algo-
rithm correctly, or even try to implement 
a computer software to perform the calcu-
lations, a problem may appear: as the level 
of decomposition advances, the approxi-
mation subsignal, used as input, reduces 
its length to half. How can one proceed 
with the calculations if the dimension of 
the input becomes lesser than the filters 
support-size? For example, letting N 8=
and ,M 4=  then, after the second-level 
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ICASSP2016: Signal and information processing is the driving heartbeat in the development 
of technologies that enrich our lives and advance our society. The 41st International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP) will be held in the 
Shanghai International Convention Center, Shanghai, China between March 20 and 25, 
2016. The conference provides, both for researchers and developers, an engaging forum to 
exchange ideas and propel new developments in this field. The 2016 conference will 
showcase world-class presentations by internationally renowned speakers and will facilitate a 
fantastic opportunity to network with like-minded professionals from around the world. 
Topics include but are not limited to:

Multimedia signal processing
Sensor array & multichannel signal processing 
Design & implementation of signal processing systems 
Signal processing for communications & networking 
Image, video & multidimensional signal processing 
Signal processing theory & methods 
Spoken language processing 
Signal processing for the Internet of Things 

Audio and acoustic signal processing 
Bio-imaging and biomedical signal processing  
Signal processing education  
Speech processing  
Industry technology tracks  
Information forensics and security  
Machine learning for signal processing  
Signal processing for Big Data  

Submission of Papers: Prospective authors are invited to submit full-length papers, with 
up to four pages for technical content including figures and possible references, and with one 
additional optional 5th page containing only references. A selection of best student papers 
will be made by the ICASSP 2016 committee upon recommendations from the Technical 
Committees. 

Tutorial and Special Session Proposals: Tutorials will be held on March 20 and 21, 2016.  
Tutorial proposals must include title, outline, contact information, biography and selected 
publications for the presenter(s), and a description of the tutorial and the material to be 
distributed to participants. Special session proposals must include a topical title, rationale, 
session outline, contact information, and a list of invited speakers. Additional information can 
be found at the ICASSP 2016 website. 

Signal Processing Letters: Authors of IEEE Signal Processing Letters (SPL) papers will be 
given the opportunity to present their work at ICASSP 2016, subject to space availability and 
approval by the ICASSP Technical Program Chairs. SPL papers published between January 1, 
2015 and December 31, 2015 are eligible for presentation at ICASSP 2016.  

Show and Tell: S&T offers a perfect stage to showcase innovative ideas in all technical 
areas of interest at ICASSP.  S&T sessions contain demos that are highly interactive and 
visible.  Please refer to the ICASSP 2016 website for additional information regarding demo 
submission. 

Important Deadlines:  
Special session & tutorial proposals ……………………………………………………… August 3, 2015 
Notification of special session & tutorial acceptance ….………………..……… September 11, 2015  
Submission of regular papers ………………………………………………..……………… September 25, 2015 
Signal processing letters ………………………………………………………….……………. December 16, 2015 
Notification of paper acceptance …………………………………………………………… December 21, 2015 
Revised paper upload ……………………………………………………………………………. January 22, 2016 
Author registration …………………………………………………………………….………..… January 22, 2016 

Shanghai: Shanghai is the most populous city in China and one of the most populous cities 
in the world. A global city, Shanghai exerts influence over global commerce, finance, culture, 
art, fashion, research and entertainment. The city is located in the middle portion of the 
Chinese coast, and sits at the mouth of the Yangtze River.  The city is a tourist destination 
renowned for its historical landmarks, such as the Bund and City God Temple, and its 
modern and ever-expanding Pudong skyline including the Oriental Pearl Tower. Today, 
Shanghai is the largest center of commerce and finance in mainland China, and has been 
described as the "showpiece" of the world's fastest-growing major economy. 

General Chairs 
Zhi Ding, Univ. of California, Davis, USA
Zhi-Quan Luo, Univ. of Minnesota, USA 
Wenjun Zhang, Shanghai Jiao Tong Univ., China
Technical Program Chairs 
P. C. Ching, Chinese Univ. of Hong Kong, HK
Dominic K.C. Ho, Univ. of Missouri, USA
Finance Chairs  
Shuguang Cui, Texas A&M Univ., USA 
Rong Xie, Shanghai Jiao Tong Univ., China  
Plenaries Chairs  
Zhi-Pei Liang, UIUC, USA 
Björn Ottersten, Univ. of Luxembourg, Luxembourg 
Special Sessions Chairs 
Tim Davidson, McMaster Univ., Canada 
Jianguo Huang, Northwestern Polytech. Univ., China 
Tutorials Chairs  
Jian Li, Univ. of Florida, USA 
Jose Principe, Univ. of Florida, USA 
Student Session Chair 
Wei Zhang, Univ. of New South Wales, AU 
Registration Chairs  
Tongtong Li, Michigan State Univ., USA
Xiaojun Yuan, ShanghaiTech Univ., China  
Publicity Chairs  
Xiaokang Yang, Shanghai Jiao Tong Univ., China  
Mounir Ghogho, Leeds Univ., UK 
Ignacio Santamaria, Univ. of Cantabria, Spain
Publication Chairs  
Min Dong, Univ. of Ontario Inst. of Tech., Canada  
Thomas Fang Zheng, Tsinghua Univ., China
Industrial & Exhibit Chairs 
Li Deng, Microsoft, USA
Jinyu Li, Microsoft, USA 
Cathy Wicks, Texas Instruments, USA 
Local Arrangement Chairs 
Ning Liu, Shanghai Jiao Tong Univ., China 
Meixia Tao, Shanghai Jiao Tong Univ., China 
Webmaster 
Yi Xu, Shanghai Jiao Tong Univ., China 
Workshop Chairs 
Jianguo Huang, Northwestern Polytech. Univ., China 
Jiwu Huang, Sun Yat-sen Univ., China 
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decomposition, the input subsignal to be 
used in the third level has length two, i.e, 
the multiplication is not possible because 
matrix A[ ][ ]$ $  and the input are not com-
patible in terms of length. Some of us may 
rapidly respond: proceed with a zero-pad-
ding in the input so that it reaches, at 
least, the filters support-size. This solution 
is, however, equivalent to simply discard-
ing some of the filters coefficients, because 
they will be multiplied by zero, therefore, 
it is incorrect. The right solution to this 
problem is to repeat the input so many 
times as necessary until it reaches the 
minimum required length so that the 
matrix multiplication becomes possible. 

NUMERICAL EXAMPLE:
Let { , , , , , , , },f 1 2 3 4 4 3 2 1[ ] =$  which is a 
discrete-time signal of length ,N 8=   
and let {( ) / ( ),( ) /h 1 3 4 2 3 3[ ]= + +$

( ), ( ) / ( ), ( ) / ( )}4 2 3 3 4 2 1 3 4 2- -

and {( ) / ( ), ( ) /g 1 3 4 2 3 3[ ]= - - +$

( ), ( ) /( ), ( )/( )},4 2 3 3 4 2 1 3 4 2+ - -

which correspond to the Daubechies-4 fil-
ter pair [4]. The first and second levels of 
decomposition produce, respectively, the 
results shown in the boxed equation at the 
top of the page. 

Performing the third-level decomposition, 
by using the subsignal ( / ,)156 28 3 32+"

( /)164 28 3 32- ,  as input, yields the 
boxed equation at the bottom of the page, 
which corresponds to the correct proce-
dure. The reader can note that, when this 
tip is applied, A[ ][ ]$ $  is not a squared matrix. 
Instead, it contains only the required num-
ber of lines to obtain the number of 
expected coefficients in the resulting sig-
nal, i.e., two in this example. The calcula-
tions above result in: 

, ,

, ,

, , , .

5 2
4 2

7 3 1

32
4 28 3

32
4 28 3

0
4 2
2 3 0

4 2
2 3

DWT 3level =
-

+ - -

-

)

3

In case there is a need to invert the trans-
formations at each level, the synthesis filter 
bank is adopted. It is composed of the fil-
ters h[ ]$r  and ,g[ ]$r  which are respectively 
defined as being h hk M k 1= - -

r  and gk =r

( ) .h1 k
k

1- +  An easier way to implement 
the inverse DWT (IDWT) is to note that the 

matrix A[ ][ ]$ $  is orthogonal. Therefore, its 
inverse, which allows the process to be 
inverted, corresponds exactly to its trans-
pose. Examples can be found in [4].

2-D-DWT CALCULATION
The definition of the 2-D-DWT can be found 
in [4]. According to it, an N  by N  matrix, 
usually representing a digital image, is used 
as input while the transformation output 
consists of another matrix with the same 
dimensions. This output is composed of the 
concatenation of four submatrices: ,a[ ][ ]$ $

,p[ ][ ]$ $ ,v[ ][ ]$ $  and ,d[ ][ ]$ $  which correspond, 
respectively, to the approximations of the 
lines followed by the approximations of the 
columns, to the approximations of the lines 
followed by the details of the columns, to 
the details of the lines followed by the 
approximations of the columns, and to the 
details of the lines followed by the details of 
the columns. Assuming that S[ ][ ]$ $  is the 
N N#  input matrix, its 2-D-DWT is 
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An interesting algorithm to calculate 
2-D-DWT( )S[ ][ ]$ $  directly, instead of calcu-
lating the four submatrices separately, is 
the following:  

1) obtain ,R A S A[ ][ ] [ ][ ] [ ][ ] [ ][ ]
T=$ $ $ $ $ $ $ $  being 

A[ ][ ]
T

$ $  the transpose of A[ ][ ]$ $

2) rearrange the elements of R[ ][ ]$ $  so 
that 
■ a[ ][ ]$ $  is formed by the elements of 

,R[ ][ ]$ $  which are on the even rows and 
even columns (starting at line and col-
umn zero) 
■ p[ ][ ]$ $  is formed by the elements of 

,R[ ][ ]$ $  which are on the even rows and 
odd columns 
■ v[ ][ ]$ $  is formed by the elements of 

,R[ ][ ]$ $  which are on the odd rows and 
even columns 
■ d[ ][ ]$ $  is formed by the elements of 

,R[ ][ ]$ $  which are on the odd rows and 
odd columns. 
The rearranged matrix corresponds to 

2-D-DWT( ) .S[ ][ ]$ $  Particularly, the afore-
mentioned procedure corresponds to the 
first-level 2-D-DWT. To obtain the next lev-
els, the submatrix a[ ][ ]$ $  of the current level 
is used as the new input and the entire 
process is repeated. In the calculations, 
matrix A[ ][ ]$ $  is exactly the same defined for 
the 1-D-DWT. As previously explained, 
wraparounds and repetitions of the input 
signal may be required. 

The 2-D-IDWT can be obtained by the 
inverse algorithm, i.e.,  

1) rearrange the elements of 2-D-DWT
( )S[ ][ ]$ $  so that:  
■ a[ ][ ]$ $  is now formed by the elements 
of 2-D-DWT( ),S[ ][ ]$ $  which are on the 
even rows and even columns  
■ p[ ][ ]$ $  is now formed by the elements 
of 2-D-DWT( ),S[ ][ ]$ $  which are on the 
even rows and odd columns 
■ v[ ][ ]$ $  is now formed by the elements 
of 2-D-DWT( ),S[ ][ ]$ $  which are on the 
odd rows and even columns 

, ,

, ,

, , ,

4 2
20 4 3

4 2
30

4 2
20 4 3

4 2
10

0
4 2
2 3 0

4 2
2 3 and

DWT 1level =
-

+

-

)

3

,,

, ,

, , , .

32
156 28 3

32
164 28 3

32
4 28 3

32
4 28 3

0
4 2
2 3 0

4 2
2 3

DWT 2level =
+ -

+ - -

-

'

3

4
1

4
1

4
3

4
3

4
3

4
3

4
1

4
1

32
156 28

32
164 28

32
156 28

32
164 28

2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

3

3

3

3
input repeated once

input

Amatrix [ ][ ]

$

+

-

+

- +

-

+

-

- -

+

+

+

+
$ $

J

L

K
K
K
KK

J

L

K
K
K
K
K
K
K
KK

N

P

O
O
O
OO

N

P

O
O
O
O
O
O
O
OO

_

`

a

bb

bb
_

`

a

bb

bb
1 2 344444444444 44444444444

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


Adaptation, Detection, Estimation, and Learning 
Distributed detection and estimation 
Distributed adaptation over networks
Distributed learning over networks
Distributed target tracking 
Bayesian learning; Bayesian signal processing
Sequential learning over networks 
Decision making over networks 
Distributed dictionary learning 
Distributed game theoretic strategies
Distributed information processing 
Graphical and kernel methods 
Consensus over network systems 
Optimization over network systems 

Communications, Networking, and Sensing 
Distributed monitoring and sensing 
Signal processing for distributed communications and 
networking
Signal processing for cooperative networking 
Signal processing for network security 
Optimal network signal processing and resource 
allocation 

Modeling and Analysis 
Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
Wireless/mobile multimedia 

Data Analysis 
Processing, analysis, and visualization of big data 
Signal and information processing for crowd 
computing 
Signal and information processing for the Internet of 
Things 
Emergence of behavior 

Emerging topics and applications 
Emerging topics 
Applications in life sciences, ecology, energy, social 
networks, economic networks, finance, social 
sciences, smart grids, wireless health, robotics, 
transportation, and other areas of science and 
engineering 

SIGNAL AND INFORMATION PROCESSING 
OVER NETWORKS

IEEE TRANSACTIONS ON

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:

Editor-in-
-ieee 

Now accepting paper submissions
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■ d[ ][ ]$ $  is now formed by the elements 
of 2-D-DWT( ),S[ ][ ]$ $  which are on the 
odd rows and odd columns  
2) The rearranged matrix corresponds 
to .R[ ][ ]$ $  The original signal is 

.S A R A[ ][ ] [ ][ ] [ ][ ] [ ][ ]
T=$ $ $ $ $ $ $ $

NUMERICAL EXAMPLE 
Let  

, [ ] ,S h
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and [ ] / , / .g 1 2 1 2$ = -" ,  To obtain 2-D-
DWT ,S[ ][ ]$ $^ h  we need to calculate R[ ][ ] =$ $

,A S A[ ][ ] [ ][ ] [ ][ ]
T

$ $ $ $ $ $  i.e., the boxed equation at 
the top of the page. 

When rearranging the elements of this 
last matrix, we get: 
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which corresponds to the 2-D-DWT
( ) .S[ ][ ]$ $  The inversion is directly based on 
the algorithm above. 

 CONCLUSIONS
This article offered and subsequently 
described tips on the 1-D and 2-D DWT 
calculations that were not yet been docu-
mented in literature in a practical way. 
The information presented herein can 
certainly help young students and expe-
rienced researchers in using this impor-
tant tool for time-frequency signal 
analysis. I have developed a C/C++ 
source code that implements the DWT, 

the IDWT, the DWPT, and the 
inverse DWPT (both 1-D and 
2-D) containing examples of 
usage, and it is freely available. 
Please send your request to 
guido@ieee.org. Additional tips 
I wrote on DWT and DWTP can 
be found in [5]. 

 AUTHOR
Rodrigo Capobianco Guido 
(guido@ieee.org) is a professor 

at São Paulo State University in São José 
do Rio Preto, Brazil. 

REFERENCES
[1] P. Addison, J. Walker, and R. C. Guido, “Time-
frequency analysis of biosignals: A wavelet transform 
overview,” IEEE Eng. Med. Biol. Mag., vol. 28, no. 5,
pp. 14–29, 2009.

[2] S.-H. Chen, R. C. Guido, T.-K. Truong, and Y. 
Chang, “Improved voice activity detection algorithm 
using wavelet and support vector machine,” Comput. 
Speech Lang., vol. 24, no. 3, pp. 531–543, 2010.

[3] R. C. Guido, S. Barbon Jr., L. S. Vieira, F. L. San-
chez, C. D. Maciel, J. C. Pereira, P. R. Scalassara, and 
E. S. Fonseca, “Introduction to the discrete shapelet 
transform and a new paradigm: Joint time-frequency-
shape analysis,” in Proc. IEEE Int. Symp. Circuits 
and Systems (IEEE ISCAS 2008), Seattle, WA, vol. 
1, pp. 2893–2896.

[4] G. Strang and T. Nguyen, Wavelets and Filter 
Banks. Wellesley, MA: Wellesley-Cambridge Press,
1997.

[5] R. C. Guido, “A note on a practical relationship 
between filters coefficients and the scaling and 
wavelet functions of the discrete wavelet transform,” 
Appl. Math. Lett., vol. 24, no. 7, pp. 1257–1259, 2011.

[SP]

.R

2
1

2
1

0

0

2
1

2
1

0

0

0

0

2
1

2
1

0

0

2
1

2
1

4
2
1
0

6
6
4
3

10
8
6
2

12
12
7
1

2
1

2
1

0

0

2
1

2
1

0

0

0

0

2
1

2
1

0

0

2
1

2
1

9
1
4
1

3
1
3

0

21
1
8
5

3
1
0
1

[ ][ ] $ $=

-

-

-

-

=

-

-

-

-

$ $

J

L

K
K
K
K
K
K
K
K
K

J

L

K
K
K
K

J

L

K
K
K
K
K
K
K
K
K

J

L

K
K
K
K

N

P

O
O
O
O
O
O
O
O
O

N

P

O
O
O
O

N

P

O
O
O
O
O
O
O
O
O

N

P

O
O
O
O

SigView.org Popular Multimedia Tutorials
Check out tutorials by leading signal processing experts
Enable IEEE SPS members to create, host, and share multimedia 
tutorials from existing slides deck and media files
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[dates AHEAD]
Please send calendar submissions to:  
Dates Ahead, c/o Jessica Barragué  
IEEE Signal Processing Magazine  
445 Hoes Lane  
Piscataway, NJ 08855 USA  
e-mail: j.barrague@ieee.org

2015
[APRIL]
14th IEEE International Conference  
on Information Processing in Sensor 
Networks (IPSN)
13–17 April, Seattle, Washington, United States.
General Chair: Suman Nath 
URL: http://ipsn.acm.org/2015

First IEEE Conference on Network 
Softwarization (NetSoft)
13–17 April, London, United Kingdom.
General Cochairs: Prosper Chemouil 
and George Pavlou
URL: http://sites.ieee.org/netsoft/

12th IEEE International Symposium  
on Biomedical Imaging (ISBI)
16–19 April, Brookyln, New York, United States.
General Chairs: Elsa Angelini and 
Jelena Kovačević 
URL: http://biomedicalimaging.org/2015/

IEEE International Conference  
on Acoustics, Speech, and
Signal Processing (ICASSP)
19–24 April, Brisbane, Australia.
General Cochairs: Vaughan Clarkson 
and Jonathan Manton
URL: http://icassp2015.org/

[MAY]
31st Picture Coding Symposium (PCS)
31 May–3 June, Cairns, Australia. 
General Chairs: David Taubman 
and Mark Pickering
URL: http://www.pcs2015.org

[JUNE]
IEEE Signal Processing Society Summer 
School on Biomedical Image Processing 
and Analysis (SSBIPA)
13–19 June, Dubrovnik, Croatia.
General Chair: Sven Lončarić
URL: https://sites.google.com/site/ssbipa2015/

Third IEEE International Workshop on 
Compressed Sensing Theory and Its 
Applications to Radar, Sonar, and 
Remote Sensing (CoSeRa)
22–24 June, Pisa, Italy.
General Chairs: Fulvio Gini and Joachim Ender
URL: http://www.cosera2015.iet.unipi.it/

IEEE Signal Processing Society Summer 
School on Foundations and Advances 
in Stochastic Filtering (FASF)
22–26 June, Barcelona, Spain.
Organizers: Pau Closas and Joaquín Míguez
URL: http://fasf2015.cttc.cat/

16th IEEE International Workshop on 
Signal Processing Advances in Wireless 
Communications (SPAWC)
28 June–1 July, Stockholm, Sweden.
General Chairs:  Joakim Jaldén and 
Björn Ottersten
URL: http://www.spawc2015.org/

IEEE International Conference on 
Multimedia and Expo (ICME)
29 June–3 July, Turin, Italy.
General Chairs: Enrico Magli, 
Stefano Tubaro, and Anthony Vetro
URL: http://www.icme2015.ieee-icme.org/
index.php

[JULY]
Third IEEE China Summit and 
International Conference on Signal and 
Information Processing (ChinaSIP)
12–15 July, Chengdu, China. 
General Chairs: Yingbo Hua and Dezhong Yao 
URL: http://www.chinasip2015.org/

[AUGUST]
IEEE Signal Processing and SP 
Education Workshop (SPW)
9–12 August, Salt Lake City, Utah, United States.
General Chair: Todd Moon
URL: http://spw2015.coe.utah.edu/

12th IEEE International Conference  
on Advanced Video- and Signal-Based 
Surveillance (AVSS)
25–28 August, Karlsruhe, Germany.
General Chairs: Jürgen Beyerer 
and Rainer Stiefelhagen
URL: http://avss2015.org

2015 23rd European Signal Processing 
Conference (EUSIPCO)
31 August–4 September, Nice, France.
General Chairs: Jean-Luc Dugelay and
Dirk Slock
URL: http://www.eusipco2015.org

[SEPTEMBER]
IEEE Signal Processing Society Italy Chapter 
Summer School on Signal Processing (S3P)
7–11 September, Brescia, Italy.

Sensor Signal Processing for Defence (SSPD)
9–10 September, Edinburgh, Scotland, 
United Kingdom. 
General Chairs: Mike Davies, Jonathon 
Chambers, and Paul Thomas
URL: http://www.sspdconference.org

IEEE International Conference  
on Image Processing (ICIP)
28 September–1 October, Quebec City, 
Quebec, Canada. 
URL: http://www.icip2015.org/

[OCTOBER]
IEEE International Conference on 
Ubiquitous Wireless Broadband (ICUWB)
4–7 October, Montreal, Canada.
URL: http://www.icuwb2015.org/index.html

IEEE Workshop on Signal Processing 
Systems (SiPS)
14–16 October, Hangzhou, China.
General Chairs: Chaitali Chakrabarti 
and Nam Ling
URL: http://www.sips2015.org/

IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
19–21 October, Xiamen, China.
General Chairs: Xiao-Ping Zhang, 
Oscar C. Au, and Jonathan Li 
URL: http://www.mmsp2015.org/

[NOVEMBER]
Seventh IEEE International Workshop on 
Information Forensics and Security (WIFS)
16–19 November, Rome, Italy.
General Chair: Patrizio Campis
URL: http://www.wifs2015.org/

[DECEMBER]
IEEE 6th International Workshop on 
Computational Advances in Multisensor 
Adaptive Processing (CAMSAP)
13–16 December, Cancun, Mexico.

IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU)
13–17 December, Scottsdale, Arizona, 
United States.
URL: http://www.asru2015.org/

IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)
14–16 December, Orlando, Florida, United States. 
General Chairs: José M.F. Moura 
and Dapeng Oliver Wu [SP]
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to 0.5 Watts, they’re simply some of the most usable amplifiers you’ll 
find, for a wide range of applications and architectures!

All of our ZVA models are unconditionally stable, ruggedly 
constructed, and able to withstand open or short circuits at full 
output. For more details, from data sheets to environmental ratings,
pricing, and real-time availability, just go to minicircuits.com!
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       RoHS compliant
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The language of technical computing.

Over one million people around
the world speak MATLAB.
Engineers and scientists in every
field from aerospace and 
semiconductors to biotech,
financial services, and earth and
ocean sciences use it to express
their ideas. 
Do you speak MATLAB?

Parlez-vous 
MATLAB?

Quantitative high-
throughput gene expression
imaging using data 
from FlyEx Database.

This example available at
mathworks.com/ltc

Im
age from

 FlyEx D
atabase. U

sed by perm
ission. http://flyex.am

s.sunysb.edu/flyex  and http://urchin.spbcas.ru/flyex®

©
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ASRU 2015
IEEE Automatic Speech Recognition and Understanding Workshop
December 13-17, 2015 Scottsdale, Arizona, USA
http://asru2015.org
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IEEE TRANSACTIONS ON
COMPUTATIONAL IMAGING

The new IEEE Transactions on Computational Imaging seeks original manuscripts for publication. This new 
journal will publish research results where computation plays an integral role in the image formation process. 
All areas of computational imaging are appropriate, ranging from the principles and theory of computational 
imaging, to modeling paradigms for computational imaging, to image formation methods, to the latest innova-
tive computational imaging system designs. Topics of interest include, but are not limited to the following:

                                                                          www.signalprocessingsociety.org     [16]  MAY 2015

Imaging Models and 
Representation

Statistical-model based methods
System and image prior models
Noise models
Graphical and tree-based models
Perceptual models

Computational Sensing

Coded source methods
Structured light
Coded aperture methods
Compressed sensing
Light-field sensing
Plenoptic imaging
Hardware and software systems

Computational Image Creation

Sparsity-based methods
Statistically-based inversion methods, 
Bayesian regularization
Super-resolution, multi-image fusion
Learning-based methods, Dictionary-
based methods
Optimization-based methods; proximal 
iterative methods, ADMM

Computational Photography

Non-classical image capture, General-
ized illumination
Time-of-flight imaging
High dynamic range imaging
Focal stacks

Computational Consumer 
Imaging

Cell phone imaging
Camera-array systems
Depth cameras

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopic 
Imaging

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic imaging
Terahertz imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

Editor-in-Chief: W. Clem Karl, Boston University. 
To submit a paper go to: https://mc.manuscriptcentral.com/tci-ieee
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The 23rd IEEE International Conference on Image Processing (ICIP) will be held in the Phoenix 
Convention Centre, Phoenix, Arizona, USA, on September 25 - 28, 2016. ICIP is the world’s largest 
and most comprehensive technical conference focused on image and video processing and computer 
vision. In addition to the Technical Program, ICIP 2016 will feature an Innovation Program focused 
on innovative vision technologies and fostering innovation, entrepreneurship, and networking.
The conference will feature world-class speakers, tutorials, exhibits, and a vision technology showcase.

Topics in the ICIP 2016 Technical Program include but are not limited to the following:
Filtering, Transforms, Multi-Resolution Processing
Restoration, Enhancement, Super-Resolution
Computer Vision Algorithms and Technologies
Compression, Transmission, Storage, Retrieval
Computational Imaging
Color and Multispectral Processing
Multi-View and Stereoscopic Processing
Multi-Temporal and Spatio-Temporal Processing
Video Processing and Analytics
Authentication and Biometrics

Biological and Perceptual-based Processing
Visual Quality Assessment
Scanning, Display, and Printing
Document and Synthetic Visual Processing
Applications to various fields (e.g., biomedical, 
Advanced Driving Assist Systems,  assistive 
living, security, learning,
health and environmental monitoring, 
manufacturing, consumer electronics)

The ICIP 2016 innovation program will feature a vision technology showcase of state-of-the-art vision 
technologies, innovation challenges, talks by innovation leaders and entrepreneurs, tutorials, and 
networking.

Paper Submission: Prospective authors are invited to submit full-length papers at the conference website, 
with up to four pages for technical content including figures and references, and with one additional 
optional 5th page for references only. Submission instructions, templates for the required paper format, 
and information on “no show” policy are available at www.icip2016.com.

Tutorials and Special Sessions Proposals: Tutorials will be held on September 25, 2016. Tutorial 
proposals should be submitted to tutorials@icip2016.com and must include title, outline, contact 
information, biography and selected publications for the presenter(s), and a description of the tutorial 
and material to be distributed to participants. Special Sessions proposals should be submitted to 
specialsessions@icip2016.com and must include a topical title, rationale, session outline, contact 
information, and a list of invited papers. For detailed submission guidelines, please refer the ICIP 2016 
website at www.icip2016.com.

Important Deadlines:
Special Session and Tutorial Proposals: November 16, 2015
Notification of Special Session and Tutorial Acceptance: December 18, 2015

Paper Submissions: January 25, 2016
Notification of Paper Acceptance: April 30, 2016

Visual Technology Innovator Award Nomination: March 30, 2016

Revised Paper Upload Deadline: May 30, 2016
Authors‘ Registration Deadline: May 30, 2016

General Chair
Lina Karam
    Arizona State University
General Co-Chair
Aggelos Katsaggelos
    Northwestern University
Technical Program Chairs
Fernando Pereira
    Instituto Superior Técnico
Gaurav Sharma
    University of Rochester
Innovation Program Chairs
Haohong Wang
    TCL Research America
Jeff Bier
    BDTI & Embedded Vision Alliance
Finance Chair
Sohail Dianat
    Rochester Institute of Technology
Plenary Chairs
Michael Marcellin
    University of Arizona
Sethuraman  Panchanathan
    Arizona State University
Special Sessions Chairs
Dinei Florencio
    Microsoft Research
Chaker Larabi
    Poitiers University
Zhou Wang
    University of Waterloo
Tutorials Chairs
Ghassan AlRegib
    Georgia Tech
Rony Ferzli
    Intel
Publicity Chair
Michel Sarkis
    Qualcomm Technologies Inc.
Awards Chairs
Vivek Goyal
    Boston University
Ivana Tosic
    Ricoh Innovations
Exhibits Chair
David Frakes
    Arizona State University &
    Google
Publication Chairs
Patrick Le Callet
    Nantes University
Baoxin Li
    Arizona State University
Local Arrangement Chairs
Jorge Caviedes
    Intel
Pavan Turaga
    Arizona State University
Registration Chair
Ricardo De Queiroz
    Universidade de Brasilia
Conference Management
Conference Management Services

http://www.facebook.com/icip2016
https://twitter.com/icip2016/
https://www.linkedin.com/groups/ICIP-2016-6940658
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MARCH 2015 VOLUME 10 NUMBER 3 ITIFA6 (ISSN 1556-6013)

PAPERS

A Framework for Secure Computations With Two Non-Colluding Servers and Multiple Clients, Applied to
Recommendations http://dx.doi.org/10.1109/TIFS.2015.2370255 . . . . . . . . . . . . . . . . . . . . . . . . . . T. Veugen, R. de Haan, R. Cramer, and F. Muller 445

http://dx.doi.org/10.1109/TIFS.2015.2378592 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Ma, Q. Huang, M. Zhang, and B. Yang 458

Passive IP Traceback: Disclosing the Locations of IP Spoofers From Path Backscatter http://dx.doi.org/10.1109/TIFS.2015.2381873 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Yao, J. Bi, and A. V. Vasilakos 471

Provable Multicopy Dynamic Data Possession in Cloud Computing Systems http://dx.doi.org/10.1109/TIFS.2015.2384391 . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. F. Barsoum and M. A. Hasan 485

Linear Round Bit-Decomposition of Secret-Shared Values http://dx.doi.org/10.1109/TIFS.2015.2373811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Veugen 498
Segmentation-Based Image Copy-Move Forgery Detection Scheme http://dx.doi.org/10.1109/TIFS.2015.2381872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Li, X. Li, B. Yang, and X. Sun 507

Key Updating for Leakage Resiliency With Application to AES Modes of Operation http://dx.doi.org/10.1109/TIFS.2015.2383359 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Taha and P. Schaumont 519

Security-Aware Max-Min Resource Allocation in Multiuser OFDMA Downlink http://dx.doi.org/10.1109/TIFS.2015.2384392 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Karachontzitis, S. Timotheou, I. Krikidis, and K. Berberidis 529

http://dx.doi.org/10.1109/TIFS.2015.2386658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Lian, G. Chen, M. Ma, and J. Li 543
Revealing the Trace of High-Quality JPEG Compression Through Quantization Noise Analysis

http://dx.doi.org/10.1109/TIFS.2015.2389148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Li, T.-T. Ng, X. Li, S. Tan, and J. Huang 558
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Physical Layer Network Security in the Full-Duplex Relay System http://dx.doi.org/10.1109/TIFS.2015.2390136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Chen, Y. Gong, P. Xiao, and J. A. Chambers 574

Timing Attacks on Cognitive Authentication Schemes http://dx.doi.org/10.1109/TIFS.2015.2376177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Cagalj, T. Perković, and M. Bugaric 584

http://dx.doi.org/10.1109/TIFS.2015.2385634 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Bayram, H. T. Sencar, and N. Memon 597

http://dx.doi.org/10.1109/TIFS.2015.2389145 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Zhou, S. Jiang, A. Irissappane, J. Zhang, J. Zhou, and J. C. M. Teo 613

Dual Subspace Nonnegative Graph Embedding for Identity-Independent Expression Recognition
http://dx.doi.org/10.1109/TIFS.2015.2390138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H.-W. Kung, Y.-H. Tu, and C.-T. Hsu 626

Coupled Discriminative Feature Learning for Heterogeneous Face Recognition http://dx.doi.org/10.1109/TIFS.2015.2390414 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Jin, J. Lu, and Q. Ruan 640

http://dx.doi.org/10.1109/TIFS.2015.2392556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Hu, W. Zhang, X. Li, and N. Yu 653
Improving Privacy and Security in Decentralized Ciphertext-Policy Attribute-Based Encryption

http://dx.doi.org/10.1109/TIFS.2015.2382297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Han, W. Susilo, Y. Mu, J. Zhou, and M. H. A. Au 665
Adaptively Secure Identity-Based Broadcast Encryption With a Constant-Sized Ciphertext http://dx.doi.org/10.1109/TIFS.2015.2388156 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Kim, W. Susilo, M. H. Au, and J. Seberry 679
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The

-

, from November 16, to November 
19, 2015. The conference will feature three keynote lectures, up to four tutorials, lectures and poster 

: - -

.

.

.

:

Rome, Italy, November 16-19, 2015

Roma Tre University, Italy
-

New York University, USA 

-
University of Vigo, Spain 

University of Geneva, Switzerland 

TUE, The Netherlands

University of Kentucky, USA

Roma Tre University, Italy

Polytechnic Univ. of Milan, Italy

Roma Tre University, Italy

University of Campinas, Brasil

Morpho, France

Digimarc, USA

Univ. of Magdeburg, Germany

Michigan State University, USA

NTU, Singapore

Roma Tre University, Italy

Biometrics
Surveillance
Forensic Analysis
Hardware Security

Network Security
Adversarial Signal Processing

-Layer Security

Usability and Human Factors

Tutorial/special sessions proposals……………………………………………………………………………..

-
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APRIL 2015 VOLUME 17 NUMBER 4 ITMUF8 (ISSN 1520-9210)

PAPERS

3-D Audio/Video Processing

Depth Sensation Enhancement for Multiple Virtual View Rendering http://dx.doi.org/10.1109/TMM.2015.2400823 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lei, C. Zhang, Y. Fang, Z. Gu, N. Ling, and C. Hou 457

Display Technology for Multimedia

Pseudo-Multiple-Exposure-Based Tone Fusion With Local Region Adjustment http://dx.doi.org/10.1109/TMM.2015.2403612 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T.-H. Wang, C.-W. Chiu, W.-C. Wu, J.-W. Wang, C.-Y. Lin, C.-T. Chiu, and J.-J. Liou 470

Quality Assessment and User Experience

Smart Streaming for Online Video Services http://dx.doi.org/10.1109/TMM.2015.2405343 . . . . . . . . .. . . . . . . . . L. Chen, Y. Zhou, and D. M. Chiu 485

Content Description and Annotation

http://dx.doi.org/10.1109/TMM.2015.2398195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Geng, Z. Miao, and X.-P. Zhang 498
Learning Spatial and Temporal Extents of Human Actions for Action Detection http://dx.doi.org/10.1109/TMM.2015.2404779 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Zhou, F. Shi, and W. Wu 512

Gestalt Rule Feature Points http://dx.doi.org/10.1109/TMM.2015.2405350 . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . I.-C. Shen and W.-H. Cheng 526

Multimedia Search and Retrieval

Uniting Keypoints: Local Visual Information Fusion for Large-Scale Image Search http://dx.doi.org/10.1109/TMM.2015.2399851 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Liu, H. Li, W. Zhou, R. Hong, and Q. Tian 538
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Contextual Online Learning for Multimedia Content Aggregation http://dx.doi.org/10.1109/TMM.2015.2403234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Tekin and M. van der Schaar 549

Multimedia Streaming and Transport

Simple Countermeasures toMitigate the Effect of PollutionAttack in NetworkCoding-Based Peer-to-Peer Live Streaming
http://dx.doi.org/10.1109/TMM.2015.2402516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Fiandrotti, R. Gaeta, and M. Grangetto 562

ANNOUNCEMENT

Call for Papers—IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING http://dx.doi.org/10.1109/TMM.2015.2411561 . . . . . . . . . . . . .. . . . . . . . . . . . . 574

Information for Authors http://dx.doi.org/10.1109/TMM.2015.2412594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
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MARCH 2015 VOLUME 9 NUMBER 2 IJSTGY (ISSN 1932-4553)

EDITORIAL

Introduction to the Issue on Signal Processing for Situational Awareness From Networked Sensors and Social Media
http://dx.doi.org/10.1109/JSTSP.2015.2394871 . . . . .. . . . . A. K. Roy-Chowdhury, M. Kankanhalli, J. Konrad, C. Micheloni, and P. Varshney 201

PAPERS

Signal Design for Context Aware Distributed Radar Sensing Networks Based on Wavelets http://dx.doi.org/10.1109/JSTSP.2014.2370953 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Nikookar 204

A Mathematical Model for Wideband Ranging http://dx.doi.org/10.1109/JSTSP.2014.2370934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Bartoletti, W. Dai, A. Conti, and M. Z. Win 216
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IEEE International Workshop on

SEPTEMBER 17-20, 2015       BOSTON, MASSACHUSSETTS, USA

MLSP2015.CONWIZ.DK

Special session proposals April 12, 2015

Paper submissions May 17, 2015

Decision notifications June 21, 2015

Camera-ready papers due June 28, 2015

Advance registration August 2, 2015

Important Dates and Deadlines

CALL FOR PAPERS
The 25th MLSP workshop in the series of workshops organized by 
the IEEE Signal Processing Society MLSP Technical Committee will 
present the most recent and exciting advances in machine learning 
for signal processing through keynote talks, tutorials, as well as 
special and regular single-track sessions. Prospective authors are 
invited to submit papers on relevant algorithms and applications 
including, but not limited to:

Learning theory and techniques
Graphical models and kernel methods
Data-driven adaptive systems and models
Pattern recognition and classification
Distributed, Bayesian, subspace/manifold/sparsity-aware learn-
ing
Multiset data analysis and multimodal data fusion
Perceptual signal processing in audio, image and video
Cognitive information processing
Multichannel adaptive and nonlinear signal processing
Applications, including: speech & audio, image & video, music, 
biomedical signals & images, communications, bioinformatics, 
biometrics, computational intelligence, genomic signals & se-
quences, social networks, games, smart grid, security & privacy

Data Analysis and Signal Processing Competition is organized 
in conjunction with the workshop. The goal of the competition is to 
advance the current state-of-the-art in theoretical and practical 
aspects of signal processing domains.
MLSP 2015 seeks proposals for Special Sessions that will address 
research in emerging or interdisciplinary areas of particular inter-
est, not covered already by traditional MLSP sessions. Please sub-
mit proposals to the Special Session Chair.
The MLSP Best Student Paper Award will be granted to the best 
paper for which a student is the principal author and presenter.
Prospective authors are invited to submit a double column 
paper of up to six pages using the electronic submission procedure 
at http://mlsp2015.conwiz.dk. Accepted papers will be published 
on a password-protected website that will be available during the 
workshop. The presented papers will be published in and indexed 
by IEEE Xplore.
Please refer to the workshop website for more details.

General Chair

Program Chairs

Murat Ak

Serdar Kozat

Data Competi-
tion Chair

Vince Calhoun

Special Session 
Chair

Catherine Huang

Publicity Chair Kostas Diamantaras

Publication 
Chair

Jan Larsen

Organizing committee

MLSP
MACHINE LEARNING FOR SIGNAL PROCESSING

Supported by
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ICASSP2016: Signal and information processing is the driving heartbeat in the development 
of technologies that enrich our lives and advance our society. The 41st International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP) will be held in the 
Shanghai International Convention Center, Shanghai, China between March 20 and 25, 
2016. The conference provides, both for researchers and developers, an engaging forum to 
exchange ideas and propel new developments in this field. The 2016 conference will 
showcase world-class presentations by internationally renowned speakers and will facilitate a 
fantastic opportunity to network with like-minded professionals from around the world. 
Topics include but are not limited to:

Multimedia signal processing
Sensor array & multichannel signal processing 
Design & implementation of signal processing systems 
Signal processing for communications & networking 
Image, video & multidimensional signal processing 
Signal processing theory & methods 
Spoken language processing 
Signal processing for the Internet of Things 

Audio and acoustic signal processing 
Bio-imaging and biomedical signal processing  
Signal processing education  
Speech processing  
Industry technology tracks  
Information forensics and security  
Machine learning for signal processing  
Signal processing for Big Data  

Submission of Papers: Prospective authors are invited to submit full-length papers, with 
up to four pages for technical content including figures and possible references, and with one 
additional optional 5th page containing only references. A selection of best student papers 
will be made by the ICASSP 2016 committee upon recommendations from the Technical 
Committees. 

Tutorial and Special Session Proposals: Tutorials will be held on March 20 and 21, 2016.  
Tutorial proposals must include title, outline, contact information, biography and selected 
publications for the presenter(s), and a description of the tutorial and the material to be 
distributed to participants. Special session proposals must include a topical title, rationale, 
session outline, contact information, and a list of invited speakers. Additional information can 
be found at the ICASSP 2016 website. 

Signal Processing Letters: Authors of IEEE Signal Processing Letters (SPL) papers will be 
given the opportunity to present their work at ICASSP 2016, subject to space availability and 
approval by the ICASSP Technical Program Chairs. SPL papers published between January 1, 
2015 and December 31, 2015 are eligible for presentation at ICASSP 2016.  

Show and Tell: S&T offers a perfect stage to showcase innovative ideas in all technical 
areas of interest at ICASSP.  S&T sessions contain demos that are highly interactive and 
visible.  Please refer to the ICASSP 2016 website for additional information regarding demo 
submission. 

Important Deadlines:  
Special session & tutorial proposals ……………………………………………………… August 3, 2015 
Notification of special session & tutorial acceptance ….………………..……… September 11, 2015  
Submission of regular papers ………………………………………………..……………… September 25, 2015 
Signal processing letters ………………………………………………………….……………. December 16, 2015 
Notification of paper acceptance …………………………………………………………… December 21, 2015 
Revised paper upload ……………………………………………………………………………. January 22, 2016 
Author registration …………………………………………………………………….………..… January 22, 2016 

Shanghai: Shanghai is the most populous city in China and one of the most populous cities 
in the world. A global city, Shanghai exerts influence over global commerce, finance, culture, 
art, fashion, research and entertainment. The city is located in the middle portion of the 
Chinese coast, and sits at the mouth of the Yangtze River.  The city is a tourist destination 
renowned for its historical landmarks, such as the Bund and City God Temple, and its 
modern and ever-expanding Pudong skyline including the Oriental Pearl Tower. Today, 
Shanghai is the largest center of commerce and finance in mainland China, and has been 
described as the "showpiece" of the world's fastest-growing major economy. 

General Chairs 
Zhi Ding, Univ. of California, Davis, USA
Zhi-Quan Luo, Univ. of Minnesota, USA 
Wenjun Zhang, Shanghai Jiao Tong Univ., China
Technical Program Chairs 
P. C. Ching, Chinese Univ. of Hong Kong, Hong Kong
Dominic K.C. Ho, Univ. of Missouri, USA
Finance Chairs  
Shuguang Cui, Texas A&M Univ., USA 
Rong Xie, Shanghai Jiao Tong Univ., China  
Plenaries Chairs  
Zhi-Pei Liang, UIUC, USA 
Björn Ottersten, Univ. of Luxembourg, Luxembourg 
Special Sessions Chairs 
Tim Davidson, McMaster Univ., Canada 
Jianguo Huang, Northwestern Polytech. Univ., China 
Tutorials Chairs  
Jian Li, Univ. of Florida, USA 
Jose Principe, Univ. of Florida, USA 
Student Session Chair 
Wei Zhang, Univ. of New South Wales, Australia 
Registration Chairs  
Tongtong Li, Michigan State Univ., USA
Xiaojun Yuan, ShanghaiTech Univ., China  
Publicity Chairs  
Xiaokang Yang, Shanghai Jiao Tong Univ., China  
Mounir Ghogho, Leeds Univ., UK 
Ignacio Santamaria, Univ. of Cantabria, Spain
Publication Chairs  
Min Dong, Univ. of Ontario Inst. of Tech., Canada  
Thomas Fang Zheng, Tsinghua Univ., China
Industrial & Exhibit Chairs 
Li Deng, Microsoft, USA
Jinyu Li, Microsoft, USA 
Cathy Wicks, Texas Instruments, USA 
Local Arrangement Chairs 
Ning Liu, Shanghai Jiao Tong Univ., China 
Meixia Tao, Shanghai Jiao Tong Univ., China 
Webmaster 
Yi Xu, Shanghai Jiao Tong Univ., China 
Workshop Chairs 
Jianguo Huang, Northwestern Polytech. Univ., China 
Jiwu Huang, Sun Yat-sen Univ., China 
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Xiamen, China, October 19 – October 21, 2015
http://www.mmsp2015.org

Tentative Call for Papers

MMSP 2015 is the 17th International Workshop on Multimedia Signal Processing. The workshop is
organized by the Multimedia Signal Processing Technical Committee of the IEEE Signal Processing
Society. This year’s event has a Heterogeneous Big Data Analytics in Multimedia theme. The workshop
will bring together researchers and developers in multimedia signal processing and applications to share
their latest achievements and explore future directions and synergies in these exciting areas.

Papers are solicited in (but not limited to) the following topics, covering this year’s theme and the
general scope of multimedia signal processing:

Theories and applications for heterogeneous big media data analytics

Semantic extraction and knowledge mining from heterogeneous big media data

Massive-scale media detection and recognition

Content-based analysis, retrieval and annotation for big media data

Feature learning for heterogeneous big media data representation

Multimedia security, forensic, privacy for big data

Multimedia quality assessment and enhancement

Affective computing and cross-media sentiment analysis

Media algorithm optimization and complexity analysis

Multimedia in economics, finance, business analytics

Multimedia signals in geomatics

Image/video coding and processing

Speech/audio recognition and processing

Multimedia communications and interactions

Top 10% Paper Award
This award is granted to as many as 10% of the total paper submissions, and is open to all accepted
papers. Papers will be evaluated based on originality, technical contribution, and presentation quality
during the workshop.

Paper Submission
Prospective authors should submit full-length papers of 6 pages in two-column IEEE format, including
author affiliation and address, figures, tables and references, to the submission website. Only electronic
submissions are accepted. Paper submission implies the intent of at least one of the authors to register and
present the paper, if accepted.

Important Dates
Proposals for Special Sessions: March 20, 2015
Submission of Paper: May 28, 2015
Notification of acceptance: July 6, 2015

General Chairs

Xiao-Ping Zhang – Ryerson U, Canada

Oscar C. Au – HKUST, Hong Kong

Jonathan Li – Xiamen U, China

Technical Chairs

Tao Mei – Microsoft Research Asia

Gene Cheung – NII, Japan

Special Session Chairs

John Paisley – Columbia U, USA

Yap-Peng Tan – NTU, Singapore

Overview Chairs

Homer Chen–NTU, Taiwan

Anthony Vetro – MERL, USA

Local Arrangement Chair

Xinghao Ding –Xiamen U, China

Rongrong Ji – Xiamen U, China

Finance Chairs

Chia-Wen Lin – NTHU, Taiwan

Yue Huang – Xiamen U, China

Publications Chairs

Vicky Zhao – U. Alberta, Canada

Delu Zeng – Xiamen U, China

Publicity Chairs

Lina Stankovic – U. Strathclyde, UK

Ivan Bajic – Simon Fraser U,. Canada

Registration Chair

Liujuan Cao – Xiamen U, China

Demo Chair

Wenxin Hong – Xiamen U, China

Industry Liaison

Alexander Loui – Kodak, USA

North America Liaison

Antonio Ortega, USC, USA

Asia Liason

Feng Wu – USTC, China

Europe Liaison

Fernando Pereira – IST-IT, Portugal
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[CONTENTS] [VOLUME 32  NUMBER 3]

[FEATURES]
LEARNING AND 
CLASSIFICATION

16 ACOUSTIC SCENE 
CLASSIFICATION
Daniele Barchiesi, Dimitrios 
Giannoulis, Dan Stowell, and
Mark D. Plumbley

35 DEEP LEARNING FOR ACOUSTIC 
MODELING IN PARAMETRIC 
SPEECH GENERATION
Zhen-Hua Ling, Shi-Yin Kang, Heiga 
Zen, Andrew Senior, Mike Schuster,  
Xiao-Jun Qian, Helen Meng,
and Li Deng

53 VISUAL DOMAIN 
ADAPTATION
Vishal M. Patel, Raghuraman Gopalan, 
Ruonan Li, and Rama Chellappa

ADVANCES IN THEORIES 
AND METHODS

70  RESAMPLING METHODS
FOR PARTICLE FILTERING
Tiancheng Li, Miodrag Bolić,  
and Petar M. Djurić
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WITH APPLICATION
TO OPTICAL IMAGING
Yoav Shechtman, Yonina C. Eldar, 
Oren Cohen, Henry N. Chapman,
Jianwei Miao, and Mordechai Segev
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110 A NEW APPROACH TO 
PRECIPITATION MONITORING
Hagit Messer and Omry Sendik

123  SPECTRUM EXPLORATION
AND EXPLOITATION FOR
COGNITIVE RADIO
Jarmo Lundén, Visa Koivunen,  
and H. Vincent Poor

141 SIGNAL PROCESSING AND
OPTIMIZATION TOOLS FOR 
CONFERENCE REVIEW AND
SESSION ASSIGNMENT
Nicholas D. Sidiropoulos
and Efthymios E. Tsakonas

[COLUMNS]
4 FROM THE EDITOR

Impact Beyond Numbers
Min Wu

6 PRESIDENT’S MESSAGE
The IEEE Gives Our Society 
the “Thumbs Up”
Alex Acero

10 READER’S CHOICE
Top Downloads in IEEE Xplore

13 SPECIAL REPORTS
Signal Processing Enhances 
Environmental Sensing
John Edwards

156 LECTURE NOTES
40 Years with the Ungerboeck
Model: A Look at Its Potentialities
Fredrik Rusek, Giulio Colavolpe,
and Carl-Erik W. Sundberg

162 SP TIPS&TRICKS
Practical and Useful Tips on Discrete 
Wavelet Transforms
Rodrigo Capobianco Guido
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FREE SPS STUDENT MEMBERSHIP FOR 2015
You’re in the beginning stages of your career. Membership in the IEEE Signal Processing Society can help you 
lay the groundwork for many years of success. You can have it all in 2015 - and for free! Membership includes:

Discounts on conference registration fees;
Eligibility to apply for travel grants to attend SPS flagship conferences including the IEEE International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP) and IEEE International Conference on 
Image Processing (ICIP);
Networking and job opportunities at the ICASSP Student Career Luncheon;
Eligibility to enter our student competition, the Signal Processing Cup, for a US$5,000 grand prize;
Involvement opportunities through SPS’s local Chapters - more than 130 worldwide;
Free electronic and digital subscriptions to IEEE Signal Processing Magazine, Inside Signal Processing 
eNewsletter, and the IEEE Signal Processing Society Content Gazette;
Access to cutting-edge educational resources, including SigView, SPS’s online video tutorial portal.

See everything Signal Processing Society membership can do for you:
http://signalprocessingsociety.org

Already an IEEE member? Join SPS for free now!
(You must have already renewed your IEEE member-
ship for 2015 to use this offer)

Visit http://ieee.org/join
On the left side, click “Societies and Special In-
terest Groups”
Click “IEEE Signal Processing Society,” then 
“Join the IEEE Signal Processing Society”
When you reach the catalog page, click “Add 
Item(s)” and sign in with your IEEE account Note: 
Free offer applies only to basic membership. For 
US$8.00, enhance your membership for more 
great benefits!
Once logged in, click “Proceed to Checkout”
When you reach the shopping cart, enter the pro-
motion code SP15STUAD and click “Apply”
Complete check out and congratulations! Wel-
come to SPS!

Not yet an IEEE Student Member?
Get a free SPS membership with the purchase of an 
IEEE Student membership!

Visit http://ieee.org/join
Click “Join as a student” on the bottom right to 
create your new IEEE Student member account
After your IEEE account is created, complete the 
membership application and proceed to “Do you 
want to add any memberships and subscrip-
tions?”
Select “Signal Processing Society membership” 
and click “add selected item”
Click “Proceed to Checkout”
When you reach the shopping cart, enter the pro-
motion code SP15STUNW and click “Apply”
Complete check out and congratulations! Wel-
come to SPS!

Note: Must be an active IEEE Student or Graduate Student member. This offer does not apply to SPS Students or 
Graduate Students  renewing for 2015.
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Preliminary Call for Papers
ISSPIT 2015
Dec., 7-10,
2015
Abu Dhabi
UAE

The 15th IEEE International Symposium on Signal Processing 
and Information Technology

December 7-10, 2015, Abu Dhabi, UAE

           Co-sponsored by IEEE Signal Processing Society and IEEE Computer Society
                 Supported by 

General Co-Chairs
Adel Elmaghraby
University of Louisville, USA 
Begoña García Zapirain
DeustoTech, Spain

Technical Prog. Chair
Esam Abdel-Raheem
University of Windsor, Canada

Technical Prog. Co-Chairs
Mohammed Ghazal
Abu Dhabi University, UAE
Walaa Sheta
City for Scientific Research, Egypt

Registration & Finance Chair
Reda Ammar
University of Connecticut, USA

Publication Co-Chair s
Hassan Hajjdiab
Abu Dhabi University, UAE
Zakaria Maamar
Zayed University, UAE

Tutorials Co-Chairs
Murad Elhadef
Abu Dhabi University, UAE
Sartaj Sahni                  
University of Florida, USA

Plenary & Special Sessions Chair
Christos Douligeris
University of Piraeus, Greece

Publicity Co-Chairs
Muhammed Akmal 
Abu Dhabi University, UAE
Marco Re
Univ. of Rome “Tor Vergata”, Italy

Industrial Liaison Chair
Montasir Qasymeh
Abu Dhabi University, UAE

Local Arrangements Co-Chairs
Riad Kanan
Ashraf Khalil 
Abu Dhabi University, UAE

Web Manager
Mostafa G. Mostafa
Mckendree University, USA

The is the fifteenth in a series of international  symposia 
that aims to cover most of the aspects in the fields of signal processing and 
information technology. Sessions will include tutorials in addition to 
presentations on new research results. Papers describing original work are 
invited in any of the areas listed below. Accepted papers will be published in 
the Proceedings of and will be available via .
Acceptance will be based on quality, relevance, and originality. Contest for Best 
Paper Award will be held and award will be given.
Papers are invited in the following topics:

Signal Processing Theory and
Methods
Signal Processing for
Communications and Networking
Design & Implementation of 
Signal Processing Systems
Image, Video & Multidimensional 
Signal Processing
Multimedia Signal Processing
Biological Image and signal 
processing
Audio and Acoustic signal 
Processing
Health Informatics and e-Health

Sensor Arrays
Radar Signal Processing
Internet Software Architectures
Multimedia and Image Based
Systems
Mobile Computing and Applications
E-Commerce
Bioinformatics and Bioengineering
Information Processing
Geographical Information Systems
Object Based Software Engineering
Speech Processing
Computer Networks
Neural Networks

Prospective authors are invited to submit full-length, 6-page (max) papers in
two-column formats including diagrams and references. Authors can submit 
their papers as PDF files through the online submission system found on
the ISSPIT website: www.isspit.org. The title page should include author(s) 
name(s), affiliation, mailing address, telephone, fax, and e-mail address. The 
author should indicate one or two of the above categories that best describe 
the topic of the paper.

Important Dates
Proposals for Tutorials & Special Sessions      Sept. 4th, 2015
Regular paper submission                               Sept. 4th, 2015
Notification of acceptance                                  Oct. 9th, 2015
Final version paper with registration                   Oct.  23rd, 2015
website: http://www.isspit.org

IEEE Final Approval Pending
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Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.    
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 
  engineering—digital

10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 
  management
5. Design engineering management
  —analog
6. Design engineering management
  —digital
7. Research and development
  engineering
8. Design/development engineering
  —analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2015 IEEE MEMBERSHIP APPLICATION  

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone

Primary E-mail

Secondary Address

Company Name Department/Division

Street Address  City State/Province

Postal Code Country

Secondary Phone  

Secondary E-mail

 Home  Business  (All IEEE mail sent here)  

 Home  Business  

                                                                              www.signalprocessingsociety.org     [39]  MAY 2015

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.ieee.org/join
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [40]  MAY 2015

IEEE Aerospace and Electronic Systems AES010 25.00 12.50

IEEE Antennas and Propagation AP003 15.00 7.50

IEEE Broadcast Technology BT002 15.00 7.50

IEEE Circuits and Systems CAS004 19.00 9.50

IEEE Communications C0M019 30.00 15.00

IEEE Components, Packaging, & Manu. Tech. CPMT021 15.00 7.50

IEEE Computational Intelligence CIS011 29.00 14.50

IEEE Computer C016 56.00 28.00

IEEE Consumer Electronics CE008 20.00 10.00

IEEE Control Systems CS023 25.00 12.50

IEEE Dielectrics and Electrical Insulation DEI032 26.00 13.00

IEEE Education E025 20.00 10.00

IEEE Electromagnetic Compatibility EMC027 31.00 15.50

IEEE Electron Devices ED015 18.00 9.00

IEEE Engineering in Medicine and Biology EMB018 40.00 20.00

IEEE Geoscience and Remote Sensing GRS029 19.00 9.50

IEEE Industrial Electronics IE013 15.00 7.50

IEEE Industry Applications IA034 20.00 10.00

IEEE Information Theory IT012 30.00 15.00

IEEE Instrumentation and Measurement IM009 29.00 14.50

IEEE Intelligent Transportation Systems ITSS038 35.00 17.50

IEEE Magnetics MAG033 26.00 13.00

IEEE Microwave Theory and Techniques MTT017 17.00 8.50

IEEE Nuclear and Plasma Sciences NPS005 35.00 17.50

IEEE Oceanic Engineering OE022 19.00 9.50

IEEE Photonics PHO036 34.00 17.00

IEEE Power Electronics PEL035 25.00 12.50

IEEE Power & Energy PE031 35.00 17.50

IEEE Product Safety Engineering PSE043 35.00 17.50

IEEE Professional Communication PC026 31.00 15.50

IEEE Reliability RL007 35.00 17.50

IEEE Robotics and Automation RA024 9.00 4.50

IEEE Signal Processing SP001 20.00 10.00

IEEE Social Implications of Technology SIT030 33.00 16.50

IEEE Solid-State Circuits SSC037 29.00 14.50

IEEE Systems, Man, & Cybernetics SMC028 12.00 6.00

IEEE Technology & Engineering Management TEM014 35.00 17.50

IEEE Ultrasonics, Ferroelectrics, & Frequency Control UFFC020 20.00 10.00

IEEE Vehicular Technology VT006 18.00 9.00

PROMO CODECAMPAIGN CODE

 Yes     No     If yes, provide the following:

Member Recruiter Name ___________________________________

IEEE Recruiter’s Member Number (Required) ______________________

Credit Card Number

Name as it appears on card

Signature

Proceedings of the IEEE ..................  print $45.00 or online $39.00 
Proceedings of the IEEE (print/online combination) ..................$55.00
IEEE Standards Association (IEEE-SA) ................................................$52.00
IEEE Women in Engineering (WIE) .....................................................$25.00

Please total the Membership dues, Society dues, and other amounts 
from this page:
IEEE Membership dues    ............................................................. $_______
IEEE Society dues (optional)     ................................................. $_______
IEEE-SA/WIE dues (optional)    .................................................. $_______
Proceedings of the IEEE (optional)    ....................................... $_______
Canadian residents pay 5% GST or appropriate HST (BC—12%; NB, NF,
ON-13%;NS-15%) on Society payments & publications only.....................TAX $_______

AMOUNT PAID ................................................................................TOTAL $_______

Payment Method
All prices are quoted in US dollars. You may pay for IEEE membership 
by credit card (see below), check, or money order payable to IEEE, 
drawn on a US bank.

6

CARDHOLDER’S 5-DIGIT ZIPCODE

(BILLING STATEMENT ADDRESS) USA ONLY

MONTH                   YEAR
EXPIRATION DATE

5

7

7

Check

Please reprint your full name here

BETWEEN
1 MAR 2015-
15 AUG 2015

PAY

BETWEEN
 16 AUG 2014-
28 FEB 2015

PAY

Complete both sides of this form, sign, and return to:
IEEE MEMBERSHIP APPLICATION PROCESSING
445 HOES LN, PISCATAWAY, NJ 08854-4141 USA
or fax to +1 732 981 0225
or join online at www.ieee.org/join

Add IEEE Society Memberships (Optional)5 2015 IEEE Membership Rates 
(student rates available online)

6

More Recommended Options7

Payment Amount8

Were You Referred to IEEE?9

1
4

-M
EM

-1
1

9
  

  
  

 7
/1

4

Minimum Income or Unemployed Provision
Applicants who certify that their prior year income did not exceed US$14,500
(or equivalent) or were not employed are granted 50% reduction in: full-year dues,
regional assessment and fees for one IEEE Membership plus one Society Membership. 
If applicable, please check appropriate box and adjust payment accordingly. Student 
members are not eligible.

I certify I earned less than US$14,500 in 2014 or 2013
I certify that I was unemployed in 2014 or 2013

The 39 IEEE Societies support your technical and professional interests.
Many society memberships include a personal subscription to the core journal, 
magazine, or newsletter of that society. For a complete list of everything 
included with your IEEE Society membership, visit www.ieee.org/join. 
All prices are quoted in US dollars.

Please check the appropriate box.

One or more Society publications

Society newsletter

Legend—Society membership includes:
Online access to publication

CD-ROM of selected society 
publications

IEEE member dues and regional assessments are based on where 
you live and when you apply. Membership is based on the calendar 
year from 1 January through 31 December. All prices are quoted 
in US dollars.

Please check  the appropriate box.

RESIDENCE
United States .................................................................$193.00 ............. $96.50
Canada (GST)*.............................................................$171.25 ............... $85.63
Canada (NB, NF and ON HST)*...........................$182.85 ............... $91.43
Canada (Nova Scotia HST)*...................................$185.75 ............... $92.88
Canada (PEI HST)*.....................................................$184.30 ............... $92.15

Canada (GST and QST Quebec)..........................$185.71 ............... $92.86
Africa, Europe, Middle East......................................$158.00 ............... $79.00
Latin America.................................................................$149.00 ............... $74.50
Asia, Pacific .....................................................................$150.00 ............... $75.00
*IEEE Canada Business No. 125634188

Auto Renew my Memberships and Subscriptions (available when paying by credit card).
I agree to the Terms and Conditions located at www.ieee.org/autorenew

BETWEEN
16 AUG 2014-
28 FEB 2015
PAY

BETWEEN
1 MAR 2015-
15 AUG 2015

PAY
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