Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- analytical solution: $x^{\star} = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (*e.g.*, including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (*e.g.*, problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

- find a point that minimizes f_0 among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Introduction

Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, . . .); new problem classes (semidefinite and second-order cone programming, robust optimization)

Affine set

line through x_1 , x_2 : all points

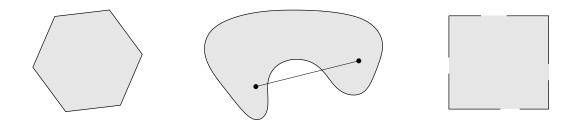
affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

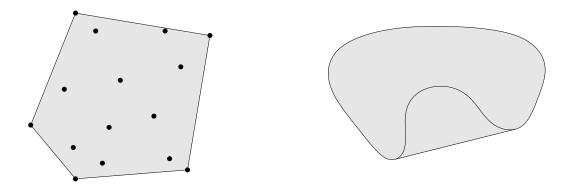

$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)

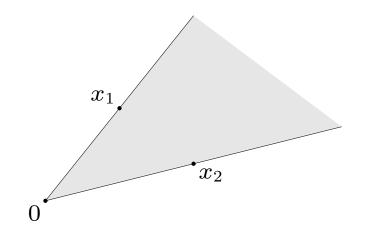

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$

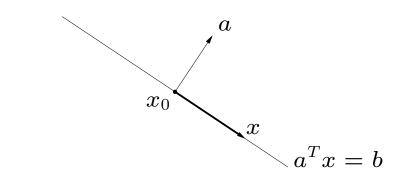
convex hull conv S: set of all convex combinations of points in S

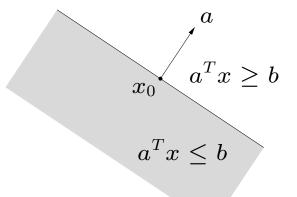


Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$


with $\theta_1 \ge 0$, $\theta_2 \ge 0$


convex cone: set that contains all conic combinations of points in the set

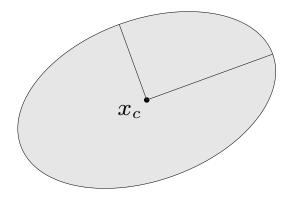
Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids


(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

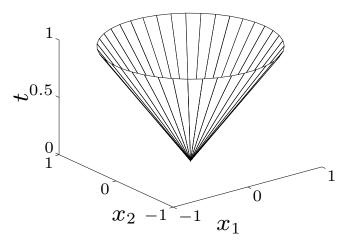
$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (*i.e.*, P symmetric positive definite)

other representation: $\{x_c + Au \mid ||u||_2 \leq 1\}$ with A square and nonsingular

Convex sets

Norm balls and norm cones

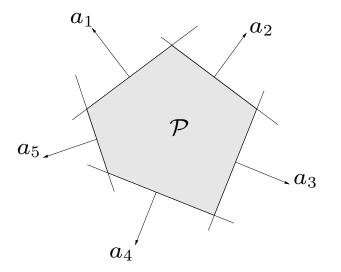

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm **norm ball** with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called secondorder cone


norm balls and cones are convex

Polyhedra

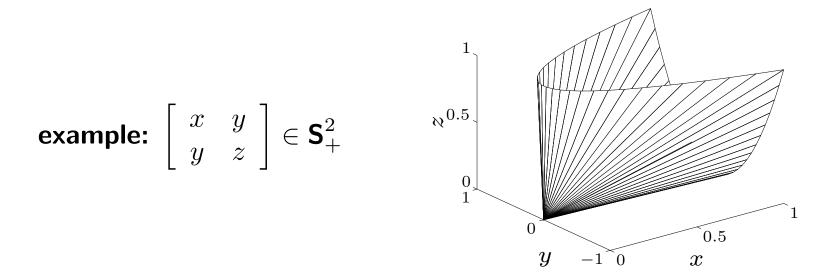
solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone


notation:

- \mathbf{S}^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \quad \Longleftrightarrow \quad z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

Operations that preserve convexity

practical methods for establishing convexity of a set ${\cal C}$

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

Affine function

suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

• the image of a convex set under f is convex

 $S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

Perspective and linear-fractional function

perspective function $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$:

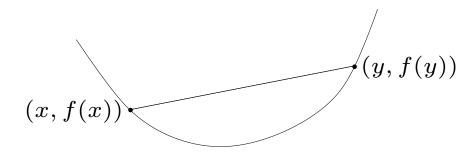
$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax+b}{c^T x+d}, \quad \text{dom} f = \{x \mid c^T x+d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex


Convex functions

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

- f is concave if -f is convex
- f is strictly convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{\mathbf{dom}} f$, $x \neq y$, $0 < \theta < 1$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n and \mathbb{R}^{m \times n}

affine functions are convex and concave; all norms are convex

examples on R^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \to \mathbf{R}$,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in t) for any $x \in \operatorname{\mathbf{dom}} f$, $v \in \mathbf{R}^n$

can check convexity of f by checking convexity of functions of one variable example. $f : \mathbf{S}^n \to \mathbf{R}$ with $f(X) = \log \det X$, $\operatorname{dom} f = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

= $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Convex functions

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

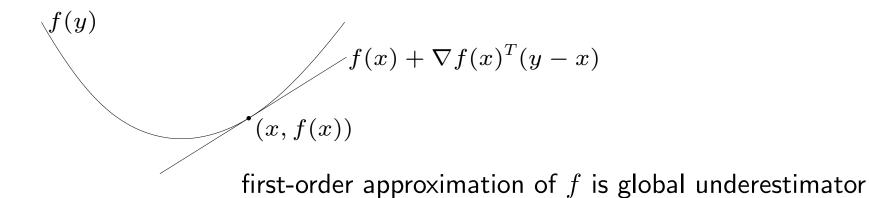
$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- $\mathbf{dom} f$ is convex
- for $x, y \in \operatorname{\mathbf{dom}} f$,

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition


f is differentiable if $\operatorname{\mathbf{dom}} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{\mathbf{dom}} f$

Second-order conditions

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{\mathbf{dom}} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

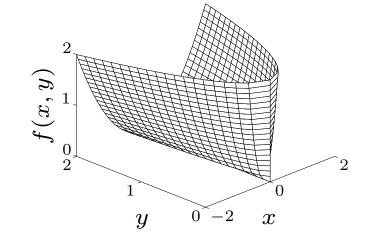
Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$


$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

Convex functions

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

 $f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m}(a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]}$ is *i*th largest component of x) proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

Composition with scalar functions

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if $\begin{array}{c}g \text{ convex, }h \text{ convex, }\tilde{h} \text{ nondecreasing}\\g \text{ concave, }h \text{ convex, }\tilde{h} \text{ nonincreasing}\end{array}$

• proof (for
$$n = 1$$
, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing in each argument} \end{array}$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

• distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

Perspective

the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

 $g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t) \mid x/t \in \text{dom } f, t > 0\}$

g is convex if f is convex

The conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \operatorname{dom} f} (y^T x - f(x))$$

• f^* is convex (even if f is not)

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

Convex optimization problems

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

$$p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^{\star} = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$ if problem is unbounded below

Optimal and locally optimal points

- x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints
- a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- x is **locally optimal** if there is an R > 0 such that x is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & f_i(z) \leq 0, \quad i = 1, \dots, m, \quad h_i(z) = 0, \quad i = 1, \dots, p \\ & \|z - x\|_2 \leq R \end{array}$$

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, **dom** $f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1

Convex optimization problems

Implicit constraints

the standard form optimization problem has an **implicit constraint**

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- $\bullet\,$ we call ${\mathcal D}$ the domain of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- $p^{\star} = 0$ if constraints are feasible; any feasible x is optimal
- $p^{\star} = \infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & a_i^T x = b_i, \quad i = 1, \dots, p \end{array}$$

• f_0 , f_1 , ..., f_m are convex; equality constraints are affine

often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

important property: feasible set of a convex optimization problem is convex

example

$$\begin{array}{ll} \mbox{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \mbox{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

Optimality criterion for differentiable f_0

 \boldsymbol{x} is optimal if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y

• **unconstrained problem**: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

• equality constrained problem

minimize
$$f_0(x)$$
 subject to $Ax = b$

x is optimal if and only if there exists a ν such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

• minimization over nonnegative orthant

minimize
$$f_0(x)$$
 subject to $x \succeq 0$

 \boldsymbol{x} is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \ge 0 & x_i = 0\\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

is equivalent to

minimize (over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0, \quad i = 1, \dots, m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0$$
 for some z

• introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \ y_i) & f_0(y_0) \\ \text{subject to} & f_i(y_i) \leq 0, \quad i = 1, \dots, m \\ & y_i = A_i x + b_i, \quad i = 0, 1, \dots, m \end{array}$$

• introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, s) & f_0(x) \\ \text{subject to} & a_i^T x + s_i = b_i, \quad i = 1, \dots, m \\ & s_i \geq 0, \quad i = 1, \dots m \end{array}$$

• epigraph form: standard form convex problem is equivalent to

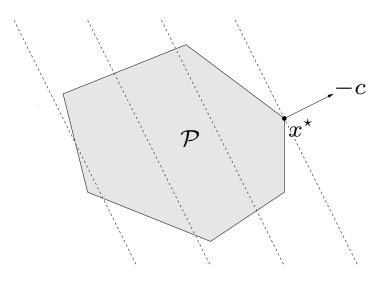
minimize (over
$$x, t$$
) t
subject to
 $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

• minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \leq 0$, $i = 1, \dots, m$

is equivalent to


minimize
$$\tilde{f}_0(x_1)$$

subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

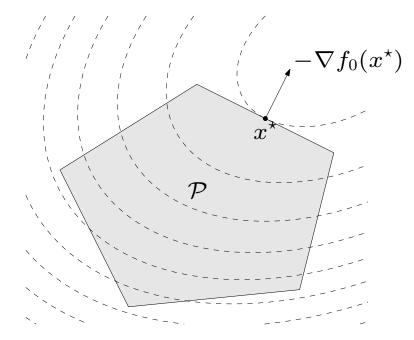
- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Linear-fractional program

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f}, \qquad \text{dom} f_0(x) = \{x \mid e^T x + f > 0\}$$


- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$\begin{array}{ll} \mbox{minimize} & c^T y + dz \\ \mbox{subject to} & Gy \preceq hz \\ & Ay = bz \\ & e^T y + fz = 1 \\ & z \geq 0 \end{array}$$

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Gx \leq h$
 $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Quadratically constrained quadratic program (QCQP)

$$\begin{array}{ll} \mbox{minimize} & (1/2)x^TP_0x + q_0^Tx + r_0 \\ \mbox{subject to} & (1/2)x^TP_ix + q_i^Tx + r_i \leq 0, \quad i = 1, \dots, m \\ & Ax = b \end{array}$$

- $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

$$\begin{array}{ll} \mbox{minimize} & f^T x \\ \mbox{subject to} & \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \dots, m \\ & F x = g \end{array}$$

 $(A_i \in \mathbf{R}^{n_i imes n}, F \in \mathbf{R}^{p imes n})$

• inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom}\, f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbf{R}_{++}^n$$

geometric program (GP)

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 1, \quad i=1,\ldots,m \\ & h_i(x)=1, \quad i=1,\ldots,p \end{array}$$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial
$$f(x) = cx_1^{a_1} \cdots x_n^{a_n}$$
 transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial
$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$$
 transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k}\right) \qquad (b_k = \log c_k)$$

• geometric program transforms to convex problem

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^T y + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^T y + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$
 $Gy + d = 0$

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \preceq 0$
 $Ax = b$

with F_i , $G \in \mathbf{S}^k$

• inequality constraint is called linear matrix inequality (LMI)

Eigenvalue minimization

minimize $\lambda_{\max}(A(x))$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & A(x) \preceq tI \end{array}$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \le t \quad \Longleftrightarrow \quad A \preceq tI$$

Duality

Lagrangian

standard form problem (not necessarily convex)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^{\star}

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Duality

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some $\lambda,\,\nu$

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$

Least-norm solution of linear equations

 $\begin{array}{ll} \text{minimize} & x^T x\\ \text{subject to} & Ax = b \end{array}$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of ν

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Duality

Standard form LP

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax=b, \quad x\succeq 0 \end{array}$

dual function

• Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

• L is affine in x, hence

$$g(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu) = \begin{cases} -b^{T}\nu & A^{T}\nu - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

lower bound property: $p^{\star} \geq -b^T \nu$ if $A^T \nu + c \succeq 0$

Duality

Lagrange dual and conjugate function

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Ax \preceq b, \quad Cx = d \end{array}$

dual function

$$g(\lambda,\nu) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x \in \text{dom } f} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is known

The dual problem

Lagrange dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

- $\bullet\,$ finds best lower bound on $p^{\star}\textsc{,}$ obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

example: standard form LP and its dual (page 5-5)

$$\begin{array}{ll} \text{minimize} & c^T x & \text{maximize} & -b^T \nu \\ \text{subject to} & Ax = b & \text{subject to} & A^T \nu + c \succeq 0 \\ & x \succeq 0 & \end{array}$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems

strong duality: $d^{\star} = p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called **constraint qualifications**

Complementary slackness

assume strong duality holds, x^{\star} is primal optimal, $(\lambda^{\star},\nu^{\star})$ is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$
$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$
$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for i = 1, ..., m (known as complementary slackness):

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(ilde{x}) = g(ilde{\lambda}, ilde{
u})$