ELC 4351: Digital Signal Processing

Liang Dong

Electrical and Computer Engineering Baylor University

liang_dong@baylor.edu

September 21, 2017

The z-Transform and Its Application to the Analysis of LTI Systems

The z-Transform

- The Direct z-Transform
- The Inverse z-Transform

The z-Transform and Its Application to the Analysis of LTI Systems

Laplace-Transform: Continuous-time signals and LTI systems

z-Transform: Discrete-time signals and LTI systems

The direct z-transform is a power series.

Transform Equation

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

where, z is a complex variable.

It can be expressed as $X(z) = \mathcal{Z}\{x(n)\}$ or $x(n) \longleftrightarrow^z X(z)$.

The region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a finite value.

Discussion on ROC

$$z = r e^{j heta}$$
. $r = |z|$ and $heta = \angle z$.

Transformation Equation

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j\theta n}$$

-

In the ROC,
$$|X(z)| < \infty.$$

Therefore

$$|X(z)| = |\sum_{n=-\infty}^{\infty} x(n)r^{-n}e^{-j\theta n}|$$

$$\leq \sum_{n=-\infty}^{\infty} |x(n)r^{-n}e^{-j\theta n}|$$

$$= \sum_{n=-\infty}^{\infty} |x(n)r^{-n}|$$

$$|X(z)| \leq \sum_{n=-\infty}^{\infty} |x(n)r^{-n}| < \infty$$

|X(z)| is finite if the sequence $x(n)r^{-n}$ is absolutely summable.

3

Discussion on ROC

$$|X(z)| \leq \sum_{n=-\infty}^{\infty} |x(n)r^{-n}|$$

=
$$\sum_{n=-\infty}^{-1} |x(n)r^{-n}| + \sum_{n=0}^{\infty} |x(n)r^{-n}|$$

=
$$\sum_{n=1}^{\infty} |x(-n)r^{n}| + \sum_{n=0}^{\infty} \left|\frac{x(n)}{r^{n}}\right|$$

finite: r small equation finite: r large equation

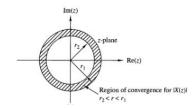
finite: r small enough finite: r large enough

Image: Image:

In general, ROC: $r_2 < r < r_1$

3

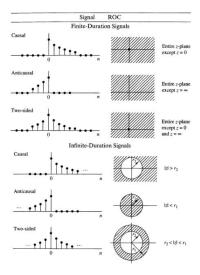
ROC: $r_2 < r < r_1$



3

イロト イヨト イヨト

Discussion on ROC



э

Transformation Equation

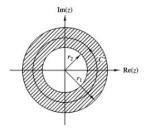
$$X^+(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

The Inverse z-Transform

Transformation Equation

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

where C denotes the closed contour in the ROC of X(z), taken in a counterclockwise direction.



Linearity

If
$$x_1(n) \longleftrightarrow^z X_1(z)$$
 and $x_2(n) \longleftrightarrow^z X_2(z)$, then

$$x(n) = \alpha_1 x_1(n) + \alpha_2 x_2(n) \longleftrightarrow^z X(z) = \alpha_1 X_1(z) + \alpha_2 X_2(z)$$

for any constants α_1 and α_2 .

Time shifting

If $x(n) \longleftrightarrow^z X(z)$, then

$$x(n-k) \longleftrightarrow^{z} z^{-k} X(z)$$

The ROC of $z^{-k}X(z)$ is the same as that of X(z) except for z = 0 if k > 0 and $z = \infty$ if k < 0.

э

イロト イポト イヨト イヨト

Scaling in the z-domain

If $x(n) \longleftrightarrow^z X(z)$, ROC: $r_1 < |z| < r_2$, then

 $a^n x(n) \longleftrightarrow^z X(a^{-1}z), \qquad \text{ROC}: |a|r_1 < |z| < |a|r_2$

for any constants a, real or complex.

Time reversal

If $x(n) \longleftrightarrow^{z} X(z)$, ROC: $r_1 < |z| < r_2$, then

$$x(-n) \longleftrightarrow^{z} X(z^{-1}), \qquad \operatorname{ROC}: \frac{1}{r_{2}} < |z| < \frac{1}{r_{1}}$$

Differentiation in the z-domain

If $x(n) \longleftrightarrow^z X(z)$, then

$$nx(n) \longleftrightarrow^z -z \frac{dX(z)}{dz}$$

э

Convolution of two sequences

If $x_1(n) \longleftrightarrow^z X_1(z)$ and $x_2(n) \longleftrightarrow^z X_2(z)$, then

$$x(n) = x_1(n) \otimes x_2(n) \longleftrightarrow^z X(z) = X_1(z)X_2(z)$$

The ROC of X(z) is at least the intersection of that for $X_1(z)$ and $X_2(z)$.

Correlation of two sequences

If
$$x_1(n) \longleftrightarrow^z X_1(z)$$
 and $x_2(n) \longleftrightarrow^z X_2(z)$, then

$$r_{x_1x_2}(l) = \sum_{n=-\infty}^{\infty} x_1(n) x_2(n-l) \longleftrightarrow^{z} R_{x_1x_2}(z) = X_1(z) X_2(z^{-1})$$

The ROC of R(z) is at least the intersection of that for $X_1(z)$ and $X_2(z^{-1})$.

Multiplication of two sequences

If $x_1(n) \longleftrightarrow^z X_1(z)$ and $x_2(n) \longleftrightarrow^z X_2(z)$, then

$$x(n) = x_1(n)x_2(n) \longleftrightarrow^z X(z) = \frac{1}{2\pi j} \oint_C X_1(\nu)X_2(\frac{z}{\nu})\nu^{-1}d\nu$$

where C is a closed contour that encloses the origin and lies within the ROC common to both $X_1(\nu)$ and $X_2(1/\nu)$.

Parseval's relation

If $x_1(n)$ and $x_2(n)$ are complex-valued sequences, then

$$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi j} \oint_C X_1(\nu) X_2^*(\frac{1}{\nu^*}) \nu^{-1} d\nu$$

The Initial Value Theorem

If x(n) is causal, i.e. x(n) = 0 for n < 0, then

$$x(0) = \lim_{z \to \infty} X(z)$$

Proof.

$$X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

= $x(0) + x(1) z^{-1} + x(2) z^{-2} + \cdots$

As $z \to \infty$, $z^{-n} \to 0$ when n = 1, 2, ..., therefore $X(z) \to x(0)$.