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Elementary Discrete-time Signals

© Unit sample sequence

@ Unit step signal

© Unit ramp signal

@ Exponential signal

Liang Dong (Baylor University)

n =

n#0

n>0
n<0

n>0
n<0

Discrete-Time Signals and Systems

September 12, 2017

3/

44



Classification of Discrete-time Signals

‘ Energy signals vs. power signals‘

Energy: E=>0" Ix(n)2.

If E is finite, 0 < E < 00, x(n) is energy signal.

Power: P = limy_so0 57 Sonen 1X(MI? = iMoo 507 EN-

E finite = P =0.

If P is finite, 0 < P < oo, x(n) is power signal.
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Classification of Discrete-time Signals

‘ Periodic signals vs. aperiodic signals‘

x(n) is periodic with period N > 0 iff
x(n+ N) = x(n), Vn.

The smallest N is the fundamental period.

e.g., x(n) = Asin(2rfn), f = f.

Power: P = Z,,yz_ol x(n)|?.

Therefore, periodic signals are power signals.
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Classification of Discrete-time Signals

‘Symmetric (even) vs. antisymmetric (odd) signals‘

Even: x(—n) = x(n)
Odd: x(—n) = —x(n)

Any signal can be expressed as a sum of an even signal and an odd signal.

x(n) = xe(n) + xo(n)

Proof.
xe(n) = 3[x(n) + x(—n)] and xo(n) = 3[x(n) — x(—n)].
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Simple Manipulations of Discrete-time Signals

Time-delay: TDy[x(n)] = x(n — k), k > 0.
Folding: FD[x(n)] = x(—n).

Amplitude scaling: y(n) = Ax(n), —00 < n < oo.
Sum: y(n) = x1(n) + xa(n).

Product: y(n) = x1(n)x2(n). (sample-to-sample basis)
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Discrete-time Systems

Discrete-time System

y(n) = Tlx(n)]

i .| Discrete-time ¥r)
. System "
Input signal Output signal
or excitation OF response
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Input-Output Description of Systems

x(n) =7 y(n) y(n) = Tlx(n)]

For example, an accumulator:

y(n) = > x(k)

k=—00
= x(nN)+x(n=1)4+x(n—2)+---
n—1

= Y x(k) +x(n)

k=—o00

= y(n=1)+x(n)

Initially relaxed at ng: y(ng — 1) = 0.

Liang Dong (Baylor University) Discrete-Time Signals and Systems September 12, 2017 9 /44



Block Diagram Representation of Discrete-time Systems

Adder

xy(n)

vin)=xy(n) + xaln)

x3ln)

Constant Multiplier

xinm) a yin} = axin)

Signal Multiplier

xyln) =\ yin)=x(n)xy(n)

ot

I;'H]
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Block Diagram Representation of Discrete-time Systems

Unit Delay Element

xin) vin)=x(n=1)

Unit Advance Element

xia) ¥iny=x(n+1)
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Classification of Discrete-time Systems

‘Static vs. dynamic systems‘

Static (memoryless):

y(n) = n’x(n)+ Bx*(n)
Dynamic:

y(n) = x(n)+3x(n—1)
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Classification of Discrete-time Systems

Time-invariant vs. time-variant systems

Time-invariant:

x(n) =7 y(n) implies x(n—k) =7 y(n— k).

y(n k) =Tlx(n = k)] = y(n = k)
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Classification of Discrete-time Systems

‘ Linear vs. nonlinear systems‘

Linear system iff
Tlarxa(n) + aaxa(n)] = a1 T[x1(n)] + 2T [x2(n)]

Superposition: Scaling (multiplicative) property + Additive property

xp(n)

@ /T\ y(n)
L
xa(n)
a
1(n) a
- 1
L
¥(n)
(n) ,—\ a2
T
| I

Figure 2.2.9  Graphical representation of the superposition principle. 7 is linear
if and only if y(n) = y'(n).
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Classification of Discrete-time Systems

Causal vs. noncausal systems

Causal system iff

y(n) = Tx(n),x(n = 1),x(n = 2),---]
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Classification of Discrete-time Systems

Stable vs. unstable systems‘

Bounded input - bounded output (BIBO) stable iff

Ix(n)| < My < 00 = |y(n)] <M, < oo, Vn.

Liang Dong (Baylor University) Discrete-Time Signals and Systems September 12, 2017 16 / 44



Interconnection of Discrete-time Systems

Cascade:

y(n) = T2[Ti[x(n)]], Te = T2Th
In general, 7271 # T1i7s.

Parallel:

y(n) = Tilx(n] + Ta[x(n)], Tp=Ti+ T2
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Techniques for Analysis of Linear Time-invariant Systems

For LTI systems, a general form of the input-output relationship.

y(n) = Zaky(n—k)—i—Zbkx n—k

A difference equation ‘
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Techniques for Analysis of Linear Time-invariant Systems

We use x(n) =
components.

>k ckxk(n), where xi(n) are the elementary signal

Suppose that y,(n) = T[xk(n)], we have

y(n) = Tlx(n) [Z cxi(n) ]
Z cT[xk(n)] = Z ckyr(n)
k k
It is chosen that, e.g.,

X = e/wkn, k=0,1,...,N—1.

where, wy = % {wk} are harmonically related. 21
frequency.

S the fundamental
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Resolution of a Discrete-time Signal into Impulses

We choose
xk(n) = d(n—k)
x(n)d(n—k) = x(k)d(n— k)
Therefore,
x(n) = Y x(k)s(n—k)
k=—00
= > x(k)xi(n)
k=—0oc0
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Resolution of a Discrete-time Signal into Impulses

8(n -k) 1
0 k n
(v)
x(k) 5n—k)
k
0 l n
L x(k)
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Response of LTI Systems to Arbitrary Inputs

h(n, k) = T[o(n — k)]

We use x(n) = > "2 x(k)o(n — k).

[e.9]

y(n) = Tx(n)]= k_zoo x(K)T1(n — k)]
= k_ioo x(k)h(n, k)
Time-invariant: h(n) = 7'[5_(n)] = h(n, k) = h(n— k) = T[6(n — k)]
y(n) = k:ioo x(k)h(n — k)

The convolution sum \

22 / 44
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Properties of Convolution and Interconnection of Systems

\The convolution sum \

y(n) = x(n) @ h(n)

= Y x(k)h(n— k)
k=—0o0

= ) h(k)x(n— k)
k=—o0

= h(n) ® x(n)

x(n) ,Tl wn) h(n) yn)

[
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Properties of Convolution and Interconnection of Systems

Identity and Shifting Properties‘

y(n) = x(n)®d(n) = x(n)
y(n—k) = x(n)®d(n—k)=x(n—k)
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Properties of Convolution and Interconnection of Systems

‘ Commutative Law ‘

x(n)® h(n) = h(n) @ x(n)

Associative Law \

[x(n) @ h(n)] @ ha(n) = x(n) @ [m(n) @ ha(n)]

xin) yin) x(n) h(n)= yin)
hy(n) () hy(n) * hn)

(a)
x(n) y(n) xin) I l [ ly(n)
— k) ;_"! ha(n) ’—" <::> 1 hy(n) | l hy(n) |

(b)
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Properties of Convolution and Interconnection of Systems

‘ Distributive Law‘

x(n) @ [h1(n) + ha(n)] = x(n) ® h1(n) + x(n) @ ha(n)

hin) = yn)

hy(n) + hy(n)

xin)
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Causal Linear Time-Invariant Systems

y(mo) =Y h(k)x(no — k)
k=—00
[e's) -1
= h(K)x(no = k) + > h(k)x(no — k)
k=0 k=—o00

N~

7(n)
The second part y(n) depends on the future (w.r.t. ng) inputs
x(np + 1), x(ng + 2), ... It has to be zero for a causal LTI system.

Therefore, the impulse response of the system must satisfy the condition

[h(n) =0, n<0]

An LTI system is causal iff its impulse response is zero for negative values
of n.
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Causal Linear Time-Invariant Systems

|h(n) =0, n<0]

y(n) = h(k)x(n — k)

WE

i
3 O

= Y x(k)h(n— k)

k=—00
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Stability of Linear Time-Invariant Systems

If x(n) is bounded, |x(n)|
If y(n) is bounded, |y(n)]

y(n) = Y h(k)x(n—k)
k=—00

y(m)| = | Y h(k)x(n—k)
k=—o00

IN
=
=
x
—
3
|
=

A
<
™
=
=
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Stability of Linear Time-Invariant Systems

We observe that, for |y(n)| < oo, a sufficient condition is

o0

> (k)| < oo

k=—oc0

It turns out this condition is not only sufficient but also necessary to
ensure the stability of the system.

A LTI system is stable iff its impulse response is absolutely summable.
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Systems with Finite-Duration and Infinite-Duration Impulse

Response

A finite-duration impulse response (FIR) system has an impulse response
that is zero outside of some finite time interval.

[h(n)=0, n<0 and n> M|

y(n) =) h(k)x(n— k)

An infinite-duration impulse response (IIR) system has an infinite-duration
impulse response.

where causality is assumed.
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Implementation of Discrete-time Systems

For example, a first-order system described by the linear
constant-coefficient difference equation.

y(n) = —aiy(n —1) + box(n) + bix(n — 1)
(1) Use a nonrecursive system followed by a recursive system:
v(n) = box(n) + bix(n—1)
y(n) = —ay(n—1)+v(n)
(2) Use a recursive system followed by a nonrecursive system:
w(n) = —ayw(n—1)+ x(n)

y(n) = bow(n)+ byw(n—1)

Liang Dong (Baylor University)

Discrete-Time Signals and Systems

September 12, 2017



Implementation of Discrete-time Systems

wln—1) win—1)

¥(n)

|

w{n—1)
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Implementation of Discrete-time Systems

y(n) = Zaky(n—k)—i—Zbkx n—k

(1) Direct form | structure:

M
v(n) = Z bgx(n — k
k=0

N
y(n) = = awy(n—k)+v(n)
k=1
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Direct Form | Structure
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Implementation of Discrete-time Systems

y(n) = Zaky(n—k)—i—Zbkx n—k

(2) Direct form Il structure:

Liang Dong (Baylor University) Discrete-Time Signals and Systems

September 12, 2017

36 / 44



Direct Form |l Structure

w(n)

by

x(n) _—G\
/
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(+)
U

(+)
¥

-0

—a, wn=-1) b Y
+
—ay wn=2) b
i \
A
=ty wn=3) by Q
-
—ay s wn=M) by |
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Correlation of Discrete-time Signals

Crosscorrelation of sequences x(n) and y(n) is a sequence ry, (/) defined as

rg() = Y x(n)y(n—1), =0,£1,£2, ...
= Y x(n+Dy(n), I=0,41,42,...

where index / is the time shift or lag.

By (1) = ryx(=1)
ry (1) = x(I) ® y(~1)
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Correlation of Discrete-time Signals

Autocorrelation of sequence x(n) is a sequence ry (/) defined as

o

re(l) = > x(mx(n—1), 1=0,41,+2,...
= Y x(n+Dx(n), I=0,+1,42, ...

where index [ is the time shift or lag.

(1) = rec(—1)
rec(1) = x(1) @ x(—1)
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Properties of Autocorrelation and Crosscorrelation

Sequences

|roc(1)]
[y (1)

IN

r(0) = Ex
r(0)ryy (0) = / ExEy

IN

Normalized autocorrelation sequence:

)
N = n<i
pxx (1) rec(0)’ lpxx(1)] <
Normalized crosscorrelation sequence:

Iy (1)

poll) = vV r)(X(())”}/}/(())7

oy (D] <1
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Correlation of Periodic Sequences

Crosscorrelation:

1 V-1
rxy(/) = N x(n)y(n—1)
n=0
Autocorrelation:
) = 23 x(oe(n— 1
XX = X\n)x\n —
N n=0
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Correlation of Periodic Sequences

Example: Correlation is used to identify periodicity in an observed physical
signal that is corrupted by random noise/interference.

y(n) = x(n) + w(n)

We observe M samples of y(n), where M > N.

1 M—-1
r(l) = 47 2_ v(ny(n—1)
v
o [x(n) + w(nm)][x(n—1) 4+ w(n —1)]

= rXX(/)_ w(l) + rux(1) + raw(l)
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Correlation of Periodic Sequences

Example: Identify a hidden periodicity in the Wolfer sunspot numbers in
the 100-year period 1770-1869.

Ml adhlh
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Input-Output Correlation Sequences

Crosscorrelation between the output and the input signal is

(D) = y() @ x(=1) = h(1) @ [x(1) @ x(~1)]
= h(1)® ree(l)

Autocorrelation of the output signal is

ry(l) = y(h@y(=1)
[h(1) @ x(N] @ [A(—=1) @ x(=1)]
= [h(/) @ h(=N] @ [x(1) & x(=1)]

= (1) ® ru(l)

The autocorrelation rpp(/) of the impulse response h(n) exists if the
system is stable.
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