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The 25th IEEE International Conference on Image Processing (ICIP) will be held in the 
Megaron Athens International Conference Centre, Athens, Greece, on October 7-10, 2018. 
ICIP is the world's largest and most comprehensive technical conference focused on 
image and video processing and computer vision. The conference will feature world-class 
speakers, tutorials, exhibits, and a vision technology showcase.

Topics of interest include, but are not limited to:

http://2018.ieeeicip.org

Paper Submission
Authors are invited to submit papers of not more than four pages for technical content 

Submission Instructions, templates for the required paper format, and information on "no 
show" policy are available at 2018.ieeeicip.org.

Journal Paper Presentations
Authors of papers published in all IEEE Signal Processing Society fully owned journals as 
well as in IEEE Wireless Communication Letters will be given the opportunity to present 
their work at ICIP 2018, subject to space availability and approval by the Technical Program 
Chairs of IEEE ICIP 2018. 

Innovation Program
Following the tradition that started in 2016, the ICIP 2018 Innovation Program Chairs will 
arrange an outstanding event with prominent speakers from the Industry.

Tutorials, Special Sessions, and Challenge Sessions Proposals
Tutorials will be held on October 7, 2018. Tutorial proposals must include title, outline, 
contact information, biography and selected publications for the presenter(s), and a 
description of the tutorial and material to be distributed to participants. For detailed 
submission guidelines, please refer to the tutorial proposals page. Special Sessions and 
Challenge Session Proposals must include a topical title, rationale, session outline, contact 
information, and a list of invited papers/participants. For detailed submission guidelines, 
please refer the ICIP 2018 website at 2018.ieeeicip.org.

Important Dates
Special Session Proposals: November 15, 2017

December 15, 2017
Tutorial Proposals: December 15, 2017

January 15, 2018
Paper Submission: February 7, 2018

April 30, 2018
Camera-Ready Papers: May 31, 2018

Filtering, Transforms, Multi-Resolution Processing
Restoration, Enhancement, Super-Resolution
Computer Vision Algorithms and Technologies
Compression, Transmission, Storage, Retrieval
Multi-View, Stereoscopic, and 3D Processing
Multi-Temporal and Spatio-Temporal Processing
Biometrics, Forensics, and Content Protection
Biological and Perceptual-based Processing
Medical Image and Video Analysis
Document and Synthetic Visual Processing

Color and Multispectral Processing
Scanning, Display, and Printing

Computational Imaging
Video Processing and Analytics
Visual Quality Assessment
Deep learning for Images and Video
Image and Video Analysis for the Web
Image Processing for VR Systems
Image Procesing for Autonomous Vehicles
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This special issue of IEEE Signal Processing Magazine
provides survey articles on the latest advances in deep 
learning for visual understanding. Its objective is to encour-
age a diverse audience of researchers and enthusiasts 
toward an effective participation in the solution of analogous 
problems in other signal processing fields by inseminating 
similar ideas.
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and Bohyung Han
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and Pascal Frossard
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DEEP LEARNING FOR 
VISUAL UNDERSTANDING: PART 1
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Jiwen Lu, Junlin Hu, and Jie Zhou
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Christ D. Richmond
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Sven Loncǎrić—University of Zagreb, Croatia 
Brian Lovell—University of Queensland, Australia 
Jian Lu—Qihoo 360, China
Henrique (Rico) Malvar—Microsoft Research,   

U.S.A.
Yi Ma—ShanghaiTech University, China
Stephen McLaughlin—Heriot-Watt University,   

Scotland
Athina Petropulu—Rutgers University, 

U.S.A.
Peter Ramadge—Princeton University, 

U.S.A.
Shigeki Sagayama—Meiji University, Japan  
Erchin Serpedin—Texas A&M University, 

U.S.A.
Shihab Shamma—University of Maryland,   

U.S.A.
Vahid Tarokh—Harvard University, U.S.A.
Wade Trappe—Rutgers University, U.S.A.
Gregory Wornell—Massachusetts Institute 

of Technology, U.S.A.
Dapeng Wu—University of Florida, U.S.A.

ASSOCIATE EDITORS—COLUMNS AND FORUM 
Ivan Bajic—Simon Fraser University, Canada
Rodrigo Capobianco Guido— 

São Paulo State University, Brazil
Ching-Te Chiu—National Tsing Hua University, 

Taiwan
Panayiotis (Panos) Georgiou—University of 

Southern California, U.S.A.
Hana Godrich—Rutgers University, U.S.A.
Xiaodong He—Microsoft Research
Danilo Mandic—Imperial College, U.K.
Aleksandra Mojsilovic— 

IBM T.J. Watson Research Center
Vishal Patel—Rutgers University, U.S.A.

Fatih Porikli—MERL
Shantanu Rane—PARC, U.S.A.
Saeid Sanei—University of Surrey, U.K.
Roberto Togneri—The University of 

Western Australia
Alessandro Vinciarelli—IDIAP–EPFL
Azadeh Vosoughi—University of Central Florida
Stefan Winkler—UIUC/ADSC, Singapore
Changshui Zhang—Tsinghua University, China

ASSOCIATE EDITORS—e-NEWSLETTER
Csaba Benedek—Hungarian Academy 

of Sciences, Hungary 
Paolo Braca—NATO Science and Technology 

Organization, Italy 
Quan Ding—University of California, 

San Francisco, U.S.A.
Pierluigi Failla—Compass Inc, New York, 

U.S.A.
Marco Guerriero—General Electric Research, 

U.S.A.
Yang Li—Harbin Institute of Technology, China
Yuhong Liu—Penn State University at Altoona, 

U.S.A.
Andreas Merentitis—University of Athens, 

Greece
Michael Muma—TU Darmstadt, Germany
Xiaorong Zhang—San Francisco State University, 

U.S.A.

ASSOCIATE EDITOR—SOCIAL MEDIA/OUTREACH
Guijin Wang—Tsinghua University, China

IEEE SIGNAL PROCESSING SOCIETY
Rabab Ward—President
Ali Sayed—President-Elect
Carlo S. Regazzoni—Vice President, 

Conferences
Nikos D. Sidiropoulos—Vice President, 

Membership
Thrasyvoulos (Thrasos) N. Pappas—

Vice President, Publications 
Walter Kellerman—Vice President, 

Technical Directions

IEEE SIGNAL PROCESSING SOCIETY STAFF
Rebecca Wollman—Publications Administrator

IEEE PERIODICALS MAGAZINES DEPARTMENT
Jessica Welsh, Managing Editor
Geraldine Krolin-Taylor,

Senior Managing Editor
Janet Dudar, Senior Art Director
Gail A. Schnitzer, Associate Art Director
Theresa L. Smith, Production Coordinator
Mark David, Director, Business Development - 

Media & Advertising
Felicia Spagnoli, Advertising Production Manager
Dawn M. Melley, Editorial Director
Peter M. Tuohy, Production Director
Fran Zappulla, Staff Director, 

Publishing Operations

SCOPE: IEEE Signal Processing Magazine publishes tutorial-style articles on signal processing research and 
applications as well as columns and forums on issues of interest. Its coverage ranges from fundamental principles 
to practical implementation, reflecting the multidimensional facets of interests and concerns of the community. Its 
mission is to bring up-to-date, emerging and active technical developments, issues, and events to the research, 
educational, and professional communities. It is also the main Society communication platform addressing important 
issues concerning all members.

IEEE Signal Processing Magazine

Digital Object Identifier 10.1109/MSP.2017.2750305

2 IEEE SIGNAL PROCESSING MAGAZINE | November 2017 |

IEEE prohibits discrimination, harassment, and bullying. 
For more information, visit 
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

Promoting Sustainable Forestry

SFI-01681

COLUMNS
8 Panel and Forum

   Challenges and Open Problems in 
Signal Processing: Panel Discussion 
Summary from ICASSP 2017

   Yonina C. Eldar, Alfred O. Hero III, 
Li Deng, Jeff Fessler, Jelena Kovačević,
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FROM THE EDITOR
Min Wu  |  Editor-in-Chief  |  minwu@umd.edu

Signals and Signal Processing: The Invisibles and the Everlastings

hen you receive this issue of IEEE 
Signal Processing Magazine, a sym-
posium, “The Future of Signal Pro-

cessing,” was just held at the Massachu-
setts Institute of Technology (MIT). The 
symposium honored the career of Prof. 
Alan Oppenheim as one of the pioneers in 
signal processing research and education. 
Attendees from various organizations 
around the world discussed and shared 
insights of the profound roles that signal 
processing have played and envisioned 
the future trends of signal processing.

I delivered a talk with the same title 
as this editorial at the MIT symposium. 
The term invisibles has a dual meaning 
to me. A central theme of my research 
has been dealing with “micro signals” 
that are small in strength or scale by 
at least an order of magnitude and are 
nearly invisible, yet developing the the-
ory and techniques to extract and utilize 
these invisible micro signals opens up 
new opportunities in a broad range of 
applications from security and forensics 
to data analytics to entertainment. One 
class of micro signals provides telltale 
traces of evidence in determining the 
origin and integrity of images, which is 
an active research area investigated by 
the Information Forensics and Security 
Technical Committee (IFS TC) of the 
IEEE Signal Processing Society (SPS) 
and the subject of the ongoing SP Cup 
2018 competition (see page 175) and 
the latest outreach video “Multimedia 

Forensics,” available online at the SPS 
Resource Center; please visit http://
rc.signalprocessingsociety.org/sps/
product/conference-videos-and-slides/
SPSVID00194. Meanwhile, the pro-
found role and contributions of signal 
processing are often invisible to the pub-
lic, leading to the notion of “Signal Pro-
cessing Inside.” In this issue, the second 
edition of the new “Community Voices” 
column presents the thoughts on such a 
topic by our magazine readers who are 
at various career stages and come from 
different regions and backgrounds.

Several other formal and informal gath-
erings have been held this year, celebrating 
the careers of signal processing pioneers 
and significant contributors: among them 
are Prof. Sanjit Mitra, who had a broad 
range of research interests over the years 
and nurtured signal processing activities 
in a number of underrepresented countries 
and regions; Prof. Mos Kaveh, who played 
a key role in developing statistical signal 
processing and served as the IEEE SPS 
president in 2010–2011; and Dr. John 
Cozzens, who led the signal process-
ing program at the U.S. National Science 
Foundation for many years, just to name 
a few. Thanks to the persistent contribu-
tions of them and many others over the past 
decades, the field of signal processing has 
grown and our community has expanded 
both technically and geographically.

It has been a year and half since we 
launched the redesign of the print ver-
sion of the magazine. I hope you enjoy 
the modern look and enhanced graphics 
of the magazine and its correspond-

ing electronic version. The second part 
of the redesign effort is for the online 
presence of our magazine. Although the 
timetable of the magazine’s web design 
was deferred to give priority to the major 
redesign of the SPS’s website, I am happy 
to report that the matching design for our 
magazine’s website is well underway. 
The first phase has been completed and 
launched this summer for the monthly 
“Inside Signal Processing eNewslet-
ter” that complements the print version 
of the magazine. If you haven’t already, 
please check it out at http://signalprocess 
ingsociety.org/newsletter/. My sincere 
thanks to Christian Debes, the area edi-
tor for eNewsletter, and Ervin Sejdic, 
who succeeded Christian in June 2017, 
and SPS Web Administrator Rupal Bhatt 
for their dedicated efforts. 

The second phase of the website re-
design is currently being implemented 
with the goal of creating a modern land-
ing page that can host timely updates 
based on the magazine’s bimonthly con-
tent and well-organized resources for 
prospective authors.

This is the magazine’s final issue 
of 2017 and the last issue for which 
I serve as editor-in-chief. Looking back, 
this three-year journey has been a huge 
undertaking, and it could not have been 
possible without the hard work and sup-
port of many colleagues. A number 
of unsung heroes, whom ordinary read-
ers may not have seen or known, con-
tributed to the success of our magazine. 
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PRESIDENT’S MESSAGE
Rabab Ward  |  SPS President  |  rababw@ece.ubc.ca

Signal Processing Is More than Its Beloved Name 

S ince its inception in 1948, the IEEE 
Signal Processing Society (SPS) has 
evolved in pace with the many tech-

nological changes and advancements in 
our field. In its early days, our Society—
the first and oldest among the IEEE’s 
Societies—was known as the Profes-
sional Group on Audio of the Institute 
of Radio Engineers. Over the course of 
four decades, our name has changed few 
times from Audio to Audio and Electro-
Acoustics and then to Acoustics, Speech, 
and Signal Processing, and then to Signal 
Processing to reflect the field’s growth 
and diversity, becoming the IEEE Signal 
Processing Society in 1989.

Since then, our scope of interest has 
been revised twice to reflect new theo-
ries and applications, and many SPS 
technical committees have also changed 
their names. Our Society has also devel-
oped many new workshops, conferences, 
specialized publications, journals, peri-
odicals, and outreach programs in an 
effort to celebrate the achievements of 
our members, strengthen our indus-
try networking opportunities, and also 
increase public awareness about sig-
nal processing.

We’ve made great strides, but our field 
is consistently evolving while eyeing the 
future. Over the past few years, members 
have suggested that we’re perhaps due for 
another name change, that the term signal 
processing is obscure and doesn’t ade-
quately capture the scope, range, dynam-
ic nature, and fundamental impact of our 

chosen field on so many facets of every-
day life. We are certainly not alone in this 
dilemma. For example, the famous math-
ematician Stanislaw Ulam wrote: “What 
exactly is mathematics? Many have tried 
but nobody has really succeeded in defin-
ing mathematics; it is always something 
else. Roughly speaking, people know 
that it deals with  numbers, figures, with 
relations, operations, and that its formal 
procedures involving axioms, proofs, 
lemmas, and theorems have not changed 
since the time of Archimedes.”

By comparison, our field is in its 
infancy, but it has grown and expanded 
rapidly to include many branches and 
subspecialties. So, in December 2013, 
our Society formed a committee, headed 
by Prof. Petar Djuric, to explore the pos-
sibility of a new name. The commit-
tee wrote a wonderful blog post about 
this topic (see https://signalprocessing
society.org/sites/default/files/uploads/
get_involved/docs/Power_of_a_Name_
Article_and_Comments.pdf), soliciting 
member feedback, and listed nine previ-
ously suggested name changes: 
1) Society on Signal Science and 

Engineering 
2) Society on Signal Processing and Data 

Science 
3) Society on Signal and Data Science
4) Society on Signal Science and 

Processing 
5) Society on Data Science and Processing
6) Society on Data and Signal Processing
7) Signal and Information Processing 

Society
8) Society for Data Science
9) Data Science Society. 

Notice that the term data science is in 
five of these nine suggestions and data is 
in six, but the word information is only in 
one. The post elicited a lively discussion. 
Among the 58 respondents, some favored 
a name change, and Signal and Informa-
tion Processing was the most popular 
of the proposed names, favored by 21 
respondents. Yet the majority of respon-
dents (28) preferred to stick with our cur-
rent name, saying that while it may not 
be inclusive of everything that we do, 
it’s the most succinct way to de  scribe 
our complex, evolving field. Indeed, 
the very definition of a signal means 
the conveyer of some type of informa-
tion, while the information within the 
signal is often related to knowledge 
and intelligence.

The respondents were certainly not 
unanimous that a name change would 
either increase or decrease our vis-
ibility among the general public, while 
also reflecting the monumental chang-
es in our field since 1989. Whatever 
the ultimate decision, I agree with 
the recommendations that we would 
certainly benefit from improving the 
strength and clarity of our brand mes-
saging, by articulating the impact of 
signal processing on so many fields, 
such as finance, seismology, satellite 
communication, medical instruments, 
and a wide range of commercial elec-
tronics and wearable technologies that 
billions of people use every day—at 
work, at play, and, in almost every facet 
of communication.

Highlights from Society members’ 
responding to Prof. Djuric’s blog post 

Digital Object Identifier 10.1109/MSP.2017.2750307
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about the name change proposal are 
given next. I’m pleasantly surprised by 
the number and depth of these com-
ments. It shows that this topic is timely 
and of great interest to our community.

Signal processing is “present in nearly 
all the trendy mobile devices,” according 
to one respondent, yet it’s not well under-
stood by our peers in science, industry, 
and the general public “is oblivious to 
the concept.” It’s a fitting paradox for 
signal processing, which is described 
in the book Essentials of Digital Signal 
Processing [1] as the “phantom technol-
ogy because it is so pervasive and yet 
not well understood.” 

Another participant agreed, writing, 
“Signal processing is still a mystery to 
many of our peers, and it does not ade-
quately reflect the current activities.” 
Others pointed out that this dilemma hin-
ders our ability to attract good students to 
the field, negotiate promotions at univer-
sities and corporations, and “build a vis-
ible ecosystem” upon which individuals 
could envision a career.

The diversity in theories and appli-
cations within our field can be viewed 
as both a benefit and a hurdle. One per-
son wrote that our branding challenges 
“will get worse with signal processing 
getting more diverse and intangible” as 
the emphasis shifts from boards and cir-
cuits to software applications. Yet how 
do we strive to be both more inclusive 
and more succinct with our branding? 
Some participants suggested adding 
various qualifiers, the most popular of 
which were data, data science, science,
signal science, engineering, and infor-
mation processing.

The term data received a few favo-
rables. With the increased emphasis and 
publicity on data in recent years, I won-
der whether more respondents would 
have favored this term had the blog been 
posted a couple of years later. Others 
felt that while it’s currently trendy and 
may have increasing funding opportuni-
ties, it may have a short shelf life and it’s 
too broad and generic and too specific 
to computer science, data processing 
and “big data”—implying all are poorly 
understood by the general public. There 
are also educational differences to con-
sider. One respondent pointed out that, 

while signal processing necessitates 
an advanced scientific education and 
carefully conducted scientific proto-
cols, it only takes a few courses in com-
puter science and web programming to 
become a “data scientist.”

The addition of the term science also 
received mixed reviews. As one respon-
dent pointed out, “We are not scien-
tists—we are engineers, and I for one am 
damn proud to call myself an engineer. 
Scientists take things apart; engineers 
put things together. Not only are these 
fields different, they are polar oppo-
sites.” Someone else wrote, “Engineers 
is what we are, and signal processing is 
what we do.” Several people opposed the 
addition of the term engineering to our 
name. One respondent pointed out that 
engineering is also misunderstood by 
the public as dealing with work that sig-
nal processors do not do, such as work 
related to engines.

Adding the term information pro-
cessing was the most popular alterna-
tive among the respondents, primarily 
because it best conveyed the diversity 
of our field and our goal to “strive to be 
inclusive of all its members.”

Yet other members called informa-
tion processing redundant, saying that 
you cannot process information if it does 
not induce a signal; only signals that con-
tain information can be processed and 
“signal processing” allows for informa-
tion in a signal to be available in a “con-
venient format.” As one respondent put 
it, “the word signal already indicates an 
information-bearing phenomenon, and 
signal processing already encompasses 
the decoding/encoding of any kind of 
information.” However, I wish to add 
here that besides “processing,” much 
of our work involves understanding and 
learning about the systems we study.

Among the various proponents of 
maintaining our current name, some 
voiced concern that a name change would 
dilute the brand name. The term signal 
processing is well established, featured 
in many journal titles, conference names, 
and the majority of academic programs. 
University electrical engineering depart-
ments teach subjects with signal pro-
cessing in the title, and these courses are 
often first-year courses offered to under-

graduates in electrical and computer 
engineering, which piques the interest of 
young students, and sets them on the path 
to become signal processors.

Other supporters pointed out that the 
SPS is already a well-respected brand 
in the science and engineering commu-
nity. “Let’s keep the name and improve 
our outreach and publicity efforts,” 
wrote one respondent. Another member 
agreed, writing, “Better outreach and 
publicity will fix this issue.” However 
instead of “marketing the subtleties of 
a denoising algorithm that optimizes 
some supercool theoretical function,” 
we should showcase the latest cutting-
edge technologies. Another member 
agreed, writing, “When people ask 
‘What is SP?’ I say it is ‘everything that 
goes on inside a smartphone’ and their 
eyes suddenly light up.”

“Whatever the new name of the 
Society, I will still say that I am a signal 
processing guy,” wrote one commen-
tator. Another wrote, the term “signal
must be kept since it represents the 
human instinct to communicate since 
the prehistoric age.”

Reading the comments on this blog 
has given me, a proponent of a name 
change, much to think about. On one 
hand, a name change, e.g., by adding 
the term data science, would, at pres-
ent, help us increase our visibility and 
capture the interests of students, friends, 
and other Societies, as well as the cor-
porations and industries that provide 
employment and help fund our research 
and development. Our field has defi-
nitely evolved much further than pro-
cessing signals measured by electronic 
devices and grew to processing, under-
standing, and learning from data, irre-
spective to whether or not it is obtained 
from physical or physiological processes. 
Also, many of the concepts and theories 
we have advanced have been abstracted 
for use in a large number of applications.

On the other hand, data science has 
much overlap with signal processing, 
mainly nonparametric, high-dimension-
al statistical signal processing (which 
involves big data and does not model the 
process). Thus it could be strongly argued 
that data science falls with the realm of 
signal processing.
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Furthermore, signal processing has 
now become much larger and diverse. 
It has permeated a vast number of tech-
nologies and applications. Watch, for 
example, our video “What Is Signal Pro-
cessing?” at https://www.youtube.com/
watch?v=EErkgr1MWw0 for some 
examples of these applications. The 
scope of our journals range from speech 
to networks, from forensics to imaging, 
from biomedical to multimedia, and 
so on. We have more than 185 Chap-
ters in approximately 120 countries. 
This compels me to appreciate the good 
comments and relevant points made by 

those who advocate for keeping our 
current name, as well as feel their devo-
tion to the name. Whether or not we 
change our name, we should continue 
to expand our activities to stress our 
wide scope, for example, by initiating a 
new journal, workshop, distinguished 
speakers, summer schools, and edu-
cational material related to data science. 
I consider myself fortunate that I have 
been working in this exciting field and 
am equally proud to be attached to our 
beloved name signal processing.

Let us continue this important dis-
cussion. Please add your comments 

to https://signalprocessingsociety.org/
get-involved/signal-processing-larger-its-
beloved-name

Reference
[1] R. G. Lyons and D. Lee Fugal, Essentials of 
Digital Signal Processing. Englewood Cliffs, NJ: 
Prentice Hall, 2014.

SP

FROM THE EDITOR (continued from page 4)

Managing Editor Jessica Welsh and the 
IEEE Magazines Department production 
team are a driving force in interacting 
with authors and creating a professional 
look and feel for the articles. In addi-
tion, Senior Art Director Janet Dudar and 
Associate Art Director Gail Schnitzer 
help bring eye-catching artistic elements 
to each issue of the magazine. 

I have also had the privilege to work 
very closely with a team of area editors 
who play a key role in the magazine op-
erations: Shuguang Robert Cui screens 
dozens of feature article proposals each 
year and tirelessly coordinates the pro-
posal reviews; Kenneth Lam leads a team 
of dedicated column associate editors to 
enrich the magazine content to serve our 
broad readership; Douglas O’Shaughnessy 
coordinates the special issue efforts, a 
signature tradition of the magazine; An-
dres Kwasinski, Erwin Sejdic, Christian 
Debes, and the associate editors on their 
teams who contributed to the electronic 
efforts that complement the print version 
of the magazine.

Our senior Editorial Board mem-
bers bring a diverse set of expertise and 
perspectives and provide candid feed-
back and guidance; special thanks to 
13 members who are completing their 

three-year services: Mounir Ghogho, 
Lina Karam, Sven Lončarić, Brian 
Lovell, Stephen McLaughlin, Yi Ma, 
Henrique (Rico) Malvar, Athina Petro-
pulu, Peter Ramadge, Shigeki Sagaya-
ma, Erchin Serpedin, Shihab Shamma, 
Gregory Wornell, and Dapeng Wu. In 
addition, special issue and cluster orga-
nizers work intensively to bring timely 
content to our readers, and each special 
issue, cluster, or series is a major under-
taking by itself. My sincere thanks to all 
authors for contributing to the magazine, 
especially for the time and hard work it 
takes to make content accessible, and to 
the many reviewers who provided timely 
assessments and constructive comments 
to ensure the high technical and presenta-
tion quality of the articles. You can find 
an annual index of authors and articles 
associated with each year-end issue of 
the magazine in IEEE Xplore. The collec-
tive effort by authors, reviewers, and edi-
tors helped our magazine reach an all-time 
high in impact factor (9.65) and article influ-
ence score (4.02) in the most recent Jour-
nal Citation Report. Last but not the least, 
I thank SPS staff members Rebecca Woll-
man, Richard Baseil, Theresa Argiropou-
los, Jessica Perry, and Deborah Blazek for 
their assistance, and I appreciate the 

thoughtful feedback and support from 
our readers.

The SPS Executive Committee has 
appointed Prof. Robert Heath as the 
next editor-in-chief of the magazine, 
effective January 2018. Robert is a 
world-renowned expert and proliferate 
researcher on signal processing for com-
munications. Please join me in welcom-
ing him. As I pass the baton, I take this 
opportunity to thank all supporters of 
the magazine in the past and appreciate 
the continued support in the years to come. 
Together, we can continue to build this pre-
mier publication with a strong technical 
impact as well as indispensable benefits 
to our members and readers.

To quote Prof. Oppenheim: “There 
will always be signals, they will always 
need processing, and there will always 
be new applications, new mathematics, 
and new implementation technologies.” 
Let IEEE Signal Processing Magazine
be your helpful companion in this ever-
lasting journey of signal processing!

SP
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PANEL AND FORUM
Yonina C. Eldar, Alfred O. Hero III, Li Deng, Jeff Fessler, 

Jelena Kovačević, H. Vincent Poor, and Steve Young

This column summarizes the panel 
on open problems in signal process-
ing, which took place on 5 March 

2017 at the International Conference on 
Acoustics, Speech, and Signal Process-
ing (ICASSP) in New Orleans, Louisi-
ana. The goal of the panel was to draw 
attention to some of the challenges and 
open problems in various areas of signal 
processing and generate discussion on 
future research areas that can be of ma-
jor significance and impact in signal 
processing. Five leading experts repre-
senting diverse areas within signal pro-
cessing made up the panel:
■ Li Deng, Microsoft: machine learning
■ Jeff Fessler, the University of Michigan: 

medical imaging
■ Jelena Kovačević, Carnegie Mellon 

University: graph signal processing
■ H. Vincent Poor, Princeton Univer-

sity: wireless communication
■ Steve Young, the University of 

Cambridge: speech and language 
processing.

It was organized and moderated by Yo-
nina Eldar from the Technion and Al-
fred O. Hero III from the University 
of Michigan.

The panel drew a very large crowd 
and stimulated a vibrant discussion on 
directions, trends, and challenges of sig-
nal processing in the 21st century and 
in the era of big data. In this column, 
we summarize the main points raised by 
the panelists and the audience in each of 

the aforementioned topics. Our goal and 
hope is to further the discussion on some 
of the main challenges and opportuni-
ties for signal processing in the coming 
years and to highlight areas where, as a 
community, working and collaborating 
together, we may have impact on theory, 
applications, and education.

Next, we summarize open problems 
in the previously mentioned areas, high-
lighted by the participants: open problems 
in machine learning, medical imaging, 
graph signal processing, physical layer 
wireless communications, and speech 
and language processing. A common 
cross-cutting theme that emerged was the 
opportunity to improve performance by 
the better integration of accurate physical 
models into state-of-the-art algorithms.

Open problems in machine learning
Machine learning aims to give comput-
ers the ability to learn by exploiting data 
instead of being explicitly programmed. 
There are many approaches in machine 
learning, including support vector ma-
chines, decision-tree learning, artificial 
neural networks, Bayesian networks, 
genetic algorithms, rule-based learning, 
and inductive logical programming, among 
others [3]. In recent years, the fastest 
growing area of machine learning comes 
from neural networks and related gen-
erative models, where carefully design-
ed hierarchies are built into the overall 
machine-learning models to form mul-
tiple layers of latent representations that 
disentangle the confounding factors and 
complexity in the raw data. This type of 

hierarchical model and the associated 
machine-learning algorithms are called 
deep learning [1], [2], which represents 
the most recent and influential advance 
in machine learning over the past decade. 
The first successful application of deep 
learning in real-world tasks came from 
speech recognition in our signal process-
ing community and was published in this 
magazine [13], followed quickly with 
computer vision, natural language pro-
cessing, robotics, speech synthesis, and 
image rendering [2].

Despite impressive empirical suc-
cesses of deep learning and other ma-
chine-learning approaches, many open 
problems remain to be solved. Current 
deep-learning methods typically lack 
interpretability, in contrast to traditional 
machine-learning techniques based on 
linear models. In a number of applica-
tions, deep-learning methods achieve 
recognition accuracy close to or exceed-
ing that of humans, but they require 
considerably more training data, power 
consumption, and computing re  sources 
than humans. In addition, although ac-
curacy results are often statistically im-
pressive, they are often unreliable on 
an individual basis. Finally, most of the 
current deep-learning models have no 
reasoning and explaining capabilities, 
making them vulnerable to disastrous 
failures or attacks without the ability to 
foresee and thus to prevent them.

To overcome these challenges, both 
fundamental and applied research is  
needed. One potential breakthrough 
in machine learning is in developing 

Challenges and Open Problems in Signal Processing: 
Panel Discussion Summary from ICASSP 2017
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interpretable deep-learning models with the aim of creat-
ing new algorithms and methods that can overcome current 
limitations of machine-learning systems in their lack of 
ability to explain the actions, decision, and prediction out-
comes to human users while promising to perceive, learn, 
decide, and act on their own. This new class of machine-
learning systems will allow users to understand and thus trust 
the system’s outputs and to foresee and predict future system 
behaviors. To this end, neural networks and symbolic systems 
need to be integrated, enabling the machine-learning systems 
themselves to construct models that will explain how the 
world works. That is, they will discover by themselves the un-
derlying causes or logical rules that shape their prediction and 
decision-making processes interpretable to human users in 
symbolic and natural language forms. An initial work in this 
direction makes use of an integrated neural-symbolic repre-
sentation called tensor-product neural memory cells, which 
can be decoded back to symbolic form without loss of infor-
mation after extensive learning in the neural-tensor domain.

Another potential breakthrough in machine-learning 
research is in new algorithms for reinforcement and unsu-
pervised deep learning, which make use of weak or even no 
training signals paired to inputs to guide the learning. Effec-
tive reinforcement-learning algorithms will allow machine-
learning systems to learn via interactions with possibly 
adversarial environments and with themselves.

The most challenging problem, however, is unsupervised 
learning, for which no satisfactory machine-learning algo-
rithms have been devised so far in practical applications. 
The development of unsupervised learning techniques is 
significantly behind that of supervised and reinforcement 
deep learning. The most recent development in unsuper-
vised learning exploits sequential output structure and ad-
vanced optimization methods to alleviate the need for using 
labels in training prediction systems [12].

Future advances in unsupervised learning include taking 
into account new sources of learning signals such as the struc-
ture of input data and building conditional generative models. 
In this context, the recent popular topic of generative adver-
sarial networks [2] is a highly promising direction exploiting 
the long-standing concept of analysis by synthesis. A closely 
related open problem is multimodal deep learning with cross-
domain information as low-cost supervision. Standard speech 
recognition, image recognition, and text classification meth-
ods make use of supervision labels within each of the speech, 
image, and text modalities separately. This is far from how 
children learn to recognize speech and classify text. For ex-
ample, children often get a distant “supervision” signal for 
speech sounds by an adult pointing to an image scene or text.

A final future direction for tackling open problems in 
machine learning is the paradigm of learning-to-learn or 
metalearning; i.e., how to design a machine-learning system 
that improves or automatically discovers a learning algo-
rithm. Learning-to-learn is a powerful emerging paradigm 
and a fertile research direction expected to impact a wide 
range of real-world applications.

Holcombe Department of Electrical and Computer Engineering
Faculty Search in Computer Engineering and 

Electrical Engineering
The Holcombe Department of Electrical and Computer Engineering 
at Clemson University is seeking applicants for multiple computer 
engineering and electrical engineering tenure-track or tenured 
faculty positions at the rank of assistant professor or associate 
professor. The Department has a particular interest in applicants 
in the following technical areas: (1) machine learning, computer 

biomedical engineering, health science, or automotive engineering; (2) 
embedded computing, sensors, wearables; (3) high-performance 
computing with an emphasis on big data, high-performance 
networking, or accelerated computing architectures; and (4) cyber 
security and cyber-physical system security. Outstanding assistant-
professor candidates will be considered for the Warren Owens 
Assistant Professorship.
The Holcombe Department of ECE is one of the largest and 
most active departments in Clemson University, with 32 primary 

are known internationally; they include eight IEEE Fellows, three 
endowed chairs, and four named professors. Annual funded 

Clemson have highly successful computing-focused research 
programs in high-performance computing and networking; privacy, 
communications security, and secure control systems; and mobile 
health devices.
Clemson University is the largest land-grant institution in South 

students. Seven colleges house strong programs in architecture, 
engineering, science, agriculture, business, social sciences, arts 

development activities are enhanced by public-private partnerships 

located throughout South Carolina.  Clemson University is ranked 

Applicants must have an earned doctorate in electrical 

Applicants should submit a current curriculum vitae, statements of 

with full contact information. Application material should be 
submitted electronically at the following Web link:  

http://apply.interfolio.com/39731

To ensure full consideration, applicants must apply by December 

Clemson University is an AA/EEO employer and does not discriminate 
against any person or group on the basis of age, color, disability, 
gender, pregnancy, national origin, race, religion, sexual orientation, 
veteran status or genetic information. Clemson University is building 
a culturally diverse faculty committed to working in a multicultural 
environment and encourages applications from minorities and women. 
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Open problems in medical imaging
Medical image reconstruction is the pro-
cess of forming interpretable images from 
the data recorded by an imaging system. 
Until recently, there have been two pri-
mary methods for image reconstruction: 
analytical and iterative. Analytical meth-
ods use idealized mathematical models 
for the imaging system. Typically, these 
techniques consider only the geometry 
and sampling properties of the imaging 
system and ignore details of the system 
physics and measurement noise. These 
reconstruction approaches have been 
used extensively because they require 
modest computation.

Over the past two decades, image re-
construction has evolved from the exclu-
sive use of analytical methods to a wider 
use of model-based approaches that ac-
count for the physics and statistics. Usu-
ally the problems are ill posed, so that 
maximum-likelihood (ML) methods 
would propagate excessive noise from 
the measurements into the reconstruct-
ed image. Using priors or regularizers 
can overcome this limitation. A popular 
approach is to base iterative methods 
on maximum a posteriori (MAP) esti-
mation. MAP estimation encompasses 
1) modeling the system, 2) developing 
signal models to serve as priors, 3) de-
veloping faster optimization algorithms, 
and 4) assessing the quality of the re-
constructed image.

The transition from analytical to it-
erative algorithms took place at widely 
different dates in different modalities. 
In positron emission tomography (PET) 
and single-photon emission computed 
tomography (SPECT), a seminal paper 
on an expectation maximization (EM) 
algorithm in the early 1980s led to more 
than a decade of research before a key ac-
celeration method called ordered subsets 
(OS) (related to incremental gradients in 
the optimization field) helped lead to the 
commercial adoption of OS-EM for clin-
ical PET and SPECT in about 1997, using 
an (unregularized) ML approach. This 
transition provided a dramatic improve-
ment in image quality. Human PET scan-
ners only recently began to provide MAP 
methods clinically using a modification 
of a Gaussian Markov random field prior 
and a convergent OS algorithm.

In X-ray computed tomography 
(CT), iterative image reconstruction first 
became available commercially for the 
CT part of SPECT-CT scanners in about 
2010, using a different OS algorithm 
published a decade earlier. In 2012, the 
first U.S. Food and Drug Administration 
(FDA)-approved iterative MAP method 
targeted at reduced X-ray dose became 
available for clinical CT, building on an 
IEEE Transactions on Signal Process-
ing paper from two decades earlier. This 
approach also uses a modified Gaussian 
MRF to make it edge preserving.

In MRI, researchers studied iterative 
techniques to quantify relaxation param-
eters, reconstruct data from multiple re-
ceive coils, and correct for magnetic field 
inhomogeneities. A turning point was 
the introduction of compressed sensing 
in about 2005, spawning an explosion of 
research that finally led to FDA approval 
of compressed sensing MRI products in 
2017 using combinations of total variation 
regularization and wavelet sparsifying 
transforms. In all of the aforementioned 
examples, more than a decade passed be-
tween the key publication and commercial 
availability of the method!

Commercial MAP techniques use rela-
tive simple priors defined mathematically. 
The emerging research trend is to explore 
signal models that are learned from data. 
In X-ray CT, there are numerous images 
acquired at “normal” X-ray doses from 
which one can learn signal models to use 
later for reconstructing images from low-
dose data. Another data-driven option 
is to learn a sparse signal model during 
image reconstruction, rather than relying 
on training data, called blind or adaptive 
dictionary (or transform) learning. This 
data-driven evolution provides opportu-
nities for signal processing researchers to 
explore signal models that better solve in-
verse problems, particularly from limited 
or noisy data.

One can “unroll the loop” of an itera-
tive reconstruction algorithm and treat it 
as a sequence of processing steps akin to a 
deep neural network and then use data to 
train more aspects of the processing chain. 
Recent conferences have seen an explo-
sion of such methods. There are many 
significant challenges because such algo-
rithms are arguably even more nonlinear 

(and opaque) than the edge-preserving 
regularization techniques used clinically 
today. Can one characterize the “resolu-
tion” and “noise” properties of such algo-
rithms? What is the best training metric: 
MSE or diagnostic image quality? What if 
a patient has significantly different image 
features than those found in the training 
data? How well will a method trained for 
one system configuration (e.g., a certain 
set of coils in MRI or a certain set of an-
gular views and pitch in CT) generalize to 
other configurations? Some experts have 
conjectured that “machine learning will 
transform radiology significantly within 
the next five years” but others point out 
there are significant technical and legal 
challenges. These questions and more 
should provide numerous research op-
portunities for signal processors inter-
ested in inverse problems like medical 
imaging [11].

Open problems in 
graph signal processing
Today’s data is being generated at 
an unprecedented rate from a diversity 
of sources. Examples include profile 
information in social networks, stimuli 
in brain connectivity networks, and traf-
fic flow in city street networks, among 
others. A decade ago, a typical data set 
was supported on a regular lattice; today, 
the story is quite different. Data is sup-
ported on complex and irregular struc-
tures. Often, these structures are modeled 
by graphs, as they are able to describe 
both the structure and the data associ-
ated with that structure. For example, 
in an online social network, a user’s 
profile may contain the user’s date of 
birth, school attended, professional or-
ganizations, and more. Each of these 
attributes can form a subnetwork with 
different properties. Using graphs, we 
want to analyze data supported on such 
complex structures, allowing us to mine 
information from online social networks, 
transportation networks, the power grid, 
and more, in the same context. While 
these are representatives of physical-
world graphs, other graphs may include 
abstract concept networks such as knowl-
edge graphs and correlation graphs.

Data science on graphs has been 
considered from several angles by graph 
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theory, network science, and graph mining, all dealing with 
graph structure. More recently, the area of graph signal pro-
cessing has emerged, formalizing the addition of metadata as 
signals on a graph [4]–[6]. Graph signal processing aims to 
extend classical signal processing tasks and tools to data on 
irregular structures modeled by graph signals (see Figure 1). 
The goal is to gain an understanding of the intrinsic structure 
of the data by using tools well understood on regular struc-
tures, such as filtering and Fourier transforms, and to perform 
tasks such as sampling, restoration, compression, and topol-
ogy learning.

Signal processing on graphs is an active area of research; 
many challenges and opportunities still remain. For example, 
a number of basic concepts in statistical signal processing and 
sampling theory have not yet been entirely extended to graphs 
in a unified way. More advanced challenges include the scale 
of the data, its heterogeneity, distributed analysis and process-
ing, fusing data from different scales and resolutions, and 
processing tensor values defined on nodes. Disparate commu-
nities such as network science, machine learning, and signal 
processing are all currently working on these challenges with 
the tendency to attack such problems either via learning meth-
ods or by building models; an important path for advancing 
this field and dealing effectively with the deluge of data is to 
combine the tools and integrate these different approaches.

Open problems in physical layer 
wireless communications
Wireless communications have been a major driver of signal 
processing research for at least the past three decades, spurred 
by the development of widespread consumer mobile commu-
nications and other applications, which today impact the lives 
of billions of people—indeed, most people alive today. Here 
we focus on research in the physical layer of mobile communi-
cation networks where signal processing has perhaps had the 
greatest impact.

Modern mobile communication networks have been 
through four generations to date, and the fifth generation (5G) 

Professor/Associate Professor/Assistant Professorship in 
the Department of Electrical and Electronic Engineering 

The University 
Established in 2012, the Southern University of Science and 
Technology (SUSTech) is a public institution funded by the municipal 
of Shenzhen, a special economic zone city in China. Shenzhen is a 
major city located in Southern China, situated immediately north of 
Hong Kong Special Administrative Region. As one of China’s major 
gateways to the world, Shenzhen is the country’s fast-growing city 
in the past two decades. The city is the high-tech and manufacturing 
hub of southern China, home to the world’s third-busiest container 
port, and the fourth-busiest airport on the Chinese mainland. A 
picturesque coastal city, Shenzhen is also a popular tourist destination 
and was named one of the world’s 31 must-see tourist destinations 
in 2010 by The New York Times. The Southern University of Science 
and Technology is a pioneer in higher education reform in China. 
The mission of the University is to become a globally recognized 
institution which emphasizes academic excellence and promotes 
innovation, creativity and entrepreneurship. The teaching language 
at SUSTech is bilingual, either English or Putonghua. Set on five 
hundred acres of wooded landscape in the picturesque Nanshan 
(South Mountain) area, the new campus offers an ideal environment 
suitable for learning and research. 

Call for Application
The Southern University of Science and Technology now invites 
applications for the faculty position in the Department of Electrical and 
Electronic Engineering. It is seeking to appoint a number of tenured or 
tenure track positions in all ranks. Candidates with research interests 
in all mainstream fields of electrical and electronic engineering will 
be considered, including but not limited to IC Design, Embedded 
Systems, Internet of Things, VR/AR, Signal and Information 
Processing, Control and Robotics, Big Data, AI, Communication/
Networking, Microelectronics, and Photonics. SUSTech adopts the 
tenure track system, which offers the recruited faculty members a 
clearly defined career path. Candidates should have demonstrated 
excellence in research and a strong commitment to teaching. A 
doctoral degree is required at the time of appointment. Candidates 
for senior positions must have an established record of research, 
and a track-record in securing external funding as PI. As a State-
level innovative city, Shenzhen has chosen independent innovation 
as the dominant strategy for its development. It is home to some of 
China’s most successful high-tech companies, such as Huawei and 
Tencent. As a result, SUSTech considers entrepreneurship is one of 
the main directions of the university, and good starting supports will 
be provided for possible initiatives. SUSTech encourages candidates 
with intention and experience on entrepreneurship to apply. 

Terms & Applications 
To apply, please send curriculum vitae, description of research 
interests and statement on teaching to eehire@sustc.edu.cn. 
SUSTech offers competitive salaries, fringe benefits including medical 
insurance, retirement and housing subsidy, which are among the best 
in China. Salary and rank will commensurate with qualifications and 
experience. Candidates should also arrange for at least three letters 
of recommendation sending directly to the above email account. 
The search will continue until the position is filled. For informal 
discussion about the above posts, please contact Professor Xiaowei 
SUN, Head of Department of Electrical and Electronic Engineering, 
by phone 86-755-88018558 or email: sunxw@sustc.edu.cn.
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FIGURE 1. A graph signal models data (values on the graph nodes) 
supported on complex structures (graph nodes).
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is rapidly emerging. The key enablers of 
the most recent deployed generation of 
mobile networks, the so-called fourth 
generation (4G), have been the develop-
ment of methods to exploit the spatial di-
versity afforded by the wireless medium 
in the forms of multiple-input, multiple 
output (MIMO) antenna systems, coop-
eration, and relaying; the exploitation of 
frequency diversity through the use of 
orthogonal frequency-division multiple 
access signaling; and the development of 
methods to approach link capacity via 
the iterative decoding of turbo or low-
density parity-check codes. These signal 
processing advances have allowed 4G 
networks to meet the challenge of real-
time multimedia communications that 
has been the primary advance of 4G over 
its predecessors.

The emerging generation of mobile 
networks, 5G, presents a number of new 
signal processing challenges. Beyond 
providing adequate capacity and reli-
ability, 5G networks also add the issue 
of energy efficiency, required to support 
several new applications areas. These 
include the so-called Internet of Things 
(IoT), which is envisioned to involve 
orders-of-magnitude more terminals 
than 4G networks in highly densified 
configurations of low-complexity ter-
minals; systems requiring autonomy or 
telecontrol, in which low latency and 
very high reliability are critical; and 
immersive experiences, such as virtual 
reality, which require very high band-
width streaming [7].

These requirements give rise to a 
number of open problems and potential 
solutions. Solutions enabling densifi-
cation and the consequent interference 
management include cloud radio access 
networks, massive MIMO systems, mil-
limeter wave techniques, and transceivers 
that can harvest radio-frequency energy 
from their surroundings. Substantial ca-
pacity enhancements are also needed, 
and some techniques for providing greater 
capacity (in addition to densification of re-
sources) include full duplex transmission 
and nonorthogonal multiple-access tech-
niques, both of which will be enabled by 
sophisticated signal processing. Security 
is another issue in which signal process-
ing has a key role to play; traditionally, 

security has been a higher-layer issue, with 
encryption being a primary mechanism. 
However, with highly dense networks of 
low-complexity terminals connected via 
loosely organized networks, new meth-
ods are needed. Physical layer security 
is such a promising method, which relies 
on signal processing techniques, such as 
coding, beamforming, and signal design. 
Finally, many emerging applications, 
such as autonomous vehicles and factory 
automation, require low-latency, high-reli-
ability communications via short packets. 
Since the existing theory of reliable data 
transmission is largely based on analyses 
in the asymptote of infinite block-length, 
new theories are needed to understand 
the limits of reliable communication in 
this regime. In addition, in applications 
such as autonomous driving, worst-case 
metrics may be more appropriate than the 
standard average-case analysis.

Open problems in speech 
and language processing
Spoken language processing encompasses 
methods and techniques for transforming 
and manipulating speech, text, and a wide 
variety of related symbolic representa-
tions. Examples are speech recognition 
(speech"words), natural language un-
derstanding (words"meaning), natural 
language generation (meaning"words), 
speech synthesis (words"speech), and 
machine translation (words in L1"words 
in L2). Modern applications of spoken 
language processing will typically incor-
porate many if not all of these component 
technologies [8]–[10]. For example, intelli-
gent agents such as Siri and Alexa require 
all of the aforementioned technologies to 
support conversations over a wide range 
of topics in many languages.

Since virtually all spoken language 
processing involves classification and/or 
prediction, modern approaches depend 
heavily on statistical models and ma-
chine learning. A major breakthrough 
in recent years has been the widespread 
deployment of deep learning [9]. The 
ability of neural networks to automati-
cally learn low-level features, the use of 
attention mechanisms to learn which fea-
tures are important, and the flexibility to 
scale parameter sets both in width and 
depth has led to significant performance 

improvements. For example, word er-
ror rates for real-time large vocabulary 
speaker-independent speech recogni-
tion are now routinely below 10%, and 
speech synthesis quality is acceptable 
for most applications.

The renaissance of neural networks 
has also been the catalyst for the devel-
opment of a powerful toolbox of core 
network components (such as deep neu-
ral networks, long short-term memory 
networks, convolutional neural networks, 
and more) and development tools (such as 
TensorFlow, Torch, and others), which al-
low solutions to complex problems to be 
assembled, trained, and deployed quickly 
and at a relatively low cost.

Despite the undoubted progress wit-
nessed over the last decade, there re-
main many challenges. The recognition 
of fluent conversations between human 
speakers and speech in high levels of 
background noise or in the presence of a 
competing talker still falls well short of 
human performance. Our ability to un-
derstand the meaning of natural language 
sentences, especially in the context of past 
interactions and a changing real-world 
environment, remains extremely limited.

Two emerging trends aimed at ad-
dressing some of the challenges are con-
tinuous representations and end-to-end 
training. In particular, there is currently a 
shift away from symbolic representations 
to continuous space representations. An 
already well-established example of this is 
the use of word embeddings. By project-
ing discrete words into a continuous high-
dimensional space, many of the problems 
associated with synonyms, antonyms, 
and rare words are mitigated by the use 
of simple well-behaved distance metrics. 
The extension of embeddings to represent 
whole sentences and conversations enables 
variable-length sequences to be mapped 
into fixed-length vectors that can then be 
manipulated using conventional clas-
sification and prediction models. There is 
also increasing emphasis on end-to-end 
training. Conventional systems are typi-
cally built as a pipeline of processes for 
which each component interface needs 
to be explicitly defined, and training data 
needs to be appropriately labeled at every 
component interface. This is expensive and 
inevitably results in information loss as the 
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signal propagates through the pipeline. By 
treating component interfaces as hidden 
variables, and training end to end, costs are 
reduced and performance increases.

In summary, the extensive use of ma-
chine learning coupled with the avail-
ability of large-scale computing and very 
large data sets have led to a significant 
improvement across all areas of speech 
and language processing. Ultimately, 
however, the real challenge will concern 
our ability to extract and manipulate the 
underlying meaning of word sequences 
and this is an area that has so far re-
mained rather elusive.
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COMMUNITY VOICES
Andres Kwasinski and Min Wu

The goal of the “Community Voices” 
column in IEEE Signal Processing 
Magazine (SPM) is to encourage and 

share reflections from diverse members 
of our community on questions that are 
of interest to many of us. In this article, 
we posed the following question to our 
readers: “After half a century of devel-
opment, some say signal processing is 
already matured in terms of theories and 
techniques, and perhaps would not have a 
new research breakthrough. Others have 
observed the problem of signal processing 
inside (a term that was coined by SPM’s 
then editor-in-chief, Prof. K.J. Ray Liu, 
in his editorial in the September 2004 
issue). What are your thoughts on the 
future of signal processing?” 

As we were shaping the question, 
we were inspired by discussions with 
Prof. Alan Oppenheim of the Massachu-
setts Institute of Technology (MIT) and 
Dr. Thomas A. Baran, who was chairing 
the organizing committee of MIT’s The 
Future of Signal Processing Symposium 
that honored Prof. Oppenheim’s career. 
We hope that you enjoy reading the re-
sponses from our community members 
around the world. These responses were 
selected from the online responses we 
received and have been edited for 
style, length, and clarity. Please let us 
know your ideas for future discussion 
topics by sending your e-mail to Andres 
Kwasinski (axkeec@rit.edu), area editor 
for social media and outreach. 

Ahmed I. Humayun
According to the 
World Health Orga-
nization, health is 
defined as “a state of 
complete physical, 
mental, and social 
well-being, and not 

merely the absence of disease or infir-
mity.” Applications of signal processing 
have brought revolutionary progress in 
both the physical and mental health-
care domain. But social well-being 
still remains a lesser-defined term. We 
live in an era of luxury, where social 
connectivity has turned more digital 
than analog; it has discredited the sen-
sory influence of touch, something that 
could be considered a challenge for 
digital social platforms in the future. 
Social interactions confined within 
quadrilateral screens are not always 
wholesome. Signal processing needs to 
confront the problems related to social 
health, both in the digital domain and 
physical realm, i.e., in workplaces. 
With an overload of data and channels 
all around us, we need a balanced diet 
of information that would properly 
address the social health crisis.

Ahmed I. Humayun (ahmed.imtiaz
.prio@gmail.com) is studying for his 
bachelor’s degree in electrical and elec-
tronic engineering at the Bangladesh 
University of Engineering and Tech-
nology (BUET). He was on the BUET 
team that received an honorable 
mention in the IEEE SP Cup 2017 
competition.

Guoru Ding
Signal processing 
has played an impor-
tant role over the past 
de cades  a nd  wi l l 
continue to contrib-
ute to the develop-
ment of human life. 

The fundamental theories of advanced 
signal processing are key in the future.  
The cross-disciplinary research between 
signal processing and other disciplines 
such as machine learning, data mining, 
and so on, is a trend, among many trends. 

Guoru Ding (dr.guoru.ding@ieee
.org) is an assistant professor at 
Southeast University, Nanjing, China. 

Simona Lohan
What we could actu-
ally say about any 
research f ield on 
Earth—except maybe 
medicine and the 
fields related to the 
human mind—that 

they are mature enough and no huge 
new research breakthroughs are likely, 
this can be misleading, or a question of 
how we define a “breakthrough.” We 
are on the verge of a new digital revolu-
tion, the one in which many tasks, jobs, 
and even human relationships will be 
replaced by robots, drones, and other 
automated devices. Signal processing is 
and will continue to be the core of all 
such future devices, and it is likely that 
this robotization and automation will 
trigger unforeseen challenges that need 

What Is the Future of Signal Processing?
Views across our community  
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to be solved with new signal processing 
approaches and methodologies. 

Whether signal processing will 
remain a tool, per se, or whether it will 
tend to integrate with social sciences 
and human psychology, this is a differ-
ent question, and I answer positively: we 
already talk about in-body communica-
tions, where various nanometer-level 
devices can be implanted in the human 
body, and the human body (and mind) 
will act as the transmission channel, the 
catalyzer, or the receiver of various digi-
talized data. Digital signal processing will 
still play a crucial role in such a scenario, 
but can we talk about a “humanized” or 
“perception-tuned” signal processing? 
Another future trend is that, with the 
advent of global or ubiquitous “Internet of 
Everything,” privacy and security threats 
will increase many folds: a stalker from 
abroad could gain full video access to a 
remote home, or a remotely controlled 
drone (big enough) could even kidnap or 
injure a person. Again, signal process-
ing mechanisms that are in use today for 
solving such privacy and security threats 
are probably not enough in tomorrow’s 
world,  and new avenues of thinking need 
to emerge.

Simona Lohan (elena-simona
.lohan@tut.fi) is an associate profes-
sor at the Tampere University of Tech-
nology, Finland.

Feng Liu
With the development 
of mathematics and 
computing techniques, 
the past few decades 
have shown that signal 
processing, more and 
more, has been con-

sidered as a relatively independent dis-
cipline, which studies the processing of 
waveforms or digits with mathematics. In 
turn, the signal processing discipline has 
also promoted the development of math-
ematics and computing techniques. As 
the computing techniques further de -
velop, especially with graphic processing 
units, signal processing techniques such 
as deep neural networks become practi-
cal, which act more as “black boxes” but 
effectively achieve our complex goal. The 
future direction of signal processing 

depends on the social need and the techni-
cal context.

Admittedly, mathematics plays 
today, and will play in the near future, a 
dominating and definitely positive role 
in the development of signal process-
ing, with its results illuminating its path. 
However, it does not contradict with 
the notion that signal processing will 
advance with and inside the social need 
and technical context in the long run. 
Also, as to the old philosophy, a mer-
ited deed is influential but invisible like 
rain in the early spring: “sneaks into the 
tranquil night with the breeze and nur-
tures every spring life spontaneously 
and silently.”

Feng Liu (liuf@nankai.edu.cn) is a 
lecturer at Nankai University, Tianjin, 
China.

David A. Trejo Pizzo
Researchers have 
intensively investigat-
ed deep-learning algo-
r ithms for solving 
challenging problems 
in many areas such as 
image classification, 

speech recognition, signal processing, 
and natural language processing. In my 
job, I use deep-learning algorithms and 
signal processing to address new chal-
lenges in energy efficiency. Understand-
ing the behavior of consumers and the 
trends in economy are essential for a 
country—with signal processing we can 
address this challenge better by taking 
noise out of market signals and huge 
databases with information about the 
energy consumption. Policy makers 
now will have a new tool that combines 
deep learning and signal processing to 
make better decisions. This means a 
breakthrough for engineers, where they 
become the next generation of policy 
makers by solving societal problems. 
Signal processing meets sociology by 
listening to the signals and erasing the 
outliers that are not clear with other 
tools. This joint venture of social scien-
tists and engineers is a key to make 
smart cities a reality.

David A. Trejo Pizzo (dtrejopizzo@
ieee.org) is a professor, Universidad del 
CEMA, Buenos Aires, Argentina. 

Lav R. Varshney
I believe it is folly to 
doubt the creativity 
a nd ha rd  work of 
signal processing re -
searchers: there are 
surely new break-
throughs to come. 

Whether due to new technologies leading 
to new research questions, internal 
knowledge shortcomings being filled, or 
new scientific phenomena requiring 
explanation, signal processing research-
ers will develop theories and techniques 
to address the challenges of the future.

Lav R . Varshney (varshney@
illinois.edu) is an assistant professor 
at the University of Illinois at Urbana-
Champaign.

Ajay V. Deshmukh
Signal processing, 
has seen much better 
times in its past and 
is continuing in the 
present. More and 
more, the future of 
signal processing is 

looking very bright and long-lasting in 
time and in other dimensions—long-
lasting because any information in  
nature and wherever it is available could 
be looked at as a signal. Signal genesis 
and its association with physical and 
other systems is also always going to be 
there. Therefore, one has to be optimis-
tic about the future of signals as well as 
signal processing. 

Although signal processing could be 
felt by many of us to be a mature topic, just 
because it has been offered as a semes-
ter-wide course many times across the 
globe, it is not the complete story. There 
are potential areas for novel advances in 
theory as well as practice. In fact, signal 
processing has brought mathematics into 
reality and connected it not only to phys-
ics but many other areas, for example, in 
engineering, medicine, biology, and agri-
culture. There are challenges, say, in the 
next 50 years, to provide signal process-
ing solutions to industry problems. Some 
of the future key issues would be to put 
signals and systems together with other 
domains, nonlinear analysis would pick 
up, not only time but other dimensions 
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would be important, putting intelligence 
in systems, addressing diversified appli-
cations like safety, security, food, travel, 
water, and similar resources including 
those required in medicine, agriculture, 
automotive, astronomy and astrophysics, 
and so on. The context, would, how-
ever, change.

Ajay V. Deshmukh (ajay.deshmukh@
rediffmail.com) is a principal at the 
Bajaj Institute of Technology, Wardha, 
India.  

Volker Lohweg
Signal processing is, 
of course, in a mature 
state. Many concepts 
and theories are well 
established. Howev-
er, I believe that sig-
nal processing has 

more to offer in the next ten to 20 years. 
Two aspects: sensors will be the key 
technology drivers and key enablers for 
many applications, but signal process-
ing has to be on board because of data 
volume and necessary speed. These 
facts will definitely create new signal 
processing concepts. 

Big data, which turn into smart data, 
have to cope with speed in the context of 
machine learning, classification, deci-
sion making, etc. Here we will also see 
new concepts and maybe new theories 
in the coming years.

Volker Lohweg(volker.lohweg@hs-owl
.de) is a professor at the Institute of Indus-
trial IT, Germany.

Abdelhak M. Zoubir
Signal processing will 
continue to g r ow. 
There are many chal-
lenges in real-l i fe 
applications where 
signal processing is 
much needed. These 

areas include renewable energy, car 
engine monitoring, autonomous driving, 
synthetic aperture sonar, psychology, bio-
medical engineering, big data analytics, 
and synthetic biology, to mention a few. 
My view is that there is little room for 
theoretical breakthroughs in signal pro-
cessing. This does not mean that there 
will not be emerging areas with great 

potential for the advancement of knowl-
edge in signal processing and solving 
the many unanswered theoretical ques-
tions, such as in adaptation and learning 
over sensor networks. 

The future of signal processing and 
its success lies, in my view, in answering 
questions encountered in new application 
areas, for example, cultural heritage, and 
there is a trend to moving to new applica-
tion areas outside the electrical engineer-
ing field. Indeed, many of my colleagues 
share this view with me, and we are put-
ting much effort into solving new prob-
lems. In short, the future and potential 
of innovation in signal processing lies in 
interdisciplinary research (see [1]). 

Abdelhak M. Zoubir (zoubir@ieee.
org) is a professor at Technische Univer-
sität Darmstadt, Germany. He served as 
editor-in-chief of IEEE Signal Process-
ing Magazine from 2012 to 2014.

Kush R. Varshney
Signal processing the-
ory and methods are 
increasingly applica-
ble to data science 
applications outside in 
society. With th is 
emergence in socio-

technical (not simply technical) solutions, 
new problems begging for research 
breakthroughs are popping up. We have 
started investigating some of these prob-
lems through the IBM Science for Social 
Good initiative, but we are just at the tip 
of the iceberg.

Kush R. Varshney(krvarshn@us.ibm
.com) is a member of research staff and 
the manager of Data Science Theory and 
Algorithms at the IBM Thomas J. Wat-
son Research Center, Yorktown Heights, 
New York.

Muhammad Zubair Ahmad
Signal processing 
has historically been 
associated with the 
communication sys-
tems and one-dimen-
sional signals. The 
rapidly developing 

field of machine learning has been 
perceived as the alternative to signal 
processing. Evidence of this is the 

discussion held at Technion in 2014, 
under the title “Is Deep Learning the 
Final Frontier and the End of Signal Pro-
cessing?” The computer science commu-
nity and industry has successfully 
marketed machine learning as an alterna-
tive to signal processing. A major factor 
contributing to this is the fear of signal 
processing among undergraduates, which 
I have found common across countries. 
The research community at large has 
learned to fear signal processing and has 
been told that machine learning and data 
processing is a skill that can be acquired 
with minimal training.

Thus, I would call for a rebranding of 
signal processing as a paradigm funda-
mental to industrial applications and the 
modeling of physical reality. Anything 
ranging from the individual systems of the 
human body to the machines and automata 
developed by the humans can be modeled 
using this framework. Different modeling 
strategies based on statistical learning the-
ory, analysis, differential geometry, topol-
ogy, and group theory must be generalized 
under this universal framework.

The signal processing community 
must come up with a method of teach-
ing that is alluring to young students. We 
need to convince young (as well as old) 
minds that the modern trend of sacrific-
ing understanding for practicality may be 
economically good but is directly con-
flicting with the driving principles of the 
scientific community.

Muhammad Zubair Ahmad (ahmad
mz@myumanitoba.ca) is a Ph.D. degree 
candidate at the University of Manitoba, 
Canada.

Thomas A. Baran
This question reminds 
me of a favorite say-
ing of my Ph.D. advisor, 
Prof. Alan Oppen-
heim: “There will al -
ways be signals, they 
will always need pro-

cessing, and there will always be new 
applications, new mathematics, and new 
implementation technologies.”

In October, we held a symposium titled 
“The Future of Signal Processing” at the 

(continued on page 25)
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Optical imaging, a medical technique 
that’s used to obtain detailed images 
of organs, tissues, cells, and mole-

cules in the presence of visible light, is an 
emerging technology with the potential 
to enhance patient treatment, diagnosis,  
and disease prevention.

Offering numerous advantages over 
radiological imaging techniques, opti-
cal imaging uses nonionizing radiation 
to reduce a patient’s radiation exposure, 
thereby allowing for more frequent stud-
ies over time. Optical imaging also has 
the ability to differentiate suspicious soft 
tissues from native soft tissues as well 
as tissues labeled with either exogenous 
or endogenous contrast media. Scatter-
ing differences and photon absorption 
provide specific tissue contrasts and 
potential capabilities for studying func-
tional and molecular level activities. Opti-
cal imaging is a multimodal and highly 
responsive imaging technique that can 
be easily combined with other imaging 
approaches to create complete multidi-
mensional views of objects and areas 
of interest.

Signal processing is now helping to 
make optical imaging even more useful 
and versatile, allowing more detailed 
images to be captured and expanding 
the technology’s use into new patient 
treatment and medical research areas.

Identifying cancer biomarkers
At the University of Arizona, Prof. Jen-
nifer Barton is using advanced optical 

imaging to identify imaging biomark-
ers of ovarian cancer, one of the most 
deadly gynecological cancers. The proj-
ect’s goal is to extend lives while pre-
serving quality of life. “Right now, there 
is no effective ovarian cancer screening 
technology that is useful for all women,” 
says Barton, a professor of biomedical 
engineering and interim director of the 
BIO5 Institute.

When detected early, ovarian cancer 
can often be treated effectively with sur-
gery and chemotherapy. Yet, given the 
lack of good tools for catching it at its 
early stages, fewer than half of women 
diagnosed survive five years.

Barton is collaborating with research-
ers in the university’s departments 
of physiology, medical imaging, 
and obstetrics and gynecology to iden-
tify imaging biomarkers, subtle changes 
in tissue that can be detected by sensi-
tive optical methods, for ovarian cancer 
in mice. Barton’s team has developed 
a tiny, highly flexible falloposcope—a 
wand-like imaging device that uses high-
resolution optical imaging techniques—
to obtain in vivo images of ovaries and 
fallopian tubes (Figure 1). By analyzing 
physical and biochemical changes over 
time to create a road map of the changes 
that happen during ovarian cancer, the 
researchers hope to be able to detect can-
cer in the fallopian tubes, where many 
researchers believe it originates.

“My optical imaging work utilizes 
two modalities: optical coherence 
tomography (OCT) and multispectral 
fluorescence imaging (MFI),” Barton 
says. OCT measures the interference of 

broadband light from a reference mirror 
with light from the tissue. “The reflectiv-
ity of tissue as a function of depth is then 
encoded in the interference frequency, 
where that interference is measured as a 
function of wavelength,” she notes. “In 
my current setup, we use a spectrometer 
detector and measure the spatial fre-
quency modulations on a linear charge-
coupled device (CCD) array.”

Resampling is necessary to convert 
from a measured function of wave-
length to a function of wavenumber. 
Then a Fourier transform is performed 
to obtain the reflectivity as a function of 
depth. “Each measurement off the lin-
ear CCD array provides one depth scan, 
or column of a cross-sectional image,” 
Barton says. “We have to scan the beam 
in one or two dimensions to obtain a 
2-D or 3-D image.”

For MFI, the researchers have to 
control which excitation wavelength is 
used to illuminate the tissue. “In our 
falloposcope, lasers are coupled into a 
single high numerical aperture multi-
mode fiber that directs light to the tis-
sue,” Barton says. An imaging fiber 
bundle collects the reflected or fluores-
cence light, which is measured with a 
high-sensitivity CCD camera. A filter 
wheel in front of the camera selects out 
reflected light or fluorescence light at 
a specific wavelength range. “We need 
to adjust gain and exposure time of the 
CCD as the signals in reflected light are 
orders of magnitude higher than fluo-
rescence light,” she notes.

Frame grabbers are typically used 
for the OCT linear CCD array, the MFI 

Medical Optical Imaging
Signal processing leads to new methods of detecting life-threatening situations

Digital Object Identifier 10.1109/MSP.2017.2743118
Date of publication: 13 November 2017
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CCD camera, and a multipurpose data 
acquisition (DAQ) board to generate 
control signals for scanning or excitation 
of a source/filter wheel and to generate 
any needed synchronization signals. “It 
is always a struggle to increase signal-
to-noise, dynamic range, and contrast in 
imaging systems,” Barton says. These 
attributes affect how fast—and deep—
one can image-in OCT. “We are limited 
in the amount of light power we can 
put on the tissue, so signal processing 
techniques that efficiently extract the 
signal from noise, background, and 
unwanted artifacts are always important,” 
she explains.

“In the past, systems were slow 
enough that one didn’t have to pay too 
much attention to data acquisition and 
signal processing,” Barton observes. 
“Nowadays, with linear CCDs running 
at 100-KHz frame rates and 2k pixels, 
there needs to be more careful consider-
ation of hardware and software process-
ing,” she notes. “This is not extraordinary 
as compared to some signal processing 
applications, but it means that imaging 
teams have to have new skill sets.”

The team is now seeking additional 
funding to build hospital-ready fallopo-
scopes so that research can be conduct-
ed on human subjects. Barton is hopeful 
that the technology will lead to an earlier 
and more accurate diagnosis of ovarian 

cancer. “Our technique can either serve 
as a primary screening method, or as a 
follow-up to other tests,” she says.

Imaging arteries
Plaque accumulating inside artery walls 
can cause arteries to thicken and harden. 
When a plaque accumulation ruptures, 
it can restrict or even block blood flow, 
leading to a heart attack, stroke, or other 
serious medical issues. Accurate diag-
noses are limited by the fact that there 
are no imaging tools available to con-
sistently and accurately detect plaque at 
risk of rupturing in living patients.

An enhanced imaging technology—
intravascular photoacoustic (IVPA) 
imaging—can generate three-dimen-
sional images of artery interiors, poten-
tially helping physicians to diagnose 
plaques on the verge of rupturing. The 
drawback is that developers have so far 
struggled to develop imaging instru-
ments that are capable of illuminating 
arteries to a useful depth and at fast 
enough speeds while also meeting clini-
cal requirements.

Now, using signal processing and 
other advanced tools and approaches, a 
team of researchers from Purdue Uni-
versity, the Indiana University School 
of Medicine, and the Shanghai Insti-
tute of Optics and Fine Mechanics 
has developed a new type of collinear 

catheter (Figure 2), featuring a design 
that promises to greatly improve the 
sensit ivity and imaging depth of 
IVPA imaging.

“Our photoacoustic catheter probe 
integrates both photoacoustic and 
ultrasound modalities within a very 
tiny space—1 mm in diameter in our 
most updated version,” says Yingchun 
Cao, a postdoctoral fellow working 
in the research group led by Prof. Ji-
Xin Cheng of Purdue University. “The 
most important feature of our cath-
eter is that we used a collinear design 
for the optical-acoustic wave overlap 
to greatly improve the imaging sen-
sitivity and depth,” notes Cao, who is 
the lead author of a research paper on 
the project.

IVPA imaging functions by measur-
ing ultrasound signals from molecules 
exposed to a light beam from a fast-
pulsing laser. The new collinear probe 
allows the optical beam and sound wave 
to share the same path throughout the 
imaging process, rather than cross-
overlapping as in previous designs. The 
approach increases the instrument’s 
sensitivity as well as the imaging depth, 
enabling high-quality IVPA imaging 
of a human coronary artery over 6 mm 
in depth from the lumen, the normally 
open channel within arteries, to the 
perivascular fat that surrounds the out-
side of most arteries and veins. “This 
research can be used … to help the doc-
tor for accurate diagnosis of plaque vul-
nerability and even for imaging-guided 
intravascular surgery or drug delivery,” 
Cao says.

“The unique advantage of our re-
search,” Cao says, “is we can provide 
quantitative information of lipid deposit 
within the artery wall, including the 
size and depth of lipid core with suf-
ficient spatial resolution. The coregis-
tered ultrasound image integrated in the 
technique can provide morphological 
structure of the artery for accurate posi-
tion identification of lipid deposit. “In 
our most recent research, we can accu-
rately distinguish different lipid com-
positions by a self-developed numerical 
approach,” Cao notes.

Signal processing is an important part 
of the research. “A high-quality real-time 

FIGURE 1. University of Arizona Prof. Jennifer Barton holding a highly flexible falloposcope her 
research team has developed to image the biomarkers of ovarian cancer, one of the most deadly 
gynecological cancers.
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displayed image at video-rate or quasi-
video-rate speed requires a number of 
advanced signal processing techniques, 
including noise shielding,” Cao says. “In 
our current system we use a preampli-
fication device to boost the signal, data 
sectioning to select the effective data we 
need, a programmable sampling rate to 
reduce the data amount, a median filter 
to remove the random noise speckle and 
a bandpass filter to remove other noise,” 
Cao says. The team also uses a Hilbert 
transform to obtain amplitude informa-
tion, polar coordinate projection for fast 
coordinate transformation, logarithmic 
compression and Tagged Image File For-
mat (TIFF) imaging compression to save 
storage space.

The biggest signal processing-relat-
ed challenges facing the researchers are 
enabling effective noise filtering, fast 
image display, and saving image data to 
a hard disk, if necessary. “Our imaging 
system can work at a high frame rate, 
say, 16 frames per second,” Cao says. 
“That means in every second a huge 
amount of data will be generated and 
saved to a computer.”

The biggest overall technical challenge 
is the contradiction between catheter size 

and sensitivity. The current diameter of 1 
mm is for the bare catheter without a protec-
tive sheath. After integrating the sheath, the 
diameter is around 1.6 mm, which is slight-
ly large for a coronary application. The 
team is now working to shrink the diameter 
of the catheter, including a sheath, down to 
~1 mm to meet the clinical requirement. 
“The further decrease of the catheter size 
will result in both apparent photoacoustic 
and ultrasound loss, 
because both of these 
waves are reflected by 
a micro-mirror imbed-
ded in the catheter,” 
Cao says. Another 
challenge facing the 
researchers is the opti-
cal wave scattering that 
occurs when the signal 
travels through blood, 
which greatly reduces 
light intensity and photoacoustic sensitiv-
ity during in vivo applications.

“I believe this technology is very 
promising for future clinical diagnosis 
of human coronary artery disease,” Cao 
says, noting that the research is still at a 
very early stage. “But we are confident 
to overcome these technical problems 

and, hopefully, it can go to clinic in the 
next few years,” he adds.

Peering inside cells
Building on research that won an in-
ternational team the 2014 Nobel Prize 
in Chemistry, Northwestern University 
engineers say they have developed an 
improved version of a superresolution 
fluorescence microscopy technique that 

makes it possible to 
study complex molec-
ular processes in cells.

The new optical 
imaging technology—
spectroscopic photon 
localization micros-
copy (SPLM)—is sim-
pler and less expen-
sive than its two pre-
decessors while also 
offering four times 

that resolution, claim the researchers. 
Like the earlier technologies, SPLM is 
designed to control how fluorescence 
molecules emit, ensuring that no spatially 
adjacent molecules emit simultaneously. 
As a result, each random fluorescence 
emission can be considered to very likely 
to come from a single molecule. Based 

FIGURE 2. A new catheter probe, developed by researchers at Purdue University, the Indiana University School of Medicine, and the Shanghai Institute 
of Optics and Fine Mechanics, can generate three-dimensional images of artery interiors, potentially helping physicians to diagnose plaque on the 
verge of rupturing. (a) The main components of the collinear catheter before assembly. (b) The assembled catheter probe. (c) A zoomed-in view of the 
catheter tip shows the collinear overlap between optical and ultrasonic waves. (d) The fabricated 1.6-mm catheter probe and the detailed structure of 
the catheter tip (inset). 
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The biggest signal 
processing-related
challenges facing the 
researchers are enabling 
effective noise filtering, 
fast image display, and 
saving image data to a 
hard disk, if necessary.
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on this assumption, only the centers of 
the detected individual molecular emis-
sions are extracted and stored in each 
acquisition. This process is then repeated 
thousands of times to accumulate all the 
“emission centers” into a final image. The 
spatial resolution is proportional to  the 
number of photons in each emission.

SPLM brings, for the first time, spec-
troscopic analysis to photon localiza-
tion microscopy, allowing researchers to 
image multiple molecular labels simul-
taneously. The emission spectra of these 
molecular labels do not have to be signifi-
cantly different and, in fact, can be largely 
overlapping. SPLM can analyze the full 
profile of each emission spectrum to dis-
tinguish molecular labels, numerically 
improving spatial resolution by com-
bining photons from different imaging 
frames. Additionally, SPLM allows the 
imaging of multiple molecules, such 
as DNA, using their intrinsic fluores-
cence emissions.

“Our contribution to this technology is 
that we add an additional spectroscopic 
imaging capability to photon localiza-
tion,” says Hao F. Zhang, professor of 
biomedical engineering in Northwest-
ern’s McCormick School of Engineer-
ing (Figure 3). “The earlier technologies 
cannot distinguish wavelength differ-
ences from those emissions.”

To solve this deficiency, the research-
ers needed to design molecular labels 
with desired, separated emission spectra 
and use optical filters to separate photon 

emissions with different wavelengths. 
One technical constraint the team faced 
is the limited number of filters that can be 
incorporated into a single system, which 
restricts the number of molecules that 
can be simultaneously imaged. Addition-
ally, spatial resolution cannot be further 
improved once a particular molecular 
label has been selected. “We added a 
specially designed optical grating to the 
detecting optical path so that both the 
intensity of emitted photons and their 
associated optical spectra are detected at 
the same time,” Zhang says.

Optical grating is an optical disper-
sive component. “When light passes 
through or is reflected by an optical grat-
ing, two beams will be generated simul-
taneously due to multiple interference,” 
Zhang says. One beam, referred to as the 
zeroth-order diffraction beam, discloses 
the incident beam’s intensity. The second 
beam, referred to as the first-order dif-
fraction beam, reveals the optical spec-
trum. “We detect both the zeroth- and 
first-order beams using the same high-
sensitivity array detector to obtain the 
molecular location and its emission spec-
trum simultaneously,” Zhang explains. 
“Because no optical filter is used in the 
detection, and the complete profile of 
photon emission is detected, the num-
ber of molecular contrasts is, in prin-
ciple, unlimited.” Additionally, based 
on the individual emission spectrum, 
the system can combine imaging frames 
to numerically increase the number of 

photons for localization, which improves 
spatial resolution.

Signal processing plays a critical role 
in building SPLM’s high-quality images. 
“For example, during the photon localiza-
tion process, we need to find the best way 
to fit the point spread function of each 
photon emission,” Zhang says. “To make 
individual emissions recognizable among 
different camera frames, we needed to 
design pattern recognition algorithms to 
identify optical spectral features among 
thousands of frames and determine 
whether they are from the same single 
molecule or not.”

SPLM uses a high-sensitivity array 
photon detector to capture two images 
at different regions of the array detec-
tion simultaneously. The photo detector 
has an internal amplification capabil-
ity. Each single frame acquisition takes 
about 10 ms, and several thousand such 
single frames may be generated during a 
single session. “Once all these frames are 
acquired and stored, we identify the cen-
ter of each single-molecular emission and 
its associate optical spectrum,” Zhang 
says. “We applied sophisticated signal 
conditioning operations to, for example, 
reduce background noise and remove 
detector dark current.” Gaussian fitting 
provides the emission center and associ-
ated optical spectrum.

Zhang says the signal processing 
used in SPLM is far more comprehen-
sive than what’s currently available in the 
field. “The most unique part is that our 
method takes advantage of the optical 
spectrum of all single-molecular emis-
sions, besides their locations, into con-
sideration,” he says. “As a result, we are 
not constrained by the limited number of 
detection channels and pseudo coloring; 
we know the full spectra of all the detect-
ed molecules. There are no alternative 
approaches because “the optical spectra 
information is undetectable otherwise,” 
he adds. Zhang says the team is devel-
oping an open-source image processing 
package for SPLM.

Author
John Edwards (jedwards@johnedwards 
media.com) is a technolgy writer based in 
the Phoenix, Arizona, area.

SP

FIGURE 3. Northwestern University Prof. Hao Zhang says his research team has developed an 
improved version of a superresolution fluorescence microscopy technique that’s used to study 
molecular processes in living cells. 
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READER’S CHOICE

1053-5888/17©2017IEEE

Top Downloads in IEEE Xplore

E ach “Reader’s Choice” column fo -
cuses on a different publication of 
the IEEE Signal Processing Soci-

ety (SPS). This month we are high-
lighting articles featured at the IEEE 
International Conference on Image 
Processing (ICIP).

The ICIP, sponsored by the IEEE 
SPS, is the premier forum for the pre-
sentation of technological advances 
and research results in the fields of 
theoretical, experimental, and applied 
image and video processing. 

 This issue’s “Reader’s Choice” col-
umn lists the top 15 articles from ICIP 
2014, ICIP 2015, and ICIP 2016, indi-
cated by the year listed after the 
abstract, that were the most down-
loaded from Ja  nuary 2015 to June 
2017. Please send your suggestions and 
comments on this column to Associ-
ate Editor Changshui Zhang (zcs@
mail.tsinghua.edu.cn).

Hand Gesture Recognition with 
Leap Motion and Kinect Devices
Marin, G.; Dominio, F.; Zanuttigh, P.
T his paper proposes a novel hand ges-
ture recognition scheme explicitly tar-
geted to leap motion data. An adhoc 
feature set based on the positions and 
orientation of the fingertips is fed into 
a multiclass support vector machine 
classifier to recognize the performed 
gestures. A set of features is also ex -

tracted from the depth computed from 
the Kinect and combined with the leap 
motion ones to improve the recogni-
tion performance.

 2014

Local Binary Pattern Network: 
A Deep Learning Approach 
for Face Recognition
Xi, M.; Chen, L.; Polajnar, D.; 
Tong, W. 
I n this paper, a novel unsupervised 
deep-learning-based methodology, 
named local binary pattern network
(LBPNet), is proposed to efficiently 
extract and compare high-level 
overcomplete features in a multilayer 

 hierarchy. The LBPNet retains the same 
topology of the convolutional neural 
network, whereas the trainable kernels 
are replaced by the off-the-shelf com-
puter vision descriptor (i.e., LBP).

 2016 

Road Crack Detection Using Deep 
Convolutional Neural Network
Zhang, L.; Yang, F.; Zhang, Y.D.; 
Zhu, Y.J. 
A deep-learning-based method for 
crack detection is proposed in this paper. 
A supervised deep convolutional neural 
network is trained to classify each image 
patch in the collected  images.

 2016 
Digital Object Identifier 10.1109/MSP.2017.2743111
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A Deep Neural Network 
for Image Quality Assessment
Bosse, S.; Maniry, D.; Wiegand, T.; 
Samek, W.
This paper presents a no-reference 
image quality assessment method 
based on a deep convolutional neural 
network (CNN). The CNN takes un -
preprocessed image patches as an 
input and estimates the quality without 
employing any domain knowledge. By 
that, features and natural scene statis-
tics are learned purely data driven and 
combined with pooling and regression 
in one framework.

2016

Fast Multidimensional Image 
Processing with OpenCL
Oliveira Dantas, D.; Danilo Passos Leal, H.; 
Oliveira Barros Sousa, D.
VisionGL is an open-source library 
that provides a set of image processing 
functions and can help the program-
mer by automatically generating code. 
The objective of this work is to aug-
ment VisionGL by adding multidimen-
sional image processing support with 
OpenCL for high performance through 
use of graphic processing units.

2016

Dimensionality Reduction 
of Brain Imaging Data Using Graph 
Signal Processing
Rui, L.; Nejati, H.; Cheung, N.-M.
This paper presents a new dimension-
ality reduction method based on the 
recent graph signal processing theory 
for the task of classifying the brain 
imaging signals recording the cortical 
activities in response to visual stimuli. 
Authors propose using the resting-state 
measurements (i.e., before onset of the 
stimulus) of the subjects to build a 
connectivity graph. The graph Lapla-
cian and graph-based filtering are then 
applied to learn the low-dimensional 
linear subspace for the task-state 
measurements (i.e., after onset of 
the stimulus).

2016

Moving Object Segmentation 
Using Depth and Optical Flow 
in Car Driving Sequences
Kao, J.-Y.; Tian, D.; Mansour, H.; 
Vetro, A.; Ortega, A.
In this paper, based on an analysis of 
motion vanishing points of the scene and 
estimated depth, a geometric model that 
relates extracted two-dimensional (2-D) 
motion to a three-dimensional (3-D) 
motion field relative to the camera is 

derived. A constrained optimization 
problem that considers group sparsity is 
formulated to recover the 3-D motion 
field from the 2-D motion. The recovered 
3-D motion field is then clustered to pro-
vide the segmentation of moving objects.

2016

ORB-SLAM Map Initialization 
Improvement Using Depth
Fujimoto, S.; Hu, Z.; Chapuis, R.; 
Aufrère, R.
Map initialization and scale ambiguity 
are well-known challenging problems 
for visual simultaneous  localiza-
tion and mapping. In this paper, a trian-
gulation is used on red, green, and blue 
feature points for getting three-dimen-
sional points from out of the limited 
area in depth. The authors combined 
both advantages of triangulation and 
depth to improve the performance of 
robustness to initialization and tracking. 

2016

Deep Learning Network for Blind 
Image Quality Assessment
Gu, K.; Zhai, G.; Yang, X.; Zhang, W.
The authors in this paper introduce a 
new deep-learning-based image quality 
index (DIQI) for blind quality assess-
ment. Extensive studies are conducted 
on the new TID2013 database and con-
firm the effectiveness of their DIQI 
relative to classical full-reference and 
state-of-the-art reduced- and no-refer-
ence IQA approaches.

2014

Depth Augmented Stereo 
Panorama for Cinematic Virtual 
Reality with Focus Cues
Thatte, J.; Boin, J.-B.; Lakshman, H.; 
Wetzstein, G.; Girod, B.
Cinematic virtual reality aims to provide 
immersive visual experiences of real-
world scenes on head-mounted displays. 
The authors propose a new content re -
presentation, depth augmented stereo 
panorama, which permits generating 
light fields across the observer’s pupils, 
achieving an order of magnitude reduc-
tion in data requirements compared to the 
existing techniques. 

2016
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ICIP 2016 Competition on Mobile 
Ocular Biometric Recognition
Rattani, A.; Derakhshani, R.; 
Saripalle, S.K; Gottemukkula, V.
The aim of this competition is to eval-
uate and compare the performance of 
mobile ocular biometric recognition 
schemes in visible light on a large 
scale database (VISOB Data Set ICIP 
2016 Challenge Version) using stan-
dard evaluation methods. Four differ-
ent teams from universities across the 
world participated in this competition, 
submitting five algorithms altogether. 
The best results were obtained by a 
team from Norwegian Biometrics Lab-
oratory (NTNU, Norway).

2016

Semantic Context and Depth-
Aware Object Proposal Generation
Zhang, H.; He, X.; Porikli, F.; Kneip, L. 
This paper presents a context-aware 
object proposal generation method for 
stereo images. The authors propose to 
incorporate additional geometric and 

high-level semantic context informa-
tion into the proposal generation.

2016

Super-Resolution of Compressed 
Videos Using Convolutional 
Neural Networks
Kappeler, A.; Yoo, S.; Dai, Q.; 
Katsaggelos, A.K.
In this paper, for the problem of com-
pressed video superresolution, the 
authors propose a CNN that is trained on 
both the spatial and the temporal di  men-
sions of compressed videos to enhance 
their spatial resolution. Consecutive 
frames are motion compensated and used 
as input to a CNN that provides superre-
solved video frames as output.  

2016

Classification of Hyperspectral 
Image Based on Deep Belief 
Networks
Li, T.; Zhang, J.; Zhang, Y.
In this paper, deep-learning frameworks, 
the restricted Boltzmann machine 

model, and its deep structure deep belief 
networks are introduced in hyperspec-
tral image processing as the feature 
extraction and classification approach.

2014

Image Character Recognition 
Using Deep Convolutional Neural 
Network Learned from 
Different Languages
Bai, J.; Chen, Z.; Feng, B.; Xu, B.
This paper proposes a shared-hidden-
layer deep convolutional neural net-
work (SHL-CNN) for image character 
recognition. In SHL-CNN, the hidden 
layers are made common across char-
acters from different languages, per-
forming a universal feature extraction 
process that aims at learning common 
character traits existing in different 
languages, such as strokes, while the 
final softmax layer is made language 
dependent, trained based on characters 
from the destination language only. 

2014
SP

Steve Young (sjy@eng.cam.ac.uk) is 
a professor of information engineering at 
the University of Cambridge, United 
Kingdom, and a senior member of techni-
cal staff at Apple. His main research inter-
ests lie in the area of statistical spoken 
language systems, including speech 
recognition, speech synthesis, and dialog 
management. He is the recipient of a 
number of awards including an IEEE 
Signal Processing Society Technical 
Achievement Award and the IEEE James 
L. Flanagan Speech and Audio Pro-
cessing Award. He is a Fellow of the 
IEEE and the U.K. Royal Academy of 
Engineering. In addition to his academic 
career, he has also founded a number of 
successful start-ups in the speech technol-
ogy area.

References
[1] L. Deng and D. Yu, “Deep learning: Methods and 
applications,” in Foundations and Trends in Signal 
Processing Series. Boston, MA: NOW Publishers, 2014.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep 
Learning. Cambridge, MA: MIT Press, 2016.

[3] L. Deng and X. Li, “Machine learning paradigms 
for speech recognition: An overview,” IEEE Trans. 
Audio, Speech, Lang. Process., vol. 21, pp. 1060–
1089, May 2013.

[4] D. I. Shuman, S. K. Narang, P. Frossard, A.
Ortega, and P. Vandergheynst, “The emerging field 
of signal processing on graphs: Extending high 
dimensional data analysis to networks and other irreg-
ular domains,” IEEE Signal Process. Mag., vol. 30,
pp. 83–98, May 2013.

[5] A. Sandryhaila and J. M. F. Moura, “Big data pro-
cessing with signal processing on graphs,” IEEE Signal 
Process. Mag., vol. 31, no. 5, pp. 80–90, Sept. 2014.

[6] S. Chen, R. Varma, A. Sandryhaila, and J.
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FROM THE GUEST EDITORS
Fatih Porikli, Shiguang Shan, Cees Snoek, 

Rahul Sukthankar, and Xiaogang Wang

In the past decade, there has been a trans-
formative and permanent revolution in 
computer vision cultivated by the rein-

vigorated adoption of deep learning for 
visual understanding tasks. Driven by the 
increasing availability of large annotated 
data sets, efficient training techniques, and 
faster computational platforms, deep-
learning-based solutions have been pro-
gressively employed in a broader 
spectrum of applications from image clas-
sification to activity recognition.

Deep learning, in general, refers to 
a range of artificial neural networks that 
consist of multiple layers, mimicking the 
structure and cognitive process of the 
human brain. Instead of relying on hand-
crafted features, they allow the acquisition 
of knowledge directly from data. They 
regress intricate objective functions in a 
nested hierarchy, where more sophisti-
cated representations with larger receptive 
fields computed in terms of less abstract 
ones with localized supports. Deep learn-
ing also makes it possible to incorporate 
explicit domain knowledge and replace 
a large variety of conventional algorith-
mic blocks with trainable differentiable 
modules. These all give deep learning an 
exceptional power and flexibility in mod-
eling the relationship between the input 
data and target output.

Efforts are now shifting toward 
the remaining challenges. For instance, 
the majority of current methods have 

been designed to solve supervised learn-
ing problems where data comes with its 
labeled attributes and how to reliably 
apply deep learning to unsupervised set-
tings in a similar degree of success is an 
active area of research. Similarly, recent 
efforts aim at working with small data, 
focusing on how to take advantage of large 
quantities of unlabeled examples as well as 
with a few labeled samples. 

Another area where deep agents may 
play a significant role is to integrate posi-
tive and negative rewards into deep learn-
ing to choose the actions that yield the 
best cumulative reward by interacting 
with the environment. Also, the fusion of 
multimodal and structured data into exist-
ing deep-learning models would open up 
more extended application domains.

This special issue of IEEE Signal 
Processing Magazine (SPM) is therefore 
devoted to providing survey articles on 
the latest advances in deep learning for 
visual understanding. Its objective is to 
encourage a diverse audience of research-
ers and enthusiasts toward an effective 
participation in the solution of analogous 
problems in other signal processing fields 
by inseminating similar ideas.

The range of articles in this two-part 
special issue indicates the breadth of the 
computer vision discipline. (Part two 
will be published in January 2018.) Many 
fundamental areas are surveyed from the 
computer vision perspective, including 
■ reinforcement learning
■ learning with limited and no supervi-

sion (unsupervised learning)

■ weakly supervised learning
■ zero- and few-shot learning
■ domain adaptation
■ multimodal learning
■ metric learning
■ generative adversarial networks
■ recurrent networks
■ regression with Bayesian networks
■ model compression and robustness.
In addition, in-depth overviews of several 
deep-learning-based computer vision 
applications are provided, including 
■ inverse problems such as superresolu-

tion and image enhancement
■ picture quality prediction
■ saliency detection
■ image and video segmentation with 

conditional random fields
■ image-to-text generation
■ visual question answering
■ face image analytics.

We would like to wholeheartedly thank 
all of the contributing authors and review-
ers of this special issue. We also sincerely 
appreciate SPM’s editor-in-chief, Prof. 
Min Wu, Managing Editor Jessica Welsh, 
and the entire magazine’s editorial staff 
for their extremely valuable support.

Meet the guest editors
Fatih Porikli (fatih
.porikli@anu.edu.au) 
received his B.Sc. 
degree in electrical 
eng ineer ing  from 
Bilkent University, 

Turkey, in 1992 and his Ph.D. degree in 
electrical and computer engineering from 

Deep Learning for Visual Understanding
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New York University in 2002. He is an 
IEEE Fellow and a professor at Austra-
lian National University. He is also the 
chief scientist at Huawei, Santa Clara, 
California. Previously, he served as the 
Computer Vision Research group leader 
at National ICT Australia and distin-
guished scientist at Mitsubishi Electric 
Research Laboratories. His research inter-
ests include computer vision and machine 
learning with commercial applications in 
autonomous vehicles, video surveillance, 
visual inspection, robotics, and medical 
systems. He received the R&D100 Scien-
tist of the Year Award in 2006, won five 
Best Paper Awards at IEEE conferences, 
and invented 71 patents.

S h i g u a n g  S h a n
(sgshan@ict.ac.cn)   
received his B.S.E. and 
M.S.E. degrees in com-
puter science from 
Harbin Institute of 

Technology, China, in 1997 and 1999, 
respectively. He received his Ph.D. 
degree in computer science from the 
Institute of Computing Technology, Chi-
nese Academy of Sciences (CAS), Bei-
jing, in 2004, where he has been a full 
professor since 2010 and is now the dep-
uty director of the CAS Key Lab of 
Intelligent Information Processing. His 
research interests include computer 
vision, pattern recognition, and machine 
learning. He has published more than 
200 papers in these areas. He served as 
area chair for many international confer-
ences and is an associate editor of several 

journals, including IEEE Transactions 
on Image Processing, Computer Vision 
and Image Understanding, Neurocom-
puting, and Pattern Recognition Letters.

Cees Snoek (cgmsnoek@
uva.nl) received the 
M.Sc. degree in busi-
ness information sys-
tems in 2000 and the 
Ph.D. degree in com-

puter science in 2005, both from the Uni-
versity of Amsterdam, The Netherlands. 
He is currently a director of the QUVA 
Lab, the joint research lab of Qualcomm 
and the University of Amsterdam, on 
deep learning and computer vision. He is 
also a principal engineer/manager at 
Qualcomm and an associate professor at 
the University of Amsterdam. His 
research interests focus on video and 
image recognition. He has published 
more than 200 refereed book chapters, 
journal, and conference papers. He 
received a Veni Talent Award, a Ful-
bright Junior Scholarship, a Vidi Talent 
Award, and The Netherlands Prize for 
Computer Science Research, all for 
research excellence.

Rahul Sukthankar
(rahulsukthankar@
gmail.com) received 
his B.S.E. degree in 
computer science from 
Princeton University, 

New Jersey, in 1991 and his Ph.D. degree 
in robotics from Carnegie Mellon, Pitts-
burgh, Pennsylvania, in 1997. He leads 

research efforts in computer vision, 
machine learning, and robotics at 
Google. He is also an adjunct research 
professor with the Robotics Institute at 
Carnegie Mellon and courtesy faculty at 
the University of Central Florida. Previ-
ously, he was a senior principal research-
er at Intel Labs, a senior researcher at 
HP/Compaq Labs, and a research scien-
tist at Just Research. He has organized 
several workshops and conferences and 
currently serves as the editor-in-chief of 
Machine Vision and Applications.

X i a o g a n g  W a n g
(xgwang@ee.cuhk
.edu.hk) received his 
bachelor’s degree in 
electronic engineering 
and information sci-

ence from the Special Class of Gifted 
Young at the University of Science and 
Technology of China in 2001, his M.Phil. 
degree in information engineering from 
the Chinese University of Hong Kong in 
2004, and his Ph.D. degree in computer 
science from the Massachusetts Institute 
of Technology in 2009. He has been an 
associate professor in the Department of 
Electronic Engineering at the Chinese 
University of Hong Kong since August 
2009. He received the PAMI Young 
Research Award Honorable Mention in 
2016. He is the associate editor of Image 
and Visual Computing Journal, Computer 
Vision and Image Understanding, and 
IEEE Transactions on Circuit Systems 
and Video Technology.

SP

Massachusetts Institute of Tech-
nology in honor of Al Oppenheim’s 
80th birthday, with the goal of bring-
ing together experts in industry and 
academia to think progressively and 
speculate about the future of the field 
moving forward. 

Over a dozen speakers provided a 
range of thought-provoking insights 
about the continued impact of the field in 
the decades ahead, in terms of applica-

tions, mathematics for new algorithms, 
and new implementation technologies. 
We would love to share this with those 
in the signal processing community who 
were unable to attend. A collection of 
video recordings and thoughts from the 
symposium will be available at https://
futureofsp.eecs.mit.edu/. It was an excit-
ing event, and we hope that the videos 
continue to stimulate further creative 
discussion within the community!

Thomas A. Baran (tom.baran@gmail
.com) is a cofounder and chief execu-
tive officer of Lumii and a research 
affiliate at the Massachusetts Institute 
of Technology. 
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DEEP LEARNING FOR VISUAL UNDERSTANDING

1053-5888/17©2017IEEE

Kai Arulkumaran, Marc Peter Deisenroth, 
Miles Brundage, and Anil Anthony Bharath

Deep Reinforcement Learning
A brief survey 

Deep reinforcement learning (DRL) is poised to revolution-
ize the field of artificial intelligence (AI) and represents 
a step toward building autonomous systems with a higher-

level understanding of the visual world. Currently, deep learn-
ing is enabling reinforcement learning (RL) to scale to problems 
that were previously intractable, such as learning to play video 
games directly from pixels. DRL algorithms are also applied 
to robotics, allowing control policies for robots to be learned 
directly from camera inputs in the real world. In this survey, 
we begin with an introduction to the general field of RL, then 
progress to the main streams of value-based and policy-based 
methods. Our survey will cover central algorithms in deep RL, 
including the deep Q-network (DQN), trust region policy opti-
mization (TRPO), and asynchronous advantage actor critic. In 
parallel, we highlight the unique advantages of deep neural net-
works, focusing on visual understanding via RL. To conclude, 
we describe several current areas of research within the field. 

Introduction
One of the primary goals of the field of AI is to produce fully 
autonomous agents that interact with their environments to learn 
optimal behaviors, improving over time through trial and error. 
Crafting AI systems that are responsive and can effectively 
learn has been a long-standing challenge, ranging from robots, 
which can sense and react to the world around them, to purely 
software-based agents, which can interact with natural lan-
guage and multimedia. A principled mathematical framework 
for experience-driven autonomous learning is RL [78]. Although 
RL had some successes in the past [31], [53], [74], [81], previous 
approaches lacked scalability and were inherently limited to fairly 
low-dimensional problems. These limitations exist because RL 
algorithms share the same complexity issues as other algorithms: 
memory complexity, computational complexity, and, in the case 
of machine-learning algorithms, sample complexity [76]. What 
we have witnessed in recent years—the rise of deep learning, 
relying on the powerful function approximation and representa-
tion learning properties of deep neural networks—has provided 
us with new tools to overcoming these problems. 

©ISTOCKPHOTO.COM/ZAPP2PHOTO
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The advent of deep learning has had a significant impact 
on many areas in machine learning, dramatically improving 
the state of the art in tasks such as object detection, speech 
recognition, and language translation [39]. The most impor-
tant property of deep learning is that deep neural networks can 
automatically find compact low-dimensional representations 
(features) of high-dimensional data (e.g., images, text, and 
audio). Through crafting inductive biases into neural network 
architectures, particularly that of hierarchical representations, 
machine-learning practitioners have made effective progress 
in addressing the curse of dimensionality [7]. Deep learning 
has similarly accelerated progress in RL, with the use of deep-
learning algorithms within RL defining the field of DRL. The 
aim of this survey is to cover both seminal and recent develop-
ments in DRL, conveying the innovative ways in which neu-
ral networks can be used to bring us closer toward developing 
autonomous agents. For a more comprehensive survey of recent 
efforts in DRL, we refer readers to the overview by Li [43].

Deep learning enables RL to scale to decision-making prob-
lems that were previously intractable, i.e., settings with high-
dimensional state and action spaces. Among recent work in the 

field of DRL, there have been two outstanding success stories. 
The first, kickstarting the revolution in DRL, was the develop-
ment of an algorithm that could learn to play a range of Atari 
2600 video games at a superhuman level, directly from image 
pixels [47]. Providing solutions for the instability of function 
approximation techniques in RL, this work was the first to con-
vincingly demonstrate that RL agents could be trained on raw, 
high-dimensional observations, solely based on a reward signal. 
The second standout success was the development of a hybrid 
DRL system, AlphaGo, that defeated a human world champion in 
Go [73], paralleling the historic achievement of IBM’s Deep Blue 
in chess two decades earlier [9]. Unlike the handcrafted rules that 
have dominated chess-playing systems, AlphaGo comprised neu-
ral networks that were trained using supervised learning and RL, 
in combination with a traditional heuristic search algorithm. 

DRL algorithms have already been applied to a wide range 
of problems, such as robotics, where control policies for robots 
can now be learned directly from camera inputs in the real world 
[41], [42], succeeding controllers that used to be hand-engineered 
or learned from low-dimensional features of the robot’s state. In 
Figure 1, we showcase just some of the domains that DRL has 

(a) (b)

(c) (d)

(f)

(e)

Target

A Giraffe Standing

FIGURE 1. A range of visual RL domains. (a) Three classic Atari 2600 video games, Enduro, Freeway, and Seaquest, from the Arcade Learning Environment (ALE) 
[5]. Due to the range of supported games that vary in genre, visuals, and difficulty, the ALE has become a standard test bed for DRL algorithms [20], [47], [48], 
[55], [70], [75], [92]. The ALE is one of several benchmarks that are now being used to standardize evaluation in RL. (b) The TORCS car racing simulator, which 
has been used to test DRL algorithms that can output continuous actions [33], [44], [48] (as the games from the ALE only support discrete actions). (c) Utilizing 
the potentially unlimited amount of training data that can be amassed in robotic simulators, several methods aim to transfer knowledge from the simulator to the 
real world [11], [64], [84]. (d) Two of the four robotic tasks designed by Levine et al. [41]: screwing on a bottle cap and placing a shaped block in the correct hole. 
Levine et al. [41] were able to train visuomotor policies in an end-to-end fashion, showing that visual servoing could be learned directly from raw camera inputs by 
using deep neural networks. (e) A real room, in which a wheeled robot trained to navigate the building is given a visual cue as input and must find the correspond-
ing location [100]. (f) A natural image being captioned by a neural network that uses RL to choose where to look [99]. (b)–(f) reproduced from [41], [44], [84], 
[99], and [100], respectively. 
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St+1 rt+1

State (St)

Reward (rt)

Action (at)

Environment Agent

Policy (π )

FIGURE 2. The perception-action-learning loop. At time ,t the agent receives state s t  from the environment. The agent uses its policy to choose an action 
.at  Once the action is executed, the environment transitions a step, providing the next state, ,s t 1+  as well as feedback in the form of a reward, .rt 1+  The 

agent uses knowledge of state transitions, of the form ( , , , ),rs a st t t t1 1+ +  to learn and improve its policy.

been applied to, ranging from playing video games [47] to indoor 
navigation [100].

Reward-driven behavior
Before examining the contributions of deep neural networks to 
RL, we will introduce the field of RL in general. The essence of 
RL is learning through interaction. An RL agent interacts with 
its environment and, upon observing the consequences of its 
actions, can learn to alter its own behavior in response to rewards 
received. This paradigm of trial-and-error learning has its roots 
in behaviorist psychology and is one of the main foundations of 
RL [78]. The other key influence on RL is optimal control, which 
has lent the mathematical formalisms (most notably dynamic 
programming [6]) that underpin the field. 

In the RL setup, an autonomous agent, controlled by a 
machine-learning algorithm, observes a state st  from its envi-
ronment at time step .t The agent interacts with the environ-
ment by taking an action at  in state .st  When the agent takes 
an action, the environment and the agent transition to a new 
state, ,st 1+  based on the current state and the chosen action. 
The state is a sufficient statistic of the environment and there-
by comprises all the necessary information for the agent to 
take the best action, which can include parts of the agent such 
as the position of its actuators and sensors. In the optimal con-
trol literature, states and actions are often denoted by xt  and 

,ut  respectively. 
The best sequence of actions is determined by the rewards

provided by the environment. Every time the environment tran-
sitions to a new state, it also provides a scalar reward rt 1+  to 
the agent as feedback. The goal of the agent is to learn a policy
(control strategy) r  that maximizes the expected return (cumula-
tive, discounted reward). Given a state, a policy returns an action 

to perform; an optimal policy is any policy that maximizes the 
expected return in the environment. In this respect, RL aims to 
solve the same problem as optimal control. However, the chal-
lenge in RL is that the agent needs to learn about the consequenc-
es of actions in the environment by trial and error, as, unlike in 
optimal control, a model of the state transition dynamics is not 
available to the agent. Every interaction with the environment 
yields information, which the agent uses to update its knowledge. 
This perception-action-learning loop is illustrated in Figure 2.

Markov decision processes
Formally, RL can be described as a Markov decision process 
(MDP), which consists of 
■ a set of states ,S  plus a distribution of starting states ( )p s0

■ a set of actions A
■ transition dynamics ( , )|s s aT t t t1+  that map a state-action 

pair at time t  onto a distribution of states at time t 1+
■ an immediate/instantaneous reward function ( , , )s a sR t t t 1+

■ a discount factor [ , ],0 1!c  where lower values place more 
emphasis on immediate rewards.
In general, the policy r  is a mapping from states to a prob-

ability distribution over actions ( | ) .: p aS A S"r =  If the 
MDP is episodic, i.e., the state is reset after each episode of length 

,T  then the sequence of states, actions, and rewards in an episode 
constitutes a trajectory or rollout of the policy. Every rollout of a 
policy accumulates rewards from the environment, resulting in 
the return .R rt

tt
T

10
1
c= +=

-/  The goal of RL is to find an opti-
mal policy, *r  that achieves the maximum expected return from 
all states: 

argmax [ | ] .RE*r r=
r

(1) 
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It is also possible to consider nonepisodic MDPs, where 
.T 3=  In this situation, 11c  prevents an infinite sum of 

rewards from being accumulated. Furthermore, methods that 
rely on complete trajectories are no longer applicable, but those 
that use a finite set of transitions still are. 

A key concept underlying RL is the Markov property—
only the current state affects the next state, or, in other words, 
the future is conditionally independent of the past given the 
present state. This means that any decisions made at st  can 
be based solely on ,st 1+  rather than { , , , }.s s st0 1 1f -  Although 
this assumption is held by the majority of RL algorithms, it is 
somewhat unrealistic, as it requires the states to be fully observ-
able. A generalization of MDPs are partially observable MDPs 
(POMDPs), in which the agent receives an observation ,ot ! X
where the distribution of the observation ( | , )p o s at t t1 1+ +  is 
dependent on the current state and the previous action [27].
In a control and signal processing context, the observation 
would be described by a measurement/observation mapping in 
a state-space model that depends on the current state and the 
previously applied action. 

POMDP algorithms typically maintain a belief over the 
current state given the previous belief state, the action taken, 
and the current observation. A more common approach in deep 
learning is to utilize recurrent neural networks (RNNs) [20],
[21], [48], [96], which, unlike feedforward neural networks, are 
dynamical systems. 

Challenges in RL
It is instructive to emphasize some challenges faced in RL: 
■ The optimal policy must be inferred by trial-and-error 

interaction with the environment. The only learning signal 
the agent receives is the reward. 

■ The observations of the agent depend on its actions and 
can contain strong temporal correlations. 

■ Agents must deal with long-range time dependencies: 
often the consequences of an action only materialize after 
many transitions of the environment. This is known as the 
(temporal) credit assignment problem [78].
We will illustrate these challenges in the context of an 

indoor robotic visual navigation task: if the goal location is 
specified, we may be able to estimate the distance remaining 
(and use it as a reward signal), but it is unlikely that we will 
know exactly what series of actions the robot needs to take 
to reach the goal. As the robot must choose where to go as it 
navigates the building, its decisions influence which rooms it 
sees and, hence, the statistics of the visual sequence captured. 
Finally, after navigating several junctions, the robot may find 
itself in a dead end. There is a range of problems, from learning 
the consequences of actions to balancing exploration versus 
exploitation, but ultimately these can all be addressed formally 
within the framework of RL. 

RL algorithms
So far, we have introduced the key formalism used in RL, the 
MDP, and briefly noted some challenges in RL. In the following, 
we will distinguish between different classes of RL algorithms. 

There are two main approaches to solving RL problems: methods 
based on value functions and methods based on policy search. 
There is also a hybrid actor-critic approach that employs both 
value functions and policy search. Next, we will explain these 
approaches and other useful concepts for solving RL problems. 

Value functions
Value function methods are based on estimating the value 
(expected return) of being in a given state. The state-value 
function ( )V sr  is the expected return when starting in state s
and following r  subsequently: 

( ) [ , ] .V Rs sE r=r (2) 

The optimal policy, ,*r  has a corresponding state-value 
function ( ),V s*  and vice versa; the optimal state-value function 
can be defined as 

( ) ( ) .maxV Vs s s S* 6 != r

r
(3) 

If we had ( )V s*  available, the optimal policy could be 
retrieved by choosing among all actions available at st  and 
picking the action a  that maximizes [ ( )].V sE ~ ( | , )

*
t 1s s s aTt t t1 1 ++ +

In the RL setting, the transition dynamics T  are unavail-
able. Therefore, we construct another function, the state-action 
value or quality function ( , ),Q s ar  which is similar to ,Vr

except that the initial action a  is provided and r  is only fol-
lowed from the succeeding state onward: 

( ) [ | ].Q R, , ,s a s aE r=r (4) 

The best policy, given ( , )Q ,s ar  can be found by choos-
ing a  greedily at every state: ( , ) .argmax Q s aa

r  Under this 
policy, we can also define ( )V sr  by maximizing ( , ):Q s ar

( ) ( , ) .maxV Qs s aa=r r

Dynamic programming
To actually learn ,Qr  we exploit the Markov property and 
define the function as a Bellman equation [6], which has the 
following recursive form: 

( , ) [ ( , ( ))] .Q r Qs a s sEt t t t t1 1 1st 1 c r= +r r
+ + ++ (5) 

This means that Qr  can be improved by bootstrapping, i.e., 
we can use the current values of our estimate of Qr  to improve 
our estimate. This is the foundation of Q-learning [94] and the 
state-action-reward-state-action (SARSA) algorithm [62]:

( , ) ( , ) ,Q Qs a s at t t t! ad+r r (6) 

where a  is the learning rate and ( , )Y Q s at td = - r  the tempo-
ral difference (TD) error; here, Y  is a target as in a standard 
regression problem. SARSA, an on-policy learning algorithm, 
is used to improve the estimate of Qr  by using transitions gen-
erated by the behavioral policy (the policy derived from ),Qr

which results in setting ( , ) .Y r Q s at t t1 1c= + r
+ + Q-learning 
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is off-policy, as Qr  is instead updated by transitions that were 
not necessarily generated by the derived policy. Instead, 
Q -learning uses ( , ),maxY r Q s at t 1ac= + r

+  which directly 
approximates .Q*

To find Q*  from an arbitrary ,Qr  we use generalized policy 
iteration, where policy iteration consists of policy evaluation
and policy improvement. Policy evaluation improves the esti-
mate of the value function, which can be achieved by minimiz-
ing TD errors from trajectories experienced by following the 
policy. As the estimate improves, the policy can naturally be 
improved by choosing actions greedily based on the updated 
value function. Instead of performing these steps separately to 
convergence (as in policy iteration), generalized policy itera-
tion allows for interleaving the steps, such that progress can be 
made more rapidly. 

Sampling
Instead of bootstrapping value functions using dynamic 
programming methods, Monte Carlo methods estimate the 
expected return (2) from a state by averaging the return from 
multiple rollouts of a policy. Because of this, pure Monte Carlo 
methods can also be applied in non-Markovian environments. 
On the other hand, they can only be used in episodic MDPs, 
as a rollout has to terminate for the return to be calculated. It 
is possible to get the best of both methods by combining TD 
learning and Monte Carlo policy evaluation, as is done in the 
TD(m) algorithm [78]. Similarly to the discount factor, the m  in 
TD(m) is used to interpolate between Monte Carlo evaluation 
and bootstrapping. As demonstrated in Figure 3, this results in 

an entire spectrum of RL methods based around the amount of 
sampling utilized. 

Another major value-function-based method relies on 
learning the advantage function ( , )A s ar [3]. Unlike produc-
ing absolute state-action values, as with ,Q Ar r  instead rep-
resents relative state-action values. Learning relative values is 
akin to removing a baseline or average level of a signal; more 
intuitively, it is easier to learn that one action has better conse-
quences than another than it is to learn the actual return from 
taking the action. Ar  represents a relative advantage of actions 
through the simple relationship A Q V= -r r r  and is also 
closely related to the baseline method of variance reduction 
within gradient-based policy search methods [97]. The idea of 
advantage updates has been utilized in many recent DRL algo-
rithms [19], [48], [71], [92]. 

Policy search
Policy search methods do not need to maintain a value func-
tion model but directly search for an optimal policy .*r  Typi-
cally, a parameterized policy ri  is chosen, whose parameters 
are updated to maximize the expected return [ | ]RE i  using 
either gradient-based or gradient-free optimization [12]. Neu-
ral networks that encode policies have been successfully 
trained using both gradient-free [17], [33] and gradient-based 
[22], [41], [44], [70], [71], [96], [97] methods. Gradient-free 
optimization can effectively cover low-dimensional parameter 
spaces, but, despite some successes in applying them to large 
networks [33], gradient-based training remains the method of 
choice for most DRL algorithms, being more sample efficient 
when policies possess a large number of parameters. 

When constructing the policy directly, it is common to 
output parameters for a probability distribution; for continu-
ous actions, this could be the mean and standard deviations of 
Gaussian distributions, while for discrete actions this could be 
the individual probabilities of a multinomial distribution. The 
result is a stochastic policy from which we can directly sample 
actions. With gradient-free methods, finding better policies 
requires a heuristic search across a predefined class of models. 
Methods such as evolution strategies essentially perform hill 
climbing in a subspace of policies [65], while more complex 
methods, such as compressed network search, impose addi-
tional inductive biases [33]. Perhaps the greatest advantage of 
gradient-free policy search is that it can also optimize nondif-
ferentiable policies. 

Policy gradients
Gradients can provide a strong learning signal as to how to 
improve a parameterized policy. However, to compute the 
expected return (1) we need to average over plausible trajec-
tories induced by the current policy parameterization. This 
averaging requires either deterministic approximations (e.g., 
linearization) or stochastic approximations via sampling 
[12]. Deterministic approximations can be only applied in a 
model-based setting where a model of the underlying transi-
tion dynamics is available. In the more common model-free 
RL setting, a Monte Carlo estimate of the expected return is 

Full
Backups

Sample
Backups

Deep
Backups

Monte Carlo

(d)

Exhaustive
Search

Dynamic
Programming

(b)(a)

TD Learning

(c)

Shallow
Backups Bootstrapping

FIGURE 3. Two dimensions of RL algorithms based on the backups used 
to learn or construct a policy. At the extremes of these dimensions are (a) 
dynamic programming, (b) exhaustive search, (c) one-step TD learning, and 
(d) Monte Carlo approaches. Bootstrapping extends from (c) one-step TD 
learning to n-step TD learning methods [78], with (d) pure Monte Carlo ap-
proaches not relying on bootstrapping at all. Another possible dimension of 
variation is (c) and (d) choosing to sample actions versus (a) and (b) taking 
the expectation over all choices. (Figure recreated based on [78].) 
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determined. For gradient-based learning, 
this Monte Carlo approximation poses a 
challenge since gradients cannot pass through 
these samples of a stochastic function. There-
fore, we turn to an estimator of the gradient, 
known in RL as the REINFORCE rule [97].
Intuitively, gradient ascent using the estima-
tor increases the log probability of the sam-
pled action, weighted by the return. More 
formally, the REINFORCE rule can be used to compute the gra-
dient of an expectation over a function f of a random variable X
with respect to parameters :i

[ ( ; )] [ ( ; ) ( )] .logf X f X p XE EX Xd di i=i i (7) 

As this computation relies on the empirical return of a trajec-
tory, the resulting gradients possess a high variance. By introduc-
ing unbiased estimates that are less noisy, it is possible to reduce 
the variance. The general methodology for performing this is to 
subtract a baseline, which means weighting updates by an advan-
tage rather than the pure return. The simplest baseline is the aver-
age return taken over several episodes [97], but there are many 
more options available [71].

Actor-critic methods
It is possible to combine value functions with an explicit rep-
resentation of the policy, resulting in actor-critic methods, 
as shown in Figure 4. The “actor” (policy) learns by using 
feedback from the “critic” (value function). In doing so, these 
methods tradeoff variance reduction of policy gradients with 
bias introduction from value function methods [32], [71]. 

Actor-critic methods use the value function as a baseline 
for policy gradients, such that the only fundamental difference 
between actor-critic methods and other baseline methods is 
that actor-critic methods utilize a learned value function. For 
this reason, we will later discuss actor-critic methods as a sub-
set of policy gradient methods. 

Planning and learning
Given a model of the environment, it is possible to use dynam-
ic programming over all possible actions [Figure 3(a)], sample 
trajectories for heuristic search (as was done by AlphaGo 
[73]), or even perform an exhaustive search [Figure 3(b)]. Sut-
ton and Barto [78] define planning as any method that utilizes 
a model to produce or improve a policy. This includes distri-
bution models, which include T  and ,R  and sample models,
from which only samples of transitions can be drawn. 

In RL, we focus on learning without access to the underlying 
model of the environment. However, interactions with the envi-
ronment could be used to learn value functions, policies, and also 
a model. Model-free RL methods learn directly from interactions 
with the environment, but model-based RL methods can simulate 
transitions using the learned model, resulting in increased sample 
efficiency. This is particularly important in domains where each 
interaction with the environment is expensive. However, learning 
a model introduces extra complexities, and there is always the 

danger of suffering from model errors, which 
in turn affects the learned policy. Although 
deep neural networks can potentially produce 
very complex and rich models [14], [55], [75], 
sometimes simpler, more data-efficient meth-
ods are preferable [19]. These considerations 
also play a role in actor-critic methods with 
learned value functions [32], [71]. 

The rise of DRL
Many of the successes in DRL have been based on scaling 
up prior work in RL to high-dimensional problems. This is 
due to the learning of low-dimensional feature representations 
and the powerful function approximation properties of neural 
networks. By means of representation learning, DRL can deal 
efficiently with the curse of dimensionality, unlike tabular and 
traditional nonparametric methods [7]. For instance, convo-
lutional neural networks (CNNs) can be used as components 
of RL agents, allowing them to learn directly from raw, high-
dimensional visual inputs. In general, DRL is based on train-
ing deep neural networks to approximate the optimal policy 

*r  and/or the optimal value functions , ,V Q* *  and .A*

Value functions
The well-known function approximation properties of neural net-
works led naturally to the use of deep learning to regress functions 
for use in RL agents. Indeed, one of the earliest success stories in 
RL is TD-Gammon, a neural network that reached expert-level 
performance in backgammon in the early 1990s [81]. Using TD 
methods, the network took in the state of the board to predict the 
probability of black or white winning. Although this simple idea 
has been echoed in later work [73], progress in RL research has 
favored the explicit use of value functions, which can capture the 

31IEEE SIGNAL PROCESSING MAGAZINE | November 2017 |

State Action

Actor
(Policy)

TD Error

Critic
(Value Function)

Reward

Environment

FIGURE 4. The actor-critic setup. The actor (policy) receives a state from 
the environment and chooses an action to perform. At the same time, the 
critic (value function) receives the state and reward resulting from the 
previous interaction. The critic uses the TD error calculated from this infor-
mation to update itself and the actor. (Figure recreated based on [78].)

Searching directly for a 
policy represented by a 
neural network with very 
many parameters can be 
difficult and can suffer 
from severe local minima. 
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structure underlying the environment. From early value function 
methods in DRL, which took simple states as input [61], current 
methods are now able to tackle visually and conceptually com-
plex environments [47], [48], [70], [100]. 

Function approximation and the DQN
We begin our survey of value-function-based DRL algo-
rithms with the DQN [47], illustrated in Figure 5, which 
achieved scores across a wide range of classic Atari 2600 
video games [5] that were comparable to that of a profes-
sional video games tester. The inputs to the DQN are four 
gray-scale frames of the game, concatenated over time, which 
are initially processed by several convolutional layers to 
extract spatiotemporal features, such as the movement of the 
ball in Pong or Breakout. The final feature map from the 
convolutional layers is processed by several fully connected 
layers, which more implicitly encode the effects of actions. 
This contrasts with more traditional controllers that use fixed 
preprocessing steps, which are therefore unable to adapt their 
processing of the state in response to the learning signal. 

A forerunner of the DQN—neural-fitted Q  (NFQ) itera-
tion—involved training a neural network to return the Q-value 
given a state-action pair [61]. NFQ was later extended to train a 
network to drive a slot car using raw visual inputs from a camera 
over the race track, by combining a deep autoencoder to reduce 
the dimensionality of the inputs with a separate branch to predict 
Q-values [38]. Although the previous network could have been 
trained for both reconstruction and RL tasks simultaneously, it 
was both more reliable and computationally efficient to train the 
two parts of the network sequentially. 

The DQN [47] is closely related to the model proposed 
by Lange et al. [38] but was the first RL algorithm that was 
demonstrated to work directly from raw visual inputs and on 
a wide variety of environments. It was designed such that 
the final fully connected layer outputs ( , )Q s $r  for all action 
values in a discrete set of actions—in this case, the various 
directions of the joystick and the fire button. This not only 
enables the best action, argmax ( , ),Q s aa

r  to be chosen after 
a single forward pass of the network, but also allows the net-
work to more easily encode action-independent knowledge 
in the lower, convolutional layers. With merely the goal of 

maximizing its score on a video game, the DQN learns to 
extract salient visual features, jointly encoding objects, their 
movements, and, most importantly, their interactions. Using 
techniques originally developed for explaining the behavior 
of CNNs in object recognition tasks, we can also inspect what 
parts of its view the agent considers important (see Figure 6). 

The true underlying state of the game is contained within 128 
bytes of Atari 2600 random-access memory. However, the DQN 
was designed to directly learn from visual inputs (210 160#

pixel 8-bit RGB images), which it takes as the state .s  It is 
impractical to represent ( , )Q s ar  exactly as a lookup table: when 
combined with 18 possible actions, we obtain a Q-table of size 

.18 256AS 3 210 160# #= # #  Even if it were feasible to cre-
ate such a table, it would be sparsely populated, and information 
gained from one state-action pair cannot be propagated to other 
state-action pairs. The strength of the DQN lies in its ability to 
compactly represent both high-dimensional observations and 
the Q-function using deep neural networks. Without this ability, 
tackling the discrete Atari domain from raw visual inputs would 
be impractical. 

The DQN addressed the fundamental instability problem 
of using function approximation in RL [83] by the use of 
two techniques: experience replay [45] and target networks. 
Experience replay memory stores transitions of the form 
( , , , )rs a st t t t1 1+ +  in a cyclic buffer, enabling the RL agent to 
sample from and train on previously observed data offline. 
Not only does this massively reduce the number of interac-
tions needed with the environment, but batches of experience 
can be sampled, reducing the variance of learning updates. 
Furthermore, by sampling uniformly from a large memory, 
the temporal correlations that can adversely affect RL algo-
rithms are broken. Finally, from a practical perspective, 
batches of data can be efficiently processed in parallel by 
modern hardware, increasing throughput. While the origi-
nal DQN algorithm used uniform sampling [47], later work 
showed that prioritizing samples based on TD errors is more 
effective for learning [67].

The second stabilizing method, introduced by Mnih et al. 
[47], is the use of a target network that initially contains the 
weights of the network enacting the policy but is kept frozen 
for a large period of time. Rather than having to calculate the 

State

Action

Reward

FIGURE 5. The DQN [47]. The network takes the state—a stack of gray-scale frames from the video game—and processes it with convolutional and fully 
connected layers, with ReLU nonlinearities in between each layer. At the final layer, the network outputs a discrete action, which corresponds to one of 
the possible control inputs for the game. Given the current state and chosen action, the game returns a new score. The DQN uses the reward—the dif-
ference between the new score and the previous one—to learn from its decision. More precisely, the reward is used to update its estimate of ,Q  and the 
error between its previous estimate and its new estimate is backpropagated through the network.
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TD error based on its own rapidly fluctuating estimates of 
the Q-values, the policy network uses the fixed target net-
work. During training, the weights of the target network are 
updated to match the policy network after a fixed number of 
steps. Both experience replay and target networks have gone 
on to be used in subsequent DRL works [19], [44], [50], [93]. 

Q-function modifications
Considering that one of the key components of the DQN is a 
function approximator for the Q-function, it can benefit from 
fundamental advances in RL. In [86], van Hasselt showed that 
the single estimator used in the Q-learning update rule over-
estimates the expected return due to the use of the maximum 
action value as an approximation of the maximum expected
action value. Double-Q  learning provides a better estimate 
through the use of a double estimator [86]. While double-Q
learning requires an additional function to be learned, later 
work proposed using the already available target network 
from the DQN algorithm, resulting in significantly better 
results with only a small change in the update step [87].

Yet another way to adjust the DQN architecture is to 
decompose the Q-function into meaningful functions, such as 
constructing Qr  by adding together separate layers that com-
pute the state-value function Vr  and advantage function Ar

[92]. Rather than having to come up with accurate Q-values 
for all actions, the duelling DQN [92] benefits from a single 
baseline for the state in the form of Vr and easier-to-learn 
relative values in the form of .Ar The combination of the duel-
ling DQN with prioritized experience replay [67] is one of the 
state-of-the-art techniques in discrete action settings. Further 
insight into the properties of Ar  by Gu et al. [19] led them to 
modify the DQN with a convex advantage layer that extended 
the algorithm to work over sets of continuous actions, creating 
the normalized advantage function (NAF) algorithm. Benefit-
ing from experience replay, target networks, and advantage 
updates, NAF is one of several state-of-the-art techniques in 
continuous control problems [19].

Policy search
Policy search methods aim to directly find policies by means 
of gradient-free or gradient-based methods. Prior to the cur-
rent surge of interest in DRL, several successful methods in 
DRL eschewed the commonly used backpropagation algo-
rithm in favor of evolutionary algorithms [17], [33], which are 
gradient-free policy search algorithms. Evolutionary methods 
rely on evaluating the performance of a population of agents. 
Hence, they are expensive for large populations or agents with 
many parameters. However, as black-box optimization meth-
ods, they can be used to optimize arbitrary, nondifferentiable 
models and naturally allow for more exploration in the param-
eter space. In combination with a compressed representation 
of neural network weights, evolutionary algorithms can even 
be used to train large networks; such a technique resulted in 
the first deep neural network to learn an RL task, straight 
from high-dimensional visual inputs [33]. Recent work has 
reignited interest in evolutionary methods for RL as they can 

potentially be distributed at larger scales than techniques that 
rely on gradients [65].

Backpropagation through stochastic functions
The workhorse of DRL, however, remains backpropagation. 
The previously discussed REINFORCE rule [97] allows neural 
networks to learn stochastic policies in a task-dependent man-
ner, such as deciding where to look in an image to track [69]
or caption [99] objects. In these cases, the stochastic variable 
would determine the coordinates of a small crop of the image 
and hence reduce the amount of computation needed. This 
usage of RL to make discrete, stochastic decisions over inputs 
is known in the deep-learning literature as hard attention and is 
one of the more compelling uses of basic policysearch methods 
in recent years, having many applications outside of traditional 
RL domains. 

Compounding errors
Searching directly for a policy represented by a neural network 
with very many parameters can be difficult and suffer from severe 
local minima. One way around this is to use guided policy search 
(GPS), which takes a few sequences of actions from another con-
troller (which could be constructed using a separate method, such 

FIGURE 6. A saliency map of a trained DQN [47] playing Space Invad-
ers [5]. By backpropagating the training signal to the image space, it is 
possible to see what a neural-network-based agent is attending to. In 
this frame, the most salient points—shown with the red overlay—are the 
laser that the agent recently fired and also the enemy that it anticipates 
hitting in a few time steps. 
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as optimal control). GPS learns from them by using supervised 
learning in combination with importance sampling, which cor-
rects for off-policy samples [40]. This approach effectively biases 
the search toward a good (local) optimum. GPS works in a loop, 
by optimizing policies to match sampled trajectories and opti-
mizing trajectory distributions to match the policy and minimize 
costs. Levine et al. [41] showed that it was possible to train visuo-
motor policies for a robot “end to end,” straight from the RGB 
pixels of the camera to motor torques, and, hence, provide one of 
the seminal works in DRL.

A more commonly used method is to use a trust region, in 
which optimization steps are restricted to lie within a region 
where the approximation of the true cost function still holds. 
By preventing updated policies from deviating too wildly from 
previous policies, the chance of a catastrophically bad update is 
lessened, and many algorithms that use trust regions guarantee 
or practically result in monotonic improvement in policy perfor-
mance. The idea of constraining each policy gradient update, as 
measured by the Kullback–Leibler (KL) divergence between the 
current and proposed policy, has a long history in RL [28]. One 
of the newer algorithms in this line of work, TRPO, has been 
shown to be relatively robust and applicable to domains with 
high-dimensional inputs [70]. To achieve this, TRPO optimiz-
es a surrogate objective function—specifically, it optimizes an 
(importance sampled) advantage estimate, constrained using a 
quadratic approximation of the KL divergence. While TRPO can 
be used as a pure policy gradient method with a simple baseline, 
later work by Schulman et al. [71] introduced generalized advan-
tage estimation (GAE), which proposed several, more advanced 
variance reduction baselines. The combination of TRPO and 
GAE remains one of the state-of-the-art RL techniques in con-
tinuous control. 

Actor-critic methods
Actor-critic approaches have grown in popularity as an 
effective means of combining the benefits of policy search 
methods with learned value functions, which are able to 
learn from full returns and/or TD errors. They can benefit 
from improvements in both policy gradient methods, such as 
GAE [71], and value function methods, such as target net-
works [47]. In the last few years, DRL actor-critic methods 
have been scaled up from learning simulated physics tasks 
[22], [44] to real robotic visual navigation tasks [100], directly 
from image pixels. 

One recent development in the context of actor-critic algo-
rithms is deterministic policy gradients (DPGs) [72], which 
extend the standard policy gradient theorems for stochastic poli-
cies [97] to deterministic policies. One of the major advantages of 
DPGs is that, while stochastic policy gradients integrate over both 
state and action spaces, DPGs only integrate over the state space, 
requiring fewer samples in problems with large action spaces. In 
the initial work on DPGs, Silver et al. [72] introduced and demon-
strated an off-policy actor-critic algorithm that vastly improved 
upon a stochastic policy gradient equivalent in high-dimensional 
continuous control problems. Later work introduced deep DPG, 
which utilized neural networks to operate on high-dimensional, 

visual state spaces [44]. In the same vein as DPGs, Heess et al. 
[22] devised a method for calculating gradients to optimize sto-
chastic policies by “reparameterizing” [30], [60] the stochastic-
ity away from the network, thereby allowing standard gradients 
to be used (instead of the high-variance REINFORCE estima-
tor [97]). The resulting stochastic value gradient (SVG) methods 
are flexible and can be used both with (SVG(0) and SVG(1)) 
and without (SVG(3)) value function critics, and with (SVG
(3) and SVG(1)) and without (SVG(0)) models. Later work 
proceeded to integrate DPGs and SVGs with RNNs, allowing 
them to solve continuous control problems in POMDPs, learning 
directly from pixels [21]. Together, DPGs and SVGs can be con-
sidered algorithmic approaches for improving learning efficiency 
in DRL. 

An orthogonal approach to speeding up learning is to exploit 
parallel computation. By keeping a canonical set of parameters 
that are read by and updated in an asynchronous fashion by mul-
tiple copies of a single network, computation can be efficiently 
distributed over both processing cores in a single central process-
ing unit (CPU), and across CPUs in a cluster of machines. Using 
a distributed system, Nair et al. [51] developed a framework for 
training multiple DQNs in parallel, achieving both better per-
formance and a reduction in training time. However, the sim-
pler asynchronous advantage actor-critic (A3C) algorithm [48],
developed for both single and distributed machine settings, has 
become one of the most popular DRL techniques in recent times. 
A3C combines advantage updates with the actor-critic formula-
tion and relies on asynchronously updated policy and value func-
tion networks trained in parallel over several processing threads. 
The use of multiple agents, situated in their own, independent 
environments, not only stabilizes improvements in the param-
eters, but conveys an additional benefit in allowing for more 
exploration to occur. A3C has been used as a standard start-
ing point in many subsequent works, including the work of Zhu 
et al. [100], who applied it to robotic navigation in the real world 
through visual inputs. 

There have been several major advancements on the original 
A3C algorithm that reflect various motivations in the field of 
DRL. The first is actor-critic with experience replay [93], which 
adds off-policy bias correction to A3C, allowing it to use experi-
ence replay to improve sample complexity. Others have attempted 
to bridge the gap between value and policy-based RL, utilizing 
theoretical advancements to improve upon the original A3C [50], 
[54]. Finally, there is a growing trend toward exploiting auxiliary 
tasks to improve the representations learned by DRL agents and, 
hence, improve both the learning speed and final performance of 
these agents [26], [46]. 

Current research and challenges
To conclude, we will highlight some current areas of research 
in DRL and the challenges that still remain. Previously, we have 
focused mainly on model-free methods, but we will now exam-
ine a few model-based DRL algorithms in more detail. Model-
based RL algorithms play an important role in making RL data 
efficient and in trading off exploration and exploitation. After 
tackling exploration strategies, we shall then address hierarchical 
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RL (HRL), which imposes an inductive bias on the final policy 
by explicitly factorizing it into several levels. When available, 
trajectories from other controllers can be used to bootstrap the 
learning process, leading us to imitation learning and inverse RL 
(IRL). For the final topic, we will look at multiagent systems, 
which have their own special considerations. 

Model-based RL
The key idea behind model-based RL is to learn a transition 
model that allows for simulation of the environment without 
interacting with the environment directly. Model-based RL 
does not assume specific prior knowledge. However, in prac-
tice, we can incorporate prior knowledge (e.g., physics-based 
models [29]) to speed up learning. Model learning plays an 
important role in reducing the number of required interac-
tions with the (real) environment, which may be limited in 
practice. For example, it is unrealistic to perform millions of 
experiments with a robot in a reasonable amount of time and 
without significant hardware wear and tear. There are various 
approaches to learn predictive models of dynamical systems 
using pixel information. Based on the deep dynamical model 
[90], where high-dimensional observations are embedded into 
a lower-dimensional space using autoencoders, several model-
based DRL algorithms have been proposed for learning models 
and policies from pixel information [55], [91], [95]. If a suffi-
ciently accurate model of the environment can be learned, then 
even simple controllers can be used to control a robot directly 
from camera images [14]. Learned models can also be used to 
guide exploration purely based on simulation of the environ-
ment, with deep models allowing these techniques to be scaled 
up to high-dimensional visual domains [75].

Although deep neural networks can make reasonable predic-
tions in simulated environments over hundreds of time steps [10],
they typically require many samples to tune the large number 
of parameters they contain. Training these models often requires 
more samples (interaction with the environment) than simpler 
models. For this reason, Gu et al. [19] train locally linear mod-
els for use with the NAF algorithm—the continuous equivalent 
of the DQN [47]—to improve the algorithm’s sample complex-
ity in the robotic domain where samples are expensive. It seems 
likely that the usage of deep models in model-based DRL could 
be massively spurred by general advances in improving the data 
efficiency of neural networks. 

Exploration versus exploitation
One of the greatest difficulties in RL is the fundamental dilemma 
of exploration versus exploitation: When should the agent try out 
(perceived) nonoptimal actions to explore the environment (and 
potentially improve the model), and when should it exploit the 
optimal action to make useful progress? Off-policy algorithms, 
such as the DQN [47], typically use the simple e-greedy explora-
tion policy, which chooses a random action with probability !e
[0, 1], and the optimal action otherwise. By decreasing e  over 
time, the agent progresses toward exploitation. Although adding 
independent noise for exploration is usable in continuous control 
problems, more sophisticated strategies inject noise that is corre-

lated over time (e.g., from stochastic processes) to better preserve 
momentum [44].

The observation that temporal correlation is important led 
Osband et al. [56] to propose the bootstrapped DQN, which 
maintains several Q-value “heads” that learn different values 
through a combination of different weight initializations and 
bootstrapped sampling from experience replay memory. At 
the beginning of each training episode, a different head is cho-
sen, leading to temporally extended exploration. Usunier et al. 
[85] later proposed a similar method that performed explora-
tion in policy space by adding noise to a single output head, 
using zero-order gradient estimates to allow backpropagation 
through the policy. 

One of the main principled exploration strategies is the 
upper confidence bound (UCB) algorithm, based on the prin-
ciple of “optimism in the face of uncertainty” [36]. The idea 
behind UCB is to pick actions that maximize ,RE R lv+6 6@ @
where [ ]Rv  is the standard deviation of the return and .02l
UCB therefore encourages exploration in regions with high 
uncertainty and moderate expected return. While easily achiev-
able in small tabular cases, the use of powerful density models 
has allowed this algorithm to scale to high-dimensional visual 
domains with DRL [4].

UCB can also be considered one way of implementing 
intrinsic motivation, which is a general concept that advocates 
decreasing uncertainty/making progress in learning about the 
environment [68]. There have been several DRL algorithms that 
try to implement intrinsic motivation via minimizing model pre-
diction error [57], [75] or maximizing information gain [25], [49]. 

Hierarchical RL
In the same way that deep learning relies on hierarchies of fea-
tures, HRL relies on hierarchies of policies. Early work in this 
area introduced options, in which, apart from primitive actions
(single time-step actions), policies could also run other poli-
cies (multitime-step “actions”) [79]. This approach allows top-
level policies to focus on higher-level goals, while subpolicies
are responsible for fine control. Several works in DRL have 
attempted HRL by using one top-level policy that chooses 
between subpolicies, where the division of states or goals in to 
subpolicies is achieved either manually [1], [34], [82] or auto-
matically [2], [88], [89]. One way to help construct subpolicies 
is to focus on discovering and reaching goals, which are spe-
cific states in the environment; they may often be locations, to 
which an agent should navigate. Whether utilized with HRL or 
not, the discovery and generalization of goals is also an impor-
tant area of ongoing research [35], [66], [89]. 

Imitation learning and inverse RL
One may ask why, if given a sequence of “optimal” actions 
from expert demonstrations, it is not possible to use supervised 
learning in a straightforward manner—a case of “learning 
from demonstration.” This is indeed possible and is known as 
behavioral cloning in traditional RL literature. Taking advan-
tage of the stronger signals available in supervised learn-
ing problems, behavioral cloning enjoyed success in earlier 
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neural network research, with the most notable success being 
ALVINN, one of the earliest autonomous cars [59]. However, 
behavioral cloning cannot adapt to new situations, and small 
deviations from the demonstration during the execution of 
the learned policy can compound and lead to scenarios where 
the policy is unable to recover. A more generalizable solution 
is to use provided trajectories to guide the learning of suit-
able state-action pairs but fine-tune the agent using RL [23].

The goal of IRL is to estimate an unknown reward function 
from observed trajectories that characterize a desired solution 
[52]; IRL can be used in combination with 
RL to improve upon demonstrated behavior. 
Using the power of deep neural networks, it 
is now possible to learn complex, nonlinear 
reward functions for IRL [98]. Ho and Ermon 
[24] showed that policies are uniquely char-
acterized by their occupancies (visited state 
and action distributions) allowing IRL to be 
reduced to the problem of measure matching. 
With this insight, they were able to use gen-
erative adversarial training [18] to facilitate 
reward-function learning in a more flexible manner, resulting in 
the generative adversarial imitation learning algorithm. 

Multiagent RL
Usually, RL considers a single learning agent in a stationary 
environment. In contrast, multiagent RL (MARL) considers 
multiple agents learning through RL and often the nonstation-
arity introduced by other agents changing their behaviors as 
they learn [8]. In DRL, the focus has been on enabling (differ-
entiable) communication between agents, which allows them 
to cooperate. Several approaches have been proposed for this 
purpose, including passing messages to agents sequentially 
[15], using a bidirectional channel (providing ordering with 
less signal loss) [58], and an all-to-all channel [77]. The addi-
tion of communication channels is a natural strategy to apply 
to MARL in complex scenarios and does not preclude the 
usual practice of modeling cooperative or competing agents as 
applied elsewhere in the MARL literature [8].

Conclusion: Beyond pattern recognition
Despite the successes of DRL, many problems need to be 
addressed before these techniques can be applied to a wide 
range of complex real-world problems [37]. Recent work 
with (nondeep) generative causal models demonstrated supe-
rior generalization over standard DRL algorithms [48], [63]
in some benchmarks [5], achieved by reasoning about causes 
and effects in the environment [29]. For example, the schema 
networks of Kanksy et al. [29] trained on the game Break-
out immediately adapted to a variant where a small wall was 
placed in front of the target blocks, while progressive (A3C) 
networks [63] failed to match the performance of the schema 
networks even after training on the new domain. Although 
DRL has already been combined with AI techniques, such 
as search [73] and planning [80], a deeper integration with 
other traditional AI approaches promises benefits such as bet-

ter sample complexity, generalization, and interpretability [16].
In time, we also hope that our theoretical understanding of the 
properties of neural networks (particularly within DRL) will 
improve, as it currently lags far behind practice. 

To conclude, it is worth revisiting the overarching goal of all 
of this research: the creation of general-purpose AI systems that 
can interact with and learn from the world around them. Interac-
tion with the environment is simultaneously the advantage and 
disadvantage of RL. While there are many challenges in seeking 
to understand our complex and ever-changing world, RL allows 

us to choose how we explore it. In effect, RL 
endows agents with the ability to perform 
experiments to better understand their sur-
roundings, enabling them to learn even high-
level causal relationships. The availability 
of high-quality visual renderers and physics 
engines now enables us to take steps in this 
direction, with works that try to learn intui-
tive models of physics in visual environments 
[13]. Challenges remain before this will be 
possible in the real world, but steady progress 

is being made in agents that learn the fundamental principles of 
the world through observation and action. Perhaps, then, we 
are not too far away from AI systems that learn and act in more 
human-like ways in increasingly complex environments. 
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Weakly Supervised Learning with Deep Convolutional 
Neural Networks for Semantic Segmentation

Understanding semantic layout of images with minimum human supervision 

Semantic segmentation is a popular visual recognition task 
whose goal is to estimate pixel-level object class labels in 
images. This problem has been recently handled by deep 

convolutional neural networks (DCNNs), and the state-of-the-
art techniques achieve impressive records on public benchmark 
data sets. However, learning DCNNs demand a large number of 
annotated training data while segmentation annotations in exist-
ing data sets are significantly limited in terms of both quantity 
and diversity due to the heavy annotation cost. Weakly super-
vised approaches tackle this issue by leveraging weak annota-
tions such as image-level labels and bounding boxes, which are 
either readily available in existing large-scale data sets for image 
classification and object detection or easily obtained thanks to 
their low annotation costs. The main challenge in weakly super-
vised semantic segmentation then is the incomplete annotations 
that miss accurate object boundary information required to learn 
segmentation. This article provides a comprehensive overview of 
weakly supervised approaches for semantic segmentation. Spe-
cifically, we describe how the approaches overcome the limita-
tions and  discuss research directions worthy of investigation to 
improve performance.

Introduction
Over the past few years, we observed significant advances in 
visual recognition techniques, which are particularly attributed to 
the recent development of DCNNs [25]. DCNNs learn a feature 
hierarchy directly from raw data, and the learned features are, in 
general, richer and more powerful than manually designed ones 
that had been widely used before the era of deep learning. Also, 
DCNNs can further improve their capacity by optimizing their 
decision makers (e.g., classifier) and the feature extractors jointly 
in an end-to-end manner. These potentials of DCNNs are realized 
recently thanks to the development of novel learning algorithms, 
large-scale training data sets, and computer hardware supporting 
massively parallel computation. The success story of DCNNs in 
visual recognition includes image classifiers surpassing human-
level performance [14], [15], object detectors meeting both excel-
lent accuracy and real-time speed [30], [41], and other models 
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outperforming previous state of the art in many other computer 
vision tasks such as human pose estimation [7], [53], face recog-
nition [45], [48], and so on.

The great success of DCNNs also leads to another chal-
lenging visual recognition task called semantic segmentation.
The goal of semantic segmentation is to assign semantic class 
labels to every pixel in images, where semantic classes typi-
cally include a diverse range of object categories (e.g., person, 
dog, bus, bike) and background components (e.g., sky, road, 
building, mountain). As illustrated in Figure 1, the result of 
semantic segmentation is pixel-level masks of each semantic 
class, which describe image content more comprehensively 
than image-level class labels given by image classification and 
object bounding boxes predicted by object detection.

Such a detailed image description is essential to build an intel-
ligent system that is as competitive as human visual cognitive abil-
ity. Also, due to the emergence of computer vision applications 
that require comprehensive understanding of visual input, such as 
medical image analysis, autonomous driving, robotics, and human 
computer interaction, the demand for accurate semantic segmen-
tation algorithms has been increasing continually.

In return for its detailed high-level prediction capability, 
however, semantic segmentation involves several critical chal-
lenges to be resolved. One has significant appearance varia-
tions of semantic classes caused by large intraclass variation, 
occlusion, deformation, illumination change, and viewpoint 
variation that are commonly observed in real-world images. 
Being invariant to these factors is challenging especially for 
semantic segmentation that has to predict class labels in a pixel 
level. Also, semantic segmentation must consider structured 
dependency among class labels of pixels during prediction (i.e.,
assigning the same class labels to spatially adjacent pixels), but 

this constraint in semantic segmentation is difficult to handle 
in practice due to a prohibitively large search space for possible 
segmentation results.

Fortunately, DCNNs provide solutions to the aforemen-
tioned issues. The rich hierarchical feature representations of 
DCNNs is robust against significant appearance variations. 
Also, several architectures of DCNNs have been proposed to 
predict structured output naturally by considering the struc-
tured dependency either implicitly [5], [32], [33] or explicitly 
[27], [31], [57]. Furthermore, during their training, the feature 
representation and the structured prediction of the networks 
are jointly optimized in end-to-end manners. All of these fac-
tors are critical to overcome the previously mentioned dif-
ficulties in semantic segmentation. Consequently, DCNNs 
have achieved substantial progress in semantic segmentation, 
improving previous records based on handcrafted features sig-
nificantly on public benchmarks including PASCAL Visual 
Object Classes (VOC) [11].

Despite the great success of DCNNs on public bench-
marks, there still remains a critical obstacle in the way of their 
applications to semantic segmentation in an uncontrolled and 
realistic environment: lack of annotated training images. It 
has been known that, since a DCNN has a large number of 
tunable parameters, it accordingly demands a large number 
of annotated data for training models with good generaliza-
tion performance. For semantic segmentation, however, col-
lecting large-scale annotations is significantly labor intensive 
because people have to manually draw pixel-level masks for 
every semantic categories per image to carry out the anno-
tation. Also, collecting annotations for semantic segmentation 
is practically limited for some applications. An example is 
medical image analysis, for which domain expert knowledge 
is essential to accurate annotations. For these reasons, exist-
ing data sets often suffer from lack of annotated examples and 
class diversity, and it is also difficult to maintain good qual-
ity of segmentation annotations in terms of both accuracy and 
consistency. Therefore, it is not straightforward to extend the 
existing models based on DCNNs to cover more classes while 
maintaining high accuracy.

To resolve the issues related to training data collection 
and make semantic segmentation more scalable and generally 
applicable, researchers are interested in weakly supervised 
learning. In this setting, the objective is to train a robust model 
for semantic segmentation using the annotations that are much 
weaker than pixel-wise labels. Examples of weak supervision 
for semantic segmentation are illustrated in Figure 2. The clear 
advantage of weak annotations is that they are much cheaper 
to obtain than the standard segmentation annotations. Some 
types of weak annotations such as image-level class labels and 
bounding boxes are even readily available in existing large-
scale data sets [10], [29] for image classification and object 
detection. Thus, with such weakly annotated images, we can 
greatly enlarge or easily create training data sets for semantic 
segmentation. The main issue of weakly supervised seman-
tic segmentation is then how to fill the gap between the level 
of supervision and that of prediction. The supervisory signal 

Chair Table Person Car
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FIGURE 1. (a) Example images and (b) their semantic segmentation 
ground truths. Compared to image-level class labels and instance bound-
ing boxes, the pixel-wise labels provide more dense and comprehensive 
description of image content. 
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indicating object location and shape is critical in learning to 
predict segmentation masks but is partly or totally absent in 
weak supervision. The success of weakly supervised approach-
es depends heavily on the way to compensate the missing infor-
mation during training.

The purpose of this article is to provide an introduction 
to weakly supervised semantic segmentation and a thorough 
review of recent approaches in this line of research. In par-
ticular, we narrow our focus to approaches based on DCNNs. 
There exist weakly supervised approaches proposed before 
the era of deep learning [50]–[52], [56]. They attempt to asso-
ciate pixels with image-level class labels by first computing 
region-based classification scores and further refining them 
using similarities between local image regions based on vari-
ous handcrafted visual cues. However, their performance is, in 
general, limited due to lack of robust appearance models. On 
the other hand, DCNNs provide more natural ways to associ-
ate pixels with image labels and more robust feature repre-
sentations for appearance modeling. In addition, DCNNs are 
flexible enough to integrate various types of weak supervision 
and additional information that may be useful to improve seg-
mentation performance.

DCNNs for semantic segmentation
This section provides an overview of approaches for seman-
tic segmentation based on DCNNs. The objective of semantic 
segmentation is to infer semantic class labels of every pixel 
in an image. To achieve this goal, many existing approaches 
pose the task as dense local area classification and modify a 
DCNN designed for image classification to predict class scores 
for every local area in an input image.

The most popular choice of network architecture in this 
direction is a fully convolutional network (FCN) [32]. The 
FCN is based on a DCNN pretrained for large-scale image 
classification, but its architecture is fully convolutional (i.e.,

having no fully connected layer) as it interprets fully connected 
layers of the classification DCNN as 1 × 1 convolution filters 
so that it can handle input images with arbitrary sizes. The out-
put of the network then has a form of a class score map over 
the image. Since the output score map is low resolution, due to 
multiple pooling operations in the network, a single deconvolu-
tion layer is employed on top of the class score map to enlarge 
the size of the output map to that of the input image. The over-
all network architecture of the FCN is illustrated in Figure 3(a). 
Since the output of the network corresponds to pixel-wise class 
prediction scores, it is possible to learn the entire model param-
eters in an end-to-end manner by computing classification loss 
on every pixel location using pixel-level ground-truth labels. 

Image Pixel-Level
Labels

Image-Level
Class Labels

Full Supervision

Points Bounding
Boxes

Scribbles

Weak Supervision

Train

Person
Person

Bird
Bird

Bird

Train

Person

Train
Train

Person

Bird

FIGURE 2. Illustrations of various weak annotations employed for weakly supervised semantic segmentation.

(a)

(b)

FIGURE 3. Illustrations of popular DCNN architectures used for seman-
tic segmentation. (a) A fully convolutional network makes all network 
components fully convolutional, thus converts a CNN trained for image 
classification to produce class scores on local image regions. Optional 
skip-connections from lower layers (dashed lines) are used to reconstruct 
spatial information lost by spatial poolings. (b) The network architecture 
of a deep convolutional encoder-decoder network. On top of the convolu-
tional network, a stack of deconvolutional layers are used to reconstruct 
fine object segmentation masks using many network parameters. 
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Also, it provides an efficient inference mechanism that directly 
produces pixel-wise class predictions with a single forward 
pass of an input image regardless of its size.

Later approaches based on FCN-style architectures 
improve prediction accuracy by considering low-level image 
structures and building a deeper network architecture. One 
popular way to refine the predicted labels is to apply postpro-
cessing based on a graphical model such as fully connected 
conditional random field (CRF) [23]. It regularizes the pre-
dicted labels to coincide with visually similar pixels, thus it 
encourages the inferred labels to preserve underlying image 
structures such as object boundaries. Specifically, Chen et al.
[5] propose to integrate prediction results of the network with 
fully connected CRF and estimate the final pixel-wise labels 
by solving an optimization problem based on the CRF model. 
The approach is improved in [57] by decomposing CRF with 
several steps of differentiable operations and modeling each 
step with an individual neural network, where all networks are 
nicely integrated into a single DCNN for end-to-end training. 
The idea of integrating CRF is further extended by modeling 
pairwise relationship between output units to consider spatial 
context between semantic classes [27], [31]. Apart from CRF, 
there have been approaches to improve the performance by 
considering multiscale predictions. For example, [5] employs 
a set of convolution filters sampled from multiple scales to 
capture objects with variable sizes, while [6] performs seman-
tic segmentation in multiple scales and aggregate the results 
via weighted summation, where the weights are also predicted 
for each scale by an independent model.

On the other hand, some approaches propose building a 
deep encoder-decoder network for precise per-pixel class pre-
diction [33], [42]. A typical architecture of the deep encoder-
decoder network is illustrated in Figure 3(b). Contrary to the 
FCN-style architecture that has a single up-sampling layer, 
they employ a deep decoder on top of the encoder output to 
recover the original input image resolution. Specifically, Noh 
et al. [33] propose a deconvolution network, which has a sym-
metric architecture of encoder and decoder, where the decoder 
is implemented by stacks of deconvolution layers and unpool-
ing operations. The similar architecture is employed in [42]
together with an efficient data augmentation technique for the 
task of biomedical image segmentation.

These approaches have been successful in semantic segmen-
tation even on real-world images [11], [29] when a sufficiently 
large number of training images with pixel-wise annotations 
are available. However, such annotations require a tremendous 
amount of labeling cost and is available only in a few data sets 
with a limited number of semantic categories. To resolve the dif-
ficulties in training data collection and design more flexible and 
scalable models for semantic segmentation, approaches based on 
weakly supervised semantic segmentation have been proposed to 
utilize much weaker labels than pixel-wise ones.

Weakly supervised semantic segmentation
This section introduces weakly supervised semantic segmen-
tation and discusses relevant approaches based on DCNNs. 

The goal of weakly supervised semantic segmentation is to 
leverage weak annotations instead of pixel-wise ones to learn 
models for semantic segmentation. Weak labels for seman-
tic segmentation include, but is not limited to, image-level 
class label, bounding box, scribble, and point supervision as 
illustrated in Figure 2. These labels are easier to collect than 
pixel-wise labels as they require much less annotation cost. 
For example, the annotation time of image-level class labels is 
that of only one-tenth of pixel-level segmentation annotations 
[4]. Thus, one can easily build a weakly annotated image data 
set for diverse semantic categories on a large scale, and such a 
training data set will, accordingly, allow to learn a model for 
semantic segmentation in the wild.

The main challenge in weakly supervised semantic seg-
mentation is that the weak labels provide only a part of the 
supervision required for semantic segmentation. For example, 
none of weak labels presented in Figure 2 provide information 
about object shape, which is a critical evidence required to 
learn a model predicting segmentation masks. Therefore, to 
train a model for segmentation with incomplete supervision 
in weakly labeled data, the latent per-pixel ground truth as 
well as the model parameters should be jointly estimated dur-
ing training. In the following sections, we introduce various 
types of weak labels employed in the literature and discuss the 
related approaches in detail.

Image-level class label
Image-level class label is the simplest form of weak supervi-
sion for semantic segmentation as it indicates only presence or 
absence of a semantic entity in an image. Because it requires 
the least amount of human annotation cost and is already avail-
able in existing large-scale data sets such as ImageNet [10],
image-level class label has been most extensively exploited in 
weakly supervised semantic segmentation. However, learn-
ing segmentation networks from only image-level class labels 
is very challenging because spatial information about target 
objects are missing.

Some existing approaches resolve this issue by consid-
ering pixel-level labels as latent variables, and optimize 
parameters of segmentation network jointly with the latent 
pixel-level labels. Specifically, they consider outputs from a 
convolution layer of DCNN as confidence scores for latent 
per-pixel labels. Since the image-level label is the only avail-
able supervision in this weakly supervised setting, they 
aggregates the output scores over all pixels using a global 
pooling operation (e.g., max pooling or average pooling) to 
generate image-level class score. Then the network is trained 
to maximize image classification performance using image-
level labels as ground truth. Within this framework, Pathak 
et al. [37] formulate the task as a multiple instance learning 
problem, where a global max pooling operation is applied to 
enforce the constraint that each image should contain at least 
one pixel corresponding to the positive class. With the same 
motivation, Papandreou et al. [35] adopt a recursive refine-
ment procedure based on expectation-maximization, where 
the latent pixel-level labels are predicted by the learned 
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model and, in turn, used to update the model as new ground-
truth annotations.

Since the supervision by image-level class labels is too 
coarse for segmentation, the quality of the obtained results 
is often not satisfactory in the above approaches. This issue 
has been tackled by incorporating additional cues to simu-
late supervision for object location and shape. To incorporate 
localization cue, techniques for discriminative localization 
based on DCNN are employed [58]. By carefully investigat-
ing the contribution of each hidden units to the output class 
score of the network, one can identify coarse locations of 
discriminative parts of each class in an image. Then the out-
puts from discriminative localization are used to choose seeds 
indicating a position on the area of a semantic class, and the 
seeds are expanded to neighboring pixels to 
estimate pixel-wise area of the class [22], 
[34], [46]. To incorporate shape informa-
tion, superpixels are utilized as units for 
label assignment [24], [38]. A superpixel is 
a group of neighboring pixels that are simi-
lar in visual appearance (e.g., color) and is 
often obtained by clustering pixels based on 
low-level visual similarity. Superpixels are 
beneficial by encoding shape information, 
as they naturally reflect a low-level image 
structure such as object boundary.  Pinheiro 
and Collobert [38] employ superpixels to smooth pixel-wise 
class labels within each superpixel as postprocessing. Kwak 
et al. [24] exploit superpixels as the layout of a pooling opera-
tion in the DCNN. Another popular approach to refining pixel-
level prediction is applying the fully connected CRF as in the 
case of fully supervised approaches. CRF propagates labels 
between neighboring pixels and refines the prediction from the 
model to cover better object extent and shape.

Although these approaches are able to roughly localize 
objects, they often fail to infer accurate pixel-wise labels as they 
tend to focus only on small discriminative parts (e.g., the head of 
an animal) instead of the whole body of an object. It is because 
their objective during training is to minimize a classification loss, 
which is easier to achieve by considering small parts that can be 
well distinguished from other categories. Indeed, estimating 
pixel-wise labels only from image-wise labels is a significantly 
ill-posed problem. To reduce the gap between coarse image-level 
labels and fine per-pixel labels, the approaches introduced in the 
next sections incorporate additional weak annotations together 
with image-level class labels, utilize stronger but still weaker 
annotations than pixel-level labels, or adopt additional data 
sources that are also weakly annotated.

Prior knowledge
One way to compensate for the lack of details in image-level 
class labels is to exploit extra prior knowledge about the seg-
mentation target. Pathak et al. [36] proposed the employment 
of prior knowledge about object size, which roughly provides 
information about how much area of an image is occupied by 
the target object. In this approach, a user is asked to provide 

one-bit information for each object class per image, which 
indicates whether the size of the object occupies more than 
10% of the image area or not. This information is incorpo-
rated during training by enforcing that the output score map 
of the model satisfies the size constraint given by user.

Objectness, which is also known as saliency, is another 
form of the prior knowledge that can provide information 
about object extents [4], [20], [34], [38]. It is a real-valued score 
assigned to each pixel or local image region to indicate wheth-
er the pixel or region belongs to an actual object, regardless 
of the semantic class. Since it is class agnostic, the objectness 
typically covers a larger object area including nondiscrimina-
tive parts, thus is useful to compensate the limitation of weakly 
supervised approaches that favor only small discriminative 

parts. For this reason, Pinheiro and Col-
lobert [38] adopt an off-the-shelf algorithm 
that returns a set of region proposals with 
associated objectness scores [2]. The per-
pixel objectness score is then computed 
by aggregating the scores associated with 
proposals and, in turn, is used to weight 
the class score on corresponding pixel loca-
tions. In addition to image-level labels, the 
objectness score has also been applied to 
different types of weak labels, such as the 
point [4] and bounding box [20], to impose 

larger weights on potential object areas. On the other hand, 
Wei et al. [54] compute the saliency map on images associated 
with a single class and use the obtained saliency masks to ini-
tialize the network for pixel-wise classification. Similarly, Oh 
et al. [34] generate saliency masks using a model trained for 
foreground segmentation, and they assign class labels on the 
generated saliency mask by propagating the class label seeds 
obtained by the discriminative localization technique.

Point supervision
An instance-wise point, which roughly indicates the center loca-
tion of an object, is the simplest form of weak annotations that 
provide object location information, since it can be obtained 
by a single user click per object. Bearman et al. propose in [4]
to employ a combined loss for both classification and localiza-
tion, where the latter is used to ensure that a model predicts 
correct labels on the pixel localized by the point annotation. 
Since the point supervision is extremely sparse, in this work, an 
additional prior knowledge on objectness is further employed to 
estimate foreground regions that well-cover the object.

Bounding box
Although the point supervision provides coarse locations of 
semantic classes, the information about areas covered by the 
classes is still missing. A bounding box annotation can offer 
such information by indicating a rectangular area that tightly 
covers the entire object region. Also, its annotation cost is 
still cheaper than that of pixel-level segmentation annotation.

Existing approaches [9], [20], [35] that have been pro-
posed to infer pixel-wise labels given bounding boxes 

The main challenge in 
weakly supervised 
semantic segmentation 
then is the incomplete 
annotations that miss 
accurate object boundary 
information required to 
learn segmentation.
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formulate semantic segmentation as automatic foreground/
background segmentation within each bounding box area. 
To this end, Papandreou et al. [35] incorporate techniques 
developed for interactive segmentation (i.e., GrabCut [43])
to estimate foreground pixels within the box, where pixels 
inside and outside the box are considered as initial seeds for 
the foreground and background, respectively. Then, a model 
for semantic segmentation is trained using the estimated seg-
mentation masks as ground truth. On the other hand, instead 
of the direct estimation of pixel-wise labels from the bound-
ing box, Dai et al. [9] exploit off-the-shelf region propos-
als [2]. As the adopted region proposal algorithm provides 
a candidate set of masks that potentially correspond to an 
object in a box, the problem is reduced to choosing the best 
region proposal among the ones sufficiently overlapped with 
each bounding box. To this end, an itera-
tive refinement procedure similar to [35]
is adopted for training, where the model 
is trained by pixel-wise annotations com-
puted from the selected region proposals 
and the learned model is, in turn, used to 
refine the proposal selection. Khoreva et 
al. [20] improve the label prediction within the box by using 
the objectness prior [2] as the initial foreground seeds for 
GrabCut segmentation and applying a recursive refinement 
procedure as in [9].

Since a bounding box provides incomplete yet sufficiently 
strong supervision for object location and area missing in image-
level class labels, all of the approaches based on bounding box 
annotations substantially improve the performance over the 
ones trained only with the image-level labels. Moreover, they 
are even competitive to the fully supervised counterpart.

Scribble
A scribble is a line in an arbitrary form obtained by a single 
user stroke, and as another form of weak annotation, it provides 
sparse information about object location and extent. One can 
consider a scribble as a middle ground of point- and box-level 
annotations since a point is a special case of a scribble (i.e.,
a scribble with zero length) and a scribble roughly indicates 
object area as a bounding box does. Scribbles provide not only 
a user-friendly way for annotation but also an easier way to 
localize objects in arbitrary shapes. Since the scribble covers 
only a partial area of a semantic entity, the inference of pixel-
wise labels is reduced to propagating the annotated labels to 
unmarked pixels. Lin et al. [26] formulate the label propagation 
as an optimization problem based on a graphical model, where 
vertices of the graph are superpixels of each image. Training is 
performed by alternating label estimation and model parameter 
learning, where the model is trained under the supervision of 
superpixel labels and, in turn, used to update the labels as a part 
of the graph-based optimization procedure.

Microuser annotation
As described previously, there exists a tradeoff between anno-
tation cost and the amount of supervision in the selection of 

weak labels; complicated labels usually provide stronger 
supervision for segmentation while increasing the human 
annotation cost. To obtain cost-effective labels from a human, 
some approaches propose utilizing microuser annotation. In 
these approaches, a model presents to users multiple candi-
date masks inferred from an image and asks them to choose 
the best mask among the candidates. This process makes the 
annotation task intuitive and efficient because it needs a simple 
user verification by a single click to obtain dense segmenta-
tion masks. The success of these approaches is thus heavily 
dependent on generating diverse and high-quality segmenta-
tion masks.

Motivated by this, Saleh et al. [44] generate multiple fore-
ground masks by inferring multiple CRF solutions that are 
diverse and have low energy at the same time. Kolesnikov and 

Lampert [21] compute candidate masks 
by clustering image regions into multiple 
groups, where each region is described by 
a feature vector computed by a DCNN. 
In both of the aforementioned approach-
es, users are asked to select the best mask 
among the predicted multiple diverse candi-

dates, and the selected masks are considered as strong supervi-
sion for learning a semantic segmentation model.

Natural language description
A natural language description of an image can be used as an 
annotation since it provides comprehensive information of the 
image including object attributes, relations between objects, 
scene context, and so on. Also, such a description is readily 
available for a large number of images found on photo-sharing 
sites like Flickr.

Lin et al. [28] exploits natural language image description 
as weak annotation. Specifically, they propose performing 
semantic segmentation by aligning the semantic structures 
of image description and image regions. To this end, both 
an image and its description are parsed into tree structures 
through independent procedures; the tree for the description 
follows the grammatical structure of sentences, and that of the 
image, obtained by a recurrent neural network, defines a hier-
archical structure of image segments discovered by a seman-
tic segmentation model. The segmentation model is trained to 
align the two parsing trees.

Additional data source
Some of the aforementioned annotation types—point, scribble, 
and microuser annotation—are not readily available in existing 
large-scale data sets and demand a certain level of human inter-
vention. Although such types of annotations are much easier to 
obtain than pixel-wise labels, their demands for human interven-
tion is not desirable when considering that the main motivation 
of weakly supervised learning is to reduce human intervention 
required for training. To incorporate stronger supervision with-
out extra human labeling effort, some approaches propose the 
exploitation of an additional source of data, which are freely 
available in other data sets or different data domains.

The objective of semantic 
segmentation is to infer 
semantic class labels of 
every pixel in an image. 
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Hong et al. [17] exploit segmentation annotations of 
semantic classes, irrelevant to those we want to segment, 
in a transfer learning framework. The motivation is that the 
knowledge required to estimate object shapes can be trans-
ferred from a group of categories to another one. For exam-
ple, a person capable of segmenting a dog can generalize 
his or her knowledge to segment other animals, such as 
a cat and a horse, as they are similar in overall shape (e.g.,
four legs, a head, and tails). This idea is implemented by a 
deep encoder-decoder network, where the encoder network 
estimates coarse locations of objects and the decoder net-
work generates segmentation masks corresponding to the 
object indicated by the result of the encod-
er network. It is shown empirically in [17]
that segmentation knowledge of irrelevant 
classes can be successfully transferred to 
that of target classes for which only image-
level class labels are available.

Other approaches [18], [49] in this catego-
ry make use of web videos as additional data. 
Motion in video is a powerful cue to separate 
foregrounds from surrounding background 
since object and background typically exhib-
it distinctive motion patterns due to their 
different dynamics and three-dimensional 
positions. For this reason, the approaches 
take advantage of densely computed video 
motions, which are also called optical flows. They first conduct 
semantic segmentation on individual video frames using DCNN 
learned with weakly annotated images and enhance the quality 
of the segmentation results by taking dense motions into account. 
The video segmentation results are then used as synthesized 
supervision to train a model for semantic segmentation. The 
main challenge in this direction is to collect relevant video clips 
from web repositories (e.g., YouTube) with no human interven-
tion. Hong et al. [18] tackle this issue by a fully automatic video 
retrieval algorithm that crawls videos from a web repository 
using the class labels as search key words and refines the search 
results by selecting only relevant intervals from the videos using 
a DCNN-based classifier learned from weak labels.

Semisupervised semantic segmentation
The problem of semisupervised semantic segmentation takes the 
middle ground between fully and weakly supervised semantic 
segmentation. In semisupervised learning of semantic segmen-
tation, the training data set is composed of both weakly and 
fully annotated examples, which is different from the traditional 
semisupervised learning setting where training data consist 
of unlabeled and labeled examples. As both semi- and weakly 
supervised approaches share the same motivation—reducing 
the significant burden for full annotation—it is assumed that the 
number of fully annotated examples is limited to only a small 
portion of training data. Thus, the main challenge of semisu-
pervised semantic segmentation is to train a model using a set 
of unbalanced and heterogeneous annotations. As in weakly 
supervised setting, various types of labels have been employed 

as weak supervision, such as image-level class labels [16], [35],
bounding boxes [9], [35], and scribbles [26].

Given these annotations, the simplest and most popular 
approach to semisupervised semantic segmentation is to 
directly apply the identical model used in the weakly super-
vised case to semisupervised semantic segmentation [9], 
[26], [35]. In these approaches, the model is trained with both 
of estimated and ground-truth pixel-wise labels associated 
with weakly and fully annotated data, respectively. Since 
the full annotations provide clean and reliable update signals 
that guide the learning process of the DCNN, the semisuper-
vised approaches have, in general, shown better performance 

than their weakly supervised counterparts.
Hong et al. [16] design a more sophisticat-

ed DCNN architecture based on a decoupled 
deep encoder-decoder network, specialized 
for semisupervised semantic segmentation. 
The main idea is that semantic segmenta-
tion can be decoupled into two subproblems: 
classification and (class-agnostic) segmen-
tation. Following this idea, the network 
architecture is accordingly decoupled to be a 
concatenation of two separate networks, one 
for classification and the other for segmen-
tation, which are trained independently; the 
classification network is learned from many 
weak annotations (i.e., image-level class 

labels) and the segmentation network from segmentation anno-
tations for all semantic categories with no distinction between 
them. By decomposing the problem into the two subproblems 
requiring different degrees of supervision, the performance of 
semisupervised semantic segmentation can be significantly 
improved even with a very small number of full annotations.

Empirical analysis
This section provides empirical analysis of weakly and semisu-
pervised semantic segmentation algorithms presented in 
the previous sections. There exist several benchmarks for eval-
uation of the algorithms. PASCAL VOC 2012 [11] is the most 
popular, where each pixel in image is annotated as one of the 
20 object classes or background. This benchmark originally 
consisted of 1,464 images for training and 1,449 for valida-
tion, but most approaches tested on it are learned with 10,582 
images augmented with the semantic boundaries data set [13].
Another popular one is MS-COCO [29], which is composed 
of 82,783 images for training and 40,504 for validation with 
annotations for 80 object categories including those of PAS-
CAL VOC 2012. Cityscapes [8] is a benchmark for semantic 
segmentation of urban street scenes. It focuses on 30 semantic 
entities observed frequently from streets and provides 5,000 
images with fine segmentation annotations and 20,000 images 
with coarse ones. ADE20K [59] is a recently released bench-
mark that provides comprehensive segmentation annotations 
for a large-scale image collection. It contains 20,210 training 
images and 2,000 validation images, which are annotated with 
2,693 object categories and 476 part types.

To resolve the difficulties 
in training data collection 
and design more flexible 
and scalable models for 
semantic segmentation, 
approaches based on 
weakly supervised 
semantic segmentation 
have been proposed to 
utilize much weaker labels 
than pixel-wise ones.
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In this article, we employ the PASCAL VOC 2012 
benchmark for evaluation since it has the largest record of 
reported performance, thus allowing fair and comprehensive 
comparisons among various methods. The evaluation metric 
is mean intersection-over-union (mIoU) between ground-
truth and predicted segmentation results. We present scores 
reported in the original papers, for both validation and test 
splits. For an approach with multiple variations in model 
architecture, only the score of the best model is presented for 
the sake of brevity. For an approach adopting various types 
of weak supervision (e.g., [4], [35], [36], and [38]), we pres-
ent multiple scores corresponding to the individual supervi-
sion types. In addition to annotations for training, we also 
report the type of extra information adopted by each method 
if exists, as such information may introduce additional super-
vision that are not available from the PASCAL VOC 2012 
training data.

Table 1 summarizes comparison results for the weakly 
supervised approaches. As discussed in the section “Weakly 
Supervised Semantic Segmentation,” they are categorized by 

the type of supervision employed for training. Note that it is 
not appropriate to compare different types of weak annotation 
directly since the models employed in each method have dif-
ferent configurations and capacities. However, the general per-
formance trend across various approaches given in the table 
clearly demonstrates the impact of supervision levels and ben-
efits of using extra information.

Approaches based only on image-level class labels per-
form poorly in general, as shown in Table 1. As described 
in the section “Weakly Supervised Semantic Segmentation,”
it is mainly because the discriminative learning objective 
employed in weakly supervised approaches tends to focus on 
small discriminative parts. The performance is improved by 
adopting additional cues such as discriminative localization 
and underlying low-level image structures, since they provide 
useful information to regularize the prediction during train-
ing. Also, it is clearly observed that prior knowledge such as 
objectness generally improves the performance, as it helps 
to estimate a better object extent by injecting class-agnostic 
objectness likelihood in a pixel level. Increasing the strength 

Table 1. The comparison results of weakly supervised semantic segmentation algorithms on the PASCAL VOC 2012 data set.

Supervision Method Extra Information mIoU (val) mIoU (test)

Image-level label MIL-FCN [37] — 25.1 25.7 

WSSL [35] — 38.2 39.6 

CCNN [36] — 35.3 36.4 

AugFeed [40] — 52.7 52.6 

WTP [4] — 29.8 —

MIL-SP [38] Superpixel [12]† 36.6 35.8 

SPN [24] Superpixel [60] 50.3 46.9 

SEC [22] Localization [58]† 50.7 51.7 

DCSM [46] Localization [47]† 44.1 45.1 

Prior knowledge CCNN [36] Object size 45.1 42.4 

MIL-SP [38] Objectness [2] 42.6 40.6 

AugFeed [40] Objectness [2] 54.3 55.5 

STC [54] Objectness [2] 49.8 51.2 

Saliency [34] Saliency 55.7 56.7 

Point supervision WTP [4] Point + objectness [1] 43.8 —

Bounding box WSSL [35] Bounding box 60.6 62.2 

Boxsup [9] Bounding box + objectness [2] 62.0 64.6 

SDI [20] Bounding box + objectness [2] 65.7 67.5 

Scribble ScribbleSup [26] Scribble 63.1 —

Microannotation CheckMask [44] User feedback 51.5 52.9 

MicroAnno [21] User feedback 51.9 53.2 

Additional data TransferNet [17] Exclusive segmentation mask [29] 52.1 51.2 

MCNN [49] Web videos [39] 38.1 39.8 

CrawlSeg [18] Web videos (YouTube) 58.1 58.7 
†Indicates extra information obtained without additional supervision.
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of supervision in training annotations also improves the seg-
mentation quality in general. Specifically, algorithms using 
bounding box annotations show noticeably improved perfor-
mance compared to the ones based only on an image-level 
label. It is because the bounding box provides supervisory 
signals for object location and area at the same time, which 
are critical to train a model for semantic segmentation, and 
totally missing in image-level labels. Also, if used in the right 
way, an additional data source like web videos provides use-
ful information for segmentation without additional human 
effort since the supervision for segmentation can be reliably 
synthesized and effectively transferred from the domain of 
the additional data source.

In addition to the weakly supervised approaches, we quan-
tify and compare the results of semisupervised methods. As 
shown in Table 2, employing segmentation annotations for 
training effectively improves performance even when their 
number is very small. It is because the segmentation anno-
tations provide strong and clear guidance to learn semantic 
segmentation models reliably from weak labels. Similar to 
the weakly supervised cases, the performance of semisuper-
vised approaches depends on the supervision strength of the 
employed weak annotations. Also, increasing the amount of 
segmentation annotations naturally improves the performance.

Other applications
This survey article has focused on semantic segmentation algo-
rithms for RGB images with various objects. However, weakly 
supervised semantic segmentation can be naturally applied to 
other tasks as well, and this section introduces a few examples.

Medical image analysis would be an important applica-
tion of weakly supervised semantic segmentation. Semantic 
segmentation of medical images (e.g., segmentation of cancer 
lesions) plays an important role in disease recognition and 
diagnosis, but collecting segmentation labels for medical 
images is particularly expensive because annotators must be 
domain experts. Thus, weakly supervised approaches have 
attracted much attention even before the era of deep learn-
ing [55]. Recently Jia et al. [19] proposed a DCNN-based 
approach for histopathology cancer image segmentation. 
Similar to [36], a roughly estimated size of a cancerous 
region is used as weak supervision in addition to image-level 
class labels since it is less costly to obtain relaxed informa-
tion compared to pixel-level class labels.

Weakly supervised semantic segmentation has been also 
applied for autonomous driving. Barnes et al. [3] present a weakly 

supervised framework to learn a DCNN segmenting a path pro-
posal and obstacles from a road scene. The path proposal means 
the pixel-level area of a route that the vehicle would take, and 
manual annotation of such an area is expensive as it is in the typi-
cal semantic segmentation setting. In [3], segmentation annota-
tions of those entities are generated with no human intervention 
other than driver behavior: a large volume of video data is first 
recorded by a camera and a lidar sensor mounted on the vehicle, 
then path proposals are annotated by projecting the future path of 
the vehicle into each video frame and obstacle areas are derived 
from lidar scanning results. Finally, the generated annotations 
are used to train a DCNN for segmentation.

Summary and discussion
This article provided a comprehensive review of weakly super-
vised approaches for semantic segmentation based on DCNNs. 
Semantic segmentation aims to estimate pixel-level areas of 
semantic categories, and its results enable many interesting 
applications that require fine-grained interpretation of an image. 
Following their great success in other visual recognition tasks, 
DCNNs also have shown impressive performance on pub-
lic benchmarks for semantic segmentation. However, even with 
DCNNs, we still have a long way to go in achieving semantic seg-
mentation in an uncontrolled and realistic environment. Because 
of the data-hungry nature of DCNNs and the lack of segmenta-
tion annotations for training, fully supervised DCNNs can handle 
only a small number of semantic classes that are defined in the 
existing training data sets. Weakly supervised approaches tackle 
this issue by leveraging readily available or easily obtainable 
weak labels instead of segmentation masks. As summarized in 
the section “Empirical Analysis,” the records achieved by recent 
weakly supervised approaches are impressive, especially when 
considering the  fact that no pixel-level supervision is provided 
to train them. However, there is still a certain gap between the 
performance of fully supervised approaches and that of weakly 
supervised ones.

Here we suggest a few directions worth investigating for 
further improvement of weakly supervised semantic segmen-
tation. The first is to get help from unsupervised computer-
vision techniques. Object shape information is essential to 
learn semantic segmentation but absent in weak annota-
tions, and we believe that such missing information can be 
compensated by the unsupervised techniques. For example, 
superpixels and region proposals well preserve underlying 
image structures including object boundaries, so they allow 
us to bypass explicit shape estimation during inference 

Table 2. The comparison results of semisupervised semantic segmentation algorithms on the PASCAL VOC 2012 data set.

Method Weak Supervision Number of Segmentation Annotations mIoU (val) mIoU (test)

WSSL [35] Image-level label 0.5K (5% of the training set) 56.9 —

DecoupledNet [16] Image-level label 0.5K (5% of the training set) 62.1 62.5 

WSSL [35] Bounding box 1.4K (13% of the training set) 65.1 66.6 

Boxsup [9] Bounding box 1.4K (13% of the training set) 63.5 66.2 
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through selecting those belonging to tar-
get semantic categories [9], [18], [24], [35].
Also, in [18] and [49], optical flows help 
synthesize more accurate segmentation 
annotations from videos by propagating 
class-localization information between 
consecutive frames along with motion. It 
will be an interesting approach to weakly 
supervised semantic segmentation to 
newly introduce other unsupervised tech-
niques that can recoup the gap between the 
level of supervision and that of prediction.

Another direction is transfer learning. Existing bench-
marks for semantic segmentation [11], [29] provide segmen-
tation annotations, and it is obviously desirable to exploit the 
existing segmentation annotations although they are given for 
only a small number of semantic categories that may not be 
relevant to target categories we would like to segment. Trans-
fer learning realizes this motivation by transferring segmen-
tation knowledge learned for certain categories into that for 
the other categories. Then, from our point of view, the key 
determinants of success in this line of research are network 
architecture and learning strategy that enable DCNNs to 
learn segmentation knowledge that can be applied to arbi-
trary semantic categories out of the training data set. A pio-
neer study has been done by Hong et al. [17], but there is 
still much room for improvement in terms of both network 
architecture and learning strategy.

The aforementioned suggestions are mainly for weakly 
supervised learning of DCNNs for semantic segmentation, but 
we believe that some of the ideas and techniques can be applied 
to weakly supervised learning of other complicated visual rec-
ognition models for which annotated training examples are not 
sufficiently given.
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The Robustness of Deep Networks
A geometrical perspective 

Deep neural networks have recently shown impressive clas-
sification performance on a diverse set of visual tasks. 
When deployed in real-world (noise-prone) environments, 

it is equally important that these classifiers satisfy robustness
guarantees: small perturbations applied to the samples should 
not yield significant loss to the performance of the predictor. 
The goal of this article is to discuss the robustness of deep 
networks to a diverse set of perturbations that may affect the 
samples in practice, including adversarial perturbations, ran-
dom noise, and geometric transformations. This article further 
discusses the recent works that build on the robustness analysis 
to provide geometric insights on the classifier’s decision sur-
face, which help in developing a better understanding of deep 
networks. Finally, we present recent solutions that attempt to 
increase the robustness of deep networks. We hope this review 
article will contribute to shed ding light on the open research 
challenges in the robustness of deep networks and stir interest 
in the analysis of their fundamental properties.

Introduction
With the dramatic increase of digital data and the development 
of new computing architectures, deep learning has been devel-
oping rapidly as a predominant framework for data representa-
tion that can contribute in solving very diverse tasks. Despite 
this success, several fundamental properties of deep neural 
networks are still not understood and have been the subject 
of intense analysis in recent years. In particular, the robust-
ness of deep networks to various forms of perturbations has 
received growing attention due to its importance when applied 
to visual data. That path of work has been mostly initiated by 
the illustration of the intriguing properties of deep networks 
in [1], which are shown to be particularly vulnerable to very 
small additive perturbations in the data, even if they achieve 
impressive performance on complex visual benchmarks [2].
An illustration of the vulnerability of deep networks to small 
additive perturbations can be seen in Figure 1. A dual phenom-
enon was observed in [3], where unrecognizable images to the 
human eye are classified with high confidence by deep neural 
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networks. The transfer of these deep networks to critical appli-
cations that possibly consist in classifying high-stake infor-
mation is seriously challenged by the low robustness of deep 
networks. For example, in the context of self-driving vehicles, 
it is fundamental to accurately recognize cars, traffic signs, 
and pedestrians, when these are affected by clutter, occlusions, 
or even adversarial attacks. In medical imaging [4], it is also 
important to achieve high classification rates on potentially 
perturbed test data. The analysis of state-of-the-art deep clas-
sifiers’ robustness to perturbation at test time is therefore an 
important step for validating the models’ reliability to unex-
pected (possibly adversarial) nuisances that might occur when 
deployed in uncontrolled environments. In addition, a better 
understanding of the capabilities of deep networks in coping 
with data perturbation actually allows us to develop important 
insights that can contribute to developing yet better systems.

The fundamental challenges raised by the robustness of deep 
networks to perturbations have led to a large number of impor-
tant works in recent years. These works study empirically and 
theoretically the robustness of deep networks to different types 
of perturbations, such as adversarial perturbations, additive ran-
dom noise, structured transformations, or even universal pertur-
bations. The robustness is usually measured as the sensitivity of 
the discrete classification function (i.e., the function that assigns 
a label to each image) to such perturbations. While robustness 
analysis is not a new problem, we provide an overview of the 
recent works that propose to assess the vulnerability of deep 
network architectures. In addition to quantifying the robustness 
of deep networks to various forms of perturbations, the analy-
sis of robustness has further contributed to developing important 
insights on the geometry of the complex decision boundary of 
such classifiers, which remain hardly understood due to the very 
high dimensionality of the problems that they address. In fact, 
the robustness properties of a classifier are strongly tied to the 
geometry of the decision boundaries. For example, the high insta-
bility of deep neural networks to adversarial perturbations shows 
that data points reside extremely close to the classifier’s decision 
boundary. The study of robustness is, therefore, not only interest-
ing from the practical perspective of the system’s reliability but 
has a more fundamental component that allows “understanding” 
of the geometric properties of classification regions and derives 
insights toward the improvement of current architectures.

This overview article has multiple goals. First, it provides 
an accessible review of the recent works in the analysis of 
the robustness of deep neural network classifiers to different 
forms of perturbations, with a particular emphasis on image 
analysis and visual understanding applications. Second, it 
presents connections between the robustness of deep networks 
and the geometry of the decision boundaries of such classi-
fiers. Third, the article discusses ways to improve the robust-
ness in deep networks architectures and finally highlights 
some of the important open problems.

Robustness of classifiers
In most classification settings, the proportion of misclassified 
samples in the test set is the main performance metric used 

to evaluate classifiers. The empirical test error provides an 
estimate of the classifier’s risk, defined as the probability of 
misclassification, when considering samples from the data dis-
tribution. Formally, let us define n to be a distribution defined 
over images. The risk of a classifier f  is equal to

( ) ( ( ) ( )),R f f x y xP
~x

!=
n

(1)

where x  and ( )y x correspond, respectively, to the image 
and its associated label. While the risk captures the error of 
f  on the data distribution ,n  it does not capture the robust-

ness to small arbitrary perturbations of data points. In visual 
classification tasks, it is desirable to learn classifiers that 
achieve robustness to small perturbations of the input; i.e., 
the application of a small perturbation to images (e.g., addi-
tive perturbations on the pixel values or geometric transfor-
mation of the image) should not alter the estimated label of 
the classifier.

Before going into more detail about robustness, we first 
define some notations. Let X  denote the ambient space where 
images live. We denote by R  the set of admissible perturba-
tions. For example, when considering geometric perturbations, 
R  is set to be the group of geometric (e.g., affine) transfor-
mations under study. Alternatively, if we are to measure the 
robustness to arbitrary additive perturbations, we set .R X=

For ,r R!  we define :T X Xr "  to be the perturbation opera-
tor by ;r  i.e., for a data point , ( )x T xX r!  denotes the image 
x  perturbed by .r Armed with these notations, we define the 
minimal perturbation changing the label of the classifier, at ,x
as follows:

( ) ( ( )) ( ),argminr x r f T x f xsubject to rR
r R

!=
!

) (2)

where · R  is a metric on .R  For notation simplicity, we omit 
the dependence of ( )r x)  on f, , ,R d  and operator T. Moreover, 
when the image x is clear from the context, we will use r)  to refer 
to ( ) .r x) See Figure 2 for an illustration. The pointwise robust-
ness of f  at x  is then measured by ( ) .r x R

)  Note that larger 
values of · R  indicate a higher robustness at .x  While this 
definition of robustness considers the smallest perturbation ( )r x)

(with respect to the metric · Rh that causes the classifier f  to 

(a) (b) (c)

FIGURE 1. An example of an adversarial perturbations in state-of-the-art 
neural networks. (a) The original image that is classified as a “whale,” (b) 
the perturbed image classified as a “turtle,” and (c) the corresponding 
adversarial perturbation that has been added to the original image to fool 
a state-of-the-art image classifier [5]. 
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change the label at ,x  other works have instead adopted slightly 
different definitions, where a “sufficiently small’’ perturbation 
is sought (instead of the minimal one) [7]–[9]. To measure the 
global robustness of a classifier ,f  one can compute the expecta-
tion of ( )r x R

)  over the data distribution [1], [10]. That is, the 
global robustness ( )ft  is defined as follows:

)( ) ( ) .f r xE R~x
t =

n
^ h (3)

It is important to note that in our robustness setting, the perturbed 
point ( )T xr  need not belong to the support of the data distribution. 
Hence, while the focus of the risk in (1) is the accuracy on typical
images (sampled from ),n  the focus of the robustness computed 
from (2) is instead on the distance to the “closest” image (poten-
tially outside the support of )n  that changes the label of the clas-
sifier. The risk and robustness hence capture two fundamentally 
different properties of the classifier, as illustrated in “Robustness 
and Risk: A Toy Example.”

f (x2) = 2

f (x1) = 1

Tr ∗ (x1)

x2

x1

B

T

FIGURE 2. Here, B  denotes the decision boundary of the classifier 
between classes 1 and 2, and T  denotes the set of perturbed versions 
of x1  (i.e., ),{ ( ): }T x rT Rr 1 !=  where we recall that R  denotes the set 
of admissible perturbations. The pointwise robustness at x1  is defined as 
the smallest perturbation in R  that causes x1  to change class.

To illustrate the general concepts of robustness and risk of 
classifiers, we consider the simple binary classification task 
illustrated in Figure S1, where the goal is to discriminate 
between images representing vertical and horizontal stripes. 
In addition to the orientation of the stripe that separates the 
two classes, a very small positive bias is added to pixels of 
first-class images and subtracted from the pixels of the imag-
es in the second class. This bias is chosen to be very small, in 
such a way that it is imperceptible to humans.; see Figure S2 
for example images of class 1 and 2 with the pixel values, 
where a denotes the bias.

It is easy to see that a linear classifier can perfectly sepa-
rate the two classes, thus achieving zero risk (i.e., ( ) ).R f 0=
Note, however, that such a classifier only achieves zero risk 
because it captures the bias but fails to distinguish between 
the images based on the orientation of the stripe. Hence, 
despite being zero risk, this classifier is highly unstable to 
additive perturbation, as it suffices to perturb the bias of the 
image (i.e., by adding a very small value to all pixels) to 
cause misclassification. On the other hand, a more complex 
classifier that captures the orientation of the stripe will be 
robust to small  perturbations (while equally achieving zero 
risk),  as changing the label would require changing the 
direction of the stripe, which is the most visual (and natural) 
concept that separates the two classes.

Robustness and Risk: A Toy Example

(a)

(b)

FIGURE S1. (a) The images belonging to class 1 (vertical stripe and 
positive bias) and (b) the images belonging to class 2 (horizontal 
stripe and negative bias).

a1 + a

1 – a

–a

(a) (b)

FIGURE S2. (a) An example image of class 1. White pixels have value 
,a1+  and black pixels have value a. (b) An example image of class –1. 

White pixels have value ,a1-  and black pixels have value a- . The 
bias a is set to be very small, in such a way that it is imperceptible.
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Observe that classification robustness is strongly related 
to support vector machine (SVM) classifiers, whose goal is to 
maximize the robustness, defined as the margin between sup-
port vectors. Importantly, the max-margin classifier in a given 
family of classifiers might, however, still not achieve robust-
ness (in the sense of high ( )).ft  An illustration is provided in 
“Robustness and Risk: A Toy Example,” where a no zero-risk 
linear classifier—in particular, the max-margin classifier—
achieves robustness to perturbations. Our focus in this article 
is turned toward assessing the robustness of the family of deep 
neural network classifiers that are used in many visual recog-
nition tasks.

Perturbation forms

Robustness to additive perturbations
We first start by considering the case where the perturbation 
operator is simply additive; i.e., ( ) .T x x rr = +  In this case, the 
magnitude of the perturbation can be measured with the p,  norm 
of the minimal perturbation that is necessary to change the label 
of a classifier. According to (2), the robustness to additive pertur-
bations of a data point x  is defined as

( ) ( ).min r f x r f xsubject topr R
!+

!
(4)

Depending on the conditions that one sets on the set R  that sup-
ports the perturbations, the additive model leads to different 
forms of robustness.

Adversarial perturbations
We first consider the case where the additive perturbations are 
unconstrained (i.e., ) .R X=  The perturbation obtained by solv-
ing (4) is often referred to as an adversarial perturbation, as it 
corresponds to the perturbation that an adversary (having full 
knowledge of the model) would apply to change the label of the 
classifier, while causing minimal changes to the original image.

The optimization problem in (4) is nonconvex, as the con-
straint involves the (potentially highly complex) classification 
function .f Different techniques exist to approximate adversarial 
perturbations. In the following, we briefly mention some of the 
existing algorithms for computing adversarial perturbations:
■ Regularized variant [1]: The method in [1] computes adver-

sarial perturbations by solving a regularized variant of the 
problem in (4), given by

( , , ),min c r J x r ypr
i+ + u (5)

where yu  is a target label of the perturbed sample, J is a loss func-
tion, c is a regularization parameter, and i  is the model param-
eters. In the original formulation [1], an additional constraint 
is added to guarantee [ , ],x r 0 1!+  which is omitted in (5) 
for simplicity. To solve the optimization problem in (5), a line  
search is performed over c  to find the maximum c 02 for 
which the minimizer of (5) satisfies ( ) .f x r y+ = u  While lead-
ing to very accurate estimates, this approach can be costly to 
compute on high-dimensional and large-scale data sets. More-

over, it computes targeted adversarial perturbations, where the 
target label is known.
■ Fast gradient sign (FGS) [11]: This solution estimates an 

untargeted adversarial perturbation by going in the direction 
of the sign of gradient of the loss function:

( , ( ), ) ,J x y xsign xd ie ^ h
where ,J  the loss function, is used to train the neural network and 
i  denotes the model parameters. While efficient, this one-step 
algorithm provides a coarse approximation to the solution of the 
optimization problem in (4) for .p 3=

■ DeepFool [5]: This algorithm minimizes (4) through an itera-
tive procedure, where each iteration involves the linearization 
of the constraint. The linearized (constrained) problem is 
solved in closed form at each iteration, and the current esti-
mate is updated; the optimization procedure terminates when 
the current estimate of the perturbation fools the classifier. In 
practice, DeepFool provides a tradeoff between the accuracy 
and efficiency of the two previous approaches [5].
In addition to the aforementioned optimization meth-

ods, several other approaches have recently been proposed 
to compute adversarial perturbations, see, e.g., [9], [12], and 
[13]. Different from the previously mentioned gradient-based 
techniques, the recent work in [14] learns a network (the 
adversarial transformation network) to efficiently generate a 
set of perturbations with a large diversity, without requiring 
the computation of the gradients.

Using the aforementioned optimization techniques, one 
can compute the robustness of classifiers to additive adver-
sarial perturbations. Quite surprisingly, deep networks are 
extremely vulnerable to such additive perturbations; i.e., 
small and even imperceptible adversarial perturbations can 
be computed to fool them with high probability. For example, 
the average perturbations required to fool the CaffeNet [15]
and GoogleNet [16] architectures on the ILSVRC 2012 task 
[17] are 100 times smaller than the typical norm of natural 
images [5] when using the 2,  norm. The high instability of 
deep neural networks to adversarial perturbations, which 
was first highlighted in [1], shows that these networks rely 
heavily on proxy concepts to classify objects, as opposed to 
strong visual concepts typically used by humans to distin-
guish between objects. 

To illustrate this idea, we consider once again the toy clas-
sification example (see “Robustness and Risk: A Toy Example”), 
where the goal is to classify images based on the orientation of 
the stripe. In this example, linear classifiers could achieve a per-
fect recognition rate by exploiting the imperceptibly small bias
that separates the two classes. While this proxy concept achieves 
zero risk, it is not robust to perturbations: one could design an 
additive perturbation that is as simple as a minor variation of the 
bias, which is sufficient to induce data misclassification. On the 
same line of thought, the high instability of classifiers to additive 
perturbations observed in [1] suggests that deep neural networks 
potentially capture one of the proxy concepts that separate the 
different classes. Through a quantitative analysis of polynomial 
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classifiers, [10] suggests that higher-degree 
classifiers tend to be more robust to per-
turbations, as they capture the “stronger” 
(and more visual) concept that separates the 
classes (e.g., the orientation of the stripe in 
Figure S1 in “Robustness and Risk: A Toy 
Example”). For neural networks, however, the 
relation between the flexibility of the archi-
tecture (e.g., depth and breadth) and adver-
sarial robustness is not well understood and 
remains an open problem.

Random noise
In the random noise regime, data points are 
perturbed by noise having a random direction in the input space. 
Unlike the adversarial case, the computation of random noise 
does not require knowledge of the classifier; it is therefore crucial 
for state-of-the-art classifiers to be robust to this noise regime. We 
measure the pointwise robustness to random noise by setting R
to be a direction sampled uniformly at random from the 2,  unit 
sphere Sd 1-  in X  (where d  denotes the dimension of ) .X There-
fore, (4) becomes

( ) ( ) ( ),argminr x r f x r f xsubject tov 2
{ : }r v R

!= +
! !a a

* (6)

where v  is a direction sampled uniformly at random from the 
unit sphere .Sd 1-  The pointwise robustness is then defined as 
the 2,  norm of the perturbation, i.e., ( ) .r xv 2

*

The robustness of classifiers to random noise has previously 
been studied empirically in [1] and theoretically in [10] and 
[18]. Empirical investigation suggests that state-of-the-art clas-
sifiers are much more robust to random noise than to adversar-
ial perturbations, i.e., the norm of the noise ( )r xv

*  required to 
change the label of the classifier can be several orders of mag-
nitudes larger than that of the adversarial perturbation. This 
result is confirmed theoretically, as linear classifiers in [10]
and nonlinear classifiers in [18] are shown to have a robustness 
to random noise that behaves as

( ) ( )r x d r xv 2 2advH= ** ` j
with high probability, where ( )r x 2adv

*  denotes the robustness 
to adversarial perturbations [(4) with ] .R X=  In other words, 
this result shows that, in high-dimensional classification set-
tings (i.e., large ),d  classifiers can be robust to random noise, 
even if the pointwise adversarial robustness of the classifier is 
very small.

Semirandom noise
Finally, the semirandom noise regime generalizes this addi-
tive noise model to random subspaces S  of dimension .m d#
Specifically, in this perturbation regime, an adversarial pertur-
bation is sought within a random subspace S  of dimension .m
That is, the semirandom noise is defined as follows:

( ) ( ) ( ).argminr x r f x r f xsubject to2S
r S

!= +
!

* (7)

Note that, when ,m 1= this semirandom 
noise regime precisely coincides with the 
random noise regime, whereas m d= corre-
sponds to the adversarial perturbation regime 
defined previously. For this generalized noise 
regime, a precise relation between the robust-
ness to semirandom and adversarial pertur-
bation exists [18], as it is shown that

( ) ( ) .r x
m
d r x2 2advH=S

** c m
This result shows in particular that, even 
when the dimension m  is chosen as a small 
fraction of ,d it is still possible to find 

small perturbations that cause data misclassification. In other 
words, classifiers are not robust to semirandom noise that is 
only mildly adversarial and overwhelmingly random [18]. This 
implies that deep networks can be fooled by very diverse small 
perturbations, as these can be found along random subspaces 
of dimension .m d%

Robustness to structured transformations
In visual tasks, it is not only crucial to have classifiers that are 
robust against additive perturbations as described previously. 
It is also equally important to achieve invariance to structured 
nuisance variables such as illumination changes, occlusions, or 
standard local geometric transformations of the image. Spe-
cifically, when images undergo such structured deformations, 
it is desirable that the estimated label remains the same.

One of the main strengths of deep neural network clas-
sifiers with respect to traditional shallow classifiers is that 
the former achieve higher levels of invariance [19] to trans-
formations. To verify this claim, several empirical works 
have been introduced. In [6], a formal method is proposed 
that  leverages the generalized robustness definition of (2) 
to measure the robustness of classifiers to arbitrary transfor-
mation groups. The robustness to structured transformations 
is precisely measured by setting the admissible perturba-
tion space R  to be the set of transformations (e.g., trans-
lations, rotations, dilation) and the perturbation operator T
of (2) to be the warping operator transforming the coordi-
nates of the image. In addition, · R  is set to measure the 
change in appearance between the original and transformed 
images. Specifically, · R  is defined to be the length of 
the shortest path on the nonlinear manifold of transformed 
images { ( ): } .T x rT Rr !=  Using this approach, it is pos-
sible to quantify the amount of change that the image should 
undergo to cause the classifier to make the wrong decision. 
Despite improving the invariance over shallow networks, 
the method in [6] shows that deep classifiers are still not 
robust to sufficiently small deformations on simple visual 
classification tasks. In [20], the authors assess the robustness 
of face recognition deep networks to physically realizable 
structured perturbations. In particular, wearing eyeglass 
frames is shown to cause state-of-the-art face-recognition 
algorithms to misclassify. In [7], the robustness to other 
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forms of complex perturbations is tested, and state-of-the-art 
deep networks are shown once again to be unstable to these 
perturbations. An empirical analysis of the ability of cur-
rent convolutional neural networks (CNNs) to manage loca-
tion and scale variability is proposed in [21]. It is shown, in 
particular, that CNNs are not very effective in factoring out 
location and scale variability, despite the popular belief that 
the convolutional architecture and the local spatial pooling 
provides invariance to such representations. The aforemen-
tioned works show that, just as state-of-the-art deep neu-
ral networks have been observed to be unstable to additive 
unstructured perturbations, such modern classifiers are not 
robust to perturbations even when severely restricting the set 
of possible transformations of the image.

Universal additive perturbations
All of the previous definitions capture different forms of 
robustness, but they all rely on the computation of data-spe-
cific perturbations. Specifically, they consider the necessary 
change that should be applied to specific samples to change the 
decision of the classifier. More generally, one might be inter-
ested to understand if classifiers are also vulnerable to generic 
(data and network agnostic) perturbations. The analysis of the 
robustness to such perturbations is interesting from several 
perspectives: 1) these perturbations might not require the pre-
cise knowledge of the classifier under test, 2) they might cap-

ture important security and reliability properties of classifiers, 
and 3) they show important properties on the geometry of the 
decision boundary of the classifier.

In [22], deep networks are shown to be surprisingly vulner-
able to universal (image-agnostic) perturbations. Specifically, 
a universal perturbation v  can be defined as the minimal per-
turbation that fools a large fraction of the data points sampled 
from the data distribution ,n  i.e.,

( ( ) ( )) ,argminv r f x r f x 1 subject to Pp ~r x
! $ e= + -

n
(8)

where e  controls the fooling rate of the universal perturba-
tion. Unlike adversarial perturbations that target to fool a 
specific data point, universal perturbations attempt to fool 
most images sampled from the natural images distribu-
tion .n  Specifically, by adding this single (image-agnostic) 
perturbation to a natural image, the label estimated by the 
deep neural network will be changed with high probability. 
In [22], an algorithm is provided to compute such univer-
sal perturbations; these perturbations are further shown to 
be quasi-imperceptible while fooling state-of-the-art deep 
networks on unseen natural images with probability edg-
ing 80%. Specifically, the p,  norm of these perturbations 
is at least one order of magnitude smaller than the norm of 
natural images but causes most perturbed images to be mis-
classified. Figure 3 illustrates examples of scaled universal 

(a) (b) (c)

(d) (e) (f)

FIGURE 3. Universal perturbations computed for different deep neural network architectures. The pixel values are scaled for visibility. (a) CaffeNet, 
(b) VGG-F, (c) VGG-16, (d) VGG-19, (e) GoogLeNet, and (f) ResNet-152.
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perturbations computed for different deep neural networks, 
and Figure 4 illustrates examples of perturbed images. When 
added to the original images, a universal perturbation is 
quasi-imperceptible but causes most images to be misclassi-
fied. Note that adversarial perturbations computed using the 
algorithms described in the section “Adversarial Perturba-
tions” are not universal across data points, as shown in [22].
That is, adversarial perturbations only generalize mildly to 
unseen data points, for a fixed norm comparable to that of 
universal perturbations.

Universal perturbations are further shown in [22] to trans-
fer well across different architectures; a perturbation com-
puted for a given network is also very likely to fool another 
network on most natural images. In that sense, such pertur-
bations are doubly universal, as they generalize well across 
images and architectures. Note that this property is shared 
with adversarial perturbations, as the latter perturbations 
have been shown to transfer well across different models 
(with potentially different architectures) [1], [23]. The exis-
tence of general-purpose perturbations can be very problem-
atic from a safety perspective, as an attacker might need very 

little information about the actual model to craft successful 
perturbations [24].

Figure 5 illustrates a summary of the different types of 
perturbations considered in this section on a sample image. 
As can be seen, the classifier is not robust to slight perturba-
tions of the image (for most additive perturbations) and natu-
ral geometric transformations of the image.

Geometric insights from robustness
The study of robustness allows us to derive insights about 
the classifiers and, more precisely, about the geometry of the 
classification function acting on the high-dimensional input 
space. We recall that : { , , }f C1X " f  denotes our C-class 
classifier, and we denote by , ,g gC1 f  the C  probabilities 
associated to each class by the classifier. Specifically, for a 
given , ( )x f xX!  is assigned to the class having a maximal 
score; i.e., ( ) { ( )}.argmaxf x g xi i=  For deep neural networks, 
the functions gi represent the outputs of the last layer in the 
network (generally the softmax layer). Note that the classifier 
f  can be seen as a mapping that partitions the input space 
X  into classification regions, each of which has a constant 

(a) Wool (b) Indian Elephant (c) Indian Elephant (d) African Gray (e) Tabby (f) African Gray

(g) Common Newt (h) Carousel (i) Gray Fox (j) Macaw (k) Three-Toed Sloth (l) Macaw

FIGURE 4. Examples of natural images perturbed with the universal perturbation and their corresponding estimated labels with GoogLeNet. (a)–(h) Images 
belonging to the ILSVRC 2012 validation set. (i)–(l) Personal images captured by a mobile phone camera. (Figure used courtesy of [22].)

Pomeranian Marmoset Marmoset Marmoset Mosquito Net Persian Cat

(a) (b) (c) (d) (e) (f)

FIGURE 5. (a) The original image. The remaining images are minimally perturbed images (along with the corresponding estimated label) that misclassify 
the CaffeNet deep neural network. (b) Adversarial perturbation, (c) random noise, (d) semirandom noise with , ,m 1 000= (e) universal perturbation, (f) 
affine transformation. (Figure used courtesy of [17].)
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estimated label (i.e., ( )f x is constant for each such region). The 
decision boundary B  of the classifier is defined as the union 
of the boundaries of such classification regions (see Figure 2). 

Adversarial perturbations
We first focus on additive adversarial perturbations and 
highlight their relation with the geometry of the decision 
boundary. This link relies on the simple observation shown 
in “Geometric Properties of Adversarial Perturbations.” The 
two geometric properties are illustrated in Figure 6. Note 
that these geometric properties are specific to the 2,  norm. 
The high instability of classifiers to adversarial perturba-
tions, which we highlighted in the previous section, shows 
that natural images lie very closely to the classifier’s decision 
boundary. While this result is key to understanding the geom-
etry of the data points with regard to the classifier’s decision 
boundary, it does not provide any insights on the shape of 
the decision boundary. A local geometric description of the 
decision boundary (in the vicinity of )x is rather captured by 
the direction of ( ),r xadv*  due to the orthogonality property of 
adversarial perturbations (highlighted in “Geometric Proper-
ties of Adversarial Perturbations”). In [18] and [25], these geo-
metric properties of adversarial perturbations are leveraged 
to visualize typical cross sections of the decision boundary at 
the vicinity of the data points. Specifically, a two-dimensional 
normal section of the decision boundary is illustrated, where 
the sectioning plane is spanned by the adversarial perturba-
tion (normal to the decision boundary) and a random vector 
in the tangent space. Examples of normal sections of decision 
boundaries are illustrated in Figure 7.

Observe that the decision boundaries of state-of-the-art 
deep neural networks have a very low curvature on these 
two-dimensional cross sections (note the difference between 
the x  and y axis). In other words, these plots suggest that the 
decision boundary at the vicinity of x  can be locally well 
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radv
∗

x

B

FIGURE 6. radv
)  denotes the adversarial perturbation of x (with ).p 2=

Note that radv
)  is orthogonal to the decision boundary B  and r 2adv =)

( , ).xdist B
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FIGURE 7. The two-dimensional normal cross sections of the decision boundaries for three different classifiers near randomly chosen samples. The section is 
spanned by the adversarial perturbation of the data point x  (vertical axis) and a random vector in the tangent space to the decision boundary (horizontal axis). The 
green region is the classification region of .x  The decision boundaries with different classes are illustrated in different colors. Note the difference in range between 
the x and y axes. (a) VGG-F (ImageNet), (b) LeNet (CIFAR), (c) LeNet (MNIST). (Figure used with permission from [18].)

Observation
Let x X! and ( )r xadv

) be the adversarial perturbation, 
defined as the minimizer of (4), with p 2= and .R X=

Then, we have the following:
1) ( )r x 2adv

)  measures the Euclidean distance from x to 
the closest point on the decision boundary .B

2) The vector ( )r xadv
)  is orthogonal to the decision 

boundary of the classifier, at ( ).x r xadv+ )

Geometric Properties 
of Adversarial Perturbations
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approximated by a hyperplane passing through ( )x r xadv+ *

with the normal vector ( ) .r xadv*  In [11], it is hypothesized that 
state-of-the-art classifiers are “too linear,” leading to decision 
boundaries with very small curvature and further explaining 
the high instability of such classifiers to adversarial perturba-
tions. To motivate the linearity hypothesis of deep networks, 
the success of the FGS method (which is exact for linear clas-
sifiers) in finding adversarial perturbations is invoked. How-
ever, some recent works challenge this linearity hypothesis; 
for example, in [26], the authors show that there exist adver-
sarial perturbations that cannot be explained with this hypoth-
esis, and, in [27], the authors provide a new explanation based 
on the tilting of the decision boundary with respect to the data 
manifold. We stress here that the low curvature of the decision 
boundary does not, in general, imply that the function learned 
by the deep neural network (as a function of the input image) 
is linear, or even approximately linear. Figure 8 shows illustrative 
examples of highly nonlinear functions resulting in flat deci-
sion boundaries. Moreover, it should be noted that, while the 
decision boundary of deep networks is very flat on random
two-dimensional cross sections, these boundaries are not flat 

on all cross sections. That is, there exist directions in which 
the boundary is very curved. Figure 9 provides some illustra-
tions of such cross sections, where the decision boundary has 
large curvature and therefore significantly departs from the 
first-order linear approximation, suggested by the flatness of 
the decision boundary on random sections in Figure 7. Hence, 
these visualizations of the decision boundary strongly suggest 
that the curvature along a small set of directions can be very 
large and that the curvature is relatively small along random 
directions in the input space. Using a numerical computation 
of the curvature, the sparsity of the curvature profile is empir-
ically verified in [28] for deep neural networks, and the direc-
tions where the decision boundary is curved are further shown 
to play a major role in explaining the robustness properties 
of classifiers. In [29], the authors provide a complementary 
analysis on the curvature of the decision boundaries induced 
by deep networks and show that the first principal curvatures 
increase exponentially with the depth of a random neural net-
work. The analyses of [28] and [29] hence suggest that the 
curvature profile of deep networks is highly sparse (i.e., the 
decision boundaries are almost flat along most directions) but 
can have a very large curvature along a few directions.

Universal perturbations
The vulnerability of deep neural networks to universal (image-
agnostic) perturbations studied in [22] sheds light on another 
aspect of the decision boundary: the correlations between 
different regions of the decision boundary, in the vicinity of 
different natural images. In fact, if the orientations of the deci-
sion boundary in the neighborhood of different data points 
were uncorrelated, the best universal perturbation would cor-
respond to a random perturbation. This is refuted in [22], as 
the norm of the random perturbation required to fool 90% 
of the images is ten times larger than the norm of universal 
perturbations. Such correlations in the decision boundary are 
quantified in [22], as it is shown empirically that normal vec-
tors to the decision boundary at the vicinity of different data 
points (or, equivalently, adversarial perturbations due to the 
orthogonality property in “Geometric Properties of Adver-
sarial Perturbations”) approximately span a low-dimensional 

x

(a)

x

(b)

FIGURE 8. The contours of two highly nonlinear functions (a) and 
(b) with flat boundaries. Specifically, the contours in the green and yellow 
regions represent the different (positive and negative) level sets of ( )g x
[where ( ) ( ) ( ),g x g x g x1 2= -  the difference between class 1 and class 2 
score]. The decision boundary is defined as the region of the space where 

( )g x 0=  and is indicated with a solid black line. Note that, although g  is 
a highly nonlinear function in these examples, the decision boundaries 
are flat.

x

(a)

x

(b)

x

(c)

x

(d)

FIGURE 9. Cross sections of the decision boundary in the vicinity of data point .x  (a), (b), and (c) show decision boundaries with high curvature, while 
(d) shows the decision boundary along a random normal section (with very small curvature). The correct class and the neighboring classes are colored 
in green and orange, respectively. The boundaries between different classes are shown in solid black lines. The x and y axes have the same scale.
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subspace. It is conjectured that the existence of universal per-
turbations fooling classifiers for most natural images is part-
ly due to the existence of such a low-dimensional subspace 
that captures the correlations among different regions of the 
decision boundary. In fact, this subspace “collects” normals 
to the decision boundary in different regions, and perturba-
tions belonging to this subspace are therefore likely to fool 
other data points. This observation implies that the decision 
boundaries created by deep neural networks are not suffi-
ciently “diverse,” despite the very large number of parameters 
in modern deep neural networks. 

A more thorough analysis is provided in [30], where uni-
versal perturbations are shown to be tightly related to the cur-
vature of the decision boundary in the vicinity of data points. 
Specifically, the existence of universal 
perturbations is attributed to the existence 
of common directions where the decision 
boundary is positively curved in the vicin-
ity of most natural images. Figure 10 intui-
tively illustrates the link between positive
curvature and vulnerability to perturba-
tions; the required perturbation to change 
the label (along a fixed direction v) of the 
classifier is smaller if the decision bound-
ary is positively curved, than if the deci-
sion boundary is flat (or negatively curved). 
With this geometric perspective, universal perturbations cor-
respond exactly to directions where the decision boundary is 
positively curved in the vicinity of most natural images. As 
shown in [30], this geometric explanation of universal per-
turbations suggests a new algorithm to compute such pertur-
bations as well as to explain several properties, such as the 
diversity and transferability of universal perturbations.

Classification regions
The robustness of classifiers is not only related to the geom-
etry of the decision boundary, but it is also strongly tied to 
the classification regions in the input space .X  The classifi-
cation region associated to class { , , }c C1 f!  corresponds 
to the set of points x X!  such that ( ) .f x c= The study of 
universal perturbations in [22] has shown the existence of 
dominant labels, with universal perturbations mostly fooling 
natural images into such labels. The existence of such domi-

nant classes is attributed to the large volumes of classifica-
tion regions corresponding to dominant labels in the input 
space :X  in fact, images sampled uniformly at random from 
the Euclidean sphere Sd 1a -  of the input space X  (where the 
radius a  is set to reflect the typical norm of natural imag-
es) are classified as one of these dominant labels. Hence, 
such dominant labels represent high-volume “oceans” in the 
image space; universal perturbations therefore tend to fool 
images into such target labels, as these generally result in 
smaller fooling perturbations. It should be noted that these 
dominant labels are classifier specific and are not a result of 
the visual properties of the images in the class.

To further understand the geometrical properties of classi-
fication regions, we note that, just like natural images, random 

images are strongly vulnerable to adversar-
ial perturbations. That is, the norm of the 
smallest adversarial perturbation needed to 
change the label of a random image (sam-
pled from X ) is several orders of magnitude 
smaller than the norm of the image itself. 
This observation suggests that classification 
regions are “hollow” and that most of their 
mass occurs at the boundaries. In [28], fur-
ther topological properties of classification 
regions are observed; in particular, these 
regions are shown empirically to be con-

nected. In other words, each classification region in the input 
space X  is made up of a single connected (possibly complex) 
region, rather than several disconnected regions.

We have discussed in this section that the properties and 
optimization methods derived to analyze the robustness 
properties of classifiers allow us to derive insights on the 
geometry of the classifier. In particular, through visualiza-
tions, we have seen that the decision boundaries on normal 
random sections have very low curvature, while being very 
curved along a few directions of the input space. Moreover, 
the high vulnerability of state-of-the-art deep networks to 
universal perturbations suggests that the decision bound-
aries of such networks do not have sufficient diversity. To 
improve the robustness to such perturbations, it is therefore 
key to “diversify” the decision boundaries of the network 
and leverage the large number of parameters that define the 
neural network.

radv
∗ radv

∗ radv
∗

x x x

v v
v

(a) (b) (c)

FIGURE 10. The link between robustness and curvature of the decision boundary. When the decision boundary is (a) positively curved, small universal 
perturbations are more likely to fool the classifier. (b) and (c) illustrate the case of a flat and negatively curved decision boundary, respectively.

The study of robustness 
allows us to derive insights 
about the classifiers and, 
more precisely, about 
the geometry of the 
classification function 
acting on the high-
dimensional input space.
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Improving robustness
An important objective of the analysis of robustness is to contrib-
ute to the design of better and more reliable systems. We next 
summarize some of the recent attempts that have been made to 
render systems more robust to different forms of perturbations.

Improving the robustness to adversarial perturbations
We first describe the methods that have been proposed to 
construct deep networks with better robustness to adversarial 
perturbations, following the papers [1], [9] that originally high-
lighted the vulnerability of these classifiers. The straightfor-
ward approach, which consists of adding perturbed images to 
the training set and fine-tuning the network, has been shown 
to be mildly effective against newly com -
puted adversarial perturbations [5]. To 
further improve the robustness, it is 
natural to consider the Jacobian matrix 

/g x2 2  of the model (with g the last layer 
of the neural network) and ensure that 
all of the elements in the matrix are 
sufficiently small. Following this idea, 
the authors of [31] consider a modi-
fied objective function, where a term is 
added to penalize the Jacobians of the 
function computed by each layer with 
respect to the previous layer. This has 
the effect of learning smooth functions with respect to the 
input and thus learn more robust classifiers. In [32], a robust 
optimization formulation is considered for training deep 
neural networks. Specifically, a minimization-maximiza-
tion approach is proposed, where the loss is minimized over 
worst-case examples, rather than only on the original data. 
That is, the following minimization-maximization training 
procedure is used to train the network:

( , , ),min max J x r y
i

N

i i i
1

r Ui
i+

i
=

!
/ (9)

where , ,Ni  and U  denote, respectively, the parameters of the 
network, the number of training points, and the set of plausible 
perturbations; and yi  denotes the label of .xi  The set U  is 
generally set to be the 2,  or ,3  ball centered at zero and of suf-
ficiently small radius. Unfortunately, this optimization prob-
lem in (9) is difficult to solve efficiently. To circumvent this 
difficulty, [32] proposes an alternating iterative method where 
a single step of gradient ascent and descent is performed at 
each iteration. Note that the construction of robust classi-
fiers using min-max robust optimization methods has been 
an active area of research, especially in the context of SVM 
classifiers [33]. In particular, for certain sets ,U  the objective 
function of various learning tasks can be written as a convex 
optimization function as shown in [34]–[37], which makes 
the task of finding a robust classifier feasible. In a very recent 
work inspired by biophysical principles of neural circuits, 
Nayebi and Ganguli consider a regularizer to push activations 
of the network in the saturating regime of the nonlinearity 

(i.e., the region where the nonlinear activation function is flat) 
[47]. The networks learned using this approach are shown to 
significantly im  prove in terms of robustness on a simple digit 
recognition classification task, without losing significantly in 
terms of accuracy. In [38], the authors propose to improve the 
robustness by using distillation, a technique first introduced 
in [39] for transferring knowledge from larger architectures to 
smaller ones. However, [40] shows that, when using more elab-
orate algorithms to compute perturbations, this approach fails 
to improve the robustness. In [41], a regularization scheme is 
introduced for improving the network’s sensitivity to perturba-
tions by constraining the Lipschitz constant of the network. 
In [42], an information-theoretic loss function is used to train 

stochastic neural networks; the result-
ing classifiers are shown to be more 
robust to adversarial perturbations than 
their deterministic counterpart. The 
increased robustness is intuitively due to 
the randomness of the neural network, 
which maps an input to a distribution
of features; attacking the network with 
a small designed perturbation therefore 
becomes harder than for deterministic 
neural networks.

While all of these methods are 
shown to yield some improvements on 

the robustness of deep neural networks, the design of robust 
visual classifiers on challenging classification tasks (e.g., 
ImageNet) is still an open problem. Moreover, while the pre-
viously mentioned methods provide empirical results show-
ing the improvement in robustness with respect to one or a 
subset of adversarial generation techniques, it is necessary 
in many applications to design robust networks against all
adversarial attacks. To do so, we believe it is crucial to derive 
formal certificates on the robustness of newly proposed net-
works, as it is practically impossible to test against all pos-
sible attacks, and we see this as an important future work 
in this area.

Although there is currently no method to effectively (and 
provably) combat adversarial perturbations on large-scale 
data sets, several studies [42]–[44] have recently considered 
the related problem of detectability of adversarial pertur-
bations. The detectability property is essential in real-
world applications, as it allows the possibility to raise an 
exception when tampered images are detected. In [42], the 
authors propose to augment the network with a detector net-
work, which detects original images from perturbed ones. 
Using the optimization methods in the section “Adversarial 
Perturbations,” the authors conclude that the network suc-
cessfully learns to distinguish between perturbed samples 
and original samples. Moreover, the overall network (i.e., 
the network and detector) is shown to be more robust to 
adversarial perturbations tailored for this architecture. In 
[43], the Bayesian uncertainty estimates in the subspace of 
learned representations are used to discriminate perturbed 
images from clean samples. Finally, as shown in [44], side 
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The importance of analyzing 
the vulnerability of deep neural 
networks to perturbations 
therefore goes beyond the 
practical security implications, 
as it further reveals crucial 
geometric properties of 
deep networks. 
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information such as depth maps can be exploited to detect 
adversarial samples.

Improving the robustness to geometric perturbations
Just as in the case of adversarial perturbations, one popular 
way of building more invariant representations to geomet-
ric perturbations is through virtual jittering (or data aug-
mentation), where training data are transformed and fed 
back to the training set. One of the drawbacks of this approach 
is, however, that the training can become intractable, as the 
size of the training set becomes substantially larger than 
the original data set. In another effort to improve the invari-
ance properties of deep CNNs, the authors in [45] proposed 
a new module, the spatial transformer, that 
geometrically transforms the filter maps. 
Similarly to other modules in the network, 
spatial transformer modules are trained in 
a purely supervised fashion. Using spatial 
transformer networks, the performance of 
classifiers improves significantly, especial-
ly when images have noise and clutter, as 
these modules automatically learn to local-
ize and unwarp corrupted images. To build 
robust deep representations, [46] considers 
instead a new architecture with fixed filter 
weights. Specifically, a similar structure 
to CNNs (i.e., cascade of filtering, nonlinearity, and pool-
ing operations) is considered with the additional require-
ment of stability of the representation to local deformations, 
while retaining maximum information about the original 
data. The scattering network is proposed, where succes-
sive filtering with wavelets and pointwise nonlineari-
ties is applied and further shown to satisfy the stability 
constraints. Note that the approach used to build this scat-
tering network significantly differs from traditional CNNs, 
as no learning of the filters is involved. It should further 
be noted that while scattering transforms guarantee that 
representations built by deep neural networks are robust 
to small changes in the input, this does not imply that the 
overall classification pipeline (feature representation and 
discrete classification) is robust to small perturbations in 
the input, in the sense of (2). We believe that building deep 
architectures with provable guarantees on the robustness 
of the overall classification function is a fundamental open 
problem in the area.

Summary and open problems
The robustness of deep neural networks to perturbations is a 
fundamental requirement in a large number of practical appli-
cations involving critical prediction problems. We discussed 
in this article the robustness of deep networks to different 
forms of perturbations: adversarial perturbations, random 
noise, universal perturbations, and geometric transforma-
tions. We further highlighted close connections between the 
robustness to additive perturbations and geometric properties 
of the classifier’s decision boundary (such as the curvature). 

The importance of analyzing the vulnerability of deep neural 
networks to perturbations therefore goes beyond the practi-
cal security implications, as it further reveals crucial geo-
metric properties of deep networks. We hope that this close 
relation between robustness and geometry will continue to be 
leveraged to design more robust systems.

Despite the recent and insightful ad  vances in the analysis 
of the vulnerability of deep neural networks, several chal-
lenges remain:
■ It is known that deep networks are vulnerable to universal 

perturbations due to the existence of correlations between 
different parts of the decision boundary. Yet, little is 
known about the elementary operations in the architecture 

(or learned weights) of a deep network 
that cause the classifier to be sensitive to 
such directions.
■ Similarly, the causes underlying the 

transferability of adversarial perturba-
tions across different architectures are 
still not understood formally.

■ While the classifier’s decision boundary 
has been shown to have a very small 
curvature when sectioned by random 
normal planes, it is still unclear whether 
this property of the decision boundary 
is due to the optimization method (i.e., 

stochastic gradient descent) or rather to the use of piece-
wise linear activation functions.

■ While natural images have been shown to lie very close to 
the decision boundary, it is still unclear whether there exist
points that lie far away from the decision boundary.
Finally, one of the main goals of the analysis of robustness 

is to propose architectures with increased robustness to addi-
tive and structured perturbations. This is probably one of the 
fundamental problems that needs special attention from the 
community in the years to come.
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One of the main strengths 
of deep neural network 
classifiers with respect 
to traditional shallow 
classifiers is that the 
former achieve higher 
levels of invariance to 
transformations.
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DEEP LEARNING FOR VISUAL UNDERSTANDING
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Visual Question Answering
A tutorial

The task of visual question answering (VQA) is receiving 
increasing interest from researchers in both the computer 
vision and natural language processing fields. Tremen-

dous advances have been seen in the field of computer vision 
due to the success of deep learning, in particular on low- and 
midlevel tasks, such as image segmentation or object recogni-
tion. These advances have fueled researchers’ confidence for 
tackling more complex tasks that combine vision with lan-
guage and high-level reasoning. VQA is a prime example of 
this trend. This article presents the ongoing work in the field 
and the current approaches to VQA based on deep learning. 
VQA constitutes a test for deep visual understanding and a 
benchmark for general artificial intelligence (AI). While the 
field of VQA has seen recent successes, it remains a largely 
unsolved task. 

Introduction
VQA involves an image and a related text question, to which 
the machine must determine the correct answer. This task 
spans the fields of computer vision and natural language 
processing, since it requires both the comprehension of the 
question and parsing the visual elements of the image. VQA 
is a practical setting to evaluate deep visual understanding, 
itself considered the overarching goal of the field of computer 
vision. Deep visual understanding can be defined as the abil-
ity of algorithm to extract high-level information from imag-
es and to perform reasoning based on that information. In 
this regard, VQA is an alternative to other tasks proposed to 
evaluate this capability. Examples include the visual Turing 
test [23], the task of image captioning [20], [73], and recent 
works on visual dialogs [18].

A second parallel motivation for the study of VQA is its 
utility in its own right. A system capable of answering ques-
tions about images has direct practical applications, such as 
a personal assistant, or in robotics as aids for the visually 
impaired. Note, however, that current VQA data sets do not 
directly address this setting, because questions are typically 
collected in a nongoal-oriented setting. Realistic, motivated 
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questions would likely require information not present in 
the image and involve rare words and concepts. In com-
parison, most questions in current data sets are purely visual 
(e.g., about counts or colors) and centered on common con-
cepts. For example, in one of the most popular data sets [5], a 
mere 1,000 different answers can correctly answer more than 
90% of questions.

The recent interest in VQA [5], [45], [81] originates from 
the latest advances in computer vision on low- and mid-lev-
el tasks. This encouraged further research on higher-level 
tasks, and the combination of vision with other modalities, 
particularly language. Historically, one of the earliest inte-
grations of computer vision with language was the SHRDLU
system dating back to 1972 [78], which allowed the use of 
language to instruct a computer to move objects in a simu-
lated “blocks world.” Other attempts at creating conversa-
tional robotic agents [15], [47], [59] were also grounded in 
the visual world. However, these early works were often 
limited to specific domains and/or simple language. Deep 
learning has now been applied to virtually every problem 
imaginable in computer vision, and convolutional neural 
networks (CNNs) are  approaching human performance in 
tasks such as image segmentation [39] or object recognition 
[19], [24]. The success of deep learning on perceptual tasks 
drove an increasing enthusiasm for high-level tasks. VQA 
particularly embodies this confidence in achieving high-level 
image understanding.

Task definition and data sets
An instance of VQA consists of an image and a related ques-
tion given in plain text (see examples in Figure 1). The task 
for the machine is to determine the correct answer, which is, 
in current data sets, typically a few words or a short phrase. 
Two practical variants are usually considered, an open-ended
and a multiple-choice setting [5], [92]. In the latter, a set of 
candidate answers are proposed. This makes the evaluation 
of a generated answer easier than in the open-ended setting, 
where the comparison between the machine’s output and a 
ground truth (i.e., human provided) answer faces issues with 
synonyms and paraphrasing.

In comparison to classical tasks of computer vision such 
as object recognition or image segmentation, instances of 
VQA cover a wide range of complexity. Indeed, the question 
itself can take an arbitrary form, and so can the set of opera-
tions required to answer it. In this sense, VQA more closely 
reflects the challenges of general image understanding. VQA 
is also related to the task of textual question answering [10], 
[14], [88], in which the answer is to be found in a textual nar-
rative (i.e., reading comprehension) or in large knowledge 
bases (KBs) (i.e., information retrieval). Textual QA has been 
studied for a long time in the natural language processing 
(NLP) community, and VQA is basically its extension to a 
visual input. The additional challenge of a visual input is sig-
nificant because images are simply much higher dimensional 
than text. Images capture the richness of the real world in a 
noisy manner, whereas natural language already represents a 
certain level of abstraction. For example, compare the phrase 
“a red hat” with the multitude of its representations that one 
could picture, e.g., with many different styles and details that 
cannot be described in a short phrase.

While, to some extent, the processing of language is 
possible with discrete- and rule-based approaches, such as 
syntactic parsers and regular expression matching, the com-
plexity of images renders such engineered methods intracta-
ble. Modern computer vision is based on statistical learning, 
and recent works combining vision and language (including 
image captioning and VQA) similarly evolved from machine-
learning techniques. Finally, both language and vision are 
inherently compositional in their structure. This constitutes 
both a challenge and an opportunity when considering the 
generalization capabilities of learned models (see the section 
“Compositional Models”).

Let us mention the relation of VQA with the task of auto-
matic image captioning [20], [73], [79], i.e., generating a 
textual description of a given image. It has also attracted 
significant interest in the past few years and can be com-
pared to VQA as they both combine vision and language. 
The two tasks are complementary as they evaluate different 
capabilities. Captioning requires mostly descriptive capabili-
ties that involve almost purely visual information. VQA, in 

Is this pizza vegetarian? What is the mustache made of? Does this person have 20/20 vision?

FIGURE 1. The task of VQA is a significant step toward general AI and a departure from low- and mid-level tasks in classical computer vision. It requires 
relating visual concepts with elements of language, common-sense, and general knowledge. (Photos are examples from a major public data set [5].)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


65IEEE SIGNAL PROCESSING MAGAZINE | November 2017 |

comparison, often requires reasoning with common sense 
and with other information not present in the given image. In 
this respect, VQA constitutes an AI-complete task [5] since 
it requires multimodal knowledge beyond specific domains. 
This reinforces the motivation for research on VQA, as it pro-
vides a proxy to evaluate progress toward general AI, with 
systems capable of advanced reasoning combined with deep 
image and language understanding.

Data sets for training and evaluating VQA
We now examine data sets that have been specifically compiled 
for research on VQA. These data sets contain, at a minimum, 
triples made each of an image, a question, and its correct answer. 
Some early data sets were generated semiau-
tomatically (e.g., from image captions [45])
but modern data sets were created manually 
through crowdsourcing [5], [35]. The creation 
of these sets of questions with ground-truth 
answers is very time-consuming, and today’s 
largest data sets of several hundreds of thou-
sands of instances [35] represent a major 
effort. Those data sets are designed for both 
evaluating and training VQA systems in a 
supervised setting, and the latter demands such large amounts 
of data. As will be discussed in the section “Directions of Current 
and Future Research,” this very need for large amounts of data is 
a significant limit of current approaches.

For the purpose of standardized comparisons and bench-
marking of different algorithms, data sets are split into prede-
termined sets of instances for training, validation, and testing. 
Benchmarks typically do not provide the ground-truth answers 
of the test set. The evaluation is performed by an automatic 
online service that compares the provided answers (inferred by 
the algorithm to be evaluated) and the private ground truth [5].
This method typically restricts the number and frequency of 
submissions so as to prevent cheating or unintentional overfit-
ting of the test set.

Existing data sets vary mainly along three dimensions 1)  
their size, i.e., the number and variety concepts represented 
in the images and questions; 2) the amount of required rea-
soning, e.g., whether the detection of a single object is suf-
ficient or whether inference is required over multiple facts 
or concepts; and 3) how much information beyond what is 
present in the input image is necessary to infer an answer, 
e.g., common sense or subject-specific information. Most 
data sets lean toward visual-level questions and require little 
external knowledge beyond common sense. These character-
istics reflect the fact that current state-of-the-art methods still 
struggle with simple visual questions.

The first VQA data set designed as a benchmark was Data 
Set for Question Answering on Real World (DAQUAR) for 
images [45]. The most popular modern data sets [5], [35], [92]
use images sourced from Microsoft Common Objects in Con-
text (COCO), [40] a data set initially devised for image recog-
nition, which is itself composed of images from Flickr. Those 
images constitute a very diverse collection of photographs.

VQA-real
The most widely used data set is currently the one proposed 
by a team of researchers from Virginia Tech and is commonly 
referred to as VQA [5]. It comprises two parts, one using natural 
images named VQA-real, and a second one with clipart imag-
es named VQA-abstract (discussed at the end of this section). 
VQA-real comprises 123,287 training and 81,434 test images, 
respectively, sourced from COCO [40]. Human annotators were 
encouraged to provide interesting and diverse questions and 
short, concise answers (typically two to three words). The data 
set allows evaluation both in an open-ended and in a multiple-
choice setting, the latter providing 17 additional (incorrect) can-
didate answers for each question. Overall, the data set contains 

614,163 questions. According to an analysis 
performed by polling annotators, most sub-
jects (at least six out of ten) estimated that 
some common sense was required for 18% 
of the questions, and adult-level knowledge 
was necessary for only 5.5% of the ques-
tions. These figures show that purely visual 
information is likely sufficient to answer 
most questions.

A recent, updated version of this data set, 
known as VQA v2.0, includes two images with each question that 
lead to different answers [25]. This aims at addressing issues of 
data set biases. 

Visual genome and visual7W
The Visual Genome QA data set [35] is currently the largest one 
designed for VQA, with 1.7 million question/answer pairs. It is 
built with images from the Visual Genome project [35], which 
includes structured annotations of scene contents in the form of 
scene graphs. Those scene graphs describe the visual elements 
of each image with their attributes and the relationships between 
them. Human subjects provided questions that must start with 
one of the seven “Ws”—i.e., who, what, where, when, why, 
how, and which. The diversity of answers in the Visual Genome 
is larger than in VQA-real [5]. The 1,000 most-frequently given 
answers in the data set correspond only to the correct answers of 
64% of all questions. In VQA-real, the corresponding top 1,000 
answers cover more than 90% of questions. The Visual7w [92]
data set is a subset of the Visual Genome that allows evaluation in 
a multiple-choice setting, as each question is provided with four 
plausible but incorrect candidate answers.

Zero-shot VQA
A special version of the Visual7W data set was proposed in 
[70]. The authors redefined the training and test splits such 
that every test instance includes one or several words that 
were not present in any training example. For example, a test 
question “How many zebras are in the image?” might arise 
even though the word zebra was never used in the training set. 
The evaluation of an algorithm with this data set emphasizes 
its capabilities for generalization beyond training examples 
and for using sources of information other than VQA-specific 
data sets. Another similar study appeared in [54].

Despite undeniable 
advantages, VQA data sets 
of clipart images have 
seen little use compared 
to their counterparts of 
real images.
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FIGURE 2. Examples from the test splits of different VQA data sets. For the zero-shot VQA data set, the highlighted words are unknown words, i.e., not
present in training examples.

VQA-Real [5]

Q: What shape is the bench
seat?

Q: What color is the stripe on
the train?

Q: Where are the magazines in
this picture?

A: Curved A: White A: On Stool

Visual Genome [35]

Q: What color is the clock? Q: What is the woman doing? Q: How is the ground?

VQA-Abstract [5]

Q: Who looks happier? Q: Where are the flowers? Q: How many pillows?

Zero-Shot VQA [70]

Q: What color are the barricades?

Q: Who is wearing glasses? Q: Is the TV on?

Q: What are they using to draw? Q: Who is playing?

VQA v2.0 [25]

A: Green A: Sitting A: Dry

A: Man A: Around Tree A: 2

A: Pink

A: Man A: Woman A: Yes A: No

A: Markers A: Rafael Nadal
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Clipart images
Data sets for VQA have also been proposed with synthetic 
clipart images (referred to as abstract scenes in [5]). These 
images were created manually with cartoon representations 
of characters and objects from a predefined set. The motiva-
tion is to enable research on VQA in a controlled setting, 
where the computer vision part of the problem is eased by 
the restricted set of visual elements. Such data allows focus-
ing on the high-level semantics of the scenes rather than on 
visual recognition. For this purpose, the images are provid-
ed with structured descriptions, in the form of XML files 
that list the objects present in the scene with their visual 
properties (e.g., position, scale, etc.). VQA methods can use 
these descriptions to completely bypass the visual parsing of 
the images.

Using synthetic images gives great control over the ele-
ments actually depicted, and this allowed the creation of 
a data set of balanced binary questions [90]. That data set 
contains only binary (yes/no) questions and each question 
appears twice in the data set, with two different images that 
give rise to opposite answers. This removes conditional bias-
es that are common in other data sets, for example, a predom-
inance of “yes” answers to questions of the form “Is there … 
in the image?” Those biases otherwise allow to blindly guess 
correct answers, which hinders a meaningful evaluation of 
VQA systems. Despite undeniable advantages, VQA data sets 
of clipart images have seen little use [5], [69], [90] compared 
to their counterparts of real images.

Video-based QA
In addition to the studies on image QA mentioned previously, 
there have been a few works on VQA with videos. Zhu et al.
[91] assembled a data set of over 100,000 videos and 400,000 
questions, using existing collections of videos from differ-
ent domains, from cooking scenarios to movies and web vid-
eos. Tapaswi et al. [67] proposed a setting named MovieQA, 
where questions have to be answered using multiple sources 
of information including he full-length movies, but also sub-

titles, scripts, and plot summaries. Zeng et al. [89] proposed 
the generation of questions from video descriptions.

Evaluation
VQA systems are evaluated by inferring the answers on 
the test split of a given data set. Recent data sets [92] rec-
ommend the multiple-choice setting, since there is only one 
correct answer among the multiple choices. The evaluation 
is thus straightforward, as one can simply measure the mean 
accuracy over test questions. In an open-ended setting, sev-
eral answers could be equally valid, because of synonyms 
and paraphrasing. This makes a fair evaluation nontrivial. 
The usual workaround is to restrict answers, at the time of 
the creation of the data sets, to short phrases, typically one 
to three words. This restriction limits ambiguities by forcing 
questions and answers to be more specific, and allows evalua-
tion by exact string-matching. Most data sets partition the test 
questions into subsets depending on the type of answer (e.g.,
yes/no, number, etc.) such that performance can be reported 
on each subset (see Table 1).

Deep neural networks for VQA
The common approach to VQA is to train a deep neural net-
work with supervision which maps the given image and ques-
tion to a relative scoring of candidate answers. The main idea 
is to learn a joint embedding of the visual and textual inputs. 
First, the image and the question are processed independent-
ly to obtain separate vector representations (see Figure 3). 
Those features are then are mapped with learned functions to 
a joint space, then combined and fed to an output stage. We 
examine each of those elements next. The section “Advanced 
Techniques” will then look at those techniques that build onto 
this model.

Image encoding
On the computer vision side, the input image xI  is processed 
with a deep convolutional neural network (CNN) to extract 
image features described as a vector yI . This large fixed-size 

Table 1. A selection of results on the VQA-real data set (test-std split) in both the open-ended and multiple-choice settings. 
Performance has incrementally improved over the past few years. The highest accuracies per column are in boldface. 

VQA-Real Open Ended Multiple Choice

Method Yes/No Numbers Other All All 

Baseline: Deeper LSTM Q norm. I [42] 80.6 36.5 43.7 58.2 63.1 

Neural modules networks [4] 81.2 37.7 44 58.7 —

Stacked attention networks [87] — — — 58.9 —

Dynamic memory networks (DMNs+) [83] — — — 60.4 —

DualNet [60] 81.9 37.8 49.7 61.7 66.7 

Hierarchical coattention (HieCoAtt) [43] — — — 62.1 66.1 

VQA-machine [74] 81.4 38.2 53.2 63.3 67.8 

MLB [34] 84 37.9 54.8 65.1 68.9 

MCB ensemble 7 models [21] 83.2 39.5 58 66.5 70.1
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vector encodes the contents of the image. This CNN is typi-
cally a standard network architecture that has been pretrained 
to perform image recognition [36]. The motivation for a pre-
trained network is to take advantage of the vast amounts of 
training data available for image recognition, relative to the 
amounts of data annotated for VQA. The pretrained network is 
used as a generic feature extractor, by discarding the final clas-
sification layers, and using the features produced within the 
CNN prior to this classification [55]. In comparison to classi-
cal handcrafted image features such as scale-invariant feature 
transform (commonly known as SIFT) [41] or histogram of 
oriented gradients (commonly known as HOG) [16], CNN fea-
tures provide higher-level representations of the contents of the 
image, and are naturally produced as a fixed-size vector. The 
size of this vector is typically in the order of 1,024 or 2,048.

Question encoding
On the language side, the input question is also processed 
to obtain a fixed-size representation of its contents. Initially, 
the ith word of the question is represented by an index xQ

i  in 
the input vocabulary. Each word is then turned into a vec-
tor. This uses a mapping implemented as a lookup table [·]W
that associates the index of any word of the input vocabulary 
to a learned vector. An alternative implementation initially 
represents each word with a one-hot vector (a vector of all 
zeros, except for a one at the location of the word index in 
the vocabulary), which is then multiplied with a dense weight 

matrix that contains the embeddings of all words. The vec-
tors of all words , , ,W x W x W xQ Q Q

N1 2 f6 6 6@ @ @ are then collapsed 
into a single vector. A simple option for this purpose is to 
make a bag-of-words (BoW), which corresponds to simply 
averaging the word vectors, i.e., .N Wy x1Q Q

i i=^ h 6 @/
Another popular option is to feed the word vectors into a 
recurrent neural network (RNN) such as a long short-term 
memory (LSTM). An RNN processes words sequentially 
and can capture the sequential relationships between them. In 
comparison, a BoW does not account for word order, and, for 
example, would produce a same representation for “this man 
eats a hot dog” and “a hot man eats this dog.”

Combination of image and question features
The feature vectors yI  and yQ  represent the image and the 
questions, respectively. They are each passed through a 
learned function before being combined. The intuition here is 
to map the features to a joint space, in which distances between 
both modalities become comparable. The learned functions 

( )f $I  and ( )f Q $  are typically implemented as additional layers 
of the neural network, e.g., ( ) LU( )Ref y Wy b= + , where W
and b are learned weights and biases, and ReLU is a rectified 
linear unit that serves as a nonlinearity. The mapped features 
are then combined before being fed to the output stage. A 
simple option for this combination is to simply concatenate 
them as ;z f y f yI I= QQ^ ^h h6 @. Alternatively, it is popular to 
include multiplicative interactions within the neural network 
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FIGURE 3. The common approach to VQA is to train a deep neural network for classification over a large set of candidate answers (see the section “Deep 
Neural Networks for VQA”). The input question and image are encoded into fixed-size feature vectors (orange bars), using the word embeddings and a 
CNN, respectively. The resulting representations are mapped into a joint space, then combined and passed on to the classifier. It assigns scores to a large 
set of candidate answers. The top-ranking candidate is returned as the final answer. An attention mechanism (see the section “Attention Mechanisms”) 
can improve this model and allows the model to focus on relevant parts of the image. In that case, the CNN extracts region-specific image features and 
aggregates them using scalar weights (orange squares).
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to increase its capacity and use ,z f y f yI $= I QQ^ ^h h  where · is 
the Hadamard (element-wise) product.

Output
The output stage of a VQA system can be seen either as a 
generation or as a classification task. The generation of a 
free-form answer has the advantage of being able to compose 
complex sentences. In practice however, such a model is dif-
ficult to learn [22], [46], [80]. Current data sets are limited to 
short answers, and a practical alternative is to rather learn a 
classifier over candidate answers [22], [44], [46], [57]. For this 
purpose, a large set of candidate answers is predetermined 
from the most common ones in the training set (typically in 
the order of 2,000). This inevitably leaves out some infrequent 
words, but such a set is typically sufficient to answer correctly 
more than 90% of test questions [5]. This is a nonlimiting issue 
since this figure is well above the accuracy of current systems. 
The combined features z are passed to a classifier over those 
candidate answers (a linear layer followed by a softmax [21] or 
sigmoid transformation [30]). The classifier assigns score to 
each candidate answer, and the top-ranked one is returned as 
the final output. In a multiple-choice setting, only the scores 
assigned to proposed choices are considered. For training the 
model, the classifier is followed by a cross-entropy loss, and 
the whole network is trained end-to-end by backpropagation 
to minimize this loss over the set of training examples.

Variations
A vast array of variations on the method presented previously 
have been proposed in the literature. Here are some examples.
■ Encoding the question and the image with a single recur-

rent neural network (an LSTM) by passing the image fea-
tures together with each word embedding [22] or only 
once prior to the question words [46], [57].

■ Encoding the question with a bidirectional RNN, i.e., two 
LSTMs that process the words in forward and backward 
order, respectively. This aims at capturing the language 
structure with more uniform importance on the beginning 
and the end of the question [57].

■ Adding additional multiplicative interactions within the 
network and between the features of the image and of the 
question. For example in [51], the authors present their 
“DPPnet” model as a way of dynamically adapting the 
computations applied on the image features based on the 
question (one branch of the network computes weights 
that are then multiplied with the inputs in another 
branch). Such interpretations are typical of deep-learning 
models, but have little concrete support. Performance 
benefits usually stem simply from the additional capacity 
of the network.

■ Alternative schemes for combining image and question 
representations, such as element-wise sums and products 
[33], bilinear operations [30] such as multimodal compact 
bilinear pooling (MCB) [21], etc.

■ Gradual increases in performance of the state of the art is 
also explained by increasingly better pretrained CNNs to 

provide image features, and by the application of general 
enhancements for neural network architectures, such high-
way networks and residual networks [33], dropout, batch 
normalization, etc.

Advanced techniques
In this section, we review popular improvements to the gen-
eral approach described so far.

Attention mechanisms
One of the most effective improvements to the joint embed-
ding model is to use visual attention. Humans have the ability 
to quickly understand visual representations by attending to 
regions of the image instead of processing the entire scene 
at once [58]. Mimicking human attention in deep neural net-
works has been applied with success to machine translation 
[8], reading comprehension [63], textual question answering 
[84], object recognition [64] and image captioning [86], and is 
also used in most modern VQA models (e.g., in [43] and [87]).

The main idea behind attention mechanisms is to allow 
the model to focus on certain regions of the image. The tech-
nique involves 1) using region-specific image features and 2) 
including multiplicative interactions within the neural net-
work. The aforementioned basic VQA model described uses 
a CNN to extract a global feature vector yI  that describes 
the whole image. This can contain irrelevant or noisy infor-
mation. Instead, we now extract local features { }yI

i i  for dif-
ferent regions i M1f=  of the image. Those features are 
obtained from an earlier layer in the pretrained CNN, prior to 
the last spatial pooling. The network computes a scalar atten-
tion weight ai  for each region using both the region and the 
question features, i.e., ( ,a f y yI

i i= Q)att . The function ( )f $att  is 
learned and implemented as additional layers of the network. 
The attention weights can be interpreted as the relevance 
of a given region, and the image is finally represented by a 
weighted sum of the region features, i.e., y yaI

i
I
ii=/ .

The attention weights computed for a given question/
image can be visualized in the form of “attention maps” for 
purposes of introspection into the VQA model. Each ai  cor-
responds to a specific region of the input image, and those 
values are overlaid onto the image canvas (see Figure 4). 

Q: What is in the water?

A: Boat

Q: Who is surfing?

A: Man

FIGURE 4. Attention weights are often visualized as spatial maps overlaid 
on the input image (warmer colors correspond to higher weights). They 
are interpreted as the importance given by the model to different regions 
of the image (examples used with permission from [74]).
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They are interpreted as the importance given by the 
model to each image region.

The use of an attention mechanism has shown to be very 
beneficial and is now common practice. Variations on this 
principle have been proposed. For example, [85] and [87]
use multiple rounds of visual attention to allow focusing 
on several regions. In [85], a two-step process performs 
a word-guided attention, then a question-guided one. In 
[65], the authors define image regions with object propos-
als and then select the regions most to the question and to 
given answer choices. In [43], the authors propose a “hier-
archical coattention” (HieCoAtt) that performs a question-
guided attention on the image and an image-guided attention 
on the question.

The overall idea of attention in neural networks was initial-
ly motivated by an analogy to the human visual system. Even 
though the model is capable of modeling a behavior similar to 
human attention, this only constitutes an interpretation. In a neu-
ral network-trained end to end, nothing enforces the attention 
mechanism to actually reflect human-like behavior. In a recent 
study [17], Das et al. compared the attention used by human 
subjects presented with VQA problems, and VQA models with 
attention [43], [87]. Their conclusion was a 
systematically low correlation.

Pretraining language representations
As described in the section “Deep Neu-
ral Networks for VQA,” the first step for 
encoding the question is to map words to 
vector representations called word embeddings. Each word of 
the input vocabulary (i.e., any word appearing in the training 
set) is associated with its own embedding, and those embed-
dings are normally learned alongside the other parameters of 
the network via backpropagation. Two potential issues can 
arise, however. First, word occurrences in any data set typi-
cally follow a long-tailed distribution, meaning that a majority 
of words occur infrequently. It is thus difficult to learn stable 
and meaningful embeddings for those rare words. Second, the 
long-tail property, at its extreme, means that it words com-
monly appear in test questions that were not seen in any train-
ing example. Embeddings for those words cannot be learned 
from those examples, and they are typically associated with 
an special vector (of zeros or of a special “unknown” token), 
and their meaning is practically discarded from the questions.

A solution to these issues is to pretrain word embed-
dings on a larger auxiliary data set. This practice is known 
in the field of natural language processing and has shown 
benefit in many tasks besides VQA. Popular methods 
for pretraining word embeddings include Global Vectors 
for Word Representation [53] (GloVe) and word2vec [48],
which we outline next. The general principle is to use a 
large, auxiliary training set of unannotated text, such as 
news articles and Wikipedia pages. Those methods require 
no specific annotations. That data can thus be much larger 
than the training set used for VQA and involve a much 
larger vocabulary.

The idea in the skip-gram model of word2vec is to 
train a model which, using the representation (i.e., an embed-
ding) of a given word, is predictive of the context, i.e., the 
neighboring words in which it frequently appears [49]. As 
a consequence, words that are interchangeable or appear 
in similar contexts become associated with similar embed-
dings. Distances between embeddings thus naturally capture 
semantic relatedness between the words they represent.

More precisely, the skip-gram model seeks to maximize 
the ability to predict, from each word embedding, the occur-
rences of other words in a small surrounding window. The 
objective function to be maximized is

| ( ) |
( | ),logJ

N i
p x x1 1

( )i

N

j i
j iX

=
!X

/ / (1)

where i  indexes the N-ordered words in the training corpus, 
xi  is the index in the vocabulary of word i , ( )iX  is a context 
window of fixed size around word i  in the corpus [49]. The 
conditional probability ( | )log p x xj i  is modeled as a compat-
ibility measure between embeddings such as a dot product 
followed by a sigmoid, i.e.,

( | ) / ,p x x e1 1 [ ] [ ]
j i

W x W xi j= + -^ h (2)

where [·]W  is a lookup table containing 
the embeddings of all words in the vocab-
ulary, reusing the notation of the section 
“Deep Neural Networks for VQA.” After 

the training, the context-prediction part of the model is dis-
carded, and the embeddings associated with the words are 
retained (i.e., the table [·]W ) and used as word embeddings in 
the downstream application such as VQA. The embeddings 
can be used as “frozen weights,” i.e., static representations 
associated with the words, or they can serve as initial values 
to be subsequently fine-tuned, i.e., optimized with a lower 
learning rate relative to the other network parameters.

Using pretrained embeddings helps the generalization 
capabilities of a VQA model. Since semantically similar 
words are mapped to close points in the word embedding 
space, the processing by the subsequent layers of the network 
can more easily 1) interpolate across concepts and 2) gener-
alize to words absent from training questions but for which 
embeddings were pretrained.

Memory-augmented neural networks
An active research area is the design of deep neural net-
works that include an internal memory [13], [52], [66], [77].
Memory-augmented networks have shown success on tasks 
such as textual question answering [28], reading compre-
hension [37], and VQA [83]. The general idea of memory-
augmented networks is to maintain an internal representation 
of the input data, on which multiple read and write opera-
tions can be applied. The composition of multiple operations 
can potentially execute complex chains of inference on the 
data. A “controller” part of the network is responsible for 

One of the most effective 
improvements to the joint 
embedding model is to use 
visual attention.
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controlling those operations. The mechanism is comparable 
to multiple rounds of an attention mechanism, in that it also 
enables the modeling of interactions between specific section 
of the input data.

The variant proposed in [37] and [83], named dynamic memo-
ry networks (DMNs), was successfully applied to VQA. It is built 
around four modules (see Figure 5). The input module transforms 
the input data into a set of discrete vectors called facts. A question 
module computes a vector representation of the question, using 
a gated recurrent unit [(GRU), a variant of LSTM]. An episodic 
memory module retrieves the facts required to answer the ques-
tion. A key element is to allow the episodic memory module to 
perform multiple passes over the facts to allow transitive reason-
ing. An attention mechanism selects the relevant facts and an 
update mechanism iteratively generates new memory represen-
tations from the current state and the retrieved facts. The initial 
state is set as the representation produced by the question module. 
Finally, the answer module uses the final state of the memory and 
the question to predict the final output, using a classic classifier 
over candidate answers.

Run time retrieval of additional information
Interfacing a VQA method with external sources of infor-
mation allows one to separate the reasoning from the rep-
resentation of prior knowledge in a scalable manner. One 
limitation of the basic joint embedding approach is to 
attempt to capture all of the information of training exam-
ples within the parameters of a neural network. This cannot 
scale arbitrarily, however. On one hand, any network has 
a finite capacity and, on the other hand, training examples 
also provide finite information. Several works explored the 
idea of connecting a VQA system with external sources of 
information that can be virtually infinite (e.g., web search-
es) or extensible without needing to retrain the VQA model 
(e.g., structured KBs).

In [75] and [82], the authors train a model to interface with a 
KB. Such KBs, like DBpedia [7] and Freebase [12], are databases 
compiled with facts ranging from common sense to encyclopedic 
knowledge. Such nonvisual information can be helpful for VQA. 
For example, the question “How many mammals appear in this 
image?” requires understanding the word “mammal” and which 
animals belong to this category. The VQA system of [75] and 
[82] is trained to map the input question/image to queries to be 
executed on KBs. The queries retrieve information relevant to the 
concepts involved in the question and/or image, which is fed as 
an additional input to the output stage of the system. The over-
all principle has shown limited benefits on existing VQA data 
sets, since most questions do not require such specific, nonvisual 
information. The idea remains a promising direction for develop-
ing scalable VQA systems.

In [70], the authors propose the retrieval of visual informa-
tion from web searches in the form of exemplar images of ques-
tion words. Rare and novel words, for example, the name of an 
uncommon animal or of an up-and-coming celebrity, are not 
likely to appear or be even known during training. The retrieval 
of images from the web allows the method to expand its domain 
of applicability as needed. The implementation of [70] simply 
retrieves the top five images from Google for every word of 
the question, from which CNN features are extracted and fed 
alongside the input question/image to the VQA system. This 
mechanism, however crude, showed an advantage to questions 
involving unknown words (i.e., “zero-shot VQA”) while leaving 
substantial room for future developments; see the section “Issues 
with Unknown and Novel Words.”

Directions of current and future research
Most modern methods for VQA have been evaluated on the data 
set of Antol. et al., which has served as the de facto standard 
benchmark. State-of-the-art methods have consistently improved 
performance on this data set over the past few years, from an 
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FIGURE 5. DMNs for VQA. (a) The overview and (b) details of the episodic memory module with two passes. (Figure adapted with permission from [83].)
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accuracy of about 58% to over 70% today (see Tables 1 and 2
for a selection of results). These improvements have been incre-
mental and have now seemed to plateau. In the following, we 
examine how current evaluations can mask some inherent issues 
of today’s approaches and examine promising directions to bring 
future breakthroughs.

Issues of data set biases
Several studies have recently pointed out a fundamental issue 
with VQA data sets [25], [30], [90]. The text questions alone 
often provide strong cues that can be sufficient to answer them 
correctly, with no regards to the contents of the input image. 
These cues can be obvious. For example, questions starting 
with “Do you see a …” can be correctly answered with a “yes”
almost nine times out of ten [25]. These cue can also stem from 
an imbalance among possible answers. For example, questions 
starting with “How many …” often have a correct answer of 
“one” or “two” but rarely “17.” This issue can also be more 
subtle and manifest in the form of conditional biases. For 
example, we could imagine that questions starting with “What 
is the color …” can often be answered correctly with “gray”
if it also contains the word “car” and “red” if it contains the 
word “flower.” Biases conditioned on image contents are also 
likely and yet more subtle. Biases are inherent to the real world, 
and it is desirable for a VQA model to capture and exploit them 
to some extent. However, today’s methods have been shown to 
overly rely on data set biases and essentially be reduced to rote-
learning of training questions. This is counterproductive to the 
objective of evaluating visual understanding. A blinded VQA 
model (i.e., not being shown the input image, and only guessing 
from the question) still achieves an accuracy of 56% versus 65% 
in the nonblinded case [30].

The issue of data set biases has been recognized. Attempts 
at addressing it include balanced data sets. Zhang et al. [90] first 
proposed a data set of clipart images where each binary ques-
tion is accompanied by two different images that elicit “yes”
and “no” answers, respectively. Goyal et al. applied the idea to 
real images, associating two images with each question that lead 
to different answers (see example in Figure 2). An appropriate 
performance metric in this case is to measure accuracy on pairs 

of scenes. Blind models in this case would obtain an accuracy 
of 0%, and random guessing 25%. The use of balanced data 
sets encourages VQA models, to a larger extent, to utilize visual 
information instead of relying on language cues and data set 
biases. It is expected that future evaluations of algorithms on 
those data sets will be more representative of actual progress on 
visual understanding.

Issues with unknown and novel words
A VQA method to be used in a real-world setting, e.g., in 
robotics or as personal AI assistants, must be applicable to 
open, unrestricted domains. The current paradigm of training 
VQA systems with supervision, i.e., with data sets of ques-
tions and their ground-truth answers, can only cover a limited 
set of objects and concepts. Although VQA data sets have 
grown in size, no finite set of exemplars will ever cover the 
diversity of objects, actions, relations, etc. in the real world, 
for which an ideal VQA system should be prepared. A sec-
ondary issue with the current approach is the incentive for 
published methods to perform well on benchmark data sets. 
These benchmarks do not encourage addressing rare words 
and concepts, but rather focus on the concepts most frequent 
in the data set. Current methods are therefore designed to 
best learn—and often overfit—data set biases.

Recent works have argued for addressing a setting named 
zero-shot VQA [54], [70], where questions (or the proposed 
multiple-choice answers) specifically involve words that 
have not been seen in any training question. For example, a 
question “How many zebras are in the image?” may arise, 
even though no zebra was involved in the training set. This 
setting requires strong generalization capabilities. For exam-
ple, a related training question “How many giraffes are in 
the image?” should be taken as an opportunity to learn to 
count, although not giraffes specifically. In parallel of works 
on VQA, the learning of high-level reasoning is addressed 
in the more abstract setting of program induction (see, e.g.,
[56]). We expect that VQA will ultimately require similar 
principled approaches, such as differentiable computing 
[26], [50], rather than brute-force learning from limited sets 
of examples.

Table 2. A selection of results on the newer VQA v2 data set (test-std split; open-ended questions). Baseline methods score lower on this harder data 
set, but the state of the art now reaches more than 70% of accuracy on open-ended questions. The highest accuracies per column are in boldface. 

VQA v2 Open Ended

Method Yes/No Numbers Other All 

Baseline: deeper LSTM Q norm. I [42] 73.46 35.18 41.83 54.22

MCB [21] 78.82 38.28 53.36 62.27

UPMC-LIP6 [9] 82.07 41.06 57.12 65.71

Athena [1] 82.50 44.19 59.97 67.59

LV-NUS [1] 81.89 46.29 58.30 66.77

HDU-USYD-UNCC [1] 86.65 51.13 61.75 70.92

Tips and Tricks VQA [2], [68] 86.60 48.64 61.15 70.34
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External knowledge
The setting of the previously mentioned zero-shot VQA 
exposes the need for VQA systems to apply to concepts not 
present in training question/answers. This motivates the use 
of other kinds of data for training, and for retrieving addi-
tional information as needed at test time. This requires the 
system not only to capture actual information from training 
examples, but to learn to retrieve and use novel information, 
i.e., learn to learn. That capability of metalearning receives 
increased attention [11], [61], [72]. In the context of VQA, [70]
showed the benefit of retrieving on-the-fly, exemplar images 
of unknown words from an online search engine. In [75] and 
[76], the authors showed the benefit of answering questions 
requiring background knowledge of retrieving additional 
information from a structured KB. The 
extension of these ideas is a promising 
research direction.

Modular approaches
Most current VQA models use a monolithic 
neural network and end-to-end supervision 
to learn the representations of data, the 
reasoning process, and to capture back-
ground knowledge from training exam-
ples. Alternatively, modular approaches 
have been explored [74], [80] with the 
goal of explicitly factoring the overall pro-
cess of VQA into distinct subtasks. The principle of modular-
ity allows one to decouple subtasks to some extent, and to 
use intermediate supervision and leverage several types of 
training data, as opposed to only “end-to-end” question/answer 
pairs. The use of pretrained word embeddings (see the section 
“Pretraining Language Representations”) is a very successful 
example of this general principle. Word embeddings are pre-
trained to capture language-based semantic similarities, and, 
in a similar spirit, other representations could be pretrained 
from auxiliary data to capture visual similarities [38] and other 
kinds of background information [71].

Modular systems for VQA also allow decoupling, to some 
degree, the visual perception from the high-level reasoning. 
For example, Wang et al. [74] proposed a VQA model on top 
of a collection of computer vision algorithms that detect visu-
al elements such as objects, persons, and relations between 
them. Thereby, the VQA model only has to reason over this 
explicit high-level representation of the contents of the image.

Compositional models
The compositional nature of images and language lends 
itself to learning similarly compositional models [6]. The 
approach aims at addressing the challenge of generaliza-
tion, i.e., applying the learned model to novel compositions 
of words and visual elements. Compositional models were 
proposed by Hendricks et al. on the task of image captioning 
[27]. Andreas et al. [4], [3], [29] were the first to propose a 
compositional architecture for VQA, named neural module 
networks. In their approach, the input question is processed 

to determine the set of operations required to answer the 
question. A deep neural network is assembled with trained 
modules, each corresponding to one of those operations. A 
custom network is thus tailored specifically to each ques-
tion, and finally applied on the image to infer the answer.

A data set of synthetic images named CLEVR (which stands 
for compositional language and elementary visual reasoning)
[31] was specifically designed to evaluate generalization to 
novel combinations in VQA. It contains photorealistic images 
of shapes of various colors and materials. The data set also 
contains annotations describing the kind of reasoning that each 
question requires (i.e., as functional “programs”). The data set 
spurred a series of works on compositional models [29], [32].
The extra an  notations facilitate the training of compositional 

models by serving as an intermediate super-
vision signal. This supervision correspond 
to an arrangement of modules or opera-
tions to be executed for each question. All 
of the aforementioned works demonstrated 
unique capabilities on synthetic data sets. 
However, it is still unclear how to best apply 
them to real images and how to train them 
only using end-to-end supervision, i.e., only 
knowing the final answer.

An alternative approach that addresses 
compositionality is the relational networks 
[62]. The idea is to consider the input as a 

set of objects, such as the locations in a CNN feature map, 
and to learn a common predictor that is applied to pairwise 
combinations of those objects. The predictor basically learns 
the relations between parts of the input. This proved effective 
on the CLEVR data set without the need for the intermediate 
supervision mentioned previously.

Conclusions
This article presented a review of the state of the art on visual 
question answering. We reviewed popular approaches based 
on deep learning, which treat the task as a classification prob-
lem over a set of candidate answers. We described the com-
mon joint embedding model, and additional improvements 
that build up on this concept, such as attention mechanisms. 
Despite shortcomings of current practices for both train-
ing and evaluating VQA systems, we identified a number 
of promising research avenues that could potentially bring 
future breakthroughs for both VQA and for the general objec-
tive of visual scene understanding.
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Deep Metric Learning for Visual Understanding
An overview of recent advances

Metric learning aims to learn a distance function to mea-
sure the similarity of samples, which plays an important 
role in many visual understanding applications. Gen-

erally, the optimal similarity functions for different visual 
understanding tasks are task specific because the distribu-
tions for data used in different tasks are usually different. It is 
generally believed that learning a metric from training data 
can obtain more encouraging performances than handcrafted 
metrics [1]–[3], e.g., the Euclidean and cosine distances. A 
variety of metric learning methods have been proposed in the 
literature [2]–[5], and many of them have been successfully 
employed in visual understanding tasks such as face recogni-
tion [6], [7], image classification [2], [3], visual search [8], 
[9], visual tracking [10], [11], person reidentification [12],
cross-modal matching [13], image set classification [14], and 
image-based geolocalization [15]–[17].

Metric learning techniques are usually classified into two 
categories: unsupervised [4] and supervised [4]. Unsupervised 
metric learning attempts to learn a low-dimensional subspace 
to preserve the useful geometrical information of the samples. 
Supervised metric learning, which is the mainstream metric 
learning technique and the focus in this article, seeks an appro-
priate metric by formulating an optimization objective func-
tion to exploit supervised information of the training samples, 
where the objective functions are designed for different specif-
ic tasks. However, most conventional metric learning methods 
usually learn a linear mapping to project samples into a new 
feature space, which suffer from the nonlinear relationship 
of data points in metric learning. While the kernel trick can 
be adopted to address this nonlinearity problem, this type of 
method suffers from the scalability problem because the kernel 
trick has two major issues: 1) choosing a kernel is typically dif-
ficult and quite empirical and 2) the expression power of kernel 
functions is often not flexible enough to capture the nonlinear-
ity in the data. Motivated by the fact that deep learning is an 
effective solution to model the nonlinearity of samples, sev-
eral deep metric learning (DML) methods [6]–[10], [12], [14], 
[18]–[34] have been proposed in recent years. The key idea 
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of DML is to explicitly learn a set of hierarchical nonlinear 
transformations to map data points into other feature space 
for comparing or matching by exploiting the architecture of 
neural networks in deep learning, which unifies feature learn-
ing and metric learning into a joint learning framework. The 
goal of this article is to provide an overview of recent advances 
in DML techniques and their various applications in different 
visual understanding tasks.

Mathematical background
To have a deep understanding of the concept of metric learn-
ing, we briefly introduce some necessary mathematical back-
ground. This section simply introduces the basic definitions 
of a metric space and how to find a well-defined metric (or 
pseudo-metric) over the original inputs by finding a mapping 
into a Euclidean space.

Definition 1 
A metric over a set X  is a mapping :d RX X "# + and this 
mapping d  satisfies the following properties (axioms) for all 

, , :x y z X!

1) ( , )x yd 0$
2) ( , ) ( , )x y y xd d=
3) ( , ) ( , ) ( , )x z x y y zd d d# +

4) ( , )x xd 0=
5) ( , ) .x y x yd 0,= =

In Definition 1, axiom 1) is called the nonnegativity axiom,
axiom 2) is known as the symmetry axiom, axiom 3) is called the 
triangle inequality axiom, axiom 4) is referred to as the identity 
axiom, and axiom 5) is known as the identity of indiscernibles 
axiom. A pair ( , ),dX  in which X  is a set and d  is a metric, is 
called a metric space.

Definition 2 
A pseudo-metric over a set X  is a mapping :d RXX "# + sat-
isfying the following properties (axioms) for all , , :x y z X!

1) ( , )x yd 0$
2) ( , ) ( , )x y y xd d=
3) ( , ) ( , ) ( , )x z x y y zd d d# +

4) ( , ) .x xd 0=
A pair ( , ),dX  in which X  is a set and d  is a pseudo-metric, 

is called a pseudo-metric space. We find that the pseudo-metric 
doesn’t need to satisfy the identity of indiscernibles axiom of the 
metric. In metric learning, we may consider the pseudo-metrics 
sometimes instead of metrics and refer to them as metrics.

The Euclidean distance is a widely used metric, which is usu-
ally adopted to measure the dissimilarity of data points. Give two 
data points x and y, the Euclidean distance between x and y is 
defined as

( , ) ( ) ( ) ,x y x y x y x yd T
2= - = - - (1)

in which a large distance means the dissimilarity of x and y, and 
a small distance denotes the similarity of x and y.

The main objective of metric learning is to learn a metric over 
the input data points. One widely used method to learn a metric 

is to first map the input data points of the original space into a 
Euclidean metric space and then compute the Euclidean distance 
after the mapping. The following lemma declares this method.

Lemma 1 
Let { , , , }x y zX g=  be a set, :f RX n

"  be any well-de -
fined mapping, and :d R RRn n

"# +  be the Euclidean 
metric over ,Rn  then :d RXXf "# + defined by ( , )x yd f =

( ( ), ( )) ( ) ( )x y x yd f f f f 2= -  is a well-defined pseudo-metric 
over .X

As Definition 2 (pseudo-metric) keeps for all data points 
( ), ( ), ( )x y zf f f  and it is independent of the selection of mapping 
,f  Lemma 1 is verified.

With Lemma 1, metric learning is the procedure of learning 
the mapping function .f  In addition, from the perspective of fea-
ture representation, the goal of metric learning can be obviously 
interpreted as finding a new feature representation ( )h xf=
of the data point x to better suit the Euclidean space. Thus, the 
objective of metric learning is to find mapping f  under various 
loss functions and constraints.

An illustration
To simply illustrate how metric learning works, we conducted 
an experiment on the MNIST data set [36]. We sampled 150 
samples from three classes of handwritten digits: four, seven, and 
nine, where each class contains 50 samples. Each digit sample is 
a 28 × 28 grayscale image, and we lexicographically converted 
it into a 784-dimensional feature vector. We employed the linear 
discriminant analysis (LDA) as a metric learning method to proj-
ect data points from the original space to the transformed space. 
Figure 1 shows an example of how metric learning works on this 
real-world data set. As seen, samples from different classes are 
mixed in the original space, and they are well separated in the 
transformed space.

In this article, we focus on DML, which explicitly learns a 
nonlinear mapping f  to map data points into a new feature space 
by exploiting the architecture of deep neural networks, in which 
the nonlinear mapping f  is parameterized by the weights and 
biases of deep neural network.

DML
In this section, we introduce the basic concepts of DML, and discuss 
the similarities and differences among the existing DML methods.

Basic concepts
From Lemma 1, DML is to explicitly learn a nonlinear mapping 
f  to map data points into a new feature space by exploiting the 

architecture of deep neural networks, in which the nonlinear 
mapping f  is parameterized by the weights and biases of deep 
neural network.

Given a simple neural network architecture as shown in 
Figure 2, for an input ,x Rr( )0

!  its output of the first layer is 
,h W x b R( ) ( ) ( ) r1 1 1 ( )1

!{= +^ h  and its output of the mth layer 
is , , ,h W h b h xm M1R( ) ( ) ( ) ( ) ( )m m m m r1 0( )m

! # #{= + =-^ h
where matrix W R( )m r r( ) ( )m m 1

! # -

 and vector b R( )m r( )m

!  are weights 
and biases of this neural network, M  is the total number 
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of layers, r( )m  is the number of neural units in the mth layer, 
: RR 7{  is a nonlinear activation function (e.g., sigmoid and 

tanh). In this way, the output of this neural network at the most 
top layer can be represented as:

( )

,

x h W h b

h W x b

f R( ) ( ) ( ) ( )

( ) ( ) ( )

M M M M r1

1 1 1

( )M

!{

{

= = +

= +

-

^
^

h
h

(2)

where the mapping :f R Rr r( ) ( )M0

"  is a parametric non-
linear function which is determined by a set of parameters 
{ , } .W b( ) ( )m m

m
M

1=

Let f  be the mapping function of a neural network. For an 
input x, ( )xf  is its output through this neural network. According 
to Lemma 1, the distance of data points xi  and x j  in the deep 
metric space is to calculate the Euclidean distance between ( )xf i

and ( )xf j  as:

( , ) ( ( ), ( )) ( ) ( ) .x x x x x xd d f f f ff i j i j i i 2= = - (3)

The goal of DML is to learn the mapping f  under certain con-
straints, where f  is parameterized by the weights and biases of 
the neural network.

Figure 3 shows another widely used architecture of neural 
network, called a convolutional neural network (CNN), which 

has been employed by many DML algorithms recently. Gener-
ally, CNNs comprise several convolutional layers, subsampling 
layers, and fully connected layers. Specifically, the feed-forward 
network in Figure 2 is the fully connected part of CNN architec-
ture in Figure 3.

DML via Siamese networks
Typically, there are two main types of neural networks used in 
DML methods: Siamese networks and triplet networks. Figure 4
shows the diagrams of Siamese networks and triplet networks for 
DML. For a pair of data points , ,x xi j^ h  we say they are a simi-
lar pair (or positive pair) if xi  and x j  are semantically similar, 
and they are called a dissimilar pair (or negative pair) if they are 
semantically dissimilar. Let {( , )}i jS =  be an index set consist-
ing of similar pairs, and {( , )}i jD =  be an index set consisting of 
dissimilar pairs, respectively. The Siamese networks-based DML 
framework is trained by minimizing a contrastive loss function:

{ , } ( ( , ) )W b x xL h d

h

( ) ( )

( , )

( , )

m m
m
M

i j
f i j

i j
f i j

1 1

2

S

D

x= -
!

!

=

( ( , )),x xdx+ -

^ h /
/ (4)

where ( ) ( , )maxh x x0=  is the hinge loss function, and 1x  and 
2x  are two positive thresholds, .1 21x x  By minimizing this 

contrastive loss function, we expect the distance ( , )x xd f i j  for 
a positive pair to be less than a smaller parameter 1x  and that of 
a negative pair to be larger than a larger parameter .2x Figure 5
shows the key idea of such DML methods.

Dimensionality reduction by learning an invariant mapping 
(DrLIM) [18], [19] is an important work on DML via Siamese 
networks for face verification. DrLIM exploited discriminative 
information from neighborhood relationships of samples to learn 
the mapping function. There are four characteristics in their 
method: 1) it only needs neighborhood relationships between 
training samples; 2) it learns distance functions that are robust 
to nonlinear transformations of the input signals; 3) the learned 
function can handle the unseen classes problem so that the new 
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FIGURE 1. An example on the MNIST data set to illustrate how metric 
learning works. For ease of visualization, these samples are embedded 
into the two-dimensional feature spaces (a) and (b) by principal compo-
nent analysis and LDA, respectively.

w(2), b(2)

w(1), b(1)

h(2)
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x

FIGURE 2. A simple illustration of a feed-forward neural network architecture 
used in many DML methods [23]. The input to the network is x, and the output 
of the hidden layer and the top layer is h( )1  and ,h( )2  respectively, in which 
W( )m  and b( )m  are weights and biases of this neural network, .m1 2# #
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coming testing samples can also be used 
with the learned metric; and 4) the map-
pings generated by the function is smooth 
and coherent in the output space.

Cai et al. [20] introduced a deep 
nonlinear metric learning (DNLML) 
method by using a deep independent 
subspace analysis (ISA) network, called 
DNLML-ISA for face verification. ISA 
is an unsupervised learning algorithm 
and a two-layer neural network, where 
different active functions in the first and 
second layers were used, respectively. 
Specifically, DNLML-ISA employed the 
ISA network to transform features from 
the original space to another feature sub-
space. To identify discriminative features, 
DNLML-ISA combined the side infor-
mation constraints for metric learning 
with ISA, and stacked the ISA networks 
into a deep architecture. Since DNLML-
ISA is trained layer by layer, it cannot use 
the backpropagation algorithm to update 
the model and also cannot fully exploit 
the discriminative information.

Hu et al. [6] introduced a discrimi-
native DML (DDML) method for face 
verification. Unlike the stacked model 
used in DNLML-ISA, DDML employed 
a fully connected deep neural network to 
learn multiple nonlinear transformations 
to map face samples into a discrimina-
tive distance space, where the similarity 
of each positive pair is enlarged and that of 
each negative pair is reduced, respectively. The denoising autoen-
coder was used as the initialization of the parameters of each layer 
and then the backpropagation was used to update the model. The key 
advantage of DDML is that it can be trained on a small size of train-
ing data set and without using the extensive outside labeled data.

Taigman et al. [21] introduced a DeepFace method by employ-
ing an end-to-end metric learning method with the Siamese net-
work for face recognition. Unlike DDML, where only the metrics 
were learned at the fully connected layers, DeepFace performed 
discriminative learning with the convolutional, pooling, and fully 
connected layers so that more labeled training samples were used 
to train the model. Finally, the parameters of the Siamese net-
work were trained by the standard cross-entropy loss and back-
propagation method.

Sun et al. [7] used carefully designed deep convolutional net-
works (deep ConvNets) by making use of both the verification and 
identification information to learn the deep identification-verifi-
cation features (DeepID2) [7] for face verification. Specifically, 
their method extracted deep features with two signals: the first is 
the identification signal, which was achieved by following the 
DeepID2 layer with an wayn-  softmax layer. The network was 
trained by minimizing the cross-entropy identification loss. The 

other one is the verification signal, which enforced that DeepID2 
features extracted from the same class are as similar as possible. 
Their method showed that both the identification and verification 
signal contributed to the final discriminative feature learning.

Yi et al. [12] proposed a DML method with a Siamese deep 
neural network to learn a similarity metric from image pixels 
directly for person reidentification. Their method jointly learned 
discriminative features and similarity measures under a unified 

Convolution

Convolution

FullyConnected

Subsam
pling

Input OutputLayer 1 Layer 2 Layer 3

FIGURE 3. An illustration of a CNN architecture. This CNN comprises two convolutional layers C1 and 
C3, a subsampling layer S2, and a fully connected layer F3.

Loss Function Loss Function

df(xi, xj) df(xi, xi )

f (xi) f (xi )f (xj)

xi xi xi xixj

f f f f f

||f (xi) – f (xj)||2 ||f (xi ) – f (xi)||2
+

+

+ f (xi ) f (xi )–

–

||f (xi ) – f (xi)||2
–

+ df(xi, xi )–

Siamese Networks Triplet Networks

FIGURE 4. Diagrams of Siamese networks and triplet networks for DML. Siamese networks are com-
posed of two same neural networks f with shared parameters, where (xi, xj) is a similar/dissimilar pair. 
Triplet networks consist of three same neural networks f with shared parameters, where , ,x x xi i i

+ -^ h is 
a triplet, xi is a reference, x i

+ and x i
- are similar and dissimilar examples to xi.

Same
Different

τ1

τ2
Before After

FIGURE 5. The basic idea of DML methods via Siamese network using (4) 
[6]. At the top layer of the network, the distance ( , )x xdf i j  for a positive 
pair is less than a smaller parameter 1x  and that of a negative pair is 
larger than a larger parameter ,2x  respectively.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


80 IEEE SIGNAL PROCESSING MAGAZINE | November 2017 |

deep framework. The network has a symmetrical structure, 
where two subnetworks were connected by a cosine similarity 
layer. There are two convolutional layers and a full connected 
layer for each subnetwork. Their method has two key advantag-
es: 1) it can learn a similarity metric from image pixels directly; 
2) it can learn multichannel filters to capture both the color and 
texture information from body images simultaneously.

Most DML methods assume that the training and testing 
samples are collected in similar scenarios and the same distri-
bution assumption is usually made. This assumption does not 
hold in many real world applications, especially when samples 
are captured across different data sets. To address this, Hu et al.
[23] proposed a deep transfer metric learning (DTML) method 
to learn hierarchical nonlinear transformations for cross-domain 
visual recognition, which learned transferrable discriminative 
knowledge from the labeled source domain to the unlabeled tar-
get domain. Specifically, DTML learned a deep metric network 
by maximizing the interclass variations and minimizing the 
intraclass variations, and minimizing the distribution divergence 
between the source domain and the target domain at the top layer 
of the network. To better exploit the discriminative information 
from the source domain, they also considered exploiting discrim-
inative information from the middle layers of the deep network so 
that more discriminative information can be exploited.

Recently, Lu et al. [14] introduced a multimanifold DML 
(MMDML) method to recognize objects form different 
view  points or under different illuminations. Specifically, 
MMDML jointly learns multiple nonlinear feed-forward neu-
ral networks, one for each object class, to explicitly project the 
instances from each image set into a common feature space 
at the top layer of all networks, where the maximal mani-
fold margin constraint is enforced. In this way, class-specific 
discriminative information can be effectively exploited for 
classification. The authors’ method achieved competitive per-
formance on five widely used image set data sets.

Table 1 shows basic characteristics of several Siamese 
networks-based DML methods. In this table, the strongly 
supervised setting means that the class labels of training data 
are used to train neural networks, and the weakly supervised 
setting denotes that only the pairwise labels of similar pairs 
and dissimilar pairs are used to train neural networks.

DML via triplet networks
DML using triplet networks was trained by minimizing a triplet 
loss function, which exploits labels of training data to generate 
triplets. Given a triplet ( , , ),x x x xi i i i

+ - + is a similar example to the 
reference ,xi  and xi

- is a dissimilar example to the .xi  A triplet 
( , , )x x xi i i

+ -  means that xi  is more similar to xi
+ in contrast to ,xi

-

i.e., ( , ) ( , ).x x x xd df i i f i i1+ -  DML via triplet networks aims to 
minimize the following loss function for triplets:

{ , } ( , ) ( , ) ,W b x x x xL h d d( ) ( )m m
m
M

i f i i f i i1 x= + -=
+ -^ ^h h/ (5)

where ( ) ( , )maxh x x0=  is the hinge loss function, and 02x  is 
a margin between ( , )x xd f i i

+  and ( , ).x xd f i i
-  The triplet network 

pulls the similar example close to reference and pushes dissimilar 
example further away.

Wang et al. [9] proposed a deep ranking model with the trip-
let-based hinge loss functions to learn similarity metric from raw 
images. Specifically, they employed a multiscale neural network 
architecture to capture both the global visual properties and the 
image semantics. An efficient online triplet sampling method 
was presented to generate a large amount of training data to learn 
the parameters of the network.

Hoffer et al. [26] employed a triplet network architecture for 
DML, which aims to learn useful representations by distance 
comparisons. Their method is similar to the approach in [9] that 
learned a deep ranking similarity function for image retrieval. 
Their method made a comprehensive study of the triplet architec-
ture, and demonstrated that the triplet approach is a strong com-
petitor to the Siamese approach.

Schroff et al. [24] introduced a FaceNet deep model that 
directly learns a mapping from the original sample space to a 
compact Euclidean space. Once this space is produced, face rec-
ognition and clustering can be easily implemented under the net-
work. Specifically, FaceNet used a deep convolutional network to 
directly optimize the embedding itself rather than using an inter-
mediate bottleneck layer. Triplets of roughly aligned matching/
nonmatching face patches were generated for training with an 
online triplet mining method.

Bell and Bala [27] proposed learning visual similarity for 
product design with the CNNs, which exploit communities of 
users to help each other answering questions about products in 
images. Their method contains two different domains of prod-
uct images: products cropped from internet scenes, and prod-
ucts in their iconic form. With the help of a multidomain deep 
embedding, it can deal with several applications of visual search 
including identifying products in scenes and finding stylistically 
similar products.

Song et al. [28] introduced a DML method via lifted struc-
tured feature embedding (LiftedStruct) to learn se     mantic fea-
ture embeddings where similar examples are mapped close to 
each other and dissimilar examples are mapped farther apart. 
Their method took full advantage of the training batches in 
the network training stage by lifting the vector of pairwise 
distances within the batch to the matrix of pairwise distanc-
es. This step enabled the method to learn the state of the art 
feature embedding by optimizing a new structured prediction 

Table 1. Characteristics of several DML methods using 
Siamese networks.

Method Setting End to End?
Convolutional 
Architecture?

DrLIM [19] Strongly supervised Yes Yes

DNLML-ISA [20] Weakly supervised No No

DDML [6] Weakly supervised No No

DeepFace [21] Strongly supervised Yes Yes

DeepID2 [7] Strongly supervised Yes Yes

DTML [23] Strongly supervised No No

MMDML [14] Strongly supervised No No
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objective on the lifted problem. Experiments on three large-
scale data sets demonstrated significant improvements over 
existing deep feature embedding methods.

Cui et al. [29] presented an iterative framework for fine-
grained visual categorization with humans in the loop infor-
mation. Their method can handle three challenges in existing 
fine-grained visual categorization methods: lacking of training 
data, large number of fine-grained categories, and high intraclass 
versus low interclass variance. Using DML with humans in the 
loop, a low-dimensional feature embedding with anchor points 
on manifolds was learned for each category, where these anchor 
points captured intraclass variances and remained discriminative 
among different classes. In each round, images with high con-
fidence scores from our model were sent to humans for label-
ing. By comparing these images with exemplar images, labelers 
marked each candidate image as either a true positive or a false 
positive. True positives were added into the current data set and 
false positives were considered as hard negatives for the DML 
model. Then the model was retrained with an expanded data set 
and hard negatives for the next round iteration. The proposed 
DML method was evaluated on two fine-grained data sets. 
Experimental evaluations showed that their method achieved sig-
nificant performance gain over state-of-the-art methods.

Shi et al. [31] proposed a deep metric embedding method 
with triplet loss for person reidentification. Their method intro-
duced a positive sample mining method to train robust CNN for 
person reidentification. In addition, a metric weight constraint 
was used to improve the learning, so that the learned metric 
has a better generalization ability. They empirically found that 
both of these tricks improve the reidentification performance.

Lim et al. [33] proposed a competitive approach for style sim-
ilarity learning of three-dimensional (3-D) shapes using DML, 
which made use of recent advances in triplet based metric learn-
ing with neural networks. The key advantages of their method 
are four aspects: 
■ it explored DML techniques for perceived style similarities of 

3-D shapes
■ it showed that rendered images of 3-D geometry from multi-

ple viewpoints were an appropriate representation and how 
salient views can be selected

■ it used a triplet sampling method that does not rely on style 
class labels and allows for an efficient learning procedure

■ it showed how heterogeneous data sources in the form of 3-D 
geometry and annotated photographs found online can be 
integrated into the DML method.

DML via other networks
There are also some DML methods via other networks. For exam-
ple, Batchelor and Green [22] proposed using DML on CNNs to 
learn features with good locality for object recognition. In particu-
lar, they considered two metric learning methods: neighborhood 
components analysis and mean square error’s gradient minimiza-
tion (MEGM). They utilized a nonlinear form of MEGM as an 
alternative to neighborhood components analysis and proposed 
some stochastic sampling methods to apply them to larger data 
sets with a minibatch stochastic gradient descent algorithm.

Sohn [32] proposed a DML method using multiclass pairN-
loss [32]. Their method first generated triplet loss by allowing 
joint comparison among more than one negative example. Then, 
N 1-  negative examples were considered to reduce the computa-
tional burden of evaluating deep embedding vectors. They dem-
onstrated the superiority of their method over other competing 
loss functions for a variety of tasks such as fine-grained object 
recognition and verification, image clustering and retrieval, and 
face verification and identification.

Visual understanding applications
In this section, we show various visual understanding ap  pli-
cations via DML, including face recognition, image classifi-
cation, visual search, person reidentification, visual tracking, 
cross-modal matching, and image set classification.

Face recognition
Chopra et al. [18] learned a similarity metric for face verification.
Their approach learned a CNN-based mapping from the input space 
to the target space, where the L1 norm can directly approximate the 
semantic distance. Cai et al. [20] learned a nonlinear metric using 
the deep ISA network. Compared with kernel-based methods, deep 
models present strong discriminative power and better exploit the 
nature of the data set. Sun et al. [7] proposed a DeepID2 method to 
increase the interpersonal variations with the identification signals, 
and reduce the intrapersonal distances with the verification signals. 
Taigman et al. [21] presented the DeepFace network by exploiting 
a 3-D face model and training a nine-layer CNN network. Hu et 
al. [6] presented a DDML method by learning a set of hierarchical 
nonlinear transformations, where the distance between positive pairs 
is smaller than negative pairs by a threshold. They also proposed a 
DTML [23] for cross-data set face recognition. DTML transferred 
the information from the labeled source domain to the unlabeled tar-
get domain, and minimized their distribution divergence. Schroff et 
al. [24] proposed a FaceNet method by learning a projection to map 
facial images to a compact Euclidean space. With the learned embed-
ding, feature vectors can be directly used to measure the similarity of 
faces. Most these DML methods achieved the state-of-the-art per-
formance on the widely used LFW and YouTube Face data sets.

Image classification
Batchelor and Green [22] utilized CNN architecture to learn a 
deep nonlinear metric, where the learned features with good local-
ity show good performance and generalization for image classifi-
cation. Hoffer and Ailon [26] utilized a triplet-based network to 
learn deep metrics by distance comparisons. The triplet network 
contains three instances of networks with shared parameters, 
where three samples with a positive pair and a negative pair can be 
simultaneously fed into the network. Cui et al. [29] learned a deep 
metric for fine-grained categorization. Human helps to label high 
confidence images in each loop to expand data sets and hard nega-
tives, where the network was further retrained in the next loop.

Visual search
Wu et al. [8] proposed an online multimodal deep similarity learn-
ing for visual search. They applied deep-learning techniques to 
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obtain a flexible nonlinear similarity metric from images, which 
have multimodal feature representations via an efficient and scal-
able online learning method. Their proposed technique achieved 
encouraging results on several multimodal images retrieval tasks. 
Wang et al. [9] proposed a ranking-based deep-learning method 
for fine-grained image search, which employed a triplet-based 
hinge loss ranking function and a multiscale neural network. Their 
method outperformed existing hand-crafted features and deep 
models in numerous experiments. Liong et al. [35] proposed a 
deep hashing approach for large scale visual search. Their method 

learned compact binary codes to exploit nonlinear relationship of 
samples, and Figure 6 shows the key idea of their method.

Person reidentification
Yi et al. [12] proposed a DML method for person reidentification, 
which learned a similarity metric from image pixels directly with a 
Siamese networks. Hu et al. [23] proposed a DTML method for cross 
data set person reidentification, where the discriminative informa-
tion exploited from the source domain was transferred to the target 
domain with limited labeled samples. Shi et al. [31] proposed a deep 
embedding metric method for person reidentification, which used a 
moderate positive sample mining method for robust CNN training, 
and improved the leaning procedure with a metric weight constraint.

Visual tracking
Hu et al. [10] employed DML for visual object tracking. Their 
DML tracker adopts the marginal fisher analysis criterion to 
characterize the separability of the positive samples and negative 
samples by maximizing the variance of interclass negative sam-
ple pairs. They first learned a multilayer nonlinear feed-forward 
neural network to map both the sampled templates and particles 
into a discriminative feature space to minimize the intraclass 
variations of positive sample pairs and maximize the interclass 
variations of negative sample pairs at the top layer of the net-
work. Then, they selected the candidate which is most similar to 
the template in the learned deep network and considered it as the 
target in the current predicted frame. Experimental results dem-
onstrated that their DML tracker achieved very competitive per-
formance on a challenging benchmark data set. Figure 7 shows 
the main procedure of their proposed DML tracker.

Cross-modal matching
Liong et al. [13] proposed a deep coupled metric learning (DCML) 
method for cross-modal matching. Unlike existing cross-modal 
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learning methods such as canonical correlation analysis and 
partial least squares, which learn a single linear latent space to 
reduce the modality gap, their DCML designs two neural net-
works to learn two sets of hierarchical nonlinear transformations 
(one set for each modality) to nonlinearly map data samples into 
a shared feature subspace, under which the intraclass variation 
is minimized and the interclass variation is maximized, and the 
difference of each sample pair captured from two modalities of 
the same class is minimized, respectively. Experimental results 
on three different cross-modal matching applications including 
text-image matching, tag-image retrieval, and heterogeneous 
face recognition demonstrated the effectiveness of the proposed 
method. Lin et al. [15], Workman et al. [16], and Vo and Hays [17]
employed DML techniques to address the cross-view matching 
problem for image-based geolocalization, in which these meth-
ods were used to localize a ground-level query image by match-
ing to a reference database of aerial/overhead images.

Image set classification
Lu et al. [14] presented an MMDML method to recognize objects 
form different viewpoints or under different illuminations. Spe-
cifically, MMDML jointly learns multiple nonlinear feed-
forward neural networks, one for each object class, to explicitly 
project the instances from each image set into a common feature 
space at the top layer of all networks, where the maximal mani-
fold margin constraint is enforced. In this way, class-specific 
discriminative information can be effectively exploited for classi-
fication. The authors’ method achieved competitive performance 
on five widely used image set data sets. Figure 8 shows the key 
idea of their MMDML method.

Summary and future research directions
In this article, we have summarized the recent trends of DML 
and shown their wide applications of various visual understand-
ing tasks including face recognition, image classification, vi-
sual search, person reidentification, visual tracking, cross-modal 
matching, and image set classification. Empirical results have 
clearly demonstrated that DML can significantly improve the state 
of the art in these visual understanding tasks.

There are five interesting directions of DML for future research:
1) Most existing DML methods learn one neural network from 

a single feature representation and cannot deal with multiple 
feature representations directly. In many visual understand-
ing applications, it is easy to extract multiple features for 
each sample for multiple feature fusion. However, these fea-
tures extracted from the same sample are usually highly 
correlated to each other even if they could characterize sam-
ples from different aspects. For multiple feature fusion, this 
highly correlated information should be preserved because 
it usually reflects the intrinsic information of samples. How 
to perform DML with multiview feature representation to 
preserve the correlation of different features and further 
improve the performance is a desirable future work. 

2) Most existing DML methods assume that high-quality and 
clean samples are usually obtained so that the learned metrics 
are employed for visual understanding. In many real-world

applications, visual data are usually captured in wild condi-
tions so that many noisy and low-quality samples are usually 
collected, so that it is desirable to develop robust DML meth-
ods that can well measure the similarity of these noisy and 
low-quality samples. Hence, how to develop robust DML 
methods is another interesting future direction for research.

3) Most existing DML methods are developed for a single spe-
cific task, which means that a large amount of labeled data 
for this task are usually required to exploit the supervision 
information. In some real applications, it is difficult to collect 
extensive labeled data for a specific task. Therefore, it is 
desirable to conduct multitask DML which can leverage 
labeled samples from multiple different yet related tasks so 
that it is much easier to obtain more labeled samples for 
DML, which is also an interesting future research direction.

4) Most existing DML methods are supervised. In many real 
applications, it is easier to collect an extensive unlabeled data 
rather than labeled data for practical applications. Hence, 
how to develop more effective unsupervised or semisuper-
vised DML is an important future direction.

5) Most existing DML methods utilize the contrastive and triplet 
loss functions to train deep models. To complete the family of 
DML, employing other loss functions (e.g., quadruplet loss 
[37]) is also a promising path to the development of DML.
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FIGURE 8. The basic idea of MMDML for image set classification [14]. MMDML 
models each image set as a nonlinear manifold and employs a feed-forward 
neural network to nonlinearly map it into a feature space. Assume there are C
classes, MMDML designs C feed-forward neural networks (one for each mani-
fold). At the top layer of the network, the manifold margin is maximized so 
that the parameters of these manifolds can be updated with backpropagation. 
Finally, the testing image set is fed to each network and the smallest distance 
between it and the training class is used for classification.
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Convolutional Neural Networks 
for Inverse Problems in Imaging

A review

In this article, we review recent uses of convolutional neural 
networks (CNNs) to solve inverse problems in imaging. It has 
recently become feasible to train deep CNNs on large databas-

es of images, and they have shown outstanding performance on 
object classification and segmentation tasks. Motivated by these 
successes, researchers have begun to apply CNNs to the resolu-
tion of inverse problems such as denoising, deconvolution, super-
resolution, and medical image reconstruction, and they have 
started to report improvements over state-of-the-art methods, 
including sparsity-based techniques such as compressed sensing. 
Here, we review the recent experimental work in these areas, 
with a focus on the critical design decisions: 
■ From where do the training data come? 
■ What is the architecture of the CNN? 
■ How is the learning problem formulated and solved? 
We also mention a few key theoretical papers that offer perspec-
tives on why CNNs are appropriate for inverse problems, and we 
point to some next steps in the field.

Introduction
The basic ideas underlying the use of CNNs (also known as 
ConvNets) for inverse problems are not new. Here, we give a 
condensed history of CNNs to provide context to what fol-
lows. For further historical perspective, see [1]; for an acces-
sible introduction to deep neural networks and a summary of 
their recent history, see [2]. The CNN architecture was pro-
posed in 1986 [3], and neural networks were developed for 
solving inverse imaging problems as early as 1988 [4]. These 
approaches, which used networks with few parameters and did 
not always include learning, were largely superseded by com-
pressed sensing (or, broadly, convex optimization with regulariza-
tion) approaches in the 2000s. As computer hardware improved, 
it became feasible to train larger neural networks, until, in 2012, 
Krizhevsky et al. [5] achieved a significant improvement over the 
state of the art on the ImageNet classification challenge by using 
a graphics processing unit (GPU) to train a CNN with five con-
volutional layers and 60 million parameters on a set of 1.3 mil-
lion images. This work spurred a resurgence of interest in neural 
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networks and, specifically, CNNs—not only for computer vision 
tasks but also for inverse problems.

The purpose of this article is to summarize the recent works 
using CNNs for inverse problems in imaging, i.e., in problems 
most naturally formulated as recovering an image from a set 
of noisy measurements. This criterion excludes detection, seg-
mentation, classification, quality assessment, etc. We also focus 
on CNNs, avoiding other architectures such as recurrent neu-
ral networks, fully connected networks, and stacked denoising 
autoencoders. We organized our literature search by application, 
selecting topics of broad interest where we could find at least 
three peer-reviewed papers from the last ten years. (Much of the 
work on the theory and practice of CNNs is posted on the pre-
print server arXiv.org before eventually appearing in traditional 
journals. Because of the lack of peer review on arXiv.org, we 
have preferred not to cite these papers, except in cases where we 
are trying to illustrate a very recent trend or future direction for 
the field.) The resulting applications and references are summa-
rized in Table 1. The aim of this constrained scope is to allow 
us to draw meaningful generalizations from the surveyed works.

Background
We begin by introducing inverse problems and contrasting the 
traditional approach to solving them with a learning-based 
approach. For a textbook treatment of inverse problems, see 
[28]. Throughout the section, we use X-ray computed tomogra-

phy (CT) as a running example, and Figure 1 shows images of 
the various mathematical quantities we mention.

Learning for inverse problems in imaging
Mathematically speaking, an imaging system is an operator 

:H X Y"  that acts on an image ,x X!  to create a vector of 
measurements ,y Y!  with { } .H x y=  The underlying func-
tion/vector spaces are
■ the space, ,X  of acceptable images, which can be two-

dimensional (2-D), three-dimensional (3-D), or even 
3-D+time, with its values representing a physical quantity 
of interest, such as X-ray attenuation or concentration of 
fluorophores

■ the space, ,Y  of measurement vectors that depends on the 
imaging operator and could include images (discrete arrays 
of pixels), Fourier samples, line integrals, etc.

We typically consider x to be a continuous object (function of 
space), while y  is usually discrete: .RY M=  For example, in 
X-ray CT, x  is an image representing X-ray attenuations, H rep-
resents the physics of the X-ray source and detector, and y  is the 
measured sinogram (see Figure 1).

In an inverse imaging problem, we aim to develop a recon-
struction algorithm (which is also an operator), : ,R Y X"

to recover the original image, ,x  from the measurements, .y
The dominant approach for reconstruction, which we call the 
objective function approach, is to model H  and recover an 
estimate of x from y  by

, ,argminR y f H x y
x

obj
X

=
!

^ h" ", , (1)

where :H X Y"  is the system model, which is usually lin-
ear, and :f RY Y "# + is an appropriate measure of error. 

H

HT Rreg

CNNθCNNθ

? [25], [27] [25]

?

x

y

HT {y }
∼

H –1 {y }
∼

H –1∼

x∼

CNNθ

CNNθ

FIGURE 1. A block diagram of image reconstruction methods, using images from X-ray CT as examples. An image, ,x creates measurements, ,y that can 
be used to estimate x  in a variety of ways. The traditional approach is to apply a direct inversion, ,H 1-u  which is artifact prone in the sparse-measurement 
case (note the stripes in the reconstruction). The current state of the art is a regularized reconstruction, ,Rreg  written, in general, in (2). Several recent 
works apply CNNs to the result of the direct inversion or an iterative reconstruction, but it might also be reasonable to use as input the measurements 
themselves or the back projected measurements.

Table 1. Reviewed applications and associated references.  

Denoising Deconvolution Superresolution MRI CT

[6]–[11] [10], [12]–[14] [9], [15]–[20] [21]–[23] [24]–[27]
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Continuing the CT example, H  would be a discretization of the 
X-ray transform (such as MATLAB’s radon), and f  could 
be the Euclidean distance, { } .H x y 2-  For many appli-
cations, decades of engineering have gone into developing 
a fast and reasonably accurate inverse operator, ,H 1-u  so (1)
is easily approximated by { } { };R y H y1

obj = -u  for CT, H 1-u

is the filtered back projection (FBP) algorithm. An important, 
related operator is the back projection, : ,H Y XT

"  which can 
be interpreted as the simplest way to put measurements back 
into the image domain (see Figure 1).

These direct inverses begin to show significant artifacts 
when the number or quality of the measurements decreases, 
either because the underlying discretization breaks down or 
because the inversion of (1) becomes ill 
posed (lacking a solution, lacking a unique 
solution, or being unstable with respect to the 
measurements). Unfortunately, in many real-
world problems, measurements are costly (in 
terms of time, or, e.g., X-ray damage to the 
patient), which motivates us to collect as few 
as possible. To reconstruct from sparse or 
noisy measurements, it is often better to use a 
regularized formulation,

, ,argminR y f H x y g x
x

reg
X

= +
!

^ ^h h" ", , (2)

where :g RX " + is a regularization func-
tional that promotes solutions that match our 
prior knowledge of x  and, simultaneously, 
makes the problem well posed. For CT, g
could be the total variation (TV) regularization, which penalizes 
large gradients in .x

From this perspective, the challenge of solving an inverse 
problem is designing and implementing (2) for a specific appli-
cation. Much effort has gone into designing general-purpose 
regularizers and minimization algorithms. For example, com-
pressed sensing [29] provides sparsity-promoting regularizers. 
Nonetheless, in the worst case, a new application necessitates 
developing accurate and efficient H , ,g  and ,f along with a 
minimization algorithm.

An alternative to the objective function approach is called 
the learning approach, where a training set of ground-truth 
images and their corresponding measurements, {( , )} ,x yn n n

N
1=

is known. A parametric reconstruction algorithm, ,Rlearn  is 
then learned by solving

, ( ),argminR f x R y g
,R n

N

n n
1

learn i= +
!i

i
H =i

^ h" ,/ (3)

where H  is the set of all possible parameters, :f RX X "# +

is a measure of error, and :g R"H + is a regularizer on the 
parameters with the aim of avoiding overfitting. Once the 
learning step is complete, Rlearn  can then be used to reconstruct 
a new image from its measurements.

To summarize, in the objective function approach, the 
reconstruction function is itself a regularized minimization 

problem, while in the learning approach, the solution of a regu-
larized minimization problem is a parametric function that can 
be used to solve the inverse problem. The learning formulation 
is attractive because it overcomes many of the limitations of 
the objective function approach: there is no need to handcraft 
the forward model, cost function, regularizer, and optimizer 
from (2). On the other hand, the learning approach requires a 
training set, and the minimization (3) is typically more dif-
ficult than (2) and requires a problem-dependant choice of ,f

,g and the class of functions described by R and .H
Finally, we note that the learning and objective function 

approaches describe a spectrum rather than a dichotomy. In 
fact, the learning formulation is strictly more general, includ-

ing the objective function formulation as a 
special case. As we will discuss further in 
the section “Network Architecture,” which 
(if any) aspects of the objective formula-
tion approach to retain is a critical choice 
in the design of learning-based approaches 
to inverse problems in imaging.

CNNs
Our focus here is the formulation of (3) using 
CNNs. Using a CNN means, roughly, fixing 
the set of functions, Ri , to be a sequence of 
(linear) filtering operations alternating with 
simple nonlinear operations. This class of 
functions is parametrized by the values of the 
filters used (also known as filter weights), 
and these filter weights are the parameters 

over which the minimization occurs. For illustration, Figure 2
shows a typical CNN architecture.

We will discuss the theoretical motivations for using CNNs 
as the learning architecture for inverse problems in the sec-
tion “Theory,” but we mention some practical advantages 
here. First, the forward operation of a CNN consists of (usu-
ally small) convolutions and simple, pointwise nonlinear func-
tions. This means that, once training is complete, the execution 
of Rlearn  is very fast and amenable to hardware acceleration
on GPUs. Second, the gradient of (3) is computable via the 
chain rule, and these gradients again involve small convolu-
tions, meaning that the parameters can be learned efficiently 
via gradient descent.

When the first CNN-based method entered the ImageNet 
Large-Scale Visual Recognition Challenge in 2012 [5], its 
error rate on the object localization and classification task was 
15.3%, as compared to an error rate 26.2% for the next closest 
method and 25.8% for the 2011 winner. In subsequent com-
petitions (2013–2016), the majority of the entries (and all of 
the winners) were CNN based and continued to improve sub-
stantially, with the 2016 winner achieving an error rate of just 
2.99%. Can we expect such large gains in inverse problems? 
That is, can we expect denoising results to improve by an order 
of magnitude (20 dB) in the next few years? Next, we answer 
this question by surveying the results reported by recent CNN-
based approaches to image reconstruction.

In the objective 
function approach, the 
reconstruction function 
is itself a regularized 
minimization problem, 
while in the learning 
approach, the solution of 
a regularized minimization 
problem is a parametric 
function that can be 
used to solve the 
inverse problem.
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Current state of performance
Of the inverse problems we review here, denoising provides the 
best look at recent trends in results because there are standard 
experiments that appear in most papers. Work on CNN-based 
denoising from 2009 [6] showed an average peak signal-to-noise 
ratio (PSNR) of 28.5 on the Berkeley segmentation data set, a 
less than 1-dB improvement over contemporary wavelet and 
Markov random field-based approaches. For comparison, one 
very recent denoising work [11] reported a 0.7-dB improvement 
on a similar experiment, which remains less than 1 dB better than 
contemporary non-CNN methods (including block-matching and 
3-D filtering, which had remained the state of the art for years). 
As another point of reference, in 2012, one CNN approach [7]
reported an average PSNR of 30.2 dB on a set of standard test 
images (Lena, peppers, etc.), less than 0.1 dB better than com-
parisons, and another [8] reported an average of 30.5 dB on the 
same experiment. Recently, [11] achieved an average of 30.4 dB 
under the same conditions. One important perspective on these 
denoising results is that the CNN is learning the distribution of 
natural images (or, equivalently, is learning a regularization). 
Such a CNN could be reused inside an iterative optimization as a 
proximal operator to enforce this learned regularization for any 
inverse problem.

The trends are similar in deblurring and superresolution, 
although experiments are more varied and therefore harder to 
compare. For deblurring, [12] showed around a 1-dB PSNR 
improvement over comparison methods, and [13] showed a 

further improvement of approximately 1 dB. For superresolu-
tion, work from 2014 [15] reported a less than 0.5-dB improve-
ment in PSNR over comparisons. During the next two years, 
[16] and [19] both reported a 0.5-dB PSNR increase over this 
baseline. Even more recent work, [30], improves on the 2014 
work by around 1.5 dB in PSNR. For video superresolution, 
[18] improves on non-CNN-based methods by about 0.5 dB 
PSNR and [20] improves upon that result by another 0.5 dB.

For inverse problems in medical imaging, direct com-
parison between works is impossible due to the wide vari-
ety of experimental setups. A 2013 CNN-based work [24]
shows improvement in limited-view CT reconstruction over 
direct methods and unregularized iterative methods but does 
not compare to regularized iterative methods. In 2015, [25]
showed (in full-view CT) an improvement of several decibels 
in signal-to-noise ratio (SNR) over direct reconstruction and 
around 1-dB improvement over regularized iterative recon-
struction. Recently, [26] showed about 0.5-dB improvement in 
PSNR over TV-regularized reconstruction, while [27] showed 
a larger (1–4 dB) improvement in SNR over a different TV-
regularized method (Figure 3). In magnetic resonance imaging 
(MRI), [22] demonstrates performance equal to the state of the 
art, with advantages in running time. 

Do these improvements matter? CNN-based methods have 
not, so far, had the profound impact on inverse problems that 
they have had for object classification. The difference between 
30 and 30.5 dB is impossible to see by eye. On the other hand, 

Rlearn {x } = c3 ° T (c2 ° T (c1 ° x + b1) + b2) + b3
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FIGURE 2. An illustration of a typical CNN architecture for 2562 pixel RGB images, including the objective function used for training. ( )T $  is the rectified 
linear unit function (point-wise nonlinear function). The symbol % denotes a 2-D convolution. The convolutions in each layer are described by a four-
dimensional tensor representing a stack of 3-D filters.
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these improvements occur in heavily studied fields: we have 
been denoising the Lena image since the 1970s. Furthermore, 
CNNs offer some unique advantages over many traditional 
methods. The design of the CNN architecture can be more or 
less decoupled from the application at hand and reused from 
problem to problem. They can also be expanded in straightfor-
ward ways as computer memory grows, and there is some evi-
dence that larger networks lead to better performance. Finally, 
once trained, running the model is fast (dozens of convolutions 
per image, usually less than 1 s). This means that CNN-based 
methods can be attractive in terms of running time even if they 
do not improve upon state-of-the-art performance.

Designing CNNs for inverse problems
In this section, we survey the design decisions needed to devel-
op CNN-based approaches for inverse problems in imaging. 
We organize the section around the learning equation as sum-
marized in Figure 4, first describing how the training set is 
created, then how the network architecture is designed, and, 
finally, how the learning problem is formulated and solved.

Training set
Learning requires a suitable training set, i.e., the (input, out-
put) pairs from which the CNN will learn. In a typical learning 
problem, training outputs are provided by some oracle label-
ing a set of inputs. For example, in object classification, a set 
of human graders might view a large number of images and 
provide annotations for each. In the inverse problem setting, 
this is considerably more difficult because no such oracle exists. 

For example, in X-ray CT, to generate a training set, we would 
need to image a large number of physical phantoms for which 
we have exact 3-D models, which is not feasible in practice. The 
choice of the training set also constrains the network architec-
ture because the input and output of the network must match the 
dimensions of yn and ,xn respectively.

Generating training data
In some cases, generating training data is straightforward 
because the forward model we aim to invert is known exactly 
and easily computable. In denoising, training data are generated 
by corrupting images with noise; the noisy image then serves as 
training input and the clean image as the training output, as in, 
e.g., [6] and [7]. Or, the noise itself can serve as the oracle 
output, in a scheme called residual learning [11], [23]. Super-
resolution follows the same pattern, where training pairs are eas-
ily generated by downsampling, as in, e.g., [19]. The same is true 

Ground Truth FBP SNR 13.43 TV SNR 24.89 FBP ConvNet SNR 28.53

(a) (b) (c) (d)

FIGURE 3. An example of X-ray CT reconstructions. (a) The ground truth comes from an FBP reconstruction using 1,000 views. (b)–(d) are reconstructions from 
just 50 views using FBP, a regularized reconstruction, and from a CNN-based approach. The CNN-based reconstruction preserves more of the texture present in the 
ground truth and results in a significant increase in SNR. (Images are reproduced with permission from [27]).

Rlearn = arg min
Rθ , θ ∈Θ a

N

n = 1

f (xn, Rθ (yn)) + g (θ )

A) Training SetD) Optimization

C) Cost Function and
Regularization

B) Network Architecture

FIGURE 4. The learning equation, which we use to organize the parts of 
the section “Designing CNNs for Inverse Problems”.
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for deblurring, where training pairs can be generated by blur-
ring [12]–[14].

In medical imaging, the focus is on reconstructing 
from real measurements, and the corresponding ground truth 
is not usually known. The emerging paradigm is to learn to 
reconstruct from sparse measurements, using reconstructions 
from fully sampled measurements to train. For example, in 
MRI reconstruction, [22] trains by using undersampled k-space 
data as inputs and reconstructions from fully sampled k-space 
data as outputs. Likewise, [27] uses a low-view CT reconstruc-
tion as input and a high-view CT reconstruction as output. Or 
the CNN can learn from low-dose (noisy) measurements [25].

Preprocessing
Another aspect of training data preparation is whether the 
training inputs are the measurements themselves or whether 
some preprocessing occurs. In denoising, it is natural to use 
the raw measurements, which are of the same dimensions as 
the reconstruction. But, in the other applications, the trend is 
to use a direct inverse operator to prepro-
cess the network input. Following the nota-
tion in the section “Learning for Inverse 
Problems in Imaging,” this can be viewed 
as a combination of the objective function 
and learning approach, where instead of 
Rlearn  being a CNN, it is the composition of 
a CNN with a direct inverse: .R H 1%i -u  For 
example, in superresolution, [16], [18], and 
[19] first upsample and interpolate the 
low-resolution input images; in CT, [25] and [27] preprocess 
with the FBP ([25] also preprocesses with an iterative recon-
struction); and, in MRI, [21] preprocesses with the inverse 
Fourier transform.

Without preprocessing, the CNN must learn the underly-
ing physics of the inverse problem. It is not even clear that 
this is possible with CNNs (e.g., what is the meaning of fil-
tering an X-ray CT sinogram?). Preprocessing is also a way 
to leverage the significant engineering effort that has gone 
into designing these direct inverses over the past decades. 
Superficially, this type of preprocessing appears to be inver-
sion followed by denoising, which is a standard, if ad hoc, 
approach to inverse problems. What is unique here is that the 
artifacts caused by direct inversion, especially in the sparse 
measurement case, are usually highly structured and there-
fore not good candidates for generic denoising approaches. 
Instead, the CNN is allowed to learn the specific character 
of these artifacts.

A practical aspect of preprocessing is controlling the 
dynamic range of the input. While not typically a problem 
when working with natural images or standardized data sets, 
there may be huge fluctuations in the intensity or contrast 
of the measurements in certain inverse problems. To avoid a 
small set of images dominating the error during training, it is 
best to scale the dynamic range of the training set [23], [27].
Similarly, it may be advantageous to discard training patches 
without sufficient contrast.

Training size
CNNs typically have at least thousands of parameters to train; 
thus, the number of (input, output) pairs in the training set is 
of important practical concern. The number of training pairs 
varied among the papers we surveyed. The biomedical imag-
ing papers tended to have the fewest samples (e.g., 500 
brain images [21] or 2,000 CT images [24]), while papers on 
natural images had the most (e.g., pretraining with 395,909 
natural images [20]). 

A further complication is that, depending on the network 
architecture, images may be split into patches for training. 
Thus, depending on the dimensions of the training images and 
the chosen patch size, numerous patches can be created from a 
small training set. The patch size also has important ramifica-
tions for the performance of the network and is linked to its 
architecture, with larger filters and deeper networks requiring 
larger training patches [17].

With a large CNN and a small training set, overfitting must 
be avoided by regularization during learning and/or the use of a 

validation set (e.g., [24] and discussed more 
in the sections “Cost Function and Regular-
ization” and “Optimization”). These strate-
gies are necessary to produce a CNN that 
generalizes at all, but they do not overcome 
the fact that the performance of the CNN 
will be limited by the size and variety of 
the training set. One strategy to increase the 
training set size is data augmentation, where 
new (input, output) pairs are generated by 

transforming existing ones. For example, [20] augmented train-
ing pairs by scaling them in space and time, turning 20,000 pairs 
into 70,000 pairs. The augmentation must be application specif-
ic because the trained network will be approximately invariant 
to the transforms used. Another strategy to effectively increase 
the training set size is to use a pretrained network. For example, 
[18] first trains a CNN for image superresolution with a large 
image data set, then retrains with videos.

Network architecture
By network architecture, we mean the choice of the family 
of CNNs, Ri  parameterized by i . In our notation, Ri  rep-
resents a CNN with a specific architecture, while i  are the 
weights to be learned during the training. There is great variety 
among CNN-based methods regarding their architecture: how 
many convolutional layers, what filter sizes, which nonlineari-
ties, etc. For example, [19] uses 8,032 parameters, while [20]
uses on the order of 100,000. In this section, we survey recent 
approaches to CNN architecture design for inverse problems.

The simplest approach to architecture design is simply a 
stack of series of convolutional layers and nonlinear functions 
[26], [10]; see Figure 2. This provides a baseline to check the 
feasibility of the network for the given application. It is straight-
forward to adjust the size of such a network, either by changing 
the number of layers, the number of channels per layer, or the 
size of the filters in each layer. For example, keeping the filters 
small (3 3#  pixels) allows the network to be deeper for a given 

Can we expect large 
gains in inverse problems, 
such as improving the 
denoising results by an 
order of magnitude in 
the next few years?
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number of parameters [23]; constraining the filters to be sepa-
rable [12] further reduces the number of parameters. Doing this 
can give the experimenter a sense of the training time required 
on their hardware as well as the effects of the network size on 
performance. From this simple starting point, the architecture 
can be tweaked for greater performance; for example, by add-
ing downsampling and upsampling operations [27] or by simply 
adding more layers [20].

Instead of using ad hoc architecture design, one can adapt 
a successful CNN architecture from another application. For 
example, [27] adapts a network designed for biomedical image 
segmentation to CT reconstruction by changing the number of 
output layers from two (background and foreground images) to 
one (reconstructed image). These architectures can also be con-
nected end to end, creating modular or hierarchical designs. For 
example, a four-times superresolution architecture can be created 
by connecting two two-times superresolution 
networks [16]. This is distinct from training 
a two-times superresolution network and 
applying it twice because the two modules of 
the CNN are trained as a unit.

A second approach is to begin with an 
iterative optimization algorithm and unroll it, 
turning each iteration into a layer of a net-
work. In such a scheme, filters that are nor-
mally fixed in the iterative minimization are 
instead learned. The approach was pioneered 
in [31] for sparse coding; their results showed 
that the learned algorithms could achieve a 
given error in fewer iterations than the standard ones. Because 
many iterative optimization algorithms alternate filtering 
steps (linear updates) with pointwise nonlinear steps (proximal/
shrinkage operations), the resulting network is often a CNN. This 
was the approach in [22], where the authors unrolled the alternat-
ing direction method of multipliers (ADMM) algorithm to design 
a CNN for MRI reconstruction, with state-of-the-art results and 
improvements in running time. For networks designed in this 
way, the original algorithm is a specific case, and, therefore, the 
performance of the network cannot be worse than the original 
algorithm if training is successful. The concept of unrolling can 
also be applied at a coarser scale, as in [13], where the modules 
of the network mimic the steps of a typical blind deconvolution 
pipeline: extract features, estimate kernel, estimate image, repeat.

Another promising design approach, similar to unrolling, 
is to learn only some part of an existing iterative method. For 
example, given the modular nature of popular iterative optimi-
zation schemes such as the ADMM, a CNN can be employed 
as a proximal (denoising) operator, while the rest of the algo-
rithm remains unchanged [32]. This design combines many of 
the good aspects of both the objective function and learning-
based approaches and allows a single CNN to be used for sev-
eral different inverse problems without retraining.

Cost function and regularization
In this section, we survey the approaches taken to actually 
train the CNN, including the choice of a cost function, ,f

and regularizer, .g  For a textbook coverage of the subject of 
learning, see [33].

Understanding the learning minimization problem as a 
statistical inference can provide useful insight into the selec-
tion of the cost and regularization functions. From this per-
spective, we can formulate the goal of learning as maximizing 
the conditional likelihood of each training output given the 
corresponding training input and CNN parameters:

{( , )} ,

( | , ),arg max

x y

R P y x

given

,

n n n
N

R n

N

n n

1

1
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!i H

=

=i

%

where P is a conditional likelihood. When this likelihood fol-
lows a Gaussian distribution, this optimization is equivalent 
to the one from the “Background” section, (3), with f being 

the Euclidean distance and no regulariza-
tion. Put another way, learning with the 
standard, Euclidean cost, and no regular-
ization implicitly assumes a Gaussian noise 
model; this is a well-known fact in inverse 
problems in general. This formulation 
is used in most of the works we surveyed 
[6], [7], [11], [12], [18], [19], [23], [25], [26],
despite the fact that several raise questions 
about whether it is the best choice [25], [34].

An alternative is the maximum a pos-
teriori formulation, which maximizes the 
joint probability of the training data and 

the CNN parameters, which can be decomposed into several 
terms using Bayes’ rule:

{( , )} ,

( | , ) ( ) .arg max

x y

R P y x P

given

,

n n n
N

R n

N

n n

1

1
learn i i=

!i H

=

=i

% (4)

This formulation explicitly allows prior information about the 
desired CNN parameters, ,i to be used. Under a Gaussian 
model for the weights of the CNN as well as the noise, this for-
mulation results in a Euclidean cost function and a Euclidean 
regularization on the weights of the CNN, ( ) | | | | .g 2

2
2i v i= -

Other examples of regularizations for CNNs are the total gen-
eralized variation norm or sparsity on the coefficients. Regu-
larized approaches are taken in [10], [15], [21], and [22].

Optimization
Once an objective function for learning has been fixed, it still 
must be actually minimized. This is a crucial and deep topic, 
but, from the practical perspective, it can be treated as a black 
box due to the availability of several high-quality software 
libraries that can perform efficient training of user-defined 
CNN architectures. For a comparison of these libraries, refer 
to [35]; here, we provide a basic overview.

The popular approaches to CNN learning are variations 
on gradient descent. The most common is stochastic gradi-
ent descent (SGD), used, e.g., in [16] and [25], where, at each 

The notion of universal 
approximation tells us 
what the network can 
learn, not what it does 
learn, and comparison 
to established algorithms 
can help guide our 
understanding of CNNs 
in practice.
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iteration, the gradient of the cost function is computed using 
random subsets of the available training. This reduces the 
overall computation compared to computing the true gradi-
ent, while still providing a good approximation. The process 
can be further tuned by adding momentum, i.e., combining 
gradients from previous iterations in clever ways or by using 
higher-order gradient information as in BFGS [22].

Initial weights can be set to zero or chosen from some 
random distribution (Gaussian or uniform). Because learn-
ing is nonconvex, the initialization does potentially change 
which minimum the network converges to, but not much dif-
ference is observed in practice. However, good initializations 
can improve the speed of convergence. This explains the po -
pularity of taking pretrained networks, or, in the case of an 
unrolled architecture, initializing the network weights based 
on corresponding known filters. Recently, a procedure called 
batch normalization, where the inputs to each layer of the 
network are normalized, was proposed as a way to increase 
learning speed and reduce sensitivity to initialization [36].

As mentioned in the section “Train-
ing Set,” overfitting is a serious risk when 
training networks with potentially millions 
of parameters. In addition to augmenting the 
training set, steps can be taking during train-
ing to reduce overfitting. The simplest is to 
split the training data into a set used for opti-
mization and a set used for validation. Dur-
ing training, the performance of the network 
on the validation set is monitored, and training is terminated 
when the performance on the validation set begins to decrease. 
Another method is dropout [37], where individual units of the 
network are randomly deleted during training. The motivation 
for dropout is the idea that the network should be regularized by 
forming a weighted average of all possible parameter settings, 
with weights determined by their performance. While this regu-
larization is not feasible, removing units during training pro-
vides a reasonable approximation that performs well in practice.

Theory
The excellent performance of CNNs for various applications is 
undisputed, but the question of “Why?” remains mostly unan-
swered. Here, we bring together a few different theoretical per-
spectives that begin to explain why CNNs are a good fit for 
solving inverse problems in imaging.

Universal approximation
We know that neural networks are universal approximators. 
More specifically, a fully connected neural network with 
one hidden layer can approximate any continuous function 
arbitrarily well, provided that its hidden layer is large enough 
[38]. The result does not directly apply to CNNs because they 
are not fully connected, but, if we consider the network patch 
by patch, we see that each input patch is mapped to the cor-
responding output patch by a fully connected network. Thus, 
CNNs are universal approximators for shift-invariant func-
tions. From this perspective, statements such as “CNNs work 

well because they generalize X algorithm” are vacuously true 
because CNNs generalize all shift-invariant algorithms. On 
the other hand, the notion of universal approximation tells us 
what the network can learn, not what it does learn, and com-
parison to established algorithms can help guide our under-
standing of CNNs in practice.

Unrolling
The most concrete perspective on CNNs as generalizations of 
established algorithms comes from the idea of unrolling, which 
we discussed in the section “Network Architecture.” The idea 
originated in [31], where the authors unrolled the ISTA algo-
rithm for sparse coding into a neural network. This network is 
not a typical CNN because it includes recurrent connections, 
but it does share the alternating linear/nonlinear motif. A more 
general perspective is that nearly all state-of-the-art iterative 
reconstruction algorithms alternate between linear steps and 
pointwise nonlinear steps, so it follows that CNNs should be 
able to perform similarly well given appropriate training. One 

refinement of this idea comes from [27],
which establishes conditions on the forward 
model, ,H that ensure that the linear step of 
the iterative method is a convolution. All of 
the inverse pro  blems surveyed here meet 
these conditions, but the theory predicts that 
certain inverse problems, e.g., structured 
illumination microscopy, should not be ame-
nable to reconstruction via CNNs. Another 

refinement concerns the popular rectified linear unit (ReLU) 
employed as the nonlinearity by most CNNs: results from spline 
theory can be adapted to show that combinations of ReLUs can 
approximate any continuous function. This suggests that the 
combinations of ReLUs usually employed in CNNs are able to 
closely approximate the proximal operators used in traditional 
iterative methods.

Invariance
Another perspective comes from work on scattering trans-
forms, which are cascades of linear operations (convolutions 
with wavelets) and nonlinearities (absolute value) [39] with 
no combinations formed between the different channels. This 
simplified model shows invariance to translation and, more 
importantly, to small deformations of the input (diffeomor-
phisms). CNNs generalize the scattering transform, giving the 
potential for additional invariances, e.g., to rigid transforma-
tions, frequency shifts, etc. Such invariances are attractive for 
image classification, but more work is needed to connect these 
results to inverse problems.

Critiques
While the papers we have surveyed present many reasons 
to be optimistic about CNNs for inverse problems, we also 
want to mention a few general critiques of the approach. We 
hope these can be useful points to think about when writing 
or reviewing manuscripts in the area, as well as jumping-off 
points for future research.

The most concrete 
perspective on CNNs 
as generalizations of 
established algorithms 
comes from the idea 
of unrolling.
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Algorithm descriptions and reproducibility
When planning this survey, we aimed to measure quantitative 
trends in the literature, e.g., to plot the number of training samples 
versus the number of parameters for each network. We quickly 
discovered this is nearly impossible. Very few manuscripts clear-
ly noted the number of parameters they were training, and only 
some provided a clear-enough description of the network for us 
to calculate the value. Many more included a figure of network 
architecture along the lines of Figure 2, but without a clear state-
ment of the dimensions of each layer. Similar problems exist in 
the description of the training and evaluation procedures, where 
it is not always clear whether the evaluation data come from 
simulation or from a real data set. As the field matures, we hope 
papers converge on a standard way to describe network architec-
ture, training, and evaluation.

The lack of clarity presents a barrier to the reproducibil-
ity of the work. Another barrier is the fact that training often 
requires specialized or expensive hardware. While GPUs have 
become more ubiquitous, the largest (and best-performing) 
CNNs remain difficult for small research groups to train. For 
example, the CNN that won the ImageNet Large-Scale Visual 
Recognition Challenge in 2012 took “between five and six 
days to train on two GTX 580 3GB GPU” [5].

Robustness of learning
The success of any CNN-based algorithm hinges on finding a 
reasonable solution to the learning problem (3). As stated pre-
viously, this is a nonconvex problem, where the best solution 
we can hope for is to find one of many local minima of the 
cost. This raises questions about the robustness of the learning 
to changes in the initialization of parameters and the specifics 
of the optimization method employed. This is in contrast to 
the typical convex formulations of inverse problems, where the 
specifics of the initialization and optimization scheme prov-
ably do not affect the quality of the result.

The uncertainty about learning complicates the comparison 
of any two CNN-based methods. Does A outperform B because 
of its superior architecture, or simply because the optimization 
of A fell into a superior local minimum? As an example of the 
confusion this can cause, [34] shows, in the context of denoising, 
superresolution, and JPEG deblocking that a network trained 
with the l1 cost function can outperform a network trained 
with the l2 cost function even with regard to the l2 cost. In the 
authors’ analysis of this highly disturbing result, they attribute it 
to the l2  learning being stuck in a local optimum. Regardless, 
the vast majority of work relies on the l2  cost, which is compu-
tationally convenient and provides excellent results.

There is some indication that large networks trained with 
lots of data can overcome this problem. In [40], the authors 
show that larger networks have more local minima, but that 
most local minima are equivalent in terms of testing perfor-
mance. They also identify that the global minima likely cor-
respond to parameter settings that overfit the training set. More 
work on the stability of the learning process will be an impor-
tant step toward wider acceptance of CNNs in the inverse 
problem community.

More generally, how sensitive are the results of a given experi-
ment to small changes in the training set, network architecture, 
or optimization procedure? Is it possible for the experimenter to 
overfit the testing set by iteratively tweaking the network archi-
tecture (or the experimental parameters) until state-of-the-art 
results are achieved? To combat this, CNN-based approaches 
should provide carefully constructed experiments with results 
reported on a large number of testing images. Even better are 
competition data sets, where the testing data is hidden until algo-
rithm development is complete.

Can we trust the results?
Once trained, CNNs remain nonlinear and highly complex. 
Can we trust reconstructions generated by such systems? 
One way to look at this is to evaluate the sensitivity of the 
network to noise: ideally, small changes to the input should 
cause only small changes to the output; data augmentation 
during training can help achieve this. Similarly, demonstrat-
ing generalization between data sets (where the network 
learns on one data set, but is evaluated on another) can help 
improve confidence in the results by showing that the perfor-
mance of the network is not dependent on some systematic 
bias of the data set.

A related question is how to measure the quality of the results. 
Even if a robust SNR improvement can be demonstrated, prac-
titioners will inevitably want to know, e.g., whether the result-
ing images can be reliably used for diagnosis. To this end, as 
much as possible, methods should be assessed with respect to the 
ultimate application of the reconstruction (diagnosis, quantifica-
tion of biological phenomenon, etc.) rather than an intermediate 
measure such as SNR or structural similarity (SSIM). While this 
critique can be made of any approach to inverse problems, it is 
especially relevant for CNNs because they are often treated as 
black boxes and because the reconstructions they generate are 
plausible-looking by design, hiding areas where the algorithm is 
less sure of the result.

Next steps
So far, we have given a small look into the wide variety of ways 
that researchers have applied CNNs to solve inverse problems 
in imaging. Because CNNs are so powerful and flexible, we 
believe there is plenty of room to create even better systems. 
Next, we suggest a few directions that this future research 
might take.

Biomedical imaging
CNNs have so far been applied mostly to inverse problems where 
the measurements take the form of an image and the measurement 
model is simple, and less so for CT and MRI, which have rela-
tively more complicated models. A search on arXiv.org reveals 
dozens more CT and MRI papers submitted within the last few 
months, suggesting many incoming contributions in these areas. 
We expect diffusion into other modalities such as positron-emis-
sion tomography, single-photon emission CT, transmission elec-
tron microscopy, structured illumination microscopy, ultrasound, 
superresolution microscopy, etc. to follow. 
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Central to this work will be questions of how best to com-
bine CNNs with knowledge of the underlying physics as well as 
direct and iterative inversion techniques. Most of the surveyed 
works involve using a CNN to correct the artifacts created by 
direct or iterative methods, where it remains an open question 
what is the best such prereconstruction method. One creative 
approach is to build the inverse operator into the network archi-
tecture as in [22], where the network can compute inverse Fou-
rier transforms. Another would be to use the back-projected 
measurements, ,H yT  which at least take the form of an image 
and could reduce the burden on the CNN to learn the physics 
of the forward model. CNNs could be deployed in a variety of 
other ways here, too, e.g. using a CNN to approximate a high 
quality, but extremely slow reconstruction method. With enough 
computing power, a training set could be generated by running 
the slow method on real data, and, once trained, the resulting 
network could provide very fast and accurate reconstructions.

Cross-task learning
In cross-task learning (also called transfer learning, although 
this can have other meanings as well), an algorithm is trained 
with one data set and deployed on a different, but related, 
task. This is attractive in the inverse problem setting because 
it avoids the costly retraining of the network when imaging 
parameters change (different noise levels, image dimensions, 
etc.), which may occur often. Or we could imagine a network 
that transfers between completely different imaging modali-
ties, especially when training data for the target modality are 
scarce; e.g., a network could train on denoising natural images 
and then be used to reconstruct MRI images. Recent work has 
made progress in this direction by learning a CNN-based prox-
imal operator, which can be used inside an iterative optimiza-
tion method for any inverse problem [32].

Multidimensional signals
Modern inverse problems in imaging increasingly involve 
reconstruction of 3-D or 3-D+time images. However, most 
CNN-based approaches to these problems involve 2-D inputs 
and outputs. This is likely because much of the work on deep 
neural networks in general has been in two dimensions and 
because of practical considerations. Specifically, learning 
strongly relies on GPU computation, but current GPUs have 
maximally 24 GB of physical memory. This limitation makes 
training a large network with 3-D inputs and outputs infeasible.

One way to overcome this issue is model parallelism, in 
which a large model is partitioned onto separable computers. 
Another is data parallelism, where it is the data that are split. 
When used together, large computational gains are achieved 
[41]. Such approaches will be key in tackling multidimensional 
imaging problems.

Generative adversarial networks and perceptual loss
CNN-based approaches to inverse problems also stand to ben-
efit from new developments in neural network research. One 
such development is the generative adversarial network (GAN) 
[42], which may offer a way to break current limits in supervised 

learning. Basically, two networks are trained in competition: 
the generator tries to learn a mapping between training sam-
ples, while the discriminator attempts to distinguish between 
the output of the generator and real data. Such a setup can, 
e.g., produce a generator capable of creating plausible natural 
images from noise. The GAN essentially revises the learning 
formulation (3) by replacing the cost function f with another 
neural network. In contrast to a designed cost function, which 
will be suboptimal if the assumed noise model is incorrect, the 
discriminator network learns a cost function that models the 
probability density of the real data. GANs have already begun 
to be used for inverse problems, e.g., for superresolution in [30]
and deblurring in [14].

A related approach is perceptual loss, where a network is 
trained to compute a loss function that matches human per-
ception. The method has already been used for style transfer 
and superresolution [43]. Compared to the standard Euclidean 
loss, networks trained with perceptual loss give better looking 
results, but do not typically improve the SNR. It remains to be 
seen whether these ideas can gain acceptance for applications 
such as medical imaging, where the results must be quantita-
tively accurate.
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DEEP LEARNING FOR VISUAL UNDERSTANDING
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Deep Multimodal Learning
A survey on recent advances and trends

The success of deep learning has been a catalyst to solving 
increasingly complex machine-learning problems, which 
often involve multiple data modalities. We review recent 

advances in deep multimodal learning and highlight the state-of 
the art, as well as gaps and challenges in this active research 
field. We first classify deep multimodal learning architectures 
and then discuss methods to fuse learned multimodal represen-
tations in deep-learning architectures. We highlight two areas 
of research—regularization strategies and methods that learn or 
optimize multimodal fusion structures—as exciting areas for 
future work. 

Introduction
Neural networks have made an impressive resurgence in recent 
years, after long-standing concerns about the ability to train 
deep models were successfully abated by a pioneering group 
of researchers who leveraged advances in algorithms, data, and 
computation [1]. This active research area now interests research-
ers in academia, but also industry, and it has resulted in state-
of-the-art performance for many practical problems, especially 
in areas involving high-dimensional unstructured data such as in 
computer vision, speech, and natural language processing. 

With the undeniable success of deep learning in the visual 
domain, the natural progression of deep-learning research 
points to problems involving larger and more complex mul-
timodal data. Such multimodal data sets consist of data from 
different sensors observing a common phenomena, and the 
goal is to use the data in a complementary manner toward 
learning a complex task. One of the main advantages of deep 
learning is that a hierarchical representation can be automati-
cally learned for each modality, instead of manually design-
ing or handcrafting modality-specific features that are then 
fed to a machine-learning algorithm. 

The goal of this article is to provide a comprehensive sur-
vey of the state of the art in deep multimodal learning and sug-
gest future research directions by highlighting advances, gaps, 
and challenges in this active field. We believe this review is 
timely given the increasing number of deep-learning techniques 
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applied to multimodal data published in leading conferences 
and journals, as shown in Figure 1.

The crux of this article centers around two important areas 
of focus in deep multimodal learning research: 1) methods that 
use regularization techniques to improve cross-modality learn-
ing (see the section “Multimodal Regularization”) and 2) meth-
ods that attempt to find optimal deep multimodal architectures 
through search, optimization, or some learning procedure (see 
the section “Fusion Structure Learning and Optimization”).

Background
For the purposes of our review, we adopt the definition provided 
by  Lahat et  al. [2], where we consider phenomena or systems 
that are observed using multiple sensors and each sensor output 
can be termed a modality associated with a single data set. The 
underlying motivation to use multimodal data is that complemen-
tary information could be extracted from each of the modalities 
considered for a given learning task, yielding a richer representa-
tion that could be used to produce much improved performance 
compared to using only a single modality. There are many 
practical tasks that benefit from the use of multimodal data. In 
medical image analysis, for example, the use of multiple imaging 
modalities, such as computed tomography (CT), magnetic reso-
nance imaging (MRI), and ultrasound imaging provides comple-
mentary information that is routinely used by medical experts 
in diagnosis and treatment. Applications involving human–com-
puter interaction use depth and vision cues extensively for appli-
cations like immersive gaming and autonomous driving. Similar 
improvements in performance can be seen in biometric applica-
tions. In remote sensing applications, data from different sensors 
[intensity images, synthetic aperture radar, and light detection 
and ranging (LIDAR)] are often fused. 

Techniques for multimodal data fusion, which cover different 
application domains, have long been investigated by the research 
community [3], [4]. Traditionally, combining the signals of mul-
tiple sensors has been investigated from a data fusion perspective. 
This is called early fusion or data-level fusion and focuses on how 
best to combine data from multiple sources, either by removing 
correlations between modalities or representing the fused data in 
a lower-dimensional common subspace. Techniques that accom-
plish one or both of these objectives include principal component 
analysis (PCA), independent components analysis, and canoni-
cal correlation analysis. The fused data are then presented to a 
machine-learning algorithm. When ensemble classifiers became 
popular in the early 2000s [5], researchers began applying multi-
modal fusion techniques that fell into the category known as late 
fusion or decision-level fusion. In general, these late-fusion strat-
egies were much simpler to implement than early fusion, particu-
larly when the different modalities varied significantly in terms 
of data dimensionality and sampling rates, and often resulted in 
improved performance. 

As shown in the section “Intermediate Fusion,” popular deep 
neural network (DNN) architectures allow yet a third form of 
multimodal fusion, i.e., intermediate fusion of learned represen-
tations, offering a truly flexible approach to multimodal fusion 
for numerous practical problems. As deep-learning architectures 

learn a hierarchical representation of the underlying data across its 
hidden layers, learned representations between different modali-
ties can be fused at various levels of abstraction. 

Deep-learning-based multimodal learning offers several 
advantages over conventional machine-learning methods, 
which are highlighted in Table 1. For many practical prob-
lems, deep-learning models often offer much improved per-
formance for problems involving multimodal data. However, 
this entails several architectural design choices that we dis-
cuss next. 

The first of these design choices relates to when to fuse 
different modalities. From a traditional data fusion standpoint, 
the practitioner could fuse the various input modalities at the 
data level and proceed to train a single machine-learning 
model, but, as we discuss in the section “Early Fusion,” this 
option can be rather challenging. Alternatively, a late-fusion 
option can also be considered, and we review several works 
in this category in the section “Late Fusion.” An important 
feature of deep learning is its ability to learn hierarchical 
representations from raw data. This feature can be exploited 
in multimodal learning to have a fine-grained control over 
how learned representations are fused. Therefore, a common 
practice in multimodal deep learning is to construct a shared 
representation or fusion layer that can merge incoming repre-
sentations of modalities, thereby forcing the network to learn 
a joint representation of its inputs. The simplest fusion layer is 
a layer of hidden units, each of which receives input from all 
modalities. The flexibility of learning cross-modality shared 
representations at different levels of abstraction could be 
exploited to achieve better multimodal fusion results; however, 

FIGURE 1. The increasing research interest in deep multimodal learn-
ing. Data were generated by analyzing the search results from leading 
search engines for technical publications: Google Scholar, the arXiv, and 
Thomson-Reuters’ ISI. We used the search terms multimodal, fusion,
and deep learning and applied search filters to include references from 
engineering, computer science, and mathematics fields, excluding results 
related to social sciences, neurobiology, and business. Note that, due to 
differences in scale in terms of returned results, we use a semilog scale.
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the question remains: at which depth of representation would 
the fusion be optimal?

The second architectural design choice for deep multi-
modal learning concerns which modalities to fuse. The un -
derlying assumption in multimodal fusion is that different 
modalities provide complementary information toward solv-
ing the task at hand. However, it could be the case that the 
inclusion of all available modalities ends up being detrimen-
tal to the performance of the machine-learning algorithm—
and, as such, some form of feature selection may be required. 
In the section “Fusion Structure Learning and Optimization,” 
we discuss a number of techniques that, during training, can 
automatically learn the optimal ordering and depth of fusion. 

The third design choice involves dealing with missing data or 
modalities. Deep multimodal learning models should be robust 
enough to compensate for missing data or modalities during 
inference. Generative models are typically used in such instances. 

Most deep multimodal learning approaches also involve rep-
resentation learning from raw data. It is often the case that a deep 
multimodal architecture utilizes several standard modules or 
“building blocks” that are optimized for a specific kind of data. 
The choice of which deep-learning module is best for extracting 
pertinent information for a given modality is also an important 
architectural design choice. For example, when two-dimensional 
(2-D) pixel-based data are considered, convolutional architec-
tures are often preferred. Three-dimensional (3-D) convolutional 
networks can be used for volumetric data, like CT, MRI, or even 
video. When temporal data are used, variants of recurrent neural 
networks (RNNs) such as long short-term memory (LSTM) or 
gated recurrent units can be incorporated. 

The choice of modality-wise deep-learning architecture 
is mainly dependent upon the dimensionality of the input or 
whether temporal trends need to be learned. Beyond these com-
mon architectural choices, it is up to the reader to decide, given 
application-specific requirements that may involve properties of 
the data set or even the hardware used for training or deployment. 

Applications
This section aims to provide an overview of the various appli-
cation domains where deep multimodal learning has garnered 
much interest. Although multimodal learning and fusion is a 
widely researched topic, deep multimodal learning only start-
ed to gain attention following the works of Ngiam et al. [6]
and Srivastava and Salakhutdinov [7]. These early works on 
deep multimodal fusion involved only two modalities: images 
and text. Ngiam et al. [6] investigated several approaches for 
multimodal fusion that include simple concatenation of inputs 
and shared representation learning, as well as cross-modality 
learning (where data from all modalities are present during 
training, but only a single modality is available during test). 
At around the same time, Srivastava and Salakhutdinov [7]
also demonstrated the utility of fusing higher-level represen-
tations of disparate modalities involving images and text in a 
deep-learning framework. A notable finding was that construct-
ing a multimodal fusion layer by way of simple concatenation 
of incoming connections resulted in relatively poorer results—
revealing that hidden units have strong connections to variables 
from individual modalities but few units that connect across 
modalities. They also found that capturing cross-modality cor-
relations required at least one nonlinear stage to be successful 
since higher-level representations of individual modalities will 
be relatively “modality free” and therefore more amenable to 
fusion. These early explorations became the basis of a number 
of proceeding works in deep multimodal learning that investi-
gated various regularization strategies (see the section “Mul-
timodal Regularization”) to enforce constraints for learning 
intermodality relationships. 

Human activity recognition
An important area of research that heavily utilizes multimodal 
data is human activity recognition. Under this large umbrella 
of research, there are numerous subfields of research that relate 
to some aspect of human understanding. Given that humans 

Table 1. A comparison between deep multimodal learning and conventional approaches.

Deep Multimodal Learning Conventional Multimodal Learning 

Both modality-wise representations (features) and shared (fused) 
representations are learned from data.

Features are manually designed and require prior knowledge about the 
underlying problem and data. 

Requires little or no preprocessing of input data (end-to-end training). Some techniques, like early fusion, may be sensitive to data preprocessing. 

Implicit dimensionality reduction within architecture. Feature selection and dimensionality reduction are often explicitly performed. 

Supports early, late, or intermediate fusion. Typically performs early or late fusion. 

Easily scalable in terms of data size and number of modalities for 
all fusion methods. 

Early fusion (data-level fusion) can be challenging and not scalable: late-
fusion rules may need to be defined.

Fusion architecture can be learned during training. Rigid fusion architecture usually handcrafted. 

Deeper, complex networks typically require large amounts of training 
data (if trained from scratch). 

May not require as much training data. 

Numerous hyperparameter tunings vital for state-of-art performance. May not have as many hyperparameters as deep-learning architectures. 

Compute intensive, requires powerful graphics processing units (GPUs) 
for reasonable training time. 

GPUs may offer speed-up, but not critical. 
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exhibit highly complex behavior in social settings, it is only 
natural that multimodal data are required for machine-learning 
algorithms to classify, or “understand,” their human behavior. 
Not surprisingly, we found that many works in deep multi-
modal fusion reported in recent years have focused on multime-
dia data that typically involve modalities such as audio, video, 
depth, and skeletal motion information. Multimodal deep-learn-
ing methods have been applied to various problems involving 
human activity such as action recognition (an activity can be 
composed of two or more sequences of shorter actions), ges-
ture recognition [8], gaze-direction estimation [9], face recogni-
tion [10], and emotion recognition [11]. The ubiquity of mobile 
smartphones, which have no fewer than ten sensors, has given 
rise to novel applications that involve multimodal data such as 
continuous biometric authentication [12] and activity recogni-
tion [13]. Related subfields of research include human pose esti-
mation [14] and semantic scene understanding [15].

We expect that the deep-learning research community will 
continue to focus on these problems in the foreseeable future. 
This is evidenced not only by the number of multimodal deep-
learning papers being published but also the increasing num-
ber of data sets and public challenges made available online 
(see Table 2). 

Medical applications
Deep learning in medical applications has become an impor-
tant application domain that has attracted substantial inter-
est. Medical imaging, for example, consists of a multitude 

of multimodal data in the form of different medical imaging 
modalities such as MRI, CT, positron emission tomogra-
phy (PET), functional MRI (fMRI), X-ray, and ultrasound. 
Although there have been notable improvements in new 
medical imaging technologies, the interpretation of these 
modalities for diagnosis still requires highly trained human 
experts. Conventional computer vision approaches required 
manually designed morphological feature representations. 
However, transforming the tacit knowledge of human experts 
into a computational form is not trivial. In the medical 
imaging field, manually designing suitable image features 
is extremely challenging, as it not only involves the inter-
pretation of subtle visual markers and abnormalities, often 
needing years of medical training, but also the need to fuse 
complementary as well as possibly conflicting information 
from multiple imaging modalities. Therefore, the ability to 
learn these multimodal features through examples, as seen in 
the success of deep learning applied to computer vision, has 
prompted researchers to investigate their applicability in the 
medical domain. It is therefore not surprising that an increas-
ing amount of medical image analysis research in recent 
years  [16], both unimodal as well as multimodal, involves 
deep-learning-based methods. 

Multimodal deep learning has been used in problems 
involving tissue and organ segmentation  [17], multimodal 
medical image retrieval [18], multimodal medical image reg-
istration [19], and computer-aided diagnosis [20]. A recent 
review article by  Mamoshina et  al. [21] demonstrates the 

Table 2. Multimodal learning data sets and public multimodal machine-learning challenges.

Data Set Modalities Problem Reference Year

UTD-MHAD Depth and inertial sensor data Human action recognition Chen et al. [93] 2015

ChaLearn looking at people RGB-D, audio, skeletal pose Human activity recognition Escalera et al. [94] 2014

Berkeley MHAD Multiviewpoint RGB-D and skeletal pose 
data 

Human activity recognition Ofli et al. [95] 2013

MHRI data set Chest, top RGB-D, face, video, and audio Human–robot interaction Pablo et al. [96] 2016

H-MOG Nine smartphone sensors and interaction 
data 

Continuous authentication in smart-
phones

Sitová et al. [12] 2016

RECOLA Audio, visual, and physiological Emotion recognition Ringeval et al. [97] 2013

MHEALTH Accelerometer, electrocardiogram, magne-
tometer, and gyroscopes 

Health monitoring Banos et al. [98] 2015

Pinterest Multimodal Images and text (40M) Multimodal word embeddings Mao et al. [99] 2016

MM-IMDb Video, images, and text metadata Movie genre prediction Arevalo et al. [100] 2017

FCVID Video and audio Action recognition Jiang et al. [101] 2017

KITTI Stereo gray- and color video, 3-D-LIDAR, 
inertial and GPS navigation data 

Autonomous driving Geiger et al. [91] 2017

KinectFaceDB RGB-D and facial landmarks Face recognition Min et al. [102] 2014

Oxford RobotCar Six cameras, LIDAR, GPS, and inertial 
navigation data 

Autonomous driving Maddern et al. [92] 2016

Multimodal BRATS T2-, FLAIR-, post-Gadolinium T1-MRI, 
perfusion, and diffusion MRI and MRSI

Brain tumor segmentation Menze et al. [103] 2015

RGB-D: RGB-depth
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rising popularity of DNNs, including models that imple-
ment multimodal fusion in biomedical applications involving 
genomic, proteomic, and drug data. 

Two major challenges in applying deep-learning-based 
approaches for medical applications are 1) the difficulty in obtain-
ing sufficiently labeled data and 2) the problem of class imbal-
ance (where the number of negative examples far outnumber the 
case of positive examples). To overcome the first challenge, early 
approaches resorted to patch-based training [22]. Recently, tech-
niques that utilize transfer learning have been surprisingly suc-
cessful [23]. This involves reusing a portion of the data-agnostic 
representations learned by very deep networks on a separate, large 
data set, for example, ImageNet, and then fine-tuning or retrain-
ing only the upper layers of the network using a much smaller 
medical data set. Another common technique is to perform train-
ing data augmentation, for example, applying different affine 
transformations or randomly perturbing the brightness and con-
trast of images to increase the amount of training data available. 
To address the data imbalance problem, it is common to apply 
some form of weighting to the loss function such that mistakes 
made on the majority classes are less penalized than mistakes the 
network makes on the minority class. These challenges, although 
very common to problems in the medical domain, may also occur 
in other domains—and the solutions, as such, are equally appli-
cable. However, despite the success of deep learning in medical 
applications, the medical community is still rather apprehensive 
about deploying them in the real world, as deep learning is often 
seen as opaque. This view is likely to gradually change given the 
increasing efforts to design interpretable DNNs [24], [25]. 

Autonomous systems
Following the success of deep learning, there has been a surge 
of interest in autonomous navigation (also known as autonomous 
driving) applications, which typically involve multimodal data 
acquired from sensors mounted on the vehicle. A self-driving car, 
for example, could include a number of external and internal sen-
sors including radar, stereoscopic visible-light cameras, LIDAR, 
infrared (IR) cameras, global positioning system (GPS), and 
audio. To perform autonomous navigation, the heterogeneous data 
collected from sensors are used for learning a number of interre-
lated but complex tasks such as localization and mapping, scene 
understanding, movement planning, and driver-state recognition. 

One of the biggest challenges for autonomous navigation 
is the dynamic nature of the operating environment—the sys-
tem has to adapt and be reactive to weather variations, lighting 
variability, pedestrians and other traffic, road conditions, and 
traffic signs, as well as the driver’s state. Nevertheless, deep-
learning and reinforcement-learning techniques [26] have been 
instrumental in advancing this field of application with industry 
players like Uber, Nvidia, Baidu, and Tesla actively involved in 
the development of commercial self-driving cars. 

An important task in autonomous driving is real-time 
scene understanding. It requires the learning system to rec-
ognize objects in the scene, like lanes, traffic signs, pedestri-
ans, and other traffic. It follows that, for each frame of the 
multimodal video feed, semantic segmentation has to first be 

performed. Each semantic concept identified in the scene then 
has to be localized. For such tasks, deep fully convolutional 
architectures that perform pixel-wise labeling of each frame 
are often used [27]. For multimodal inputs, a common strat-
egy is to concatenate synchronized frames across the channel 
dimensions before being input to a fully convolutional neural 
network (CNN) (this is, in a sense, early fusion) or, alterna-
tively, to train separate modality-wise networks and then fuse 
at a deeper stage in the multimodal network. We further dis-
cuss such fusion strategies in the section “Fusion Structure.” 
Semantic segmentation can be extended to video by using a 
3-D variant of fully CNNs. The basic techniques used in self-
driving vehicle technology can be extended to other robotic 
applications such as mobile robots or drone navigation, grasp 
configuration learning [28], and robotic manipulation [29].

Summary
We have highlighted three major areas where deep multimod-
al learning approaches have gained a foothold and continue to 
experience rapid advancements. In addition to the work already 
highlighted with respect to each of these key areas, we list addi-
tional representative work involving deep multimodal learning in 
Table 3. Several other application areas that involve text, images, 
and video, e.g., visual question answering (VQA) and image and 
video annotations, are highlighted in subsequent sections where 
we discuss specific deep-learning models. 

Models
Applying multimodal deep learning to a new problem involves 
the selection of both an architecture and a learning algorithm. 
Together, we will call these choices a model. A plethora of 
different deep-learning models have been proposed for multi-
modal data. While there are several ways that they could be 
partitioned and organized for review, we have opted to group 
notable examples according to their learning paradigm, spe-
cifically whether they are generative, discriminative, or hybrid 
models. Our reason for choosing this categorization is that this 
choice impacts the available architectures and learning algo-
rithms from which to select. 

Generative models implicitly or explicitly represent a data 
distribution, often allowing for new data to be sampled or “gen-
erated” through a process, hence their name. Discriminative 
models, on the other hand, are less ambitious. Rather than 
modeling distributions, they attempt to model class boundaries. 
In the supervised learning setup, where we have data  X  and 
labels ,Y  generative models learn the joint probability ( , ) .P X Y
In contrast, discriminative models are used for primarily pre-
diction tasks, and these models learn the conditional ( ) .|P Y X
Yet generative models can still have discriminative properties. 
An advantage of generative models is that they are much more 
flexible. For example, ( , )P X Y  can be sampled in the case of 
missing modalities during inference. 

Discriminative models
Discriminative deep architectures directly model the mapping 
from inputs to outputs, and the model parameters are learned 
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by minimizing some regularized loss function. Such models 
compose the bulk of the proposed models for multimodal learn-
ing, while tasks include classification or recognition for a vari-
ety of problem domains. 

In addition to the aforementioned active research problems, 
image captioning and VQA [36], both of which combine natu-
ral language processing and high-level scene interpretation by 
machine-learning algorithms, have garnered active research 
interest. In deep image captioning, the model is required to 
generate a textual description of image content, and this could 
be achieved by using both discriminative techniques [37], [38]
and generative approaches [39]. On the other hand, VQA typi-
cally requires the model to answer complex questions based 
on image content, which is a generative task. This problem can 
also be cast into a discriminative setting (e.g., multiple choice 
questions)  [40]. Recently, Kim et al. [41] extended the high-
ly successful deep residual network model for a multimodal 
VQA problem. As multiple modalities may have correlations, 
the authors carefully designed joint residual mappings across 
modalities and achieved state-of-the-art results for VQA. 

Discriminative deep multimodal learning models have 
also been proposed for human activity recognition. With the 
cheap availability of RGB-depth (RGB-D) cameras and ubiq-
uity of smartphones with numerous sensors, deep multimodal 
learning architectures that involve from four to five modali-
ties have been reported. These problems involve temporal 
data (video, joint motion, audio), and it is essential that spa-
tiotemporal dependencies be learned effectively. To capture 
temporal structures and relationships, deep multimodal learn-
ing approaches typically use temporal components such as 
LSTMs or hidden Markov models combined with visual rep-

resentation learning layers like CNNs or 3-D-CNNs [42], [43]. 
These models have benefited from the combination of CNNs 
and recurrent  layers that can collectively capture spatiotem-
poral relationships. 

There are also instances of work where generative mod-
els have been adapted to perform discriminative tasks. For 
example, a discriminative variant of the RBM [building block 
of deep belief networks (DBNs) and deep Boltzmann machines]
was proposed by Larochelle and Bengio [44]. Other discrimina-
tive models have previously been mentioned while discussing 
application areas in the sections “Human Activity Recognition,” 
“Medical Applications,” and “Autonomous Systems.” In addi-
tion, Table 3 also lists examples of discriminative models for 
other multimodal problems. While discriminative models excel 
at the task of classification or regression, they cannot cope when 
there are missing data or modalities. Discriminative models also 
require a large set of labeled data, which could be expensive to 
obtain in certain applications. Next, we review deep generative 
multimodal models, which offer some advantages, considering 
the drawbacks of discriminative models, in the context of learn-
ing multimodal representations. 

Generative models
Deep generative models typically characterize the high-order 
correlation properties of the observed or visible data for pat-
tern analysis or synthesis purposes. They can also be used to 
characterize the joint statistical distributions of the visible data 
and their associated classes. Generative models like DBNs 
can also be used for classification and regression tasks by 
exploiting their capability to learn (unsupervised) from unla-
beled data and fine-tuned in a discriminative setting using the 

Table 3. Diverse applications of multimodal deep learning.

Reference Year Modalities Problem Fusion Method Model Architecture 

Ngiam et al. [6] 2011 Audio,video Speech classification Intermediate Generative Sparse RBM 

Srivastava and 
Salakhutdinov [30]

2012 Image, text Image annotation Intermediate Generative DBN 

Cao et al. [31] 2014 Medical images, textual 
descriptions 

Content-based medical 
image retrieval

Intermediate Generative DBM 

Liang et al. [32] 2015 Gene expression, DNA 
methylation, and drug 
response

Cancer subtype clustering Intermediate Generative DBM 

Valada et al. [15] 2016 Multispectral imagery Semantic segmentation Early Discriminative FCNN 

Simonyan and 
Zisserman [33]

2014 Image and optical flow Action recognition Late Discriminative CNN 

Kahou et al. [11] 2015 Video, audio Emotion recognition Late Discriminative CNN, RNN, SVM, 
and AE

Liu et al. [20] 2015 MRI, PET Medical diagnosis Intermediate Discriminative Stacked AE, SVM 

Poria et al. [34] 2015 Video, audio, text Sentiment analysis Intermediate, 
late

Discriminative CNN, SVM 

Lenz et al. [28] 2015 Intensity, depth video Robotic grasping Intermediate Discriminative Stacked AE and 
MLP 

Jain et al. [35] 2016 Video features, GPS coor-
dinates, vehicle dynamics 

Driver activity anticipation Intermediate Discriminative LSTM 
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backpropagation algorithm or by using the learned representa-
tion in conjunction with other classifiers such as support vector 
machines (SVMs). 

For multimodal learning problems, generative models are 
useful in situations where there could be missing modalities 
during test time or when there is a lack of labeled data. The 
early works of Ngiam et al. [6] and Srivastava and Salakhut-
dinov [30] proved that generative models are indeed capable 
of handling such learning problems. Since then, a number of 
works have been reported in the literature that specifically 
deal with using generative deep multimodal networks in 
cases where there are missing data [31], [45]. 

While energy-based models based on stacking RBMs have 
received most of the attention in deep generative multimodal 
learning, the landscape of generative models is changing. Re -
cently, generative adversarial networks [46], deep directed 
models trained with variational inference [47], are gaining 
traction in multi- and unimodal settings [48]–[50]. 

Hybrid models
While discriminative models are trained to maximize the sep-
aration between classes, generative models excel at modeling 
data distributions. Hybrid models combine both discrimina-
tive and generative components in a unified framework. Deng 
[51] defines hybrid deep architectures as architectures where 
the goal is discrimination but is assisted (often in a significant 
way) with the outcomes of generative architectures. For exam-
ple, the generative component in a hybrid model may learn a 
deep representation of input modalities and use the discrimina-
tive component for classification or regression tasks. 

Hybrid models can be divided into three groups as per [52]:
1) joint methods that optimize a single objective function to 

learn a joint representation using the generative and dis-
criminative components

2) iterative methods that learn a shared representation using 
an iterative method such as expectation maximization 
using representations updated from both generative and 
discriminative components

3) staged methods, where the generative and discriminative 
components are trained separately in stages. 

Representations learned by the generative model in an unsu-
pervised manner can then be used as features for the discrimi-
native component using supervised training. 

An example of a joint model is reported in [53], where 
short-term temporal characteristics and long-range temporal 
dependencies for audio-video modalities are modeled by com-
bining a conditional RBM temporal generative model for the 
former and a discriminative component consisting of a con-
ditional random field for the latter. This model also is able to 
handle missing modalities due to the generative component. 
Other related hybrid architectures include those of  Sachan 
et al. [54] and Liu et al. [55].

Summary
In this section, we have highlighted multimodal architectures 
according to their primary learning paradigm. In some sense, 

deep-learning models can be thought of as building blocks 
that allow us to “mix and match” different models to create 
elaborate deep multimodal architectures. While this can be 
seen as an advantage of deep learning, a common issue is that 
architecture design has been more an art than a science. Not 
withstanding, there are numerous hyperparameters associated 
with each model that have to be carefully fine-tuned, and this 
process may be possibly even more complicated when dealing 
with hybrid architectures. Another aspect to be concerned with 
is the choice of the fusion structure between modalities and 
their representations. Next, we discuss several choices for mul-
timodal fusion structure and direct our discussion to the attrac-
tive notion of optimizing and learning this fusion architecture 
for improved performance. 

Fusion structure
Deep architectures offer the flexibility of implementing multi-
modal fusion either as early, intermediate, or late fusion. Multi-
modal fusion approaches predating the advent of deep learning 
often referred to early fusion as feature-level fusion and late 
fusion as decision-level fusion. With deep-learning approach-
es, however, the idea of feature-level fusion can be extended 
further to the concept of intermediate fusion.

Early fusion
Early fusion involves the integration of multiple sources of 
data, at times very disparate, into a single feature vector, before 
being used as input to a machine-learning algorithm as illus-
trated in Figure 2(a). The data to be fused are the raw or pre-
processed data from the sensor; hence, the terms data fusion
or multisensor fusion are often used. 

If data fusion is performed without feature extraction, this 
could be quite challenging. For instance, the sampling rate 
between different sensors could vary, or synchronized data 
from multiple data sources might not be available if one 
source produces discrete data, while another source provides 
a continuous data stream. 

To alleviate some of the issues related to fusing raw data, 
higher-level representations can first be extracted from each 
modality, which could be either handcrafted features or learned 
representations, as is common in deep learning, before fusing 
at the feature level. When nonhierarchical features are used, as 
often the case in handcrafted features, features extracted from 
multiple modalities can be fused at only one level, prior to being 
input to the machine-learning algorithm. Since deep learning 
essentially involves learning hierarchical representations from 
raw data, this gives rise to intermediate-level fusion.

Most early-fusion models make the simplifying assumption 
that there is conditional independence between the states of 
various sources of information. This may not be true in prac-
tice, as multiple modalities tend to be highly correlated (for 
example, video and depth cues). Sebe [56] argues that differ-
ent streams contain information that is correlated to another 
stream only at a high level. An excellent example of this can be 
seen in [57]. This assumption allows the output of each modal-
ity to be processed independently of the others. 
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In its simplest form, early fusion involves concatenation 
of multimodal features as was implemented by Poria et al. 
[34]. Early fusion of multimodal data may not fully exploit 
the complementary nature of the modalities involved and 
may lead to very large input vectors that may contain redun-
dancies. Typically, dimensionality reduction techniques like 
PCA are applied to remove these redundancies in the input 
space. Autoencoders, which are nonlinear generalizations of 
PCA [58], are popularly used in deep learning to extract a 
distributed representation from raw data. This idea has been 
extended to learn a multimodal embedded space with the 
aim to represent multimodal data within a common feature 
space [59], [60]. 

One of the issues faced in early fusion of multimodal data 
is to determine the time-synchronicity between different data 
sources. Commonly, these signals are resampled at a com-
mon sampling rate. To mitigate this issue, Martínez and Yan-
nakakis [61] proposed several methods (convolution, training, 
and pooling fusion) to integrate sequences of discrete events 
with continuous signals. 

Late fusion
Late- or decision-level fusion refers to the aggregation of 
decisions from multiple classifiers, each trained on separate 
modalities [see Figure 2(b)]. This fusion architecture is often 
favored because errors from multiple classifiers tend to be 
uncorrelated and the method is feature independent. Various 
rules exist to determine how decisions from different classi-
fiers are combined. 

These fusion rules could be max-fusion, averaged-fusion, 
Bayes’ rule based, or even learned using a metaclassifier. 
Decision-level fusion was popular in the early- to mid-2000s,  
when ensemble classifiers received widespread interest with-
in the machine-learning community. 

There have been several works that employ late- or deci-
sion-level fusion for deep multimodal learning [33], [43], [62]
in addition to some works listed in Table  3. Based on the 
papers that we have reviewed, we do not find conclusive evi-
dence that late fusion is better than early fusion—the perfor-
mance is very much problem dependent. Undoubtedly, when 

input modalities are significantly uncorrelated, of very dif-
ferent dimensionality and sampling rates, it is much simpler 
to implement a late-fusion approach for multimodal learn-
ing problems. An alternative approach, intermediate fusion, 
offers much more flexibility as to how and when representa-
tions learned from multimodal data can be fused. 

Intermediate fusion
Neural networks transform raw inputs to higher-level represen-
tations by mapping the input through a pipeline of layers. Each 
layer typically alternates linear and nonlinear operations that 
scale, shift, and skew its input, producing a new representa-
tion of the original data. In the multimodal context, when all 
of the modalities are transformed into representations, then 
it becomes amenable to fuse different representations into a 
single hidden layer and then learn a joint multimodal represen-
tation. The majority of work in deep multimodal fusion adopts 
this intermediate-fusion approach, where a shared representa-
tion layer is constructed by merging units with connections 
coming into this layer from multiple modality-specific paths. 
Figure 2(c) illustrates a simple intermediate fusion model with 
three modalities. Representations (features) are learned using 
different kinds of layers (e.g., 2-D-convolution, 3-D-convolu-
tion, or fully connected), and representations are fused using 
a fusion layer, also known as a shared representation layer.

This shared representation layer can be a single shared 
layer that fuses multiple channels at some depth or could 
be gradually fused, one or more modalities at a time. A naïve 
concatenation of features or weights in the shared represen-
tation layer may lead to overfitting or the network failing to 
learn associations between modalities due to distinct underly-
ing distributions. A simple method of improving performance 
of multimodal fusion is to apply some form of dimensional-
ity reduction like PCA [63] or stacked autoencoders [10] after 
constructing a shared representation layer (or fusion layer) 
via simple concatenation of weights from different modali-
ties. This choice of fusing various representations at differ-
ent depths is perhaps the most powerful and flexible aspect of 
deep multimodal fusion as opposed to other fusion techniques. 
The advantage of a flexible fusion scheme can be seen in the 
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FIGURE 2. An illustration of various fusion models for multimodal learning. (a) Early or data-level fusion, (b) late or decision-level fusion, and (c) interme-
diate fusion.
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work of Karpathy et al. [64], who showed that using a “slow-
fusion” model, where learned representations of video streams 
are gradually fused across multiple fusion layers during train-
ing, consistently produced better results for a large-scale 
video classification problem, as opposed to early-fusion and 
late-fusion models. Similarly, Neverova et al. [8] empirically 
showed that implementing a gradual fusion strategy, by first 
fusing highly correlated modalities, to less correlated ones in 
a progressive manner (e.g., visual modalities first, then motion 
capture, then audio), produced state-of-art results for commu-
nicative gesture recognition. 

Although learning a multimodal representation using the 
shared representation layer is indeed flexible, many current 
architectures require careful design in terms of how, when,  
and which modalities can be fused. In the “Fusion Struc-
ture Learning and Optimization” section, we discuss further 
attempts at optimizing the tedious architecture design pro-
cess required by multimodal learning. 

Multimodal regularization
Deep-learning techniques iteratively optimize a set of model 
parameters (typically, the weights and biases between each 
layer) by minimizing a loss function. To improve generaliza-
tion, one or more regularization strategies are employed, often 
as an additional term added to the loss function. From a compu-
tational perspective, regularization provides stability to the opti-
mization problem leading to algorithmic speed-ups,  and, from a 
statistical point of view, regularization reduces overfitting [65].

In the deep multimodal learning context, an important 
design consideration is the formulation of cost functions and 
regularizers that enforce intermodality and intramodality 
relationships such as information-theoretic regularizers and 
structured regularization, which we now briefly review. 

Information-theoretic regularizers are formulated using 
measures such as mutual information and variation of infor-
mation. For example, Sohn et al. [66] proposed a cost func-
tion that minimized the variation of information between 
modalities to learn relationships between modalities. The 
intuition behind this formulation is that learning to maximize 
the amount of information that one data modality has about 
the others would allow generative models to reason about the 
missing data modality given partial observations. Alternative-
ly, a mutual information term could also be maximized during 
training [67]. Another information theoretic loss formulation 
based on the Kulback–Leibler (KL) divergence was proposed 
by Zhu et al. [68] for a multilabel image annotation problem. 
In a pretraining stage, they first trained CNNs to learn inter-
mediate representations from each modality using unlabeled 
data and then, in the fine-tuning stage, used backpropagation 
to minimize the KL-divergence between the predictive and 
ground-truth distributions. Finally, to learn the optimal com-
bination of multimodal weights, they adopted the exponenti-
ated online learning algorithm to sequentially find an optimal 
set of combinational weights. 

Taking inspiration from structured feature selection in 
multitask learning [69], Wu et al. [70] designed a model that 

uses a trace norm regularization term, which encourages sim-
ilar modalities to share similar representations for a video 
classification problem using video and audio modalities. 

Cost functions that enforce inter- and intramodality cor-
relations have also been explored by Wang et al. [71]. Their 
formulation includes a discriminative term, and a correlative 
term based on canonical correlation analysis. In a follow-up 
work [72], they proposed a multimodal fusion layer that uses 
matrix transformations to explicitly enforce a common part to 
be shared by features of different modalities while retaining 
modality-specific learning. 

Lenz et  al. [28] formulated a structured regularization 
term in the cost function, which allows a model to learn cor-
related features between multiple input modalities but regu-
larizes the number of modalities used per feature, thereby 
discouraging the model from learning weak correlations 
between modalities. Structured regularization essentially 
applies some form of regularization separately for each set of 
modality-specific weights. They considered several variants 
of structure regularization for a multimodal robotic grasping 
task. One that worked well in their case incorporated the L0

norm on top of the max-norm penalty  
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where S ,r i  is one if feature i  belongs to group r  and is other-
wise zero. S  is a binary modality matrix of size ,R N#  where 
each element S ,r i  indicates the membership of a visible unit, 

,xi  in a particular modality, .r I  is an indicator function, which 
takes a value of one if its argument is true and is other-
wise zero. 

In some problems, temporal context can play an important 
role, for example, driver activity anticipation. Unlike human 
activity recognition, where complete temporal context is 
available, in driver activity anticipation, the machine-learn-
ing system must predict using only partial context within a 
short span of time before the event occurs. To solve this prob-
lem, Jain et al. [35] incorporated a temporal term that grows 
exponentially in time into their cost function for a multimod-
al RNN with LSTM units. This encourages the model to fix 
mistakes as early as it can. 

Multimodal-aware regularizers have resulted in margin-
al to notable improvements in model performance. Despite 
including these multimodal regularization strategies, the 
deep-learning architectures discussed in this section have 
input modalities merging into a single fusion layer. A possible 
extension could be to investigate a gradual fusion model that 
takes advantage of these regularization strategies. 

Fusion structure learning and optimization
Most multimodal deep-learning architectures proposed to 
date are meticulously handcrafted. While many models 
adopt a single fusion layer (shared representation layer), sev-
eral stand-out works [8], [64] implemented a gradual fusion 
strategy. The choice of which modality is fused, and at which 
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depth of representation, is usually based on intuition (for exam-
ple, fusing similar modalities early, and then fusing disparate 
modalities at a deeper layer). When more than two modalities 
are involved, also depending upon the nature of the modalities 
being used in the problem, choosing an optimal fusion archi-
tecture may be more challenging. A natural progression would 
be to search for an optimal multimodal fusion architecture by 
casting this as a model search or structure learning problem. 

Neural network structure optimization for unimodal 
problems has long been investigated by machine-learning 
researchers. These mainly involved determining the optimal 
number of neurons and number of layers in a network. There 
is a tradeoff between good generalization ability of the net-
work, and the number of parameters and availability of train-
ing data. Too large a network might perform well or overfit, 
depending if it is trained with sufficiently large training data, 
while too small a network, might underfit and may result in 
poor generalization. 

A common approach is to adopt a bottom-up constructive
approach. The basic idea proposed by Elman [73] is to start 
with a relatively small network and add hidden units or layers 
incrementally until the best performing architecture is found. 
More recently, and in the large-scale setting, Chen et al. [74]
gradually added depth and width to an inception-style [75]
network by knowledge transfer between one neural network 
to another. 

Pruning algorithms [76] address the same problem from 
a top-down approach. Recent approaches for DNNs include 
the works of Feng and Darrel [77], who proposed an evolving 
grow-and-prune algorithm that optimizes the structure of an 
Indian buffet process-CNN model, and Yang et al. [78], who 
introduced network pruning for large, diverse data sets based 
on sparse representations. 

Genetic algorithm (GA)-based structure optimization of 
neural networks was one of the earliest metaheuristic search 
algorithms used for neural network structure search and opti-
mization [79]. In the early 2000s, an algorithm called Neuro 
Evolution of Augmenting Topologies (NEAT)  [80] that also 
used GAs to evolve increasingly complex neural network 
architectures received much attention. More recently, Shino-
zaki and Watanabe [81] applied GAs and a covariance matrix 
evolution strategy to optimize the structure of a DNN, param-
eterizing the structure of the DNN as a simple binary vector 
based on a directed acyclic graph representation. As the GA 
search space can be very large, and each model evaluation in 
the search space is expensive, a parallel search using a large 
GPU cluster was used to speed up the process. 

These neural network structural search and optimization 
techniques can readily be extended to the multimodal set-
ting if a suitable representation of the network architecture 
is devised and provided that the cost of training and testing 
multiple architectures during the search process is not prohib-
itively expensive. With data set sizes approaching gigabytes, 
and even terabyte levels, and deep network architectures 
involving millions of parameters and multiple modalities, 
search and optimization of multimodal fusion structure can 

be prohibitively expensive unless some parallel search proce-
dure is implemented or an efficient optimization algorithm 
is used. While Bayesian optimization (BO) [82] has been a 
popular choice for hyperparameter optimization, it has been 
recently used for multimodal fusion architecture optimiza-
tion [83]. Architecture optimization was cast as a discrete 
optimization problem by searching a space of all possible 
multimodal fusion architectures using a Gaussian process-
based BO. A novel graph-induced kernel was proposed to 
quantify the distance between different architectures in the 
search space. 

Reinforcement learning [84] has also been used for deep 
neural architecture search [85]. This work proposed a novel 
method of using an RNN to generate variable-length model 
descriptions of neural networks. The RNN was trained with 
reinforcement learning to maximize the expected accuracy 
of the generated architectures on a validation set. 

A number of recent works have approached structure learn-
ing as a means of regularization, or capacity control, in a net-
work. By pruning the network in a stochastic manner, stochastic 
regularization methods can be considered as a kind of ensem-
ble that improves generalization via model averaging. Kulkar-
ni et al. [86] implemented a method of learning the structure of 
DNNs via deterministic regularization. They insert, between 
each pair of fully connected layers, a sparse diagonal matrix 
whose entries are l1  penalized. This implicitly defines the size 
of the effective weight matrices at each layer. The approach 
has a similar effect to Dropout  [87]. Blockout [88] can per-
form simultaneous regularization and model selection through 
a clever technique that stochastically assigns hidden units to 
“clusters,” forming block-structured weight matrices. In addi-
tion, by averaging the outputs of multiple stochastic inference 
passes (which can be viewed as a case of ensemble classifiers), 
results better than ResNets were achieved. This architecture 
effectively implements a late fusion of multiple architectures 
to achieve better results. 

Stochastic regularization has been extended to the multimodal 
setting by Neverova et al. [8] and, more recently, by Li et al. [89].
In the latter work, the authors show that, when the intermodality 
correlation is high, an early-fusion approach (whose fusion struc-
ture was learned by the network) produced better results, while a 
late-fusion approach worked better when the input modalities are 
less correlated. This concurred with the empirical choice made 
by the former. 

In this section, we have covered a number of recent works that 
use either stochastic regularization or optimization resulting in 
deep multimodal fusion architectures that perform at par with or 
better than meticulously designed ones. While feature engineer-
ing has been largely solved by deep representation learning, the 
next logical step would be to do away with meticulous engi-
neering of deep architectures and pursue techniques that achieve 
this automatically. 

Data sets
To facilitate research in multimodal learning, a number of data 
sets have been released to the public. We note that the majority of 
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these data sets typically involve person-centric visual understand-
ing, with variants including emotion recognition, group behavior 
analysis, etc. Table 2 lists a number of such data sets, the modalities 
involved, and the problem domain. While this list is not exhaus-
tive, we cover more recent data sets (many of which were released 
in the past three years) that are available for multimodal research. 
While most data sets include at least two modalities (images and 
text, for example) or up to four (RGB-D, audio, and skeletal pose), 
some data sets, for example, H-MOG [12], include up to nine dif-
ferent modalities. For the interested reader, Firman [90] presents 
an extensive survey of 102 RGB-D data sets. Autonomous driving 
and driver assistance systems (using driver behavior prediction) 
are being pursued as a popular research topic in deep learning. 
Such data sets are not only highly multimodal  [91], with data 
from up to six individual sensors, but also very large—hours of 
data available. The Oxford RobotCar [92] data set, for example, 
contains more than 23 TB of year-long driving data in various 
weather conditions. 

We note that there are relatively fewer multimodal medical 
data sets available, possibly due to the cost and ethical and priva-
cy concerns. Most medical data sets also tend to be much smaller, 
involving between ten and 50 subjects and also suffer from high 
class imbalances (for example, it is much more common to have 
normal cases in comparison to abnormal cases). Medical infor-
matics and imaging studies rely heavily on multimodal informa-
tion, and this can be leveraged to improve computer-aided diag-
nosis. Efforts to gather and make such data sets publicly available 
are encouraged. 

Conclusions and future directions
In this article, we have reviewed recent advancements in deep 
multimodal learning. It is undeniable that the incorporation of 
multiple modalities into the learning problem almost always 
results in much better performance for a wide range of prob-
lems. From a fusion perspective, we see that techniques in deep 
multimodal learning can be classified into early- and late-fusion 
approaches and that deep-learning methods facilitate a flexible 
intermediate-fusion approach, which not only makes it simpler to 
fuse modality-wise representations and learn a joint representa-
tion but also allows multimodal fusion at various depths in the 
architecture. Although deep learning has, in many cases, reduced 
the need for feature engineering, deep-learning architectures still 
involve a great deal of manual design, and experimenters may not 
have explored the full space of possible fusion architectures. It is 
only natural that researchers should extend the notion of learn-
ing to architectures in an effort to have a truly generic learning 
method, which can be adapted, with minimal or no human inter-
vention, to a specific task. 

We reviewed several options for learning an optimal architec-
ture. This includes stochastic regularization, casting architecture 
optimization as a hyperparameter optimization problem using, 
for example, BO, and incremental online reinforcement learning. 
This is, in our opinion, the most exciting area of research for deep 
multimodal learning. Architecture learning can be extremely 
compute-intensive, so researchers should take advantage of 
advances in hardware acceleration and distributed deep learning. 

We have also identified several application domains that are 
gaining the most attention in deep multimodal learning. This 
includes RGB-D and data from the multitude of sensors on 
mobile phones that have been used for a range of problems 
involving multimodal data such as human activity recogni-
tion and their variants. We foresee that this area will gain more 
attention in the coming years for novel applications, which will 
profoundly impact our daily lives. Another important area high-
lighted is medical research, which involves numerous modali-
ties of data, some of which are very difficult to interpret with-
out human experts in the loop. With the medical community 
opening up to the rise of artificial intelligence-assisted diagno-
sis, we will see more significant progress being made in this 
domain. Finally, two more application areas that are gaining 
the attention of deep-learning researchers involve autonomous 
vehicles or robotics and multimedia applications, for example, 
video transcription, image captioning, etc. Novel applications 
like online chatbots that use multimodal inputs, like images, 
and text or recommender systems that utilize multimodal data 
may become widespread in the near future. 

We conclude by acknowledging that this is very much 
a fast-evolving field, and, at the rate of the amount of new 
research being published, many new innovations in deep 
multimodal learning architectures are bound to be presented. 
We have tried not to provide specific suggestions to architec-
ture design, as we found many problems require application-
specific considerations. Regardless, we feel this is a timely 
publication as the directions of future research that we have 
highlighted, hopefully, can act as a guide toward a more orga-
nized effort into advancing the research field. 

Authors
Dhanesh Ramachandram (dramacha@uoguelph.ca) received 
his B.Tech degree in industrial technology and his Ph.D. 
degree in computer vision and robotics from the Universiti 
Sains Malaysia in 1997 and 2003, respectively, where he was 
formerly an associate professor. He is a researcher at the 
University of Guelph, Ontario, Canada, and a Senior Member 
of the IEEE. He is interested in deep learning for computer 
vision, medical imaging, and multimodal problems. 

Graham W. Taylor (gwtaylor@uoguelph.ca) received his 
received his bachelor’s and master’s degrees in applied science 
from the University of Waterloo, Canada, in 2003 and 2004, 
respectively. He received his Ph.D. degree in computer science 
from the University of Toronto, Canada, in 2009, where his the-
sis coadvisors were Geoffrey Hinton and Sam Roweis. He is an 
associate professor at the University of Guelph, Ontario, Canada, 
a member of the Vector Institute for Artificial Intelligence, and a 
Canadian Institute for Advanced Research Azrieli Global 
Scholar. He is interested in statistical machine learning and bio-
logically inspired computer vision, with an emphasis on unsu-
pervised learning and time-series analysis. 

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_______________

______________

mailto:dramacha@uoguelph.ca
mailto:gwtaylor@uoguelph.ca
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


107IEEE SIGNAL PROCESSING MAGAZINE | November 2017 |

[2] D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: An overview of 
methods, challenges, and prospects,” Proc. IEEE, vol. 103, no. 9, pp. 1449–1477,
2015.

[3] P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli, “Multimodal 
fusion for multimedia analysis: A survey,” Multimedia Systems, vol. 16, no. 6, pp. 345–
379, 2010.

[4] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor data 
fusion: A review of the state-of-the-art,” Inform. Fusion, vol. 14, no. 1, pp. 28–44,
2013.

[5] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
Hoboken, NJ: Wiley, 2004.

[6] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep 
learning,” in Proc. 28th Int. Conf. Machine Learning (ICML-11), 2011, pp. 689–696.

[7] N. Srivastava and R. R. Salakhutdinov, “Multimodal learning with deep Boltzmann 
machines,” in Proc. Advances in Neural Inform. Processing Syst., 2012, pp. 2222–
2230.

[8] N. Neverova, C. Wolf, G. Taylor, and F. Nebout, “ModDrop: Adaptive multi-modal 
gesture recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 8, pp. 1692–
1706, 2016.

[9] S. S. Mukherjee and N. M. Robertson, “Deep head pose: Gaze-direction estimation 
in multimodal video,” IEEE Trans. Multimedia, vol. 17, no. 11, pp. 2094–2107, 2015.

[10] C. Ding and D. Tao, “Robust face recognition via multimodal deep face representa-
tion,” IEEE Trans. Multimedia, vol. 17, no. 11, pp. 2049–2058, 2015.

[11] S. E. Kahou, X. Bouthillier, P. Lamblin, C. Gulcehre, V. Michalski, K. Konda, S. 
Jean, P. Froumenty, et al., “EmoNets: Multimodal deep learning approaches for emo-
tion recognition in video,” J. Multimedia User Interfaces, vol. 10, no. 2, pp. 99–111,
2015.
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DEEP LEARNING FOR VISUAL UNDERSTANDING
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Deep Learning for Image-to-Text Generation
A technical overview

Generating a natural language description from an image is 
an emerging interdisciplinary problem at the intersection of 
computer vision, natural language processing, and artificial 

intelligence (AI). This task, often referred to as image or visual 
captioning, forms the technical foundation of many important 
applications, such as semantic visual search, visual intelligence 
in chatting robots, photo and video sharing in social media, and 
aid for visually impaired people to perceive surrounding visual 
content. Thanks to the recent advances in deep learning, the AI 
research community has witnessed tremendous progress in visu-
al captioning in recent years. In this article, we will first sum-
marize this exciting emerging visual captioning area. We will 
then analyze the key development and the major progress the 
community has made, their impact in both research and industry 
deployment, and what lies ahead in future breakthroughs.

Introduction
It has been long envisioned that machines one day will under-
stand the visual world at a human level of intelligence. Thanks 
to the progress in deep learning [15], [36], [59], [60], [69],
researchers can now build very deep convolutional neural 
networks (CNNs) and achieve an impressively low error rate 
for tasks like large-scale image classification [9], [15], [23]. In 
these tasks, one way for researchers to train a model to predict 
the category of a given image is to first annotate each image in 
a training set with a label from a predefined set of categories. 
Through such fully supervised training, the computer learns 
how to classify an image.

However, in tasks like image classification, the content of an 
image is usually simple, containing a predominant object to be 
classified. The situation could be much more challenging when 
we want computers to understand complex scenes. Image caption-
ing is one such task. The challenges come from two perspectives. 
First, to generate a semantically meaningful and syntactically 
fluent caption, the system needs to detect salient semantic con-
cepts in the image, understand the relationships among them, and 
compose a coherent description about the overall content of the 
image, which involves language and common-sense knowledge 
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modeling beyond object recognition. In addition, due to the 
complexity of scenes in the image, it is difficult to represent all 
fine-grained, subtle differences among them with the simple 
attribute of category. The supervision for training image caption-
ing models is a full description of the content of the image in 
natural language, which is sometimes ambiguous and lacks fine-
grained alignments between the subregions in the image and the 
words in the description.

Moreover, unlike image classification tasks, where we can 
easily tell if the classification output is correct or wrong after 
comparing it to the ground truth, there are multiple valid ways 
to describe the content of an image. It is not easy to tell if the 
generated caption is correct or not, at what degree. In practice, 
human studies are often employed to judge the quality of the 
caption given an image. However, since human evaluation is 
costly and time-consuming, many automatic metrics are pro-
posed, which could serve as a proxy mainly for speeding up the 
development cycle of the system.

Early approaches to image captioning can be roughly 
divided into two families. The first one is based on template 
matching [6], [16], [17]. These approaches start from detecting 
objects, actions, scenes, and attributes in images and then fill 
them into a hand-designed and rigid sentence template. The 
captions generated by these approaches are not always fluent 
and expressive. The second family is grounded on retrieval-

based approaches, which first select a 
set of the visually similar images from a 
large database and then transfer the cap-
tions of retrieved images to fit the query 
image [10], [20]. There is little flexibili-
ty to modify words based on the content 
of the query image, since they directly 
rely on captions of training images and 
cannot generate new captions.

Deep neural networks can potentially address both of these 
issues by generating fluent and expressive captions, which can 
also generalize beyond those in the train set. In particular, recent 
successes of using neural networks in image classification [9],
[15], [23] and object detection [8] have motivated strong interest 
in using neural networks for visual captioning. 

Major deep-learning paradigms for image captioning

The end-to-end framework

Vector-to-sequence learning
Motivated by the recent success of sequence-to-sequence 
learning in machine translation [37]–[39], researchers studied 
an end-to-end encoder-decoder framework for image caption-
ing [2]–[4], [12], [26]. Figure 1 illustrates a typical encoder-
decoder-based captioning system [26].

In such a framework, first the raw image is encoded by a global 
visual feature vector which represents the overall semantic infor-
mation of the image, via deep CNNs. As illustrated in Figure 2,
a CNN consists of several convolutional, max-pooling, response-
normalization, and fully connected layers. This architecture has 
been very successful for large-scale image classification [21], and 
the learned features have shown to transfer to a broad variety 
of vision tasks [40]. Usually, given a raw image, the activation 
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FIGURE 1. An illustration of the CNN-RNN-based image captioning framework.
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FIGURE 2. An illustration of a deep CNN such as the AlexNet [15]. The CNN is trained for a 1,000-class image classification task on the large-scale Ima-
geNet data set [41]. The last layer of the AlexNet contains 1,000 nodes, each corresponding to a category. The second last fully connected dense layer is 
usually extracted as the global visual feature vector, representing the semantic content of the overall images. 
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values at the second last fully connected layer are extracted as the 
global visual feature vector. 

Once the global visual vector is extracted, it is then fed into 
a recurrent neural network (RNN)-based decoder for caption 
generation, as illustrated in Figure 3. In practice, a long-short 
memory network (LSTM) [40] or gated recurrent unit (GRU) 
[39] variation of the RNN is often used; both have been shown 
to be more efficient and effective in training and capturing 
long-span language dependencies than vanilla RNNs [38],
[39], and both have found successful applications in action rec-
ognition tasks [62], [63].

The representative set of studies using the aforementioned 
end-to-end framework include [2]–[4], [7], [11]–[13], [19],
and [26] for image captioning and [1], [21] [24], [25], and [32]
for video captioning. The differences of the various methods 
mainly lie in the types of CNN architectures and the RNN-
based language models. For example, the vanilla RNN was 
used in [12] and [19], while the LSTM was used in [26]. The 
visual feature vector was only fed into the RNN once at the 
first time step in [26], while it was used at each time step of 
the RNN in [19].

The attention mechanism
Most recently, [29] utilized an attention-based mechanism to 
learn where to focus in the image during caption generation. 
The attention architecture is illustrated in Figure 4. Differ-
ent from the simple encoder-decoder approach, the attention-
based approach first uses the CNN to not only generate a 
global visual vector but also generate a set of visual vectors 
for subregions in the image. These subregion vectors can 
be extracted from a lower convolutional layer in the CNN. 
Then, in language generation, at each step of generating a 
new word, the RNN will refer to these subregion vectors and 
determine the likelihood that each of the subregions is rele-
vant to the current state to generate the word. Eventually, the 
attention mechanism will form a contextual vector, which is 
a sum of subregional visual vectors weighted by the likeli-
hood of relevance, for the RNN to decode the next new word.

This work was followed by [30], which introduced a 
“review” module to improve the attention mechanism and 
further by [18], which proposed a method to improve the cor-
rectness of visual attention. More recently, based on object 
detection, a bottom-up attention model was proposed in [64],

which demonstrated a state-of-the-art performance on image 
captioning. In the end-to-end framework, all of the model 
parameters, including the CNN, the RNN, and the attention 
model, are trained jointly in an end-to-end fashion; hence, the 
term end to end.

A compositional framework
Different from the end-to-end encoder-decoder framework pre-
viously described, a separate class of image-to-text approaches 
uses an explicit semantic-concept-detection process for caption 
generation. The detection model and other modules are often 
trained separately. Figure 5 illustrates a semantic-concept-detec-
tion-based compositional approach proposed by Fang et al. [5].

In this framework, the first step in the caption generation pipe-
line detects a set of semantic concepts, known as tags or attri-
butes, that are likely to be part of the image’s description. These 
tags may belong to any part of speech, including nouns, verbs, and 
adjectives. Unlike image classification, standard supervised learn-
ing techniques are not directly applicable for learning detectors 
since the supervision only contains the whole image and the 
human-annotated whole sentence of caption, while the image 
bounding boxes corresponding to the words are unknown. To 
address this issue, [5] proposed learning the detectors using 
the weakly supervised approach of multiple instance learning 
(MIL) [42], [43], while in [33], this problem is treated as a mul-
tilabel classification task.

Global
Visual Vector

a

<s> a baby its mouth

baby holding mouth </s>

. . .

FIGURE 3. An illustration of an RNN-based caption decoder. At the initial 
step, the global visual vector, which represents the overall semantic 
meaning of the image, is fed into the RNN to compute the hidden layer at 
the first step while the sentence-start symbol <s> is used as the input to 
the hidden layer at the first step. Then the first word is generated from the 
hidden layer. Continuing this process, the word generated in the previous 
step becomes the input to the hidden layer at the next step to generate 
the next word. This generation process keeps going until the sentence-
end symbol, </s>, is generated.

Global Visual
Vector

Caption

Attention Context Vector
Visual Vectors
for Subregions
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a baby holding a toothbrush
in its mouthCNN RNN

FIGURE 4. An illustration of the attention mechanism in the image caption generation process.
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In [5], the detected tags are then fed into an n-gram-based  
max-entropy language model to generate a list of caption 
hypotheses. Each hypothesis is a full sentence that covers cer-
tain tags and is regularized by the syntax modeled by the lan-
guage model, which defines the probability distribution over 
word sequences.

All of these hypotheses are then reranked by a linear com-
bination of features computed over an entire sentence and 
the whole image, including sentence length, language model 
scores, and semantic similarity between the overall image 
and an entire caption hypothesis. Among them, the image-
caption semantic similarity is computed by a deep multimodal 
similarity model (DMSM), which consists of a pair of neural 
networks, one for mapping each input modality, image, and 
language, to be vectors in a common semantic space. Image-
caption semantic similarity is then defined as the cosine simi-
larity between their vectors.

Compared to the end-to-end framework, the compositional 
approach provides better flexibility and scalability in system 
development and deployment and facilitates exploiting vari-
ous data sources to optimizing the performance of different 
modules more effectively, rather than learn all of the models 
on limited image-caption paired data. On the other hand, the 
end-to-end model usually has a simpler architecture and can 
optimize the overall system jointly for a better performance.

More recently, a class of models has been proposed to 
integrate explicit semantic-concept detection in an encoder-
decoder framework. A general diagram of this class of mod-
els is illustrated in Figure 6. For example, [1] applied retrieved 
sentences as additional semantic information to guide the 
LSTM when generating captions, while [31] and [33] applied 
a semantic-concept-detection process before generating sen-
tences. In [7], a semantic compositional network is construct-
ed based on the probability of detected semantic concepts for 
composing captions. 

Other related work
Other related work also learns a joint embedding of visual fea-
tures and associated captions, including [5] for image caption-
ing and [21] for video captioning. Most recently, [27] has looked 
into generating dense image captions for individual regions in 
images. In addition, a variational autoencoder was developed in 
[22] for image captioning. Also motivated by its recent success, 
researchers proposed a set of reinforcement learning-based 

algorithms to directly optimize the model for specific rewards. 
For example, [67] proposed a self-critical sequence training 
algorithm. It uses the REINFORCE algorithm to optimize a 
particular evaluation metric that is usually not differentiable 
and therefore not easy to optimize by conventional gradient-
based methods. In [65], within the actor-critic framework, a 
policy network and a value network are learned to generate the 
caption by optimizing a visual semantic reward, which mea-
sures the similarity between the image and generated caption. 
Relevant to image-caption generation, models based on gen-
erative adversarial networks (GANs) recently have been pro-
posed for text generation. Among them, SeqGAN [68] models 
the generator as a stochastic policy in reinforcement learning 
for discrete outputs like texts, while RankGAN [66] proposed 
a ranking-based loss for the discriminator, which gives better 
assessment of the quality of the generated text and therefore 
leads to a better generator. 

Metrics
The quality of the automatically generated captions is evalu-
ated and reported in the literature in both automatic met-
rics and human studies. Commonly used automatic metrics 
include BLEU [45], METEOR [44], CIDEr [46], and SPICE 
[47]. BLEU [45] is widely used in machine translation and mea-
sures the fraction of n-grams (up to four grams) that are in com-
mon between a hypothesis and a reference or set of references. 
METEOR [44] instead measures unigram precision and recall, 
but extending exact word matches to include similar words 
based on WordNet synonyms and stemmed tokens. CIDEr
[46] also measures the n-gram match between the caption 
hypothesis and the references, while the n-grams are weighted 
by term frequency–inverse document frequency (TF-IDF). On 
the other hand, SPICE [47] measures the F1 score of semantic 
propositional content contained in image captions given the 
references, and therefore it has the best correlation to human 
judgment [47]. These automatic metrics can be computed effi-
ciently. They can greatly speed up the development of image 
captioning algorithms. However, all of these automatic metrics 
are known to only roughly correlate with human judgment [50].

Benchmarks
Researchers have created many data sets to facilitate the 
research of image captioning. The Flickr data set [49] and the 
PASCAL sentence data set [48] were created for facilitating 
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FIGURE 5. An illustration of a semantic-concept-detection-based compositional approach [5].
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the research of image captioning. More recently, Microsoft 
sponsored the creation of the Common Objects in Context 
(COCO) data set [51], the largest image captioning data set 
available to the public today. The availability of the large-scale 
data sets significantly prompted research in image captioning 
in the last several years.

In 2015, approximately 15 groups participated in the 
COCO Captioning Challenge [52]. The entries in the challenge 
are evaluated by human judgment. Five 
human judge metrics are listed in Table 1.
In the competition, all entries are assess  ed 
based on the results from metric 1 (M1) and 
metric 2 (M2).The other metrics have been 
used as diagnostic and interpretation of the 
results. Specifically, in evaluation, each task 
presents a human judge with an image and 
two captions: one is automatically gener-
ated, and the other is a human caption. For M1, the judge is 
asked to select which caption better describes the image, or 
to choose the “same” option when they are of equal quality. 
For M2, the judge is asked to tell which of the two captions 
is generated by a human. If the judge chooses the automati-
cally generated caption, or chooses the “cannot tell” option, 
it is considered to have passed the Turing test. Table 2 tabu-
lates the results of the 15 entries in the 2015 COCO Captioning 
Challenge. Among them, the Microsoft Research entry (MSR) 
achieves the best performance on the Turing test metric, 
while the Google team outperforms others in the percentage 

of captions that were as good or better than human captions. 
Overall, Microsoft Research and Google jointly received first 
prize in the 2015 COCO Image Captioning Challenge. The 
results of two special systems, human and random, are also 
included for reference.

There are more systems that have been developed since the 
2015 COCO competition. However, due to the high cost, human 
judging was no longer performed. Instead, the organizers of 

the COCO benchmark set up an automatic 
evaluation server. The server can receive 
the captions generated by a new system and 
then evaluate and report the results on the 
blind test set in automatic metrics. Table 
3 summarizes the top 24 entries plus the 
human system as of August 2017, ranked by 
SPICE, using 40 references per image [52]. 
Note that these 24 systems outperform the 

human system in all automatic metrics except SPICE. How-
ever, in human judgment, it is likely that the human system still 
has a lead, given that in Table 2 there is a huge gap between the 
best systems and a human.

Industrial deployment
Given the fast progress in the research community, the indus-
try started deploying image captioning services. In March 2016, 
Microsoft released the first public image captioning application 
programming interface as a cloud service [53]. To showcase the 
usage of the functionality, it deployed a web application called 
CaptionBot (http://CaptionBot.ai) which captions arbitrary pic-
tures users uploaded [33]. The service also supports applications 
like Seeing AI, designed for the low-vision community, that nar-
rate the world around people who are blind or visually impaired 
[71]. More recently, Microsoft further deployed the caption ser-
vice in its widely used product Office, specifically, Word and 
PowerPoint, for automatically generating alt-text, i.e., text de-
scriptions of pictures, for accessibility [61]. Facebook released 
an automatic image captioning tool that provides a list of objects 
and scenes identified in a photo [34]. Meanwhile, although the 
service has not yet been deployed publicly, Google open sourced 
its image captioning system for the community [35]. With all of 
these industrial-scale deployment and open-source projects, a 
massive number of images and user feedback in real-world sce-
narios are collected and serve as training data to continuously 
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FIGURE 6. An illustration of integrate explicit semantic-concept-detection in an encoder-decoder framework.

Table 1. Human evaluation metrics in the 2015 COCO 
Captioning Challenge.

Metric Comment

M1 Percentage of captions that are evaluated as better or 
equal to human caption.

M2 Percentage of captions that pass the Turing test.

M3 Average correctness of the captions on a scale from one 
to five (incorrect–correct).

M4 Average amount of detail of the captions on a scale 
from one to five (lack of details–very detailed).

M5 Percentage of captions that are similar to human 
description.

Microsoft Research and 
Google jointly received 
first prize in the 2015 
COCO Image Captioning 
Challenge.
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Table 3. The state-of-the-art image captioning systems in automatic metrics (as of 8 December 2016).

Entry CIDEr-D METEOR BLEU-4
SPICE
(x10) Date

Watson Multimodal 1.123 0.268 0.344 0.204 16 November 2016

DONOT_FAIL_AGAIN 1.01 0.262 0.32 0.199 22 November 2016

Human 0.854 0.252 0.217 0.198 23 March 2015

MSM@MSRA 1.049 0.266 0.343 0.197 25 October 2016

MetaMind/VT_GT 1.042 0.264 0.336 0.197 1 December 2016

ATT-IMG (MSM@MSRA) 1.023 0.262 0.34 0.193 13 June 2016

G-RMI(PG-SPIDEr-TAG) 1.042 0.255 0.331 0.192 11 November 2016

DLTC@MSR 1.003 0.257 0.331 0.19 4 September 2016

Postech_CV 0.987 0.255 0.321 0.19 13 June 2016

G-RMI (PG-BCMR) 1.013 0.257 0.332 0.187 30 October 2016

feng 0.986 0.255 0.323 0.187 6 November 2016

THU_MIG 0.969 0.251 0.323 0.186 3 June 2016

MSR 0.912 0.247 0.291 0.186 8 April 2015

reviewnet 0.965 0.256 0.313 0.185 24 October 2016

Dalab_Master_Thesis 0.96 0.253 0.316 0.183 28 November 2016

ChalLS 0.955 0.252 0.309 0.183 21 May 2016

ATT_VC_REG 0.964 0.254 0.317 0.182 3 December 2016

AugmentCNNwithDe 0.956 0.251 0.315 0.182 29 March 2016

AT 0.943 0.25 0.316 0.182 29 October 2015

Google 0.943 0.254 0.309 0.182 29 May 2015

TsinghuaBigeye 0.939 0.248 0.314 0.181 9 May 2016

Table 2. Human evaluation results of entries in the 2015 COCO Captioning Challenge.

Entry M1 M2 M3 M4 M5 Date

Human 0.638 0.675 4.836 3.428 0.352 23 March 2015

Google 0.273 0.317 4.107 2.742 0.233 29 May 2015

MSR 0.268 0.322 4.137 2.662 0.234 8 April 2015

Montreal/Toronto 0.262 0.272 3.932 2.832 0.197 14 May 2015

MSR Captivator 0.25 0.301 4.149 2.565 0.233 28 May 2015

Berkeley LRCN 0.246 0.268 3.924 2.786 0.204 25 April 2015

m-RNN 0.223 0.252 3.897 2.595 0.202 30 May 2015

Nearest Neighbor 0.216 0.255 3.801 2.716 0.196 15 May 2015

PicSOM 0.202 0.25 3.965 2.552 0.182 26 May 2015

Brno University 0.194 0.213 3.079 3.482 0.154 29 May 2015

m-RNN (Baidu/UCLA) 0.19 0.241 3.831 2.548 0.195 26 May 2015

MIL 0.168 0.197 3.349 2.915 0.159 29 May 2015

MLBL 0.167 0.196 3.659 2.42 0.156 10 April 2015

NeuralTalk 0.166 0.192 3.436 2.742 0.147 15 April 2015

ACVT 0.154 0.19 3.516 2.599 0.155 26 May 2015

Tsinghua Bigeye 0.1 0.146 3.51 2.163 0.116 23 April 2015

Random 0.007 0.02 1.084 3.247 0.013 29 May 2015
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improve the performance of the system and stimulate new re-
searches in deep visual understanding.

Outlook
Image-to-text generation is an important interdisciplinary area 
across computer vision and natural language processing. It also 
forms the technical foundation of many important applications. 
Thanks to deep-learning technologies, we have seen significant 
progress in this area in recent years. In this article, we have 
reviewed the key developments that the community has made and 
their impact in both research and industry deployment. Looking 
forward, image captioning will be a key subarea in the image–
natural language multimodal intelligence field. A number of new 
problems in this field have been proposed lately, including visual 
question answering [54], [55], [70], visual storytelling [58], visu-
ally grounded dialog [56], and image synthesis from text descrip-
tion [57], [72]. The progress in multimodal intelligence is critical 
for building more general AI abilities in the future, and we hope 
the overview provided in this article can encourage students and 
researchers to enter and contribute to this exciting AI area.
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Deep-Learning Systems 
for Domain Adaptation in Computer Vision

Learning transferable feature representations

D omain adaptation algorithms address the issue of transfer-
ring learning across computational models to adapt them to 
data from different distributions. In recent years, research 

in domain adaptation has been making great progress owing to 
the advancements in deep learning. Deep neural networks have 
demonstrated unrivaled success across multiple computer vision 
applications, including transfer learning and domain adaptation. 
This article outlines the latest research in domain adaptation 
using deep neural networks. It begins with an introduction to the 
concept of knowledge transfer in machine learning and the dif-
ferent paradigms of transfer learning. It provides a brief survey 
of nondeep-learning techniques and organizes the rapidly grow-
ing research in domain adaptation based on deep learning. It also 
highlights some drawbacks with the current state of research in 
this area and offers directions for future research.

Introduction to domain adaptation
Traditional machine-learning paradigms like supervised learn-
ing train statistical models to make predictions on unseen data 
in the future. These models do not guarantee optimal perfor-
mance if the test data are vastly different from the training 
data. To reduce the effort involved in recollecting labeled data 
and retraining a new model, knowledge transfer between tasks or 
domains is desirable [1].

The concept of knowledge transfer and the need for adap-
tive machine-learning models is illustrated in the example of an 
autonomous-driving car trained with daytime road-traffic data. 
This car cannot be used to drive autonomously on the roads at 
night since the light conditions are vastly different from the data 
with which it was trained. Similarly, consider a car trained with 
traffic data from sunny days. This car may not show the same 
level of performance when it’s snowing or raining; or a car trained 
with road-traffic data from the United States will not work as 
effectively on the streets of London, where the road-traffic rules 
may vary with different signage, no turns on red, and driving on 
the left side of the road being some of them. A self-driving car 
will need to be trained with London street data (signs, traffic 
rules, etc.) before it can be put to test on the streets of London. 
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However, it would be expensive and time-consuming to acquire 
such training data and retrain a new self-driving car from scratch, 
especially considering the time and resources needed to train a 
self-driving car. It is in these situations that domain adaptation 
algorithms help to transfer the knowledge gained from learning 
in one environment and reduce the training effort when adapting 
the model to a new environment.

Variations in vision-based data can be attributed to multiple 
causes, such as differences in image quality (resolution, bright-
ness, occlusion, and color), changes in camera perspective, dis-
similar backgrounds, and an inherent diversity of the samples 
themselves. All of these can result in distribution mismatch 
between training and test data. Distribution mismatch can also 
arise when training and test data are from different modalities; 
for example, standard color red, blue, green (RGB) image data 
versus RGB-depth data as in [2]–[4], RGB data versus image 
sketches [5], or RGB data versus paintings [6]. The authors in 
[7] perform heterogeneous face recognition across near-infra-
red images, RGB images, and image sketches. Castrejon et al. 
[8] introduce a procedure for multimodal domain adaptation 
across RGB, sketches, clipart, and textual descriptions of indoor 
scenes. Distribution mismatch can also be introduced when 
there is a time lag between the capture of image instances [9].
In all of the aforementioned procedures, different domain adap-
tation techniques are employed to adapt computational models 
across distributions.

Domain adaptation deals with knowledge transfer, where 
knowledge from a source domain is transferred to a target 
domain in the form of learned models and efficient feature rep-
resentations. The data from the source and the target, although 
similar, are from different distributions, for, e.g., U.S. street data 
versus London street data. A machine-learning model trained on 
the source data set is often adapted to the target data set. The 
challenge for transfer of knowledge occurs when there are very 
limited or no labeled data in the target domain, which makes it 
hard to train models that need some form of supervision. This 
section defines the problem of knowledge transfer, describes the 
different transfer learning paradigms along with domain adapta-
tion, and outlines the relevance of research in domain adaptation.

Problem definition
In a standard supervised learning setting, test data are sampled 
from the same distribution as the training data. Therefore, trained 
models can guarantee a level of performance. When test data 
come from a distribution very different from training data, trans-
fer of knowledge from the training domain is necessary to build 
robust models. At the core of a transfer learning system is a com-
putational model that retains knowledge from one or more tasks, 
domains, or distributions and applies that knowledge to develop 
an effective hypothesis for a new one [10]. Transfer learning is 
often associated with domain adaptation; however, it is more elu-
cidative to understand transfer learning as a broader paradigm 
that encompasses multiple types of knowledge transfer [1], [10], 
[11], one of which is domain adaptation. Therefore, domain adap-
tation can be treated as a special case of transfer learning. To 
introduce domain adaptation and its relation to other paradigms 

of knowledge transfer, a brief outline of various knowledge trans-
fer paradigms is provided. These are multitask learning (MTL),
self-taught learning, sample selection bias, lifelong machine 
learning (LML), zero-shot learning, and domain adaptation.

For the purpose of this discussion, the definitions of domain
and task are outlined in line with [1]. A domain D  is said to con-
sist of two components, a feature space X  and a marginal prob-
ability distribution ( )P X  that governs the feature space, where 

{ , , }x xX Xn1 f 1=  is the set of samples from the feature space. 
For example, if the learning task is audio transcription, the data 
from different subjects can be treated as different domains. The 
voice of the subject can be considered to be the feature space ,X

and { , , }x xX n1 f=  is the set of audio signals (words) uttered by 
the subject, where ( )P X  is the marginal probability that governs 

.X X1  Two domains are considered different if their feature 
spaces are different (for example, different users) or their proba-
bility distributions are different (for example, casual conversation 
versus reading a report). If { , ( )}P XD X=  is a domain, then a 
task T  consists of two components, { , ( )},fT Y $=  where Y  is 
the label space and ( )f $  is the function : .f X Y"  The function 

( )f $  is unknown, and, in a supervised setting, it is learned from 
training data pairs ( , ),x yi i  where x Xi !  and .y Yi !  The func-
tion ( )xf  can then be used to predict the label of a test instance 

.x  From a probabilistic perspective, ( )xf  can be viewed as the 
posterior probability ( | ) .xp y

MTL
In this setting, labeled training data are available for a set of 
K  tasks { , , , },T T T TK1 2 f=  where each task is associ-
ated with a different domain, { , , , }.D D D DK1 2 f=  Given 
the kth task, it is not possible to estimate the empirical joint 
distribution ( , )P X Ykt  reliably with data from the kth domain, 

{ , } , xx yD Xk k
i

k
i

i
n

k
i

k1
k != =  and .y Yk

i
k!  A good approxima-

tion for ( , )P X Ykt  is learned by exploiting the training data from 
all of the domains { , , , }D D DD K1 2 f=  and learning all of 
the tasks simultaneously [10]. The tasks are different irrespective 
of the equality of the domains. In terms of availability of labels, 
all of the domains usually have labels. Even by this definition, 

( , )P X Ykt  is inferred by combining the data from all of the tasks 
and learning all of the tasks simultaneously. Transfer of knowl-
edge between tasks enhances the performance of each individual 
task. An introduction and a survey of MTL procedures is pro-
vided in [12] and [13].

Self-taught learning
The concept of self-taught learning is based on how humans 
learn in an unsupervised manner from unlabeled data [14]. In this 
paradigm, the transfer of knowledge is from unrelated domains 
in the form of learned representations. Given unlabeled data, 
{ , , },x xu u

k1 f  where ,x Ru
i d!  the self-taught learning framework 

estimates a set of K  basis vectors that are later used as a basis to 
represent the target data. Specifically,

, , ,

min x b a
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where, { , , }b bK1 f  are a set of basis vectors that are learned 
from unlabeled data and .b Ri

d!  For input data ,xu
i  the cor-

responding sparse representation is { , , },a a ai i i
K1 f=  with ai

j

corresponding to the basis vector .bj  The transfer of learning 
occurs when the same set of basis vectors { , , }b bK1 f  is used 
as a basis to represent labeled target data. Some of the promi-
nent machine-learning and computer vision techniques that 
incorporate self-taught learning are [15]–[18].

Sample selection bias 
The concept of sample selection bias was introduced in econom-
ics as a Nobel prize-winning work by James Heckman in 1979 
[19]. When a distribution of sampled data does not reflect the 
true distribution of the data set it is sampled from, it is a case 
of sample selection bias. For example, a financial bank intends 
to model the profile of a loan defaulter to deny such default-
ers a loan from the bank. It therefore builds a model based 
on the loan defaulters it has in its records. However, this is a 
small subset and, therefore, does not truthfully model the gen-
eral public the bank wants to profile but does not have access 
to. Therefore, the defaulter profile generated by the bank is off-
set by what is called the sample selection bias. In this learning 
scenario, a data set { , }x yX i i i

n
1= =  is made available. This data 

set is used to estimate the joint distribution ( , ),P X Yt  which is an 
approximation for the true joint distribution ( , ) .X YP  However, 

( , ) ( , ),P X Y P X Y!t  where ( , )P X Yt  is the estimated distribution 
and ( , )X YP  is the true distribution. This could be because there 
are very few data samples, which could lead to a poor estimation 
of the prior distribution, ( ) ( ) .P X P X!t  Other cases when the 
training data does not represent the target (test) data and intro-
duces a bias in the class prior ( ( ) ( ))P Y P Y!t  eventually lead to 
incorrect estimation of the conditional ( ( | ) ( | )) .P Y X P Y X!t  To 
correct this discrepancy, knowledge transfer is implemented by 
weighting the training data samples to reflect the test distribution 
[20]. When both the marginal ( ( ) ( ))P X P X!t  and the condition-
als are different ( | ) ( | )),(P Y X P Y X!t  the problem is referred to 
as sample selection bias [21]–[23].

LML
The concept of lifelong learning was discussed in the seminal 
work by Thrun [24]. The concept of transfer in lifelong learn-
ing can be formulated as follows. A machine-learning model 
trained for K  tasks { , , , }T T TK1 2 f  is updated by learning 
task TK 1+  with data .DK 1+  The work discussed if learning 
the thK 1+  task was easier than learning the first task. The key 
characteristics of lifelong learning are 1) a continuous learning 
process, 2) knowledge accumulation, and 3) use of past knowl-
edge to assist in future learning [25]. LML differs from MTL 
because it retains knowledge about previous tasks and applies 
that knowledge to learn new tasks. It also differs from standard 
domain adaptation, which transfers knowledge to learn only one 
task (target).

One-shot learning and zero-shot learning
These can be viewed as extreme cases of transfer learning [11].
Both these forms of transfer seek to learn data categories from 

minimal data. The key motivation is the ability to transfer knowl-
edge from previously learned categories to recognize new catego-
ries. In one-shot learning, the model is trained to recognize a new 
category of data based on just one labeled example [26]. It relies 
on the ability of the model to learn representations that cleanly 
separate the underlying categories. On the other hand, zero-
shot learning is the ability to recognize new categories without 
having seen any example of them. Zero-data learning [27] and 
zero-shot learning [28], [29] are examples where the model has 
learned to transfer knowledge from training data not completely 
related to the categories of interest. For example, a model that has 
been trained to recognize breeds of dogs can be provided with 
a description of the categories { , , .fox wolf hyena, wild dog}
Without having ever seen an image of any of these categories, the 
zero-data learning model can be trained to associate the textual 
description to learn and recognize the new category.

Domain adaptation
In domain adaptation, the source domain DS  and the target 
domain DT  are not the same, and the goal is to solve a com-
mon task { , ( )}.fT Y $=  For example, in an image-recognition 
task, the source domain could contain labeled images of objects 
against a white background, and the target domain could con-
sist of unlabeled images of objects against a noisy and clut-
tered background. Both the domains inherently have the same 
set of image categories. The difference between the domains is 
modeled as the variation in their joint probability distributions 

( , ) ( , )P X Y P X YS T! [10]. Standard domain adaptation assumes 
that there is plenty of labeled data in the source domain and there 
is no labeled data (or few samples) in the target domain. Since 
there are no labeled samples (or very few) of target data, it is dif-
ficult to get a good estimate of ( , ).P X YTt  The key task of domain 
adaptation lies in approximating ( , )P X YTt  using the source data 
distribution estimation ( , ).P X YSt  This is possible because the 
two domains are assumed to be correlated. This correlation is 
often modeled as covariate shift, where ( ) ( )P X P XS T!  and 

( | ) ( | ).P Y X P Y XS T.

Domain adaptation algorithms are evaluated on the basis of 
minimizing the expected error of prediction on the target data set. 
A classification model for the target is usually trained using the 
source data, which has labels along with the target data without 
labels (or very few labels). Domain adaptation algorithms can be 
classified largely into two groups based on the availability of labels 
for the target data. In unsupervised domain adaptation, there are 
no labels for the target data. Only the source data has labels [30]–
[33]. A classifier trained with the labeled source data are adapted 
to the unlabeled target data. In supervised domain adaptation, a 
few labeled samples are present in the target domain for all of 
the categories. However, these are few in number, and a target 
classifier trained with only these data points could overfit. This 
paradigm is also referred to as semisupervised domain adaptation
because there are labels for only a few target samples in each cat-
egory and the unlabeled target data is also used in a transductive 
setting to estimate the labels [34]–[36]. The source data, which 
have much more labeled data, are used along with the target data 
to estimate the optimal target classifier and prevent overfitting. 
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A few domain adaptation methods have labeled target data sets 
but use the source data to augment the number  of labeled samples. 
These methods are also referred to as supervised domain adapta-
tion and are used to train classifiers for unseen target data [35], 
[37], [38]. Tzeng et al. [39] propose a new paradigm for supervised 
domain adaptation where a few labels are present for only a few of 
the categories in the target domain. Their reasonable assumption 
is that, as is often encountered in a real-world setting, it is possible 
to get a few labeled target samples. Although the popular setting 
is two-domain adaptation, there are also examples of multisource 
domain adaptation as in [40]–[42]. In this article, we consider the 
following definitions: 
■ supervised domain adaptation: when the target domain has a 

few labeled samples for all of the categories
■ unsupervised domain adaptation: when the target domain 

does not have any labeled samples.
A majority of the domain adaptation literature cited in this article 
is unsupervised.

Relevance of domain adaptation
Human intelligence is a competitive benchmark that machine 
intelligence is seeking to emulate and eventually outperform. 
One of the hallmarks of human intelligence is the ability to adapt 
and transfer knowledge across multiple domains. For example, 
if humans are familiar with a language, they can easily under-
stand almost anyone speaking it, even if they were to hear it for 
the first time; or, if a person has learned to drive a car, he or she 
can easily adapt to driving a truck by adapting some previously 
learned knowledge to the new setting. To enhance machine intel-
ligence to the level of human intelligence and beyond, machine-
learning models will have to model knowledge transfer. The 
ability to transfer knowledge will provide tools to process the 
vast amounts of unlabeled data available in the form of online 
video, audio, images, and text. These advances in artificial intel-
ligence and machine-learning will greatly benefit a wide range 
of signal processing applications, including communication sys-
tems, financial markets, medical imaging, robotics, and digital 
video processing.

The state-of-the-art algorithms for domain adaptation are 
dominated by deep-learning-based approaches. Deep-learning 
methods are outperforming standard nondeep-learning tech-
niques for domain adaptive image classification. The success of 
deep-learning methods has led to a rapid growth in domain adap-
tation research. It is necessary to categorize the myriad approach-
es and organize them to get a better understanding of the current 
research in domain adaptation. This article provides a classifica-
tion of deep-learning approaches for domain adaptation. It also 
highlights the drawbacks with current approaches and outlines 
directions for future research.

Shallow domain adaptation: Survey
Prior to the introduction of deep neural networks for vision 
(AlexNet [43]), computer vision researchers relied on handcraft-
ed features like scale invariant feature transform (SIFT) [44],
histogram of oriented gradients (HoG) [45], etc. to create a bag-
of-words-based vector representation for images and videos [46].

Domain adaptation techniques developed and studied using these 
features are called shallow methods (as opposed to deep-learning 
methods). It is important to understand some of these approaches, 
as they form the basis of our understanding of domain adapta-
tion. In addition, the first batch of deep-learning methods devel-
oped for domain adaptation are based on a few of these shallow 
domain adaptation techniques.

There are many nondeep-learning (shallow) approaches that 
address the problem of domain-shift in unsupervised domain 
adaptation. All of these procedures work at the level of features, 
i.e., the images are represented as feature vectors, and the domain 
adaptation algorithm attempts to reduce the domain disparity 
between the feature vectors of the source and the target. Since 
the goal is to classify the target data, one straightforward tech-
nique is to modify a support vector machine (SVM) classifier 
trained for the source data and adapt it to classify target data. 
In [10], Bruzzone and Marconcini introduce the domain adap-
tive SVM (DASVM), where the source SVM decision bound-
ary is iteratively modified and adapted to classify target data. In 
[47], Aytar and Zisserman develop a projective model transfer 
SVM (PMT-SVM), where a transformation matrix is learned 
to adapt SVM decision boundaries across domains. Hoffman 
et al. [48], develop the max-margin domain transfer (MMDT) 
approach, where a linear SVM decision boundary for a source 
is transformed to classify target data. Their work is an extension 
of the seminal work by Saenko et al. [49], where a transformation 
matrix is learned to cluster the source and target data based on 
category. Both of these methods consider a few labeled samples 
in the target domain. Other linear procedures project the source 
and the target data to a common subspace, where domain align-
ment is bettered. In [50] and [51] the authors estimate a common 
subspace to align the principal axes of the source and target fea-
ture spaces.

When linear feature-based approaches like linear transforma-
tions are inadequate in overcoming domain disparity, nonlinear 
techniques are applied to ameliorate the domain discrepancy 
between the source and the target. Nonlinear transformations 
project the data points to a high-dimensional space and align 
the domains in that space. Reducing domain disparity through 
nonlinear alignment of data has been made possible with the 
maximum mean discrepancy (MMD), which is a nonparametric 
distance estimate designed by embedding the data into a repro-
ducing kernel Hilbert space (RKHS). The data are mapped to a 
high-dimensional (possibly infinite-dimensional) space defined 
by ( ) [ ( ), , ( )].x xX n1 fz zU = :R Hd

"z  defines a mapping 
function, and H  is a RKHS. When two data sets belong to the 
same distribution, their MMD is zero. Gretton et al. in [52], intro-
duced the MMD to estimate the distance between the source and 
the target data sets, which is given by

.x x
n n
1 1MMD

s
i
s

i

n

t
j
t
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1 1

2

H

s t

z z= -
= =

^ ^h h/ / (2)

The distance between the two distributions is the distance 
between their means in an RKHS. When the RKHS is uni-
versal, the MMD measure approaches zero only when the 
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distributions are the same. Many nonlinear domain adaptation 
methods apply the MMD in different ways to align the source 
and target domains.

In [53], the authors apply MMD to introduce the domain 
transfer SVM (DTSVM) for video concept detection. Some 
other procedures apply MMD to reweigh the data points in the 
source domain to select source data that are similar to the target 
when training a domain adaptive classifier [42], [54], [55]. Spec-
tral methods apply the MMD to achieve nonlinear alignment of 
domains. Kernel-principal component analysis (Kernel-PCA) is 
combined with MMD to determine nonlinear projections that 
transform the source and target to a common subspace, as in [32], 
[56], and [57]. Manifold-based approaches are also popular in 
domain adaptation for computer vision, where the subspace of a 
domain is treated as a point on the manifold. The curve connect-
ing two subspaces is sampled to determine the transformations 
that are necessary to transform the source subspace into the tar-
get subspace [58]. In [30], the authors determine a product of an 
infinite number of such transformations that projects the source 
subspace into the target subspace using the geodesic flow kernel. 
These are some of the popular techniques for domain adaptation 
without using deep networks. More detailed surveys of shallow 
domain adaptation approaches can be found in [1], [59], and [60].
Likewise, the bounds for the expected error on the target and the 
theoretical foundations of domain mismatch are outlined in [61] 
and [62].

Insights
Recent years have seen deep-learning systems outperform 
most nondeep-learning techniques across multiple problems in 
computer vision, including domain adaptation. Does this mean 
that shallow domain adaptation procedures are obsolete? Not 
quite. Most of the deep learning domain adaptation procedures 
are based on shallow domain adaptation techniques as out-
lined in the following sections [63]–[65]. Objective functions 
based on shallow domain adaptation procedures guide deep 
networks to extract highly adaptive representations. Research 
and advances in shallow adaptation techniques are necessary 
for progress in domain adaptation. Shallow methods do not 
require expensive graphics processing unit systems for deep 
learning. When training data sets are small or real-time per-
formance is needed, shallow domain adaptation techniques are 
preferred over deep-learning systems.

Deep-learning domain adaptation: Survey
In recent years, deep neural networks have revolutionized the 
field of machine learning and computer vision. Deep-learning-
based domain adaptation has outperformed nondeep-learning 
algorithms because of the highly discriminatory nature of the 
features extracted using deep neural networks. The progress of 
research in computer vision can be directly linked to the advanc-
es in feature extraction and representation techniques. Feature 
representation is the process of representing the spatial (or spa-
tiotemporal) information in an image (or video) as a vector. Fea-
ture descriptors like SIFT and HOG are handcrafted techniques 
for feature representation that are task and data agnostic. Feature 

representations determined using deep networks are task and 
data specific. The loss functions guide the network in determin-
ing the best features for a given data set to achieve a specific task. 
This is the main advantage of using deep neural networks, which 
becomes more evident in domain adaptation. 

Shallow domain adaptation approaches are considered 
to be fixed representation approaches. In a fixed representa-
tion approach, the features are predetermined and fixed, and 
domain adaptation is performed using these predetermined 
features. On the other hand, deep-learning-based domain 
adaptation methods extract transferable feature represen-
tations specific to the data and the adaptation task at hand. 
The unrivaled success of deep-learning methods in domain 
adaptation can be attributed to this aspect. Feature representa-
tions using deep neural networks are highly nonlinear due to 
multiple levels of nonlinearity in the feature extraction pro-
cess. They are also termed hierarchical features due to the 
hierarchical nature of the model and the nonlinear multilayer 
structure of the network. In this section, we categorize the lit-
erature in domain adaptation based on these hierarchical fea-
ture representations.

Naïve hierarchical methods
Deep convolutional neural networks (CNNs) have been shown 
to be very good feature extractors. Deep CNNs trained on mil-
lions of images are, by themselves, very good feature extrac-
tors, not just for the data set they are trained on, but for any 
generic image. In [66], Razavian et al. have demonstrated how 
a deep CNN trained on the ILSVRC 2013 ImageNet data set 
[67] can be used for extracting generic features for any image. 
Regular SVMs trained on these generic features have shown 
astounding results across multiple applications like scene rec-
ognition, fine-grained recognition, attribute recognition, and 
image retrieval. A pretrained CNN can be used to extract gener-
ic features for the source and the target. This can be termed as a 
naïve form of domain adaptation.

Pretrained deep neural networks can also be fine-tuned to 
the task at hand. It is well documented that the lower layers of a 
CNN extract generic features that are common across multiple 
tasks, and the upper layers extract task-specific features. Fea-
tures transition from general to specific by the last layer of the 
CNN. The work by Yosinski et al. in [68] captures the extent 
of generality and specificity of neurons in each layer. Transfer-
ability has been shown to be negatively affected by two issues: 
1) the specificity of neurons (to the source task) in the upper 
layers adversely affects transfer to the target task, and 2) the 
fragile nature of dependencies between layers that are task 
specific inhibits the reuse of layers across different tasks. Add-
ing new layers to a pretrained (trained on source data) network 
and retraining it with target data is another intuitive method to 
transfer knowledge in a deep-learning setting. When the entire 
newly adapted network is fine-tuned with target data, it can 
lead to a very efficient adaptation. This form of adaptation has 
been explored in [69]. The authors demonstrate a procedure to 
reuse the layers trained on the ImageNet data set to compute 
midlevel representations for images. Despite the differences 
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in image statistics, these features lead to improved results for 
object and action classification for different data sets.

The authors in [70] study the features extracted from the 
final layers of a deep neural network for a fixed set of object 
classification and detection tasks. The generic features from the 
fifth, sixth, and seventh fully connected layers of an AlexNet 
[43] show remarkable adaptation properties and outperform 
state-of-the-art methods in classification and detection. Where-
as [70] studied adaptation using CNNs, [71] studied adaptation 
of features extracted using stacked denoising autoencoders for 
text-based sentiment classification.

Insights
To boost the performance for a data set using a shallow proce-
dure, naïve methods can be applied using deep networks as fea-
ture extractors [69], [70]. Sometimes, there may be constraints 
to deploy only shallow methods due to data set size, hardware 
resources, etc. In such situations, naïve methods can be very 
effective. When domain discrepancy between the source and 
the target is not very large, pretrained deep networks provide 
highly adaptive features for the source and target.

Adopted shallow methods
These sets of deep-learning methods adopt shallow (nondeep 
learning) domain adaptation procedures in a deep neural net-
work. In these approaches, the features extracted by the lay-
ers of the deep network are learned to be domain invariant. 
Domain alignment is achieved either through MMD, moment 
alignment [64], or a loss function that drives the source and 
target classifiers to be indistinguishable. In discussing these 
methods, the central idea is outlined, leaving out the details 
of network architecture, optimization procedures, loss func-
tions, etc.

In [72], the authors adapt an AlexNet [43] to output domain 
invariant features in the final, fully connected fc8 layer in the 

deep domain confusion algorithm. The network has two loss 
components: 1) softmax classification loss for the source data 
points and 2) domain confusion loss. The network minimizes 
an MMD loss over the source and target data outputs of the fc8
layer in every minibatch during training. This is termed the 
domain confusion loss. A related idea is studied in [73], where 
the network has a domain confusion loss along with a domain 
classification loss. The domain classification loss ensures the 
output feature representations of the source and target data are 
distinct. This is in contrast to the goal of the domain confusion 
loss, which tries to learn domain-invariant representations. 
The network is trained to alternately minimize the two losses 
and reach an equilibrium. Both of these methods assume the 
presence of a few labeled samples in the target domain.

Long et al. introduce the deep adaptation networks (DAN) 
model [63], which extends the concept of domain confusion by 
incorporating an MMD loss for all of the fully connected layers 
( , ,fc fc6 7  and )fc8  of the AlexNet. The MMD loss is estimated 
for the feature representations over every minibatch during train-
ing. The work also introduces MMD estimation computed with 
an efficient linear complexity based on [74]. The linear MMD 
estimation is also unbiased because the MMD for the entire 
source and target data can be expressed as the sum of MMD 
across minibatches. Based on the network architecture of the 
DAN [63], Venkateswara et al. [65] develop a hashing algorithm 
for domain adaptation. The architecture of the domain adaptive 
hash (DAH) network is based on the VGG-F, and domain align-
ment is achieved using MMD just like in the DAN. Figure 1
depicts the architecture of the DAH, which is similar to the 
DAN. The network is trained in an iterative manner using 
batches comprising source and target data. The loss func-
tion of the DAH has three components: 1) MMD loss for the 
fully connected layers fc6, fc7, and hash-fc8, which aligns the 
features of the two domains; 2) supervised hash loss for the 
source, which extracts unique hash codes for every category 
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FIGURE 1. The DAH [65] network outputs hash codes of d dimensions for the source and target images. The architecture of the DAH is similar to the 
domain adaptation network [63]. Adaptive features are extracted by using an MMD loss between the source and target data points in each subset for the 
fully connected layers fc6, fc7, and hash-fc8.  fc: fully connected. conv: convolution. (Figure used courtesy of [65].)
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in the source and similar hash codes for images belonging to 
the same category; and 3) unsupervised entropy loss that guides 
the unlabeled target data to align its hash codes according to the 
source hash codes. The DAH network solves two important prob-
lems: classification with weak supervision or insufficient labels 
(through domain adaptation) and determining hash codes in an 
unsupervised setting (hash codes for target data).

An extension to DAN is achieved with the residual transfer 
network (RTN) in [75], which implements a residual layer as the 
final layer of the network in addition to a softmax loss. In the 
RTN, feature adaptation is achieved with MMD loss, and the 
source and target classifier adaptation is implemented through 
the residual layer [76]. The source classifier ( )xfS  is tightly 
coupled with the target classifier ( ),xfT  varying with only a 
slight perturbation ( ( )),xf fTD  which is learned by the network, 
with ( ) ( ) ( ( )).x x xf f f fS T TD= +  In addition, the source classi-
fier is constrained by the softmax loss over the source data, and 
the target classifier is constrained with unlabeled entropy loss 
over the target data.

Compacting deep neural networks and reducing the num-
ber of parameters are essential for creating smaller, more man-
ageable networks. These procedures usually replace the larger 
convolutional layer kernels with kernels of size 1 × 1 and 3 × 3. 
Although such procedures produce networks that maintain the 
classification accuracies, Wu et al. [77] note that the adaptability 
of these networks is adversely affected, resulting in low accura-
cies for domain adaptation. Wu et al. propose a set of layers called 
Conv-M, which consist of multiscale convolution and deconvolu-
tion with kernels larger than 3 × 3. The proposed compact net-
work also uses MMD to align the source and target features at 
multiple layers and produces state-of-the-art results on the stan-
dard Office and Office-Caltech data sets. The network is also 
guided with a reconstruction loss that reconstructs images using 
the encoded feature representations. The domain reconstruction 
and classification network developed by Ghifary et al. [78] is 
also guided by a reconstruction loss that decodes the feature 
encoding along with a standard classification loss.

While the MMD is a standard nonparametric measure used 
to align the features of the domains, Koniusz et al. [4] propose 
a technique to align the higher-order statistics of the features. 
The scatter statistics of samples belonging to a class (within-
class) are aligned across the two domains. These include 
the means, scale/shear, and orientation measures of samples 
belonging to a single class. The procedure also maintains good 
separation for between-class scatters to enhance classification 
accuracies. Unlike the popular unsupervised setting, this deep-
learning technique is trained using a few labeled data from the 
target domain.

In all of these deep domain adaptation approaches, the 
weights are shared between the source and the target network 
to ensure domain invariant features. The authors in [79] argue 
that merely ensuring domain invariant features may be detri-
mental to the discriminative power of the features. Their model 
is a twin network (one for the source and another for the target) 
with a loss function over the weights for every source target 
layer pair. The loss term ensures the weights of the source and 

the target are closely related (but not identical). The source 
network is trained with a softmax loss over the source data, 
and both the networks also minimize the MMD loss to extract 
domain invariant features.

Insights
Adopted deep methods are well suited for medium-sized data 
sets (thousands of images like Office). These data sets are large 
enough to fine-tune a deep network but not too large to fully 
train a deep network from scratch. A pretrained deep network 
like Alexnet [43] is often used as a base network and fine-tuned 
for domain adaptation [63], [65]. One technique to adopt a shal-
low method is determining a closed-form solution that can then 
be modeled as an objective function for a deep network [64].

Adversarial learning methods
In recent years, one of the most significant advances to deep 
learning has been the introduction of generative adversarial 
networks (GANs) by Goodfellow et al. [80]. GANs are net-
works that generate data (text, images, audio, etc.) such that 
the data follow a predetermined distribution ( ).P X  A vanilla 
GAN implementation has two deep networks, generator ( )g $
and discriminator ( ),f $  competing against each other. The gen-
erator network takes in a noise vector z Rd!  sampled from a 
uniform or normal distribution and generates an output ( ).zg
The discriminator takes in ( )x P X!  and ( )zg  and tries to 
discriminate between the two. The generator network tries to 
fool the discriminator network by generating data that appear 
to belong to ( )P X , and the discriminator tries to distinguish 
between real images and fake images. The equilibrium is a 
saddle point in the network parameter space. The core concept 
of the GAN is applied to achieve domain adaptation. Whereas, 
in a standard GAN, a noise vector z Rd!  is converted into 
a fake image, in a domain adaptive setting, a source image 
is converted into a fake target image. The pixel-GAN in [33]
is a straightforward extension of the GAN for unsupervised 
domain adaptation. In this model, along with a noise vector 
input ,z  the generator inputs the source image and is trained to 
convert it into a target image. The discriminator, on the other 
hand, is trained to distinguish between real target images and 
generated target images (fake target images generated from 
the source). In addition, a separate network is trained to clas-
sify the generated target images. Along similar lines, Taigman 
et al. [81] develop an image translation network that converts 
an image from one domain into an image in another domain 
using adversarial networks. There have been many recent works 
applying adversarial training for domain adaptation. A few of 
the most recent procedures based on the core GAN idea but 
with subtle variations are [82]–[85].

In the domain adversarial neural network (DaNN) in [86],
the authors train a deep neural network in a domain-adversar-
ial manner for image classification-based domain adaptation. 
The bottom layers of the network act as feature extractors. The 
features from the bottom layers are fed into two branches of the 
network. The first branch is a softmax classifier trained with the 
labeled source data. The second branch is a domain classifier 
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trained to distinguish between the features of the source and the 
target. The key to the DaNN is the gradient reversal layer con-
necting the bottom feature extraction layers and the domain clas-
sifier. During back propagation, the gradient from the domain 
classifier is reversed when learning the feature extractor weights. 
This technique is popularly called the gradient reversal. In this 
way, the feature extractor is trained to extract domain invariant 
features. A closely related work is presented in [87].

Liu and Tuzel implement a coupled GAN model (CoGAN) 
in [88]. The CoGAN trains a coupled network, which shares 
weights at different layers of the GAN. It is set up so that the 
lower layers of the generators and the upper layers of the dis-
criminators share weights. A common noise vector, ,z  is fed 
into the two generators ( )g1 $  and ( )g2 $  to generate outputs 

( )zg1  and ( ).zg2  These outputs are fed into two discrimina-
tors ( )f1 $  and ( ).f2 $  Discriminator ( )f1 $  is trained to discrimi-
nate between ( )zg1  and the source .xs  Likewise, discriminator 

( )f2 $  is trained to discriminate between ( )zg2  and the target 
.xt  Additionally, the source discriminator has a softmax layer 

to classify the source data points .xs  The CoGAN was tested 
with MNIST and USPS data to yield impressive unsupervised 
domain adaptation results. In an extension to the CoGAN, the 
authors Liu et al. [89] develop an image translation network 
that combines the CoGAN with a variational autoencoder [90].
This image translation network converts images in the target 
domain to images in the source domain, which enables effi-
cient classification of target data with a source classifier.

Insights
Adversarial methods are the latest trend in deep learning, and 
they have shown remarkable performance in domain adapta-
tion. When there is a need to model the source domain distribu-
tion, generative models like adversarial networks are beneficial. 
GANs can be used for image translation [91], converting images 
from one domain to the other [33], [89]. However, they require 
large data sets to fully train a deep network since fine-tuning has 
so far not been implemented with GANs.

Miscellaneous hierarchical methods
One of the earliest procedures for deep-learning domain adapta-
tion was proposed by Chopra et al. [92]. The deep learning for 
domain adaptation by interpolation between domains learns a 
cross-domain representation by interpolating the path between 
the source and target domains along the lines of [58]. Multiple 
data sets with varying ratios of source and target data points are 
sampled to create intermediate representations between the two 
domains. The final cross-domain feature is a concatenation of all 
of the intermediate feature representations.

Hu et al. [93] develop a metric learning method for supervised 
transfer learning using clustering. The deep transfer metric learn-
ing model trains a deep neural network to minimize intraclass 
distances and increase interclass distances. Additionally, the fea-
tures of the last layer of the network are learned to be domain 
invariant by minimizing the MMD between the source and 
target feature outputs. Sener et al. [94] develop a deep-learning 
approach that imputes the labels for the target in a transductive 

learning environment. Using these imputed target data labels, the 
largest margin, nearest-neighbor loss is applied to ensure cyclic 
consistency of label assignment, and a k-nearest neighbor graph 
over the target data points is applied to implement structural con-
sistency.  The deep network predicts the labels so as to minimize 
intraclass distances and maximize interclass distances.

Sun et al. [95] develop a domain transfer method called the 
localized action frame (LAF) for fine-grained action localization 
in temporally untrimmed videos. The LAF motivates domain 
transfer between weakly labeled web images and videos. The 
domain transfer works in both directions: the video frames are 
used to select web images that are relevant and drop nonaction 
web images, and, in turn, the web images are used to select action-
like frames and drop nonaction frames in the video. After the rel-
evant frames and images are selected, a long short-term memory 
network to is used to train a fine-grained action detector to model 
the temporal evolution of actions and classify the action in the 
frames. The work also released a data set of sports videos with 
more than 130,000 videos from 240 categories.

Bousmalis et al. [96] train domain separation networks to 
extract domain-invariant feature representations and domain-
specific representations of source and target data. A shared 
encoder network ( )xEc  is trained to extract domain invariant 
feature representations for the source and the target data. Private 
encoder networks ( )xEp

s  and ( )xEp
t  for the source and target, 

respectively, are trained to extract feature representations that 
are distinct from the domain-invariant representations that are 
the outputs of ( ).xEc  A shared decoder network is trained to 
reconstruct the original input data based on the outputs from 

( ), ( ),x xE Ec p
s  and ( ).xEp

t  A classifier is trained with the source 
outputs of ( ).xEc  The feature representations that are the outputs 
of ( )xEc  can be declared domain-invariant.

Insights
The miscellaneous hierarchical methods do not fall into any of 
the previous categories. With the success of deep learning, there 
has been a significant growth in the adoption of deep learning 
for domain adaptation. So far, there has not been any clas-
sification system for the steadily increasing number of deep-
learning domain adaptation models. This article provides a 
preliminary classification system to guide researchers studying 
deep-learning domain adaptation. With the introduction of new 
data sets, the modeling of domain-shift, and advances in deep 
domain adaptation, a more rigorous classification system can be 
developed over time.

Directions for future research
While the problem of variations in data coming from different 
distributions is outstanding, the solutions provided by domain 
adaptation models are not easily applied to real-world applica-
tions in computer vision. This can be attributed to the man-
ner in which domain adaptation models are currently being 
developed and evaluated in the research community. From the 
early approaches toward general domain adaptation [97] and 
vision-based domain adaptation [58] to current-day models 
[4], [33], the standard setup with well defined source and target 
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data sets and a shared label space has remained constant. 
Well-defined source and target data sets, discrete and shared 
label spaces, and constraints on labeled and unlabeled data are 
possibly some of the reasons for limiting the applicability of 
domain adaptation to real-world settings. This section discuss-
es a few problems with the way domain adaptation models are 
developed and evaluated in the research community along with 
some proposals for changes. Directions for future research in 
domain adaptation are later outlined. Most of the proposed 
solutions in domain adaptation are based on models developed 
in the following environment:
1) Two different data sets are used to represent the source 

and the target domains. Domain adaptation models trained 
on specific data sets may perform exceedingly well, adapt-
ing between the two data sets. These models do not guar-
antee the same performance when adapting between 
different data sets. Every new pair of data sets may require 
training its own adaptation model. A more universal 
approach would be to have two well-defined domains 
(rather than data sets) to represent the source and the tar-
get. Algorithms developed to address a particular domain 
shift can guarantee performance across applications that 
encounter the same domain shift.

2) The source data set is labeled, and the target data set is 
unlabeled in unsupervised domain adaptation. This ap -
pears to be a stringent and restrictive constraint because, in 
a real-world setting, it is possible to have a few labeled 
samples for the target data set. Most domain adaptation 
models do not account for labeled target data. Optimal 
model-parameters and model-design choices, which are 
usually estimated using a labeled validation set, cannot be 
applied for unsupervised domain adaptation because there 
are no labeled target examples. There is no prescribed pro-
cedure to validate the model parameters of current domain 
adaptation methods [32], [56], [98]. A few labeled target 
examples are essential for validation purposes. Tzeng at al. 
[39] outline a semisupervised adaptation model, where 
some of the categories in the target have a few labeled data 
points. Domain adaptation models that account for a few 
labeled data points in the target domain can only outper-
form their unsupervised counterparts.

3) The label space of the source and target is exactly the same. 
Domain adaptation models assume a shared label space 
between the source and target domains. Most real-world 
scenarios satisfy such a criteria. However, robust domain 
adaptation models should account for a relaxed setting, 
where there is no restriction on the label space of the domains 
being exactly the same.

4) Current domain adaptation approaches are modeled to solve 
only a specific subset of adaptation problems, which assume 
closed-world representations with a fixed set of discrete 
and disjoint labels. However, most real-world problems 
have generic representations, and they cannot be limited to 
discrete or disjoint label settings. Newer algorithms in 
domain adaptation must remodel the basic problem setup and 
evaluation protocol in step with real-world applications.

To solve real-world domain adaptation problems and eventu-
ally address the problem of artificial general intelligence, these 
changes are suggested in domain adaptation research. Apart 
from these changes to the basic approach in domain adapta-
tion, the following subsections outline the specific directions 
for future research in this area.

Modeling domain shift
The concept of a domain has been defined vaguely in computer 
vision. Images from different data sets are viewed as belong-
ing to different domains. Data sets have an inherent bias, and 
images from a data set have certain properties that can help 
identify the data set [99]. However, there has been limited 
effort in understanding what creates this bias and on model-
ing the domain shift between data sets. The authors in [100]
attempt to identify the domainness—a measure for domain 
specificity of an image.

The difficult problem of modeling domain shift in com-
puter vision has been rarely addressed. There has been work 
on identifying domains from a mixture of multiple data sets 
and then studying transfer of knowledge between the domains 
[101]. Although this does not necessarily model a domain, it 
provides some direction toward identifying a domain through 
analysis. The difficulties of modeling domain shift in comput-
er vision mostly arise due to variations in representation and 
not merely variations in the data being represented. The very 
process of imaging (camera perspective and occlusion), storage 
(resolution and size), and representation (color, brightness, and 
contrast) can lead to variations. Image background (context) 
is another cause for variation. Finally, the diversity in the real 
data itself could also lead to variations in their images.

Most domain adaptation systems create adaptive models 
that perform generic domain adaptation. The models are often 
guided by the data sets that are used. On the other hand, it 
might be beneficial to tailor the adaptation model to a specific 
variation in the data. This would, however, need a compre-
hensive understanding of domain shift. It might also lead to 
task-specific domain adaptation models based on the nature of 
domain-shift, leading to increased adoption of domain adapta-
tion in real-world applications.

New data sets
Current data sets for domain adaptation are not based on any 
models of domain shift. They are merely data samples com-
ing from different sources, all with the same categories. The 
domain difference between these data sets is attributed to the 
bias between the data sets, without a specific model character-
izing the domain shift [99]. The domain adaptation proce-
dures that are developed using these data sets can, therefore, 
be considered very generic. There is no guarantee on the 
performance of these procedures when applied to new prob-
lems. For example, if a domain adaptation approach were to 
be developed using the digit data sets USPS and MNIST [102],
there is no guarantee that this procedure would work well for a 
domain adaptation problem with medical images. On the other 
hand, if a data set were to be created based on a domain shift 
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model, then algorithms that are developed using this data set 
can be applied to any domain adaptation problem where the 
same domain shift is observed. This is one primary reason 
highlighting the need for introducing new data sets for domain 
adaptation based on modeling domain shift.

The standard data sets for computer vision-based domain 
adaptation are facial expression data sets CKPlus [103] and 
MMI [104], digit data sets SVHN [105], USPS, and MNIST
[102], head pose recognition data sets PIE [56], object recogni-
tion data sets COIL [56], Office [49], and Office-Caltech [30].
These data sets were created before deep learning became 
popular and are insufficient for training and evaluating deep 
learning-based domain adaptation approaches. A deep-learn-
ing model with millions of parameters requires millions of 
images for training. Current approaches fine-tune pretrained 
deep networks with these small data sets to avoid overfitting 
issues. The current data sets are small with a limited number of 
categories and limited variation. For instance, the most popu-
lar object-recognition data set Office has 4,110 images across 
31 categories. In addition, the image statistics of the three 
domains in Office are nearly identical.

Due to some inconsistencies in the Office data set [33], [96],
recent approaches evaluate their models using MNIST, modified-
MNIST, and SVHN data sets [33], [81], [85], [89], [94]. Recently, 
a couple of data sets have been introduced for deep-learning-
based domain adaptation. Office-Home is an object recognition 
data set that can be used to evaluate deep-learning algorithms 
for domain adaptation [65]. The Office-Home data set consists 
of four domains, with each domain containing images from 
65 categories of everyday objects and a total of around 15,500 
images. Castrejon et al. [8] introduce a multimodal domain 
adaptation data set CMPlaces with RGB, sketches, clipart, and 
textual descriptions of indoor scenes with 205 categories and 
millions of images. However, these data sets do not address all 
of the concerns regarding data sets, and newer and larger data 
sets are necessary based on modeling domain shift. Evolution 
in data sets and the evolution of models for domain shift need to 
complement each other.

Cross-domain generative models
Generative models like GANs are currently very popular in the 
computer vision research community [80]. They have a wide 
range of applications, including image superresolution [106], text-
to-image generation [107], [108], image-to-image translation [91],
and conditional image generation [109], [110]. Adversarial meth-
ods have been successfully applied in domain adaptation in the 
form of cross-domain image generation. Cross-domain generative 
models transform images from one domain into images in another 
domain [91]. These models can be applied to transform labeled 
source images into target images. These transformed images are 
then used to train a target classifier [81], [88], [89]. One can argue 
that cross-domain generative models learn a transformation, map-
ping the images from one domain into another. This is a unique 
procedure to achieve domain adaptation in the space of images. 
Current procedures in domain adaptation learn to adapt either 
the classifiers [10], [47], [49], [111] or the features [32], [50], [63].

Cross-domain generative models enable adaptation in the image 
space itself. Evolution in cross-domain generative models will 
provide robust mechanisms for accurately mapping the image 
spaces across domains, thereby alleviating the need for labeled 
target data. Classifier and feature adaptation can also be applied 
on top of image translation to enhance domain adaptation. Cross-
domain generative modeling is a relatively new frontier in com-
puter vision research with promising results in domain adaptation.

Joint distribution models
Current forms of adaptation merely align the marginal distri-
butions of the source ( )P XS  and the target ( ).P XT  The popular 
MMD measure from [52] is often applied to align the marginal dis-
tributions of the source and target data, as described in the instance 
selection approach [55]. The goal of domain adaptation is not 
merely aligning the domains but also being able to use the models 
trained on the source on the target. In most cases, the domain adap-
tive models are created for classification. It would, therefore, make 
more sense to align the joint distributions ( , )P X YS  with ( , )P X YT

rather than merely the marginal distributions. The alignment of 
joint distributions will make a classifier trained on the source an 
effective classifier for the target.

The challenge with this approach is that target labels are not 
available in unsupervised domain adaptation. The workaround is 
to impute the target data labels and refine them iteratively. There 
has been work in this regard as in [56], where the joint distributions 
are aligned in a spectral method using kernel-PCA by imputing 
the labels and refining them over multiple iterations. A deep-
learning approach has also been attempted in this regard in [112],
using a transductive approach to learn the target labels while also 
minimizing the joint domain discrepancy. As discussed in the 
section “Miscellaneous Hierarchical Methods,” Sener et al. [94]
develop a deep-learning approach that imputes the labels for the 
target in a transductive learning environment. The aforemen-
tioned approaches use the predicted target data labels to ensure 
joint distribution alignment. Conditional generative models along 
with joint distribution alignment could usher in the next wave of 
domain adaptation models.

Person-centered models
Very soon, computing is going to become all pervasive. The 
environment is plugged with computing devices, and an aver-
age person carries quite a few smart-devices like a phone, watch, 
wristband, etc. Can this computing be adapted to every user? 
Computing that adapts to a user’s needs and idiosyncrasies can 
be called person-centered computing [113]. This would mean 
that personal devices would model their interaction and response 
based on the user’s needs rather than a one-size-fits-all approach 
where users train themselves to adapt to their devices to effec-
tively interact with them. This paradigm, where the user and the 
device adapt to each other, is termed coadaptation.

These personalized devices will need to be designed to have 
core functional components making them applicable to a broad 
range of users. In addition, they must also have coadaptive com-
ponents that help customize the device at an individual user level. 
The device must adapt to the user based on patterns gathered 
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from user interaction with the device. The learning models for 
coadaptation will be based on unsupervised domain adaptation, 
which would involve gleaning patterns from unlabeled user inter-
action data. There has been no work so far in the domain adapta-
tion literature for person-centered device adaptation, and these 
person-centered adaptive models would make technology more 
accessible, especially to individuals with disabilities.

Conclusions
The current generation of artificial intelligence systems can 
outperform humans in a narrow set of tasks like playing chess 
or GO. Even though deep neural networks have contributed to 
the unprecedented progress of artificial intelligence research in 
the last few years, artificial general intelligence has, so far, been 
elusive. To advance artificial intelligence, computational sys-
tems will need the ability to transfer learning and progressively 
augment knowledge. Transfer learning paradigms like domain 
adaptation will be key to heralding the next generation of arti-
ficial intelligence systems. The current generation of domain 
adaptation models is dominated by deep-learning systems. Prior 
to the advent of deep learning, domain adaptation approaches 
had to develop adaptive computational models based on fixed 
representations of data. Deep-learning systems have found great 
success in domain adaptation because of their ability to extract 
domain aligned features specific to the adaptation task. This 
has led to a surge in domain adaptation research in recent years, 
and this article has provided a survey of literature in the area 
of domain adaptation based on deep learning. In this survey, 
we have outlined the concept of knowledge transfer across 
computational models and categorized the different paradigms 
of transfer and compared them with domain adaptation. This 
article is meant to provide a clear understanding of the scope of 
research in domain adaptation and also highlight the promising 
directions for future research.
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 DEEP LEARNING FOR VISUAL UNDERSTANDING
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Jongyoo Kim, Hui Zeng, Deepti Ghadiyaram, 
Sanghoon Lee, Lei Zhang, and Alan C. Bovik

Deep Convolutional Neural Models 
for Picture-Quality Prediction
Challenges and solutions to data-driven image quality assessment

Convolutional neural networks (CNNs) have been shown to de-
liver standout performance on a wide variety of visual informa-
tion processing applications. However, this rapidly developing 

technology has only recently been applied with systematic energy 
to the problem of picture-quality prediction, primarily because of 
limitations imposed by a lack of adequate ground-truth human 
subjective data. This situation has begun to change with the de-
velopment of promising data-gathering methods that are driving 
new approaches to deep-learning-based perceptual picture-quality 
prediction. Here, we assay progress in this rapidly evolving field, 
focusing, in particular, on new ways to collect large quantities of 
ground-truth data and on recent CNN-based picture-quality pre-
diction models that deliver excellent results in a large, real-world, 
picture-quality database.

Introduction
Recent years have seen significant efforts applied to the devel-
opment of successful models and algorithms that can auto-
matically and accurately predict the perceptual quality of 
two-dimensional (2-D) and three-dimensional (3-D) digital 
images and videos as reported by human viewers [1]. Concur-
rently, there has been a tremendous surge of work on exploiting 
large data sets of annotated image data as inputs to deep neu-
ral networks (NNs) toward solving such challenging problems 
as image classification and recognition [2]. These efforts have 
often produced dramatic improvement relative to the state of 
the art. It is perhaps unsurprising that very deep models, having 
universal representation capability, should produce excellent 
results when trained on massive data sets using fast graphi-
cal computing architectures. Nevertheless, the generalization 
capability of these models is remarkable.

Yet, until recently, there has been limited effort directed 
toward optimizing picture-quality prediction models using deep 
networks, although, in principal, this could also lead to greatly 
improved performance. The practical significance of the problem 
and the relative ease of implementing algorithms learned on deep 
architectures make this a compelling topic. The explosive con-
sumption of visual media in recent years, owing to advances in 
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digital camera technology, digital television, streaming video ser-
vices, and social media applications, is driving a critical need for 
improved picture-quality monitoring. The pipelines from picture 
content generation to consumption are fraught with numerous 
sources of distortions, including blur, noise, and artifacts arising 
from such processes as compression, scaling, format conversion, 
color modification, and so on. Multiple interacting distortions 
are often present, which greatly complicates the problem. Pic-
ture-quality models that can accurately predict human-quality 
judgments can be used to greatly improve consumer satisfaction 
via automatic monitoring of the qualities of massively distrib-
uted pictures and videos and to perceptually benchmark picture 
processing algorithms such as compression engines, denois-
ing algorithms, and superresolution systems that substantially 
affect viewed picture quality. While many successful picture-
quality models have been devised, the problem is hardly solved, 
and there remains significant scope for improvement [3]. Deep-
learning engines offer a potentially powerful framework for 
achieving sought-after gains in performance; however, as we 
will explain,  progress has been limited by a lack of adequate 
amounts of distorted picture data and ground-truth subjective 
quality scores, which are much harder to acquire than other 
kinds of labeled image data. Furthermore, typical data-augmen-
tation strategies such as those used for machine vision are of 
little use on this problem.

Perceptual picture-quality prediction
Picture-quality models are generally classified according to 
whether a pristine reference image is available for comparison. 
Full-reference and reduced-reference models assume that a 
reference is available; otherwise, the model is no-reference, or 
blind. Reference models are generally deployed when a process 
is applied to an original image, such as compression or enhance-
ment. No-reference models are applied when the quality of an 
original image is suspect, as in a source inspection process, or 
when analyzing the output of a digital camera. Generally, no-
reference prediction is a more difficult problem.

Both reference and no-reference picture-quality models rely 
heavily on principles of computational visual neuroscience and/
or on highly regular models of natural picture statistics [1]. Here-
tofore, the most successful no-reference models have relied on 
powerful but shallow regression engines to achieve results that 
approach the prediction accuracy of reference-quality predictors.

Deep learning and CNNs
Deep learning has had a transformative impact on such difficult 
problems as speech recognition and image classification, achiev-
ing improvements in performance that are significantly supe-
rior to those obtained using conventional model-based methods 
optimized using shallower networks. In particular, most of the 
top-ranked image recognition and classification systems have 
been optimized using CNNs. One of the principal advantages 
of deep-learning models are the remarkable generalization capa-
bilities that they can acquire when they are trained on large-scale 
labeled data sets. Models learned using conventional machine-
learning methods are heavily dependent on the determination 

and discrimination capability of sophisticated training features. 
By contrast, deep-learning models employ multiple levels of lin-
ear and nonlinear transformations to generate highly general data 
representations, thereby greatly decreasing dependence on the 
selection of features, which are often reduced simply to raw pixel 
values [2], [4]. In particular, deep CNNs optimized for image 
recognition and classification have greatly outperformed conven-
tional methods. Open-source frameworks such as TensorFlow 
[5] have also greatly increased the accessibility of deep-learning 
models, and their application to diverse image processing and 
analysis problems has greatly expanded.

Unlike traditional NNs, CNNs can be adapted to effectively 
process high-dimensional, raw image data such as red, green, and 
blue (RGB) pixel values. Two key ideas underlie a convolutional 
layer: local connectivity and shared weights. Each output neu-
ron of a convolutional layer is computed only on a locally con-
nected subset of the input, called a local receptive field (drawing 
from vision science terminology). However, by stacking multiple 
convolutional layers, the effective receptive fields may enlarge 
to capture global picture characteristics. Usually, the parameters 
in a layer (i.e., filter weights) are shared across the entire visual 
field to limit their number. A common conception is that CNNs 
resemble processing by neurons in visual cortex. This idea largely 
arises from the observation that, in deep convolutional networks 
deploying many layers of adaptation on images, early layers of 
processing often resemble the profiles of low-level cortical neu-
rons in visual area V1, i.e., directionally tuned Gabor filters [6],
or neurons in visual area V2 implicated in assembling low-level 
representations of image structure [7]. At early layers of network 
abstraction, these perceptual attributes make them appealing 
tools for adaption to the picture-quality prediction problem.

An example of a CNN structure similar to those studied here 
is shown in Figure 1, which also illustrates the kernels learned 
and the feature maps obtained when the model is trained for the 
picture-quality prediction task. Generally, a CNN model con-
sists of several convolutional layers followed by fully connected 
layers. Some convolutional layers may be followed by pooling 
layers, which reduce the sizes of the feature maps. The fully con-
nected layers are essentially traditional NNs, where all of the 
neurons in a previous layer are connected to every neuron in a 
current layer.

Motivated by the great success of CNNs on numerous image 
analysis applications, we comprehensively review and analyze 
the use of deep CNNs on the picture-quality prediction problem.

Overview of the problem
Machine learning has played an important role in the develop-
ment of modern picture-quality models. Although these models 
have been largely driven by features drawn from meaningful 
quantitative perceptual models, mapping them against the wide 
variety of generally nonlinear, often commingled, and poorly 
understood distortions that occur in practice is a formidable prob-
lem. Sophisticated, yet shallow mapping engines such as support 
vector regressors (SVR), have produced good prediction results 
(against human-quality opinions), yet there remains substantial 
room for improvement [3], which greatly motivates the study of 
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deep learners for this problem. Figure 2 shows conceptual flow 
diagrams of reference and no-reference learned picture-quality 
predictors. A major difference of deep CNN models is the lack 
of a feature extraction stage, although preprocessing steps may 
still be put to effective use. In a deep CNN, features conducive to 
effective picture-quality prediction are ostensibly learned by the 
network during the training process. The preprocessing stages 
may include, for example, color conversion, local debiasing, local 

(divisive) normalization, or a domain transformation to sparsify 
[8] or reduce redundancy in the data.

Most popular learned picture-quality prediction models oper-
ate by regressing an extracted perceptual feature vector onto 
recorded subjective scores. Typically, shallow regressors such as 
SVRs, general regression NNs, or random forests have been used 
[9]–[11]. A deep CNN model can instead alternate feature extrac-
tion and regression stages. High-dimensional input data (raw or 

Kernels of
First Layer

Feature Maps
in the First Layer

Feature Maps
in the Second Layer

Feature Maps
in the Third Layer

Distorted Image

Kernels of
Second Layer

Kernels of
Third Layer

Subjective
Score

Fully Connected
Layers

(2 × 2)
Pooling

FIGURE 1. An example of a CNN structure for no-reference picture-quality prediction. The model consists of several convolutional layers followed by a few 
fully connected layers. An activation function is applied at each output of the NN processing flow.
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FIGURE 2. Flowchart comparisons of traditional learning-based and CNN-based reference and no-reference picture-quality models. Blue boxes indicate 
learning processes.
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preprocessed pixel values) can be fed into the CNN, and, over 
many iterations or epochs of training on a large data set, useful 
image representations are learned automatically. In the early lay-
ers of a deep CNN, low-level encoding or sparsifying features are 
learned, possibly followed by intermediate descriptors of feature 
correlations [7]. In the deeper layers, the learned features contain 
more abstract information that can capture relationships between 
image distortions and human perceptions of them. In a CNN, dif-
ferentiable feature aggregation or pooling stages are interspersed 
with feature extraction and regression stages, enabling effective 
end-to-end optimization. However, despite significant successes 
on a wide array of other image analysis problems, the application 
of deep learning networks to the picture-quality prediction prob-
lem has been complicated by a significant obstacle, which is a 
lack of an adequate amount of perceptual training data, including 
accurate local ground-truth scores.

The performance of deep-learning models generally depends 
heavily on the size of the available training data set(s). Currently 
available legacy, public-domain, subjective picture-quality data-
bases such as LIVE IQA [12] and TID2013 [13] are far too small 
to effectively train deep learning models. For example, the LIVE 
IQA and TID2013 databases each contains fewer than 30 unique 
image contents and no more than 24 different types of distortions 
per image, all of which are synthetic [This is as applied to pristine 
images by a database designer. Algorithm-generated distortions 
such as Gaussian blur (GB), noise, mean shifts, and so on, con-
tained in these databases are poor models of picture impairments 
that actually arise in consumer digital photographs. Even JPEG/
JPEG2000-coded images are created using much more liberal 
amounts and spreads of compression (to create perceptual separa-
tions) than those produced by real image capture devices.] Even the 
recent LIVE “In the Wild” Challenge Database (hereafter, LIVE 
Challenge) [3], the largest available resource in most dimensions 
(with nearly 1,200 unique pictures, each afflicted by a unique, 
unknown combination of highly diverse authentic distortions and 
judged by more than 350,000 unique human subjects) is of insuf-
ficient size, although it provides an excellent challenge for any no-
reference model. By comparison, image recognition data sets such 
as ImageNet [14] contain tens of millions of labeled images. Creat-
ing larger subjective quality data sets is a formidable problem. Con-
trolled laboratory studies like [12] and [13] are out of the question, 
and even the crowdsourced study in [3] exhausted the pool of high-
quality human subjects available on Amazon Mechanical Turk.

Obtaining adequate quantities of reliable human subjective 
labels remains a very difficult problem. Unlike the binary (yes/no) 
confirmations of automatically generated labels that are delivered 
by online human subjects, as used in the construction of object 
recognition data sets like ImageNet [2], each of which might be 
generated in a second or less, collecting human-quality judgments 
is a complex, time-consuming psychometric task that is as much 
about assessing each subject’s response, as it is about the qual-
ity of the labeling the images. The human subjects determine 
an internal judgment of the overall quality of each image after 
holistically scrutinizing it, then record each of their judgments on 
a continuous, sliding subjective-quality scale, while consciously 
discounting factors such as image content or photographic aes-

thetics. This highly engaging task requires dozens or even hun-
dreds of human-quality raters to spend 5–10 s on each image. 
Each subject’s overall session is time-limited, to avoid reductions 
in attention and performance arising from vision fatigue.

Common strategies for attacking this labeled image paucity 
are data augmentation techniques, which seek to multiply the 
effective volume of image data via rotations, cropping, reflec-
tions, and so on. Unfortunately, with the likely exception of 
horizontal reflections, which we use later, applying these kinds 
of transformations to an image will generally significantly 
change its perceived quality. While generating a large amount 
of picture content is simple, ensuring adequate distortion diver-
sity and realism is much harder.

In another common strategy, the images used for training are 
divided into many small patches. However, this approach pro-
duces another problem—distinct local ground-truth subjective 
labels are not available for each of the patches. In every experi-
mental scenario to date, human subjects supply a single scalar 
subjective score on each global image. Since images, distortions 
of images, and human perceptions of both are all highly non-
stationary, the scores that subjects would apply to a local image 
patch will generally differ greatly from those applied to the 
entire image. Obtaining human judgments of local image patch 
quality is not practical, as it would greatly increase the overhead 
of acquiring human scores.

One way to try to overcome the lack of an adequate train-
ing data set is to utilize unsupervised learning, e.g., by training a 
restricted Boltzmann machine or an autoencoder [4] with convo-
lutional layers. With an unsupervised model, it is possible to train 
deep NN models on very large data sets having no ground-truth 
labels. However, picture-quality prediction is a subtle problem 
that involves modeling detailed interactions between distortion 
and content. Conversely, unsupervised models that are designed 
to work well on tasks such as image recognition, may succeed in 
part by learning to promote gross shape-related features, while 
suppressing small variations. For example, a denoising autoen-
coder can be trained to reconstruct an original image from a noisy 
one by enforcing robustness against small corruptions of the input 
data or adding a regularization term to the objective function. By 
contrast, the representations learned by a picture-quality predic-
tor must be particularly sensitive to local and global degrees of 
distortion as well as perceived interactions between content and 
distortion. Successful, generalizable, deep unsupervised picture-
quality prediction models have not yet been reported.

The need for large-scale subjective picture-quality data is 
underlined by the fact that the perception of picture distortions 
engages multiple complex processes along the visual pathway, 
including bandpass, multiscale, and directional decompositions 
[6]; local nonlinearities; and normalization mechanisms. For 
example, contrast masking [15], whereby the spatially localized 
energy of image content can reduce or eliminate the visibility 
of distortions, is well explained by a local cortical divisive nor-
malization model [16]. Successful reference and no-reference 
picture-quality models [9], [10], [15], [17] approximate these per-
ceptual mechanisms by various models. However, errors in these 
approximations, along with a lack of information describing other 
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relevant, perhaps higher-level processes, still limit their predic-
tion efficacy [3]. Traces of such human response properties exist 
and are embedded in human subject data. This suggests that they 
might be unraveled by a deep network served by enough data.

Conventional learning-based picture-quality predictors
The most successful reference picture-quality predictors, such 
as those deployed by the television industry, such as the Emmy-
winning structured similarity (SSIM) model [15] and the visu-
al information fidelity (VIF) index [18] (a core element of the 
VMAF processing system that quality-controls all Netflix content 
encodes) are not learned models but instead compute similarity 
or error measures modulated by perceptual criteria in some man-
ner. Performance is high since a reference error, whether implicit 
or explicit, is available to be analyzed using perceptual models. 
No-reference models operate without the benefit of an implied 
error signal, so their design has relied heavily on machine learn-
ing. Broadly, these models deploy perceptually relevant, low-
level feature extraction mechanisms based on simple, yet highly 
regular, parametric models of good-quality pictures. These natu-
ral scene statistics (NSS) models are predictably altered by the 
presence of distortions [18]. Simply stated, high-quality images 
subjected to bandpass filtering, followed by local energy normal-
ization, become substantially decorrelated and Gaussianized, 
while distorted images tend not to obey this model (although this 
is not always the case on authentically distorted pictures, as dem-
onstrated in [3]). Picture-quality prediction models of this type 
have been developed in the wavelet [18], discrete cosine trans-
form, sparse [8] and spatial domains [9], and have been applied 
to video signals using natural bandpass space-time video statis-
tics models [19], [20]. The FRIQUEE model [21] achieved state-
of-the-art performance on the LIVE Challenge database [3] by 
regressing on a “bag” of NSS features drawn from diverse color 
spaces and perceptually motivated transform domains. 

There have also been recent attempts to apply other, earlier 
types of deep-learning models to the no-reference picture-qual-
ity prediction problem. For example, Hou et al. trained a deep 
belief network on wavelet domain NSS features to classify dis-
torted images into five discrete score categories [17], and Li et 
al. regressed shearlet NSS features onto subjective scores using 
a stacked autoencoder [22]. These models generally used hand-
crafted feature inputs, were not trained via end-to-end optimiza-
tion, and achieved less impressive gains in performance.

CNN-based picture-quality prediction

CNN-based no-reference picture-quality models
As mentioned previously, several CNN-based picture-quality 
prediction models have attempted to use patch-based labeling to 
increase the set of informative (ground-truth) training samples. 
Generally, two types of training approaches have been used: 
patchwise and imagewise, as depicted in Figure 3. In the former, 
each image patch is independently regressed onto its target. In 
the latter, the patch features or predicted scores are aggregated or 
pooled, then regressed onto a single ground-truth subjective score.

The first application of a spatial CNN model to the picture-
quality prediction problem was reported in [23], wherein a 
high-dimensional input image was directly fed into a shallow 
CNN model without finding handcrafted features. To obtain 
more data, each input image was subdivided into small patch-
es as a method of data augmentation, each being assigned the 
same subjective-quality score during training. Following prior 
successful NSS-based models [9], [18], this method applies a 
process of local divisive normalization on each input image 
and uses both maximum (max) and minimum (min) pooling 
to reduce the feature maps. Patchwise training was used, and, 
during application, the predicted patch scores were averaged 
to obtain a single picture-quality score.

Image
Patches

CNN

CNN

Aggregation
/Pooling

Imagewise Training
Shared

Deep Model
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CNN
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FIGURE 3. Patchwise and imagewise strategies used to train patch-based picture-quality prediction models. First, an input image is partitioned into 
patches; then, each is fed into the same CNN model. In patchwise training, a proxy local score or global subjective score is used as a training target for 
each input patch. In imagewise training, extracted features or scores are aggregated, then regressed onto a single, global subjective score.
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Li et al. utilized a deep CNN model that was pretrained on 
the ImageNet data set [24]. A network-in-network (NiN) struc-
ture was used to enhance the abstraction ability of the model. 
The final layer of the pretrained model was replaced by regres-
sion layers, which mapped the learned features onto subjective 
scores. As in [23], image patches were regressed onto identical 
subjective-quality scores during training.

The labeling of local patches with global subjective-quality 
scores during training may be problematic. While the reported 
prediction accuracy of this model was competitive with that of 
handcrafted feature-based quality prediction models, it is not 
reasonable to expect local image quality to closely agree with 
global subjective scores, even when synthetic distortions are 
applied homogeneously. Picture quality is inevitably space-vary-
ing because of the high degree of nonstationarity of picture con-
tents and the complex perceptual interactions that occur between 
content and distortions (such as masking). A variety of training 
strategies have been studied as solutions to this problem.

Bosse et al. deployed a deeper, 12-layer CNN model fed 
only by raw RGB image patches to learn a no-reference pic-
ture-quality model [25]. They proposed two training strategies: 
patchwise training (similar to [23]) and weighted average patch 
aggregation, whereby the relative importance of each patch was 
weighted by training on a subnetwork. The overall loss function 
was optimized in an end-to-end manner. The authors reported 
state-of-the-art prediction accuracies on the major synthetic-
distortion picture-quality databases.

To overcome overfitting problems that can arise from a lack of 
adequate local ground-truth scores, several authors have suggest-
ed training deep CNN models in two separate stages: a pretrain-
ing stage, using a large number of algorithm-generated proxy 
ground-truth quality scores, followed by a stage of regression 
onto a smaller set of subjective scores. For example, [26] describes 
a two-stage CNN-based no-reference-quality prediction model, 
whereby local quality scores generated by a full-reference algo-
rithm are used as proxy patch labels in the first stage of train-
ing. In the second stage, the feature vectors obtained from image 
patches are aggregated using statistical moments, then regressed 
onto subjective scores. In this instance, the first stage is patch-
wise training, while the second stage is imagewise training. Since 
the local proxy scores reflect the nonstationary characteristics of 
perceived quality, they are reasonable local regression targets, 
and training of the CNN model is enabled by the abundant train-
ing samples. Following the second stage of training on human 
ground-truth, their model attains highly competitive prediction 
accuracy on the legacy data sets.

The same authors later developed a two-stage training 
scheme for no-reference picture-quality prediction called the 
deep image quality assessor (DIQA) [27]. The training pro-
cess of that model was separated into an objective training 
stage followed by a subjective training stage. Rather than using 
a sophisticated picture-quality predictor to produce proxy 
scores, they computed peak signal-to-noise (PSNR). Using 
only convolutional layers, feature maps were obtained, which 
were then regressed onto objective error maps. The second 
stage aggregated the feature maps by weighted averaging, then 

regressed these global features onto ground-truth subjective 
scores. The weighting maps were also learned during training. 
The reported prediction accuracy of these models is competi-
tive with state-of-the-art models on the legacy databases.

CNN-based full-reference picture-quality models
While CNNs were first used to model no-reference picture 
quality, more recently, they have been applied to the reference 
prediction problem as well.

Liang et al. [28] proposed a dual-path CNN-based full-refer-
ence-quality prediction model. They generalized the problem by 
seeking to predict quality using a nonaligned image of a similar 
scene as a reference. Locally normalized distorted and reference 
image patches are fed into a dual-path CNN model, each using 
the same parameter values. Then the concatenated learned fea-
ture vectors are regressed onto the subjective scores of source dis-
torted images. They report state-of-the-art prediction accuracies 
in both aligned and nonaligned full-reference scenarios.

Gao et al. deployed a deep CNN model pretrained on Ima-
geNet. They used it to conduct full-reference picture-quality 
prediction [29] by feeding pairs of reference and distorted pic-
tures into the CNN, where each output layer is used as a feature 
map. Local similarities between the feature maps obtained 
from the reference and distorted images are then computed 
and pooled to arrive at global picture-quality scores. The CNN 
model was not fine-tuned on any picture-quality database.

The deep CNN-based full-reference-quality prediction 
model in [30], called DeepQA, was trained to learn a visual 
sensitivity weight at each coordinate using measured local spa-
tial characteristics of the distorted image. DeepQA accepts the 
distorted image and an objective error map (e.g., mean squared 
error) as inputs. The learned weight map is then used as a mul-
tiplier on the objective error map. The authors reported consis-
tent state-of-the-art prediction accuracies as compared to other 
reference-quality models, on the synthetic-distortion legacy 
picture-quality databases.

Summary of CNN-based picture-quality models
Table 1 compares the implementations of reported CNN-based 
no-reference [23]–[27] and full-reference [28]–[30] picture-qual-
ity models. For full-reference models, the strategies used to com-
pare distorted and reference features are summarized in the last 
column. In [28] and [30], this merely amounts to supplying both 
to the network. Generally, the reviewed models were designed 
to overcome the lack of training data, which is the most impor-
tant issue that needs to be resolved to employ deep CNN models 
successfully. Most of the models used some type of patch-based 
training to increase the training data volume. Several of the mod-
els used proxy ground-truth scores generated by objective-quality 
prediction models to augment the subjective scores or, alternate-
ly, to pretrain the network on a large amount of easily generated 
proxy data before fine-tuning on subjective scores. Since we have 
found no serious attempts to use unsupervised deep models, we 
make no comparisons of this type, although the success of the 
very simple model [31] suggests this is an interesting research 
direction. Finding ways to embody models of perception into 
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deep picture-quality models is also an issue. While simpler mod-
els often use perceptually relevant bandpass processing and local 
divisive normalization [23], similar processes may be learned by 
the network at the early stages. However, it should be possible to 
impose perceptual weighting or pooling strategies on the network 
to account for aspects of visual sensitivity, which could accelerate 
the process of training on subjective scores.

In CNN-based schemes, the process of feature aggregation or 
score pooling determines the form of a loss function. Examples 
of aggregation and pooling strategies are shown in Figure 4. The 
patch-based algorithms described in [23] and [24] did not use 
aggregation or pooling during training. Instead, each image patch 
was independently regressed onto the global subjective-quality 
score. The loss function used is

,
N

f p S1
L i

i

N

= -^ h/ (1)

where pi  refers to the ith patch obtained, N is the number of 
patches, S is the ground-truth score, and ( )f $  is an NN process. 
The models were trained via a patchwise optimization, and, dur-
ing testing, the outputs of multiple patches composing an input 
image were averaged to obtain a final predicted subjective score. 
Conversely, imagewise approaches use aggregation or pooling 
during training. For example, weighted average pooling methods 
[25] may be used, where the loss function looks like

,, ...f p f p SpoolL N1= -l ^ ^ ^h hh (2)

where ( )pool $  refers to an unspecified pooling method [Fig-
ure 4(a)]. In [26] and [27] [Figure 4(b) and (c)], simple feature 
aggregation was used. A more complicated model, such as a 
multilayer perception or recurrent NN [4], could also be used 
for aggregation [Figure 4(d)]. Here, the loss function becomes

, ... ,g aggr f p f p SL N1= -m ^ ^ ^ ^h hhh (3)

where (·)aggr  refers to a feature aggregation process and (·)g
is a regression NN. The forms (2) and (3) have the advantage 
that the model can be trained under the same conditions 
as the actual testing conditions, where the imagewise scores 
are predicted.

Description of picture-quality databases
The choice and consideration of a database for training is 
important for deep-learning-based models, since their per-
formance depends highly on the size of the training set. In 
most picture-quality databases, the distorted images are 
afflicted by only a single type of synthetically introduced dis-
tortion, such as JPEG compression, simulated sensor noise, 
or simulated blur, as exemplified in Figure 5(a). Since they 
have played important roles in the development of perceptual 
picture-quality studies, we briefly describe several popular 
legacy databases in the following.

The LIVE IQA database [12], which was the first success-
ful public-domain picture-quality database and is still the most 
widely used, contains 29 reference images and 982 images, each 

Table 1. A comparison of implementations of CNN-based picture-quality prediction models. 

Models Type Layer Depth Preprocessing Feature Aggregation or Score Pooling 

[23] NR 2 Conv and 2 FC Local normalization Mean pooling (during testing) 

[24] NR 14 Conv (4 NiN blocks) Local normalization Mean pooling (during testing) 

[25] NR 10 Conv and 2 FC Raw RGB image Mean or weighted average pooling 

[26] NR 2 Conv and 6 FC Local normalization Mean and standard deviation aggregation 

[27] NR 8 Conv and 3 FC Low-frequency subtraction Mean or weighted average aggregation 

[28] FR (2 Conv, 1 FC)×2 and 2 FC Local normalization (Not mentioned) 

[29] FR 13 Conv and 3 FC Raw RGB image Mean aggregation and pooling 

[30] FR (2 Conv)×2, 6 Conv and 2 FC Low-frequency subtraction Weighted average aggregation 

Training Targets Comments 

Models Type First Stage Second Stage (Comparison strategy for FR models) 

[23] NR Subjective scores N/A Patchwise training 

[24] NR Semantic label Subjective scores Fine-tuning of pretrained CNN on ImageNet

[25] NR Subjective scores N/A Weighted average patch aggregation 

[26] NR Proxy scores Subjective scores Uses proxy patch labels 

[27] NR Objective error map Subjective scores Uses proxy patch labels 

[28] FR Subjective scores N/A Concatenation of feature vectors 

[29] FR Semantic label N/A SSIM between feature maps of each layer 

[30] FR Subjective scores N/A Concatenation of feature maps 

FR: full-reference, NR: no-reference, Conv: convolutional layers, and FC: fully connected layers.
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FIGURE 4. Examples of aggregation and pooling strategies in CNN-based picture-quality prediction models. (a) Weighted average pooling, (b) elementwise 
aggregation, (c) weighted average aggregation, and (d) NN aggregation.
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FIGURE 5. (a) Synthetic and (b) authentic image distortions found in picture-quality databases. 
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impaired by one of five types of synthetic distortions: JPEG and 
JPEG2000 (JP2K) compression, white Gaussian noise (WN), 
GB, and Rayleigh fast-fading channel distortion. The differential 
mean opinion score (DMOS) of each distorted image is provided. 
The CSIQ database [32] includes 30 reference images and 866 
synthetically distorted images of six types: JPEG, JP2K, WN, 
GB, pink Gaussian noise, and global contrast decrements. The 
DMOS of the distorted images is also provided. TID2013 [13]
contains the largest number of distorted images. It consists of 25 
reference images and 3,000 synthetically distorted images with 
24 different distortions at five levels of degradation. The database 
also provides the mean opinion scores (MOS). The LIVE multi-
ply distorted (MD) database [33] was the first to include multiple 
(synthetically) distorted images. Images in it are distorted by two 
types of distortion in two combinations: simulated GB followed 
by JPEG compression and GB followed by additive WN. It con-
tains 15 references and 405 distorted images, and the DMOS of 
each distorted image is provided.

Finally, the LIVE Challenge database [3] contains nearly 
1,200 unique image contents, captured by a wide variety of 
mobile camera devices under highly diverse conditions. As 
such, the images were subjected to numerous types of authentic 
distortions during the capture process, often in complex com-
binations of multiple interacting impairments, as shown in Fig-
ure 5(b). The distortions include, e.g., low-light blur and noise, 
motion blur, camera shake, overexposure, underexposure, a 
variety of color errors, compression errors, and many combina-
tions of these and other impairments. There are no reference 
images in the LIVE Challenge database, since the distorted 
images are originals, captured by dozens of ordinary photog-
raphers. The LIVE Challenge pictures were judged by more 
than 8,100 human subjects in a tightly monitored crowdsourced 
study, yielding more than 350,000 human judgments that 
exhibit excellent internal consistency [3]. A summary of the 
attributes of these five databases is shown in Table 2.

Performances of CNN picture-quality models
Since only a few CNN-based picture-quality models have 
been released, we provide the prediction accuracies of baseline 
models on the five databases as performance references to be 
compared against. We selected the well-known very deep CNN 
models AlexNet [2] and ResNet50 [34] as the architectures of 
the baseline models, where each was pretrained on the ImageNet 

classification task. Both of these pretrained models are available 
for download. The specific network configurations can be found 
in the original papers. For each pretrained architecture, two 
types of back-end training strategies were tested: using an SVR 
to regress the extracted features from the CNN model onto sub-
jective scores and fine-tuning the pretrained networks to con-
duct picture-quality prediction. We did not test direct training 
of these models on any of the picture-quality databases, since 
they are not large enough. Very deep networks easily overfit on 
insufficient training samples, causing significant decreases in 
testing accuracy (AlexNet has 62 million and ResNet50 has 26 
million parameters). Instead, we tested a smaller CNN network 
as a baseline model of direct training.

In the first approach, the output of the sixth fully connected 
layer (4,096 dimensions) from AlexNet and averaged-pooled 
features (2,048 dimensions) from ResNet50 were used as the 
input feature vectors to the SVR. From each input image, 25 
randomly cropped image patches (the patch size is predefined 
by the pretrained models: 227 × 227 for AlexNet, and 224 × 
224 for ResNet50) were used for training and testing. The 
obtained feature vectors from these 25 image patches were 
averaged to obtain a single global feature vector.

In the second approach, we randomly cropped 100 image 
patches from each training image to be used for training 
(except on the TID2013 database, where 30 cropped patches 
were used, due to the large number of distorted images in the 
database). The image patches inherited the quality scores from 
the source distorted images, which were first normalized to 
the range [0, 1]. This preprocessing enabled us to use the same 
parameter settings on all databases. The basic regression loss 
(1) was used. To alleviate overfitting, one dropout layer with 
dropout rate 0.5 was added before the last fully connected layer. 
The learning rate was set to ,10 3-  and the fine-tuning process 
iterated for eight and six epochs on AlexNet and ResNet50, 
respectively. The batch size was fixed at 48 for both models. 
In the testing stage, the pretrained models were used to predict 
quality scores on each of 25 random image crops. These were 
average pooled to produce the final picture-quality scores.

For the direct training approach, we used the following 
CNN architecture: Conv-48, Conv-48 with stride 2, Conv-64, 
Conv-64 with stride 2, Conv-64, Conv-64, Conv-128, Conv-128, 
FC-128, FC-128, and FC-1. Here, “Conv” refers to convolution-
al layers, “FC” refers to fully connected layers, and the trailing 

Table 2. A comparison of IQA databases in terms of numbers of reference images, distorted images, distortion types, 
authenticity of distortions, type of subjective scores, whether distortions are mixed, and published date.

Database 

Number of 
Reference
Images

Number of 
Distorted Images

Number of 
Distorted Types

Authenticity 
of Distortions

Subjective 
Score Type

Mixtures of 
Distortions 

Published 
Date 

LIVE IQA [12] 29 779 5 Synthetic DMOS N/A 2003 

CSIQ [32] 30 866 6 Synthetic DMOS N/A 2010 

TID2013 [13] 25 3,000 24 Synthetic MOS N/A 2015 

LIVE MD [33] 15 405 2 Synthetic DMOS 2012 

LIVE Challenge [3] N/A 1,162 Numerous Authentic MOS 2016 
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numbers indicate the number of feature maps (of Conv) or out-
put nodes (of FC). The model accepts 112 × 112 images as 
inputs. All of the convolutional layers were configured to use 
3 × 3 filters, using zero-padding to preserve the spatial size. 
Each layer used a rectified linear unit as the activation function. 
Following the convolutional layers, each 28 × 28 feature map 
(assuming two convolutional layers with a stride of two) was 
averaged yielding an 128-dimensional feature vector, which is 
then fed into the fully connected layers. The number of param-
eters in this model is about 0.4 million, which is much lower 
than AlexNet or ResNet50. This baseline model was trained 
using the imagewise L2  loss in (3). Each input image was 
partitioned into 112 × 112 patches when training on the LIVE 
IQA database, while full-sized images were used on the other 
databases. On the LIVE IQA database, nonoverlapping patches 
were used so that overlapped regions could not be accessed 
multiple times by the CNN model during training and/or test-
ing. The data was augmented by supplementing the training set 
with horizontally flipped replicas of each image. Each mini-
batch contained patches extracted from five images. The train-
ing was iterated over 80 epochs.

Two performance metrics were used to benchmark the mod-
els: Spearman’s rank order correlation coefficient (SRCC), and 
Pearson’s linear correlation coefficient (PLCC). To evaluate the 
baseline models, we randomly divided each database into two 
subsets of nonoverlapping content (distorted or otherwise), 80% 
for training and 20% for testing. Of course, all of the LIVE Chal-
lenge pictures contain different contents. The SRCC and PLCC 
were averaged after ten repetitions of this random process.

The performances of all of the exemplar picture-quality 
prediction models on the LIVE IQA database are shown in 
Figure 6. The first five (from left) are no-reference learning-
based models, where the last two of these used deep learning. 
The next seven are CNN-based no-reference-quality prediction 
models, and the last three are CNN-based full-reference mod-
els. The reported SRCC and PLCC scores of the listed models 

were taken from the original papers. Overall, the CNN-based 
full-reference models followed by the CNN-based no-refer-
ence models achieved higher prediction accuracies relative to 
conventional learning-based models on the legacy databases.

Table 3 compares the performance of the various picture-
quality prediction models on all of the reviewed databases. The 
last five rows show results for the baseline models. The three best 
performing no-reference picture-quality models in each column 
are boldfaced. Generally, the existing CNN-based models were 
able to achieve remarkable prediction accuracies on the legacy 
databases. However, it is much harder to obtain successful results 
on the LIVE Challenge database. For example, the model pro-
posed in [27], DIQA, achieved an SRCC of 0.687, which is lower 
than the results attained by a recent successful SVR-based meth-
od, FRIQUEE-ALL [21], which achieved an SRCC of 0.72.

However, the baseline models that were pretrained on the 
ImageNet databases achieved standout accuracies on the LIVE 
Challenge database. This is likely because the real-world Ima-
geNet pictures are not synthetically distorted. Instead, like the 
LIVE Challenge pictures, any distortions occurred as a natural 
consequence of photography, without intervention by the data-
base creator. This further suggests that the pretrained CNNs are, 
to some degree, already quality-aware, meaning that their learned 
internal features assist the performance of the task (recognition) 
by adapting to the presence of authentic distortions.

The baseline models using the first approach achieved very 
low accuracies on the legacy databases, since they were not 
exposed to any synthetic distortions during training, and hence 
the learned features were not very useful to the SVR for qual-
ity prediction. Fine-tuning the pretrained baseline deep models 
significantly improved performance on the legacy synthetic data-
bases, but not enough to make them competitive, since there was 
not enough data to train them adequately. The exception was the 
directly trained shallow CNN baseline model, which achieved 
competitive performance on the legacy databases, but lower 
accuracies on the LIVE Challenge database.
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Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


140 IEEE SIGNAL PROCESSING MAGAZINE | November 2017 |

A possible explanation for these results is that the pretrained 
deep models adapted easily to the authentic distortions in LIVE 
Challenge as a consequence of having learned image recognition 
tasks on real-world pictures. Applying them to databases with 
synthetic distortions, however, like LIVE IQA and TID2013, 
likely failed to exploit what was learned regarding authentic dis-
tortions; hence, significant retraining would be needed to deal 
with the synthetic distortions. This may help explain the excellent 
generalization power of pretrained models when applied to other 
real world image tasks: their ability to handle authentic distor-
tions, by representing them to improve task performance.

Envisioning the future
The sizes of the training sets used is critical to the success of 
deep NN models. Current public-domain databases have insuffi-
cient size as compared to widely used image recognition data-
bases. However, constructing large-scale perceptual-quality 
databases is a much more difficult problem than image recogni-
tion databases. Creating databases for picture-quality assess-
ment requires time-consuming and expensive subjective studies, 
which must be conducted under controlled laboratory condi-
tions. Even if the number of reference images is small, the 
required number of subjective tests quickly becomes excessive. 
Conducting subjective tests using online crowdsourcing is one 
possible solution (like the LIVE Challenge database), yet even 
online tests are (probably) prohibitively difficult to scale up 
to the necessary size, especially while ensuring the aggregate 
quality of the collected human data. Another possibility would 
be if a large social media company were to engage their cus-
tomers to provide picture-quality scores, similar to the Netflix 
DVD ratings by e-mail of a decade ago. Generally, understand-
ing how to successfully create reliable, very large-scale, and 
authentic picture-quality databases remains an open question.
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Table 3. The SRCC and PLCC comparison on five public-domain subjective picture-quality databases. 

LIVE IQA CSIQ TID2013 LIVE MD LIVE Challenge

Type Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

FR PSNR 0.876 0.872 0.806 0.800 0.636 0.706 0.725 0.815 N/A N/A 

SSIM [15] 0.948 0.945 0.876 0.861 0.775 0.691 0.845 0.882 N/A N/A 

FSIMc [35] 0.963 0.960 0.931 0.919 0.851 0.877 0.863 0.818 N/A N/A 

DeepQA [30] 0.981 0.982 0.961 0.965 0.939 0.947 0.938 0.942 N/A N/A 

NR BRISQUE [9] 0.939 0.942 0.756 0.797 0.572 0.651 0.897 0.921 0.607 0.585 

CORNIA [11] 0.942 0.943 0.714 0.781 0.549 0.613 0.900 0.915 0.618 0.662 

FRIQUEE-ALL [21] 0.948 0.962 0.839 0.863 0.669 0.704 0.925 0.940 0.720 0.720 

BIECON [26] 0.958 0.960 0.815 0.823 0.717 0.762 0.909 0.933 0.595 0.613 

DIQA [27] 0.970 0.972 0.844 0.880 0.843 0.868 0.920 0.933 0.687 0.701 

AlexNet + SVR 0.901 0.908 0.712 0.736 0.263 0.365 0.760 0.803 0.769 0.790 

ResNet50 + SVR 0.925 0.935 0.654 0.700 0.435 0.495 0.797 0.833 0.806 0.825 

AlexNet + fine-tuning 0.947 0.952 0.817 0.840 0.615 0.668 0.899 0.914 0.748 0.779 
ResNet50 + fine-tuning 0.950 0.954 0.876 0.905 0.712 0.756 0.909 0.920 0.819 0.849 

Imagewise CNN 0.963 0.964 0.812 0.791 0.800 0.802 0.914 0.929 0.663 0.705 

FR: full reference, NR: no reference. Italics indicate CNN-based methods. Boldface entries indicate the top three performers on each database for each performance metric.
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I
nferring information from a set of acquired data is the main 
objective of any signal processing (SP) method. The com-
mon problem of estimating the value of a vector of parame-
ters from a set of noisy measurements is at the core of a 

plethora of scientific and technological advances in recent 
decades, including wireless communications, radar and sonar, 
biomedicine, image processing, and seismology.

Developing an estimation algorithm often begins by assum-
ing a statistical model for the measured data, i.e., a probability 
density function (pdf), which, if correct, fully characterizes 
the behavior of the collected data/measurements. Experience 
with real data, however, often exposes the limitations of any 
assumed data model, since modeling errors at some level are 
always present. Consequently, the true data model and the 
model assumed to derive the estimation algorithm could dif-
fer. When this happens, the model is said to be mismatched 
or misspecified. Therefore, understanding the possible per-
formance loss or regret that an estimation algorithm could 
experience under model misspecification is critical for any SP 
practitioner. Furthermore, understanding the limits on the per-
formance of any estimator subject to model misspecification is 
of practical interest.

Motivated by the widespread and practical need to assess 
the performance of a mismatched estimator, the goal of this 
article is to help bring attention to the main theoretical find-

ings on estimation theory, and, in particular, on lower bounds 
under model misspecification, that have been published in the 
statistical and econometrical literature in the last 50 years. 
Additionally, some applications are discussed to illustrate the 
broad range of areas and problems to which this framework 
extends and, consequently, the numerous opportunities avail-
able for SP researchers.

A formal theory of statistical 
inference under misspecified models
The mathematical basis for a formal theory of statistical infer-
ence was presented by Fisher, who introduced the maximum 
likelihood (ML) method along with its main properties [9].
Since then, ML estimation has been widely used in a variety 
of applications. One of the main reasons for its popularity is 
its asymptotic efficiency, i.e., its ability to achieve a minimum 
value of the error variance as the number of available observa-
tions goes to infinity or as the noise power decreases to zero. 
The concept of efficiency is strictly related to the existence of 
some lower bounds on the performance of any estimator 
designed for a specific inference task. Such performance 
bounds, one of which is the celebrated Cramér–Rao bound 
(CRB) [8], [33], are fundamentally important in practical 
applications, as they provide a benchmark of comparison for 
the performance of any estimator. Specifically, given a partic-
ular estimation problem, if the performance of a certain algo-
rithm achieves a relevant performance bound, then no other 
algorithm can do better. Moreover, evaluating a performance 
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bound is often a prerequisite for any feasibility study. The 
availability of a lower bound for the estimation problem at 
hand makes the SP practitioner aware of the practical impossi-
bility to achieve better estimation accuracy than the one indi-
cated by the bound itself. Another fundamental feature of a 
performance bound is its ability to capture and reveal the com-
plex dependences among the various parameters of interest, 
thus offering the opportunity to more deeply understand the 
estimation problem at hand and, ultimately, to identify an 
appropriate design choice of parameters and criteria for an 
estimator [23].

Before describing specific performance bounds, it is worth 
mentioning that estimation theory explores two different 
frameworks: one is deterministic and one is Bayesian. In the 
classical deterministic approach, the parameters to be estimat-
ed are modeled as deterministic but unknown variables. This 
implies that no a priori information is available that would 
suggest that one outcome is more or less likely than another. 
In the Bayesian framework, the parameters of interest are 
assumed to be random variables, and the goal is to estimate 
their particular realizations. Unlike the classical determin-
istic approach, the Bayesian approach exploits this random 
characterization of the unknown parameters by incorporat-
ing a priori information about the unknown parameters in the 
derivation of an estimation algorithm. The joint pdf of the 
unknown parameters is assumed to be known and, therefore, 
can be taken into account in the estimation process through 
Bayes’ theorem [23].

Basics about performance bounds
When discussing lower bounds, the first distinction that needs 
to be made is between local (small-error) bounds and global 
(large-error) bounds. A bound can be considered a local-error 
bound if its calculation relies exclusively on the behavior of 
the pdf of the data at a single point value of the parameter (or 
perhaps a very small local neighborhood around this point). If 
the calculation of a bound requires knowledge of the pdf 
behavior at multiple (more than one) distinct and well-separat-
ed (nonlocal) points, then the bound can be characterized as a 
global-error bound. Local-error bounds at best determine the 
limits of the asymptotics of optimal algorithms like ML, 
whereas the characterization of nonasymptotic performance 
must somehow take into account the possible influence of 
parameter values other than the true value.

A bound is said to be tight if it reasonably predicts the 
performance of the ML estimator. If a bound is only asymp-
totically tight, then it is reliable only in the presence of a high 
signal-to-noise ratio (SNR) or a sufficiently large number of 
measurements. However, if a bound is globally tight, then 
it is a reliable bound for the error covariance of an ML esti-
mator, irrespective of the SNR level or of the amount of avail-
able data. The deterministic bound that can be regarded as the 
most general representative of the class of global bounds is the 
Barankin bound (BB) [3]. However, due to its generality, the 
calculation of the BB is not straightforward, and it usually does 
not admit a closed-form representation. The most popular local 
bound is the aforementioned CRB. Unlike the BB, the CRB 
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is easy to evaluate for many practical problems, but it is only 
asymptotically reliable. In the nonasymptotic region, which is 
characterized by a low SNR and/or by a low number of mea-
surements, the CRB can be too optimistic with respect to (w.r.t.) 
the effective error covariance achievable by an estimator [44].

The second subdivision of the performance bounds is a 
direct consequence of the dichotomy between the determin-
istic and the Bayesian estimation frameworks. In particular, 
we can identify the class of deterministic lower bounds and the 
class of Bayesian lower bounds [43]. Without any claim of com-
pleteness, the class of the deterministic lower bounds includes 
the (global) BB [3] and two local bounds, the Bhattacharyya 
bound [5] and the CRB [8], [33]. We stress that the most com-
mon forms of these bounds, including the CRB, apply only to 
unbiased estimators. Versions of these bounds exist, however, 
that can be applied to biased estimators whose bias function 
can be determined. Concerning the Bayesian bounds, they can 
be divided into two classes [34]: the Ziv–Zakaï family and the 
Weiss–Weinstein family, to which the Bayesian version of the 
CRB belongs. The first family is derived by relating the mean 
squared error (MSE) to the probability of error in a binary 
hypothesis testing problem, while the derivation of the latter 
is based on the covariance inequality. For further details on 
Bayesian bounds, refer to [43].

An estimation theory under 
model misspecification: Motivations
Regardless of the differences previously 
discussed, both the classical deterministic 
estimation theory and the Bayesian frame-
work are based on the implicit assumption 
that the assumed data model (the pdf) and 
the true data model are the same, i.e., the 
model is correctly specified. However, 
much evidence from engineering practice shows that this 
assumption is often violated; the assumed model is different 
from the true one. There are two main reasons for model mis-
specification. The first is the imperfect knowledge of the true 
data model, which leads to an incorrect specification of the 
data pdf. However, there could be cases where perfect knowl-
edge of the true data model is available, but, due to an intrinsic 
computational complexity or to a costly hardware implemen-
tation, it is not possible nor convenient to pursue the optimal 
“matched” estimator. In these cases, one may prefer to derive 
an estimator by assuming a simpler but misspecified data 
model, e.g., the Gaussian model. Of course, this suboptimal 
procedure may lead to some degradation in the overall system 
performance, but it ensures a simple analytical derivation and 
real-time hardware implementation of the inference algorithm. 
In such a misspecified estimation framework, the possibil-
ity to assess the impact of the model misspecification on the 
estimation performance is of fundamental importance to 
guarantee the reliability of the (mismatched) estimator. 
Misspecified bounds are then the perfect candidates to fulfill 
this task: they generalize the classical framework by 
allowing the assumed and true models to differ, yet they 

establish performance limits on the estimation error cova-
riance in a way that indicates how the difference between the 
true and assumed models affects the estimation performance. 
Having established the main motivations, we can now briefly 
review the literature on the estimation framework under model 
misspecification, with a focus on the two classical building 
blocks, i.e., the ML estimator and the CRB.

Some historical background
The first fundamental result on the behavior of the ML esti-
mator under misspecification appeared in the statistical liter-
ature in 1967 and was provided by Huber [20]. In that 
paper, the consistency and the normality of the ML estimator 
were proved under very mild regularity conditions. Five 
years later, Akaike [1] highlighted the link between Huber’s 
findings and the Kullback–Leibler divergence (KLD) [7]. He 
noted that the convergence point of the ML estimator under 
model misspecification could be interpreted as the point that 
minimizes the KLD between the true and the assumed mod-
els. In the early 1980s, these ideas were further developed by 
White [46], where the term quasi-ML estimator was intro-
duced. Some years later, the second fundamental building 
block of an estimation theory under model misspecification 

was established by Vuong [45]. Vuong 
was the first to derive a generalization of 
the Cramér–Rao lower bound under 
misspecified models. The Bayesian mis-
specified estimation problem has been 
investigated in [4] and [6].

Quite surprisingly and despite the wide 
variety of potential applications, the SP 
community has remained largely unaware 
of these fundamental results. This topic 
has only recently been rediscovered and its 

applications to well-known SP problems investigated [10]–[12],
[14], [18], [19], [22], [28], [32], [35]–[38], [48], [50]. Of course, 
every SP practitioner was aware of the misspecification prob-
lem, but some approaches commonly used within the SP com-
munity to address it differed from some of those proposed in 
the statistical literature. The effect of the misspecification has 
been modeled by adding into the true data model some random 
quantities, also called nuisance parameters, and by transform-
ing the estimation problem at hand into a higher dimensional 
hybrid estimation problem. The performance degradation due 
to the augmented level of uncertainty generated by the nui-
sance parameters could be assessed by evaluating the true 
CRB when possible, the hybrid CRB (see, e.g., [16], [29], [31],
and [39]), or the modified CRB (see, e.g., [2], [17], and [24]). 
This approach, although reasonable, is application dependent 
and not general at all. Other approaches include sensitivity 
analyses [15], [44].

Finally, the relationship between misspecified estimation 
theory and robust statistics should also be noted (see [49] for 
a tutorial on robust statistics). As one would expect, these two 
frameworks share the same motivations, i.e., an imper-
fect knowledge of the true data model. The aim of robust 

The mathematical basis 
for a formal theory of 
statistical inference was 
presented by Fisher, who 
introduced the maximum 
likelihood method along 
with its main properties.
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estimation theory is to develop estimation algorithms that are 
capable of achieving good performance over a large set of 
allowable input data models, even if they are suboptimal 
under any nominal (or true) model. Even though the devel-
opment of robust estimators is certainly vital in many SP 
applications, for some of these, the mathematical deriva-
tion and consequent implementation may be too involved or 
too time and hardware intensive. In these cases, as discussed 
before, one may prefer to apply the classical, nonrobust esti-
mation theory by assuming a simplified, hence, misspecified, 
statistical model for the data.

The first aim of this article is to summarize the most relevant 
existing works in the statistical literature using a formalism that 
is more familiar to the SP community. The second is to show 
the potential application of misspecified estimation theory, in 
both the deterministic and Bayesian contexts, for various clas-
sical SP problems.

Description of a misspecified model problem
Let , ,x xM1 f  be a set of N-dimensional (generally complex) 
random vectors representing the outcome of a measurement 
process. Let x Cm

N!  be a single observation vector with pdf 
( )p xX m  belonging to a possibly parametric 

family, or model, P  that characterizes the 
observed random experiment. As discussed 
in the section “A Formal Theory of 
Statistical Inference Under Misspecified 
Models,” in almost all practical applica-
tions, the true pdf ( )p xX m  is either not per-
fectly known, or it does not admit a simple 
derivation or easy im  plementation of the 
estimation algorithm. Thus, instead of 

( ),p xX m  in the mismatched estimation 
framework, we adopt a different parametric pdf, say, 

( ),f xX m i  with ,Rd! 1i H  to characterize the statistical 
behavior of the data vector .xm  Potential estimation algorithms 
may be derived from the misspecified parametric pdf 

( ),f xX m i  belonging to a parametric model ,F  and not from 
the true pdf ( ).p xX m  Moreover, we assume that ( )f xX m i

could differ from ( )p xX m  for every .!i H  Since this assump-
tion represents the division between the classical matched and 
the misspecified parametric estimation theories, some addition-
al comments are warranted. The matched estimation theory 
requires the existence of at least a parameter vector !i Hr  for 
which the pdf assumed by the SP practitioner is equal to 
the true one. Mathematically, we can say that the classi-
cal matched theory holds true if, for some ,!i Hr

( ) ( )p fx xX m X m i= r  or, equivalently, if ( ) .p x FX m !  For 
example, suppose the collected data, i.e., the outcomes of a 
random experiment, are distributed according to a univari-
ate Gaussian distribution with the mean value nr  and variance 

,2vr  i.e., ( ) ( , ),x p x Nm X m
2+ n v= r r , , .m M1 f=  Moreover, 

suppose that the assumed parametric mode l  for data 
inference is the Gaussian parametr ic  model, i.e., 

R R( , )( ) ,f f x NF X X m 1 2 #6 !ii i i== +$ .  where R+ is 
the set of positive real numbers. This situation clearly represents 

a matched case, since there exists ( , ) R R2 #!i n v= +r r r  such 
that ( )p xX m = ( ) ( , ).f x NX m

2i n v=r r r  Suppose now that the 
collected data are distributed according to a univariate Laplace 
distribution with a location parameter cr  and a scale parameter 

,br  i.e., ( ) ( , ).x p x Lm X m+ c b= r r  Due to, perhaps, misleading 
and incomplete information on the experiment at hand or due 
to the need to derive a simple algorithm, we decide to adopt a 
parametric Gaussian model F  to characterize the collected 
data. Unlike the previous example, this is obviously a mis-
matched case, since there does not exist any ( , )1 2i i i=  for 
which the assumed Gaussian model is equal to the true 
Laplace model.

Many practical examples of model misspecification 
can be found in everyday engineering practices. Just to list 
a few, recent papers have investigated the application of this 
misspecified model framework to
■ the direction-of-arrival (DOA) estimation problem in sensor 

arrays [22], [36], [37] and multiple-input, multiple-output 
(MIMO) radars [35]

■ the covariance matrix estimation problem in non-Gaussian dis-
turbance [10], [12], [18]

■ radar-communication systems coexistence [38]
■ waveform parameter estimation in the 

presence of uncertainty in the propaga-
tion model [32]

■ the time-of-arrival estimation problem 
for ultra-wideband signals in the pres-
ence of interference [19]. 
In “The Misspecified CRB” and “The 

Mismatched ML Estimator” sections, the 
parameter vector i  is assumed to be an 
unknown and deterministic real vector. The 
extension to the Bayesian case is discussed 

in the “Generalization to the Bayesian Setting” section. Sup-
pose, for inference purposes, we collect M  independent, iden-
tically distributed (i.i.d.) measurement vectors { } ,x xm m

M
1= =

where ( ).px xm X m+  Due to the independence, the true joint 
pdf of the data set x  can be expressed as the product of the 
marginal pdf as ( ) ( ).p px xX X mm

M

1
=

=
%  The assumed joint 

pdf of the data set is instead .f fx xX X mm

M

1
i i=

=
^ ^h h%

This misspecified model framework raises three impor-
tant questions:
■ Is it still possible to derive lower bounds on the error covari-

ance of any mismatched estimator of the parameter vector ?i
■ How will the classical statistical properties of an estimator, 

e.g., unbiasedness, consistency, and efficiency, change in 
this misspecified model framework?

■ How meaningful are the parameter estimates under extreme 
cases of mismatch?

The misspecified CRB
This section introduces a version of the CRB accounting for 
possible model misspecification, i.e., the misspecified CRB 
(MCRB), which can be considered a generalization of the usual 
CRB. In particular, as we will show later, the CRB is obtained 
when the model is correctly specified. We start by providing the 

The concept of efficiency 
is strictly related to 
the existence of some 
lower bounds on the 
performance of any 
estimator designed for a 
specific inference task.
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required regularity conditions and the notion of unbiasedness 
for mismatched estimators.

Regular models
As with the classical CRB, to guarantee the existence of the 
MCRB, some regularity conditions on the assumed pdf need 
to be imposed. Specifically, the assumed parametric model F
must be regular w.r.t. ,P  i.e., the family to which the true pdf 
belongs. The complete list of assumptions that F  must satisfy 
to be regular w.r.t. P  are given in [45] and briefly recalled in 
[10]. Most of them are rather technical and facilitate an order 
reversal of the integral and derivative operators. Nevertheless, 
there are two assumptions that need to be discussed here due 
to their importance in the development of the theory. The first 
condition that must be satisfied is Assumption 1.

Assumption 1
There exists a unique interior point 0i  of H  such that

,argmin ln argminE f D p fxp X m X X0 ii = - =
! !i

i
i H H

^ ^h h" " ",, ,
(1)

where { }Ep $  indicates the expectation operator of a vec  tor- 
or scalar-valued function w.r.t. the pdf ( )p xX m  and 

( ) ( )D p f p f p dln x x x xX X X m X m X m m_ ii^ ^ ^h hh#  i s  the 
KLD [7] between the true and the assumed pdfs. As indicated 
by (1), 0i  can be interpreted as the point that minimizes the 
KLD between ( )p xX m  and ( ),f xX m i  and it is called the 
pseudotrue parameter vector [45], [46].

After having defined the pseudotrue parameter vector 0i

in this assumption, let A 0i  be the matrix whose entries are 
defined as

,

ln

ln

E f

E f

A x

x

ij p
T

X m ij

p
i j

X m

2

00

0

d d

2 2
2

_ i

i
i i

=

i i i

i i=

^
^ h

h6 6@ @

'
" ,

1 (2)

where ( )u 0d ii  and ( )uT
0d d ii i  indicate, respectively, the 

gradient (column) vector and the symmetric Hessian matrix of 
the scalar function u evaluated at .0i  The second fundamental 
condition that must be satisfied by the assumed model F  to 
be regular w.r.t. P  is Assumption 2. 

Assumption 2
The matrix A 0i  is nonsingular. 

The pseudotrue parameter vector 0i  plays a fundamental 
role in estimation theory for misspecified models. Roughly 
speaking, it identifies the pdf ( )f xX m 0i  in the assumed para-
metric model F  that is closest, in the KLD sense, to the true 
pdf. As the next sections will clarify, it can be interpreted as the 
counterpart of the true parameter vector of the classical 
matched theory. Regarding the matrix ,A 0i  its negative repre-
sents a generalization of the classical Fisher information matrix 
(FIM) to the misspecified model framework. To clarify this, 
we first define the matrix B 0i  as

.

ln ln

ln ln

E f f

E
f f

B x x

x x
ij p X m

T
X m ij

p
i

X m

j

X m

0 00

0 0
$

d d

2
2

2
2

_ i i

i i

i i
=

i i i

i i i i= =

^
^ ^

^h
h h

h
6 6@ @

)
" ,

3 (3)

As with matrix ,A 0i  we recognize in B 0i  the second po  s-
sible generalization of the FIM. Vuong [45] showed that 
if   ( ) ( )p fx xX m X m i= r  for some ,!i Hr  then 0i i= r  and 

,B A=-i ir r  where ir  is the true parameter vector of the 
classical matched theory. The last equation shows that, under 
the correct model specification, the two expressions of the FIM 
are equal, as expected [44]. This provides evidence of the fact 
that the misspecified estimation theory is consistent with the 
classical one. The reader, however, should note that the equality 
between the pseudotrue parameter vector and the true one does 
not imply in any way the equality between the true and the 
assumed pdfs and, consequently, between the matrices B 0i  and 

.A 0- i  After having established the necessary regularity condi-
tions, we can introduce the class of misspecified-unbiased 
(MS-unbiased) estimators.

The MS-unbiasedness property
The first generalization of the classical unbiasedness property 
to mismatched estimators was proposed by Vuong [45].
Specifically, let ( )xit  be an estimator of the pseudotrue 
parameter vector ,0i  i.e., a function of the M available i.i.d. 
observation vectors { } ,x xm m

M
1= =  derived under the misspec-

ified parametric model .F  Then, ( )xit  is said to be an 
MS-unbiased estimator if and only if

( ) ( ) ( ) ,E p dx x x xp X 0i i i= =t t" , # (4)

where 0i  is the pseudotrue parameter vector defined in (1). 
The link with the classical matched unbiasedness property is 
obvious: if the parametric model F  is correctly specified, 0i

is equal to the vector !i Hr  such that ( ) ( ).p fx xX m X m i= r

Consequent ly, (4) can be rewri t ten  as { ( )}E xp i =t

( ) ( )f d ,x x xXi i i=t r r#  which is the classical definition of the 
unbiasedness property. At this point, we are ready to introduce 
the explicit expression for the MCRB.

A covariance inequality in the presence 
of misspecified models
In this section, we present the MCRB as introduced by Vuong 
in his seminal paper [45]. An alternative derivation was pro-
posed by Richmond and Horowitz in [36] and [37]. A compar-
ison between the derivation given in [45] and the one proposed 
in [36] and [37] has been provided in [10].

Theorem 1
In Theorem 1 [45], let F  be a misspecified parametric model 
that is regular w.r.t. .P  Let ( )xit  be an MS-unbiased estimator 
derived under the misspecified model F  from a set of M i.i.d. 
observation vectors { } .x xm m

M
1= =  Then, for every possible 

( ) ,p x PX m !

( ), ,
M
1 MCRBC x A B Ap 0

1 1
00 0 0$ _i i ii i i

- -t^ ^h h (5)
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where

( ), ( ) ( )EC x x xp p
T

0 0 0_i i i i i i- -t t t^ ^ ^h h h" , (6)

is the error covariance matrix of the mismatched estimator 
( )xit  where the matrices A 0i  and B 0i  have been defined in 

(2) and (3), respectively.
The following comments are in order. The major impli-

cation of Theorem 1 is that it is still possible to establish a 
lower bound on the error covariance matrix of an (MS-unbi-
ased) estimator, even if it is derived under a misspecified 
data model, i.e., it is derived under a pdf ( )f xX m i  that could 
differ from the true pdf ( )p xX m  for every value of i  in the 
parameter space .H  An important question that may arise 
under a misspecified model framework is which vector in the 
assumed parameter space H  should be used to evaluate the 
effectiveness of a mismatched estimator, particularly when no 
true parameter vector exists, i.e., ( ) ( ),fp x xX m X m! i  for all 

?!i H  It is certainly reasonable to use the parameter value 
that minimizes the distance, in a given sense, between the 
assumed misspecified pdf ( )f xX m i  and the true pdf ( ).p xX m

Theorem 1 shows that, if one uses the KLD as a measure of 
distance and by assuming that the misspecified model F  is 
regular w.r.t. the true model ,P  this parameter vector exists, 
and it is the pseudotrue parameter vector 0i  defined in (1). 
Specifically, the MCRB is a lower bound on the error covari-
ance matrix of any MS-unbiased estimator, where the error 
is defined as the difference between the estimator and the 
pseudotrue parameter vector. Moreover, if the model F  is 
correctly specified, then, as stated before, ,0 ii = r  such that 

( ) ( )p fx xX m X m i= r  and .B B A0 = =-i i ir r  Consequently, 
the inequality in (5) becomes the classical (matched) CRB 
inequality for unbiased estimators

( ) ( ) .E
M M
1 1 CRBx x B Ap

T 1 1$ _i i i i i- - =-i i
- -t r t r rr r^ ^ ^h h h" ,

(7)

The second point concerns the matter of how to exploit 
Theorem 1 in practice. The MCRB is a generalization of the 
classical CRB to the misspecified model framework and can 
play a similar role. Specifically, the MCRB can be used to 
assess the performance of any mismatched estimator, and it 
plays the same key role as the classical CRB in any feasibility 
study, but with the added flexibility to assess performance 
under modeling errors. For example, consider the recurring 
scenario in which the SP practitioner is aware of the true data 
pdf ( ),p xX m  but, to fulfill some operational constraints, the 
user is forced to derive the required estimator by exploiting a 
simpler, but misspecified, model. In this scenario, the MCRB 
in (5) can be directly applied to assess the potential estima-
tion loss due to the mismatch between the assumed and the 
true models.

This scenario can be extended to the case in which the 
SP practitioner is not completely aware of the functional 
form of the true data pdf, but the user is still able to infer 
some of its properties, e.g., from empirical data or param-
eter estimates based on such data. Such knowledge can be 

used to motivate surrogate models for the true data pdf, 
which in turn can be exploited to conduct a system analysis 
and performance assessment. To clarify this point, consider 
the case in which the SP practitioner, to derive a simple 
inference algorithm, decides to assume a Gaussian model to 
describe the data behavior. However, thanks to a preliminary 
data analysis, the user knows that the data share a heavy-
tailed distribution, e.g., due to the presence of impulsive 
non-Gaussian noise. Then, the user could choose as true 
data pdf a heavy-tailed distribution, e.g., the t-distribution, 
and, consequently, exploit the MCRB to assess how ignor-
ing the heavy-tailed and impulsive nature of the data affects 
the performance of the estimation algorithm based on a 
Gaussian model. This explains that, although the chosen 
“true” pdf (in this example, the t-distribution) may not be 
the exact true data pdf, it can still serve as a useful sur-
rogate for the purposes of system analysis and design by 
means of the MCRB.

The MCRB can also be used to predict potential weak-
nesses (i.e., a breakdown of the estimation performance) of 
a system. Suppose one has a system/estimator derived under 
a certain modeling assumption, but it is of practical interest 
to predict how well this system will react in the presence of 
different true input data distributions, perhaps characterizing 
operational scenarios that the system can undergo. Clearly, the 
MCRB is well suited to address this task.

Another important question may arise analyzing Theo-
rem 1. To evaluate the pseudotrue parameter vector 0i  in (1)
and then the MCRB in (5), we need to know the true data pdf 

( ),p xX m  since it is required to evaluate the expectation opera-
tors. How can we calculate the MCRB in all the practical cases 
in which we haven’t any a priori knowledge of the functional 
form of ( )?p xX m  An answer to this fundamental question is 
given in the section “A Consistent Sample Estimate of the 
MCRB,” where we show that consistent estimators for both the 
pseudotrue parameter vector 0i  and the MCRB can be derived 
from the acquired data set.

The proposed MCRB can be easily extended to misspeci-
fied estimation problems that require equality constraints. We 
refer the reader to [11] for a comprehensive treatise on this 
problem. Additionally, with regard to the possibility of gen-
eralizing the previously discussed results to the case of com-
plex unknown parameter vectors, the extension to the complex 
fields can be achieved in two equivalent ways. We can always 
map a complex parameter vector into a real one simply by 
stacking its real and imaginary parts, as, e.g., in [35], or we 
could exploit the so-called Wirtinger calculus, as discussed in 
[13] and [37].

An interesting case: A lower bound on 
the MSE via the MCRB
In this section, we focus on a mismatched case that is of great 
interest in many practical applications. Specifically, we con-
sider the case in which the parameter vector of the assumed 
model F  is nested in the one of the true parametric model ,P

i.e., the assumed parameter space H  is a subspace of the true 
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parameter space ,#X H C=  where # indicates the Cartesian 
product. Under this restriction, the true parametric model can 
be expressed as

, , ,p p is a pdfxP X X m #6 !i c i c H C= ^ ^h h" , (8)

while the assumed model is f f xF X X m i= ^ h"  is a pdf 
}6 !i H  as before. Note that f xX m i^ h could differ from 

the true ( )p ,xX m 6 !i ic H  and .6 !c C  Moreover, the 
nested parameter vector assumption includes, as a special 

case, the scenario in which the true parameter space and the 
assumed one are equal, i.e., ./X H  This case arises, for 
example, in array processing applications in which both the 
true and the assumed pdfs of the acquired data vectors can be 
parameterized by the angles of arrival of a certain number of 
sources [37]. A practical example of the more general nested 
model assumption is the estimation of the disturbance covari-
ance matrix in adaptive radar detection [10]. In this misspeci-
fied estimation problem, both the unknown true data pdf and 
the assumed one can be parameterized by a scaled version of 
the covariance matrix and by the disturbance power. Both of 

Here is an illustrative example to clarify the use and 
derivation of the misspecified Cramér–Rao bound 
(MCRB). Building upon the examples discussed in 
[10], we investigate the problem of estimating the 
variance of a Gaussian-distributed data set under the 
misspecification of the mean value. Let { }x xm m

M
1= =

be a set of M independent, identically distributed 
(i.i.d.) univariate data sampled from a Gaussian 
probabilit y density function (pdf) with the mean 
value nr  and variance ,2vr  i.e., ( ) ( , )p x N PX m

2/ !n vr r

with .0!nr  Due to perhaps an imperfect knowl -
edge about the data generation process, the user 
assumes a zero-mean parametric Gaussian model 

{ | ( ) ( , ) },f f x 0 RF NX X m 6 ! 3i i i H= = +  i.e., the user 
misspecifies the mean value. Note that, as long as 

,0!nr  the true but unknown pdf ( )p xX m  does not belong 
to the assumed model .F  Moreover, the reader can easi-
ly recognize this mismatched scenario as a simple 
instance of the particular case discussed in the section 
“An Interesting Case: A Lower Bound on the MSE via the 
MCRB.” In fact, it is immediately verified that the para -
meter space R3H + that characterizes the assumed 
model is a subset of the true parameter space, i.e.,
[ , ] ,R2

0 #!n v X H=r r  where R0  indicates the set of all 
the real numbers excluding 0.

According to the theory presented in the section “The 
Misspecified CRB,” we first must check whether the 
assumed model F  is regular with respect to (w.r.t.) ;P  in 
other words, we have to prove the existence of the pseu-
dotrue parameter 0i  (Assumption 1) and the nonsingulari-
ty of the matrix A 0i  defined in (2) (Assumption 2). Note 
that, for the problem at hand, A 0i  is a scalar quantity, so 
we have to prove that .A 00 !i  The pseudotrue parameter 

0i  is defined in (1). Following [7], the Kullback–Leibler 
divergence (KLD) can be expressed as

( ) .lnD p f 2 2
1 1|X X

2 2 2

i
n

i
v

i
v= + - -i

r r rc m (S1)

The minimum is obtained for ,0
2 2i v n= +r r  which, accord-

ing to (1), represents the pseudotrue parameter. Since the 
pseudotrue parameter exists and is unique, Assumption 1 
is satisfied. We can now check Assumption 2. To this end, 
from (2), A 0i  can be evaluated as

( )
,

ln
A E

f x
E x

2
1 1

2
1

p
X m

p m2

2

0
2

0
3

2

0
20 0

2

2
_

i

i

i i i
= - =-i i i=) "3 ,

(S2)

yielding a denominator different from zero since ;R2 !v +r

consequently, Assumption 2 is verified as well. Now we 
can evaluate the MCRB in (5) for the estimation problem 
at hand. First, the scalar B 0i  can be easily evaluated from 
(3) as

( )

.

ln
B E

f x

E x E x
4

2
4

2 4

p
X m

p m p m

2

0
4

0
2 4

0
2

0
4

4 2 2

0 02

2
_

i
i

i

i i

i

v v n
=

+ -
=

+

i i i=

r r r

c m'
" ",

1
, (S3)

Finally, from (5), we get

( ) .M M
2 4MCRB 0

4 2 2

i v v n
= +
r r r

(S4)

Since this misspecified scenario belongs to the particular 
class of nested parametric models, as discussed in the sec-
tion “An Interesting Case: A Lower Bound on the MSE via 
the MCRB,” we can also rewrite the MCRB in (S4) as a 
function of the true variance .2vr  This can be easily done 
by introducing the (scalar) r 2

0
2_ v i n- =-r r  and, conse-

quently, according to (9), by evaluating the ( )LB 2vr  as

( ) .M M
2 4LB 2

4 2 2
4v v v n
n= + +r r r r
r (S5)

It can be noted that the lower bound in (S5) is always 
greater than the classical CRB given by ( ) M2CRB 2 4v v=r r

Variance Estimation
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these applications will be discussed in the “Examples of 
Applications” section, while here we focus on the theoretical 
implications of the condition in (8). The first immediate con-
sequence of (8) is the fact that if the pseudotrue parameter 
vector 0i  and the true parameter subvector ir  belong to 
the same parameter space ,H  then the difference vector 
r 0_ i i-r  is well defined, but, in general, it is different from 
a zero-vector. As shown in [10, Sect. II.D] or in [37, eq. (70)],
using r, a bound on the MSE of the estimate of the true 
parameter vector ir  under model misspecification can be easi-
ly established as

( ), ( ) ( )

( ),

.

E

M
1

MSE

LB

x x x

C x rr A B A rr

p p
T

p
T T

0
1 1
0 0 0

_

$

_

i i i i i i

i i

i

- -

= + +i i i
- -

t r t r t r

t

r

^
^
^

^ ^h

h
h
h h" ,

(9)

Note that, here, the lower bound (denoted as LB) 
LB MCRB rrT

0i i= +r^ ^h h  is considered as a function of the 
true parameter vector .ir  A simple example that clarifies the 
role of the inequality (9) as lower bound on the MSE is report-
ed in “Variance Estimation.”

and they are equal only in the case of perfect model specifi-
cation, i.e., when the true mean is equal to the assumed 
mean, i.e., .0n =r

After having established a lower bound on the mean 
square error (MSE), we now investigate the properties of 
the mismatched maximum likelihood (MML) estimator for 
the estimation problem at hand. In particular, we can say 
that the MML estimator is not consistent since, from (11), it 
converges to ,0i  which is different from the true variance 

.2vr  More formally, we have that

.x M x . .
m

m

M

M

a s1 2

1
0

2 2 2
MML MML " !_i i i v n v= = +

"3

-

=

t t r r r^ h /
(S6)

However, according to (4), the MML estimator is misspeci-
fied (MS)-unbiased, since

.E E M xp p m
m

M
1 2

1

2 2
0MMLi v n i= = + =-

=

t r r" ), 3/ (S7)

Hence, according to Theorem 1, its error covariance w.r.t. 
,0i  i.e., , ,Cp 0MMLi it^ h  is lower bounded by the MCRB in 

(S4). Figure S1 shows the error covariance of the MML 
estimator, the ( ),MCRB 0i  and the sample estimate of 

( )MCRB 0i  obtained according to (13)–(15). As we can 
see, ( )MCRB 0i  is a tight bound for the error variance of the 
MML estimator, and the sample ( )MCRB 0i  accurately pre-
dicts it. Due to the particular nested structure of the true and 
assumed parameter spaces of this example, we can also 
evaluate the MSE of the MML estimator w.r.t. the true vari-
ance, i.e., ( , ),MSEp

2
MMLi vt r  and the related ( )LB 2vr  obtained 

as shown in (9). Note that the lower bound is denoted as LB.
In Figure S2, we report the MSE of the MML estimator, the 
( ),LB 2vr and the classical CRB on the estimation of the vari-

ance, ( )CRB 2vr , as function of the value of the true mean 
value .nr  As expected from (9), ( )LB 2vr  is a tight bound for 
the MSE of the MML estimator. Finally, it can be noted that 
the ( )LB 2vr  is equal to the ( )CRB 2vr  only when ,0n =r  i.e., 
when the assumed mean value is equal to the true one.
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FIGURE S1. The error covariance of the MML estimator, the MCRB( ),0i

and the estimated MCRB( )0i  as a function of .nr  Simulation parameters 
are set as M 10=  and .42v =r
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FIGURE S2. The MSE of the MML estimator, the ( ),LB 2vr  and the ( )CRB 2vr ,

as a function of .nr  Simulation parameters are set as M 10=  and .42v =r
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The mismatched ML estimator
The aim of this section is to present the second milestone of 
the estimation theory under model misspecification: the mis-
matched ML (MML) estimator. As discussed in the section “A 
Formal Theory of Statistical Inference Under Misspecified 
Models,” the theoretical framework supporting the existence 
and the convergence properties of the MML estimator were 
developed by Huber [20] and later by White [46]. Here, our 
goal is to summarize their main findings from an SP stand-
point. As detailed in the “Description of a Misspecified 
Model Problem” section, assume we have a set { }x xm m

M
1= =

of M i.i.d. measurement vectors distributed according to a 
true, but unknown or inaccessible, pdf ( ).p xX m  So the log-
likelihood function for the data x under a generally mis-
specified parametric pdf f x FX m !i^ h  is given by 

( ) ( ).lnl M f xM X mm

M1
1

_i i-

=
/  Following the classical 

definition, the MML estimate is the vector that maximizes 
the (misspecified) log-likelihood function

( ) ( ) ( ),argmax argmax lnl fx xM X m
m

M

1
MML _i i i=

! !i iH H =

t /
(10)

where ( ).px xm X m+  The definition of the MML estimator 
given in (10) is clear and self-explanatory. Furthermore, it is 
consistent with the classical “matched” ML estimator. But 
what is the convergence point of ( )?xMMLit  As proved in [20]
and [46], under suitable regularity conditions, the MML esti-
mator converges [almost surely (a.s.)] to the pseudotrue 
parameter vector 0i  defined in (1). This is a desirable result 
since it shows that the MML estimator converges to the 
parameter vector that minimizes the distance, in the KLD 
sense, between the misspecified and the true pdfs (see 
“Variance Estimation” and “Power Estimation in Correlated 
Data”). In addition, Huber and White investigated the asymp-
totic behavior of the MML estimator, and their valuable find-
ings can be summarized in the following theorem.

Theorem 2
For Theorem 2 [20], [46], under suitable regularity conditions, 
it can be shown that

( ) .x
. .a s

M 0MML "i i
"3

t (11)

Moreover,

( ) , ,M 0x CN
.

M

d
0MML 0+i i-

"3 i
t^ ^h h (12)

where
.

M

d
+
"3

 indicates the convergence in distribution and 
,C A B A1 1

0 0 0 0_i i i i
- -  where the matrices A 0i  and B 0i  have 

been defined in (2) and (3), respectively. Matrix C 0i  is some-
times referred to as Huber’s sandwich covariance. Two com-
ments are in order:
1) The MML estimator is asymptotically MS-unbiased, and 

its asymptotic error covariance is equal to the MCRB, i.e., 
it is an efficient estimator w.r.t. the MCRB. The analogy 
with the classical matched ML estimator is completely trans-
parent. In particular, if the model F  is correctly speci-
fied, i.e., there exists a parameter vector !i Hr  such that 

( ) ( ),p fx xX m X m i= r  then ( )x
. .a s

MMML "i i
"3

t r  with an asymp-

totic error covariance matrix given by the classical CRB, 
which is the inverse of the FIM .B A=-i ir r

2) Theorem 2 represents a very useful result for practical 
applications. In fact, it tells us that, when we do not have 
any a priori information about the true data model, the ML 
estimator derived under a possibly misspecified model is 
still a reasonable choice among other MS-unbiased 
mismatched estimators, since it converges to the parameter 
vector that minimizes the KLD between the true and the 
assumed model and it has the lowest possible error covari-
ance (at least asymptotically).

A consistent sample estimate of the MCRB
In this section, we go back to an issue raised before, i.e., the 
calculation of the MCRB when the true model is completely 
unknown. In fact, from (5), to obtain a closed form expression 
of the MCRB, we need to analytically evaluate ,0i ,A 0i  and 

.B 0i  As shown in (1)–(3), these quantities involve the analysis 
of the expectation operator taken w.r.t. the true pdf ( ).p xX m  If 

( )p xX m  is completely unknown, we will not be able to evalu-
ate these expectations in closed form, but, as an alternative, we 
could obtain sample estimates of them. More formally, we 
define the matrices [46]:

,( )
ln

M
f

A
x

M ij
i j

X m

m

M
1

2

1 2 2
2

_
i

i
i i

=

- ^ h
6 @ / (13)

( )
ln ln

M
f f x

B
x m

M ij
i

X m

m

M

j

X1

1

$
2

2
2

2
_

i i
i

i i
-

=

^ ^h h
6 @ / , (14)

( ) [ ( )] ( ) [ ( )] .C A B AM M M M
1 1_i i i i- - (15)

Remarkably, it can be shown (see the proof in [46, Theorem 
3.2]) that

( ) ( ).MCRBC C
. .

M
a s

M 0MML 0"i i=
"3

i
t (16)

In other words, (16) assures us that we can obtain a strongly 
consistent estimate of the MCRB by evaluating the sample 
counterpart of A 0i  and ,B 0i  i.e., ( )AM i  and ( ),BM i  at the 
value of the MML estimator. This result has strong practical 
implications, since it provides an estimate of the MCRB 
when we do not have any prior knowledge of the true pdf 

( ).p xX m  Hence, it widens areas of applicability of the MCRB. 
This, of course, requires the data to be stationary over some 
reasonable period to allow sufficient averaging (as is required 
in numerous SP applications). This result can also be used to 
design statistical tests to detect model misspecification [46],
[47, p. 218].

Generalization to the Bayesian setting
The Bayesian philosophy adopts the notion that one has some 
prior knowledge (a belief or perhaps a guess) about the values a 
desired parameter will assume before an experiment. Once data 
are observed, then one can update that prior knowledge based on 
the information provided by the data measurements. Thus, the 
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Another example that clarifies the theory concerns the esti-
mation of the statistical power of a set of zero mean 
Gaussian vectors. Let { }x xm m

M
1= =  be a set of M i.i.d. real 

N-dimensional random vectors sampled from a multivariate 
Gaussian pdf with a zero mean value and covariance 
matrix given by M ,2v R= r  i.e., ( ) ( , ) ,x 0p N PX m

2/ !v Rr

where 2vr  is the statistical power and R  is a symmetric, pos-
itive definite matrix whose trace is equal to N, i.e., 

( ) .Ntr R =  For simplicity, we assume that [ ] ,ij
i jtR = -

, , , ,i j N1 f=  where 11t  is the one-lag correlation coef-
ficient (this is the typical correlation matrix of an autoregres-
sive process of order 1). Suppose now that the user is not 
aware of the data correlation structure and decides to 
assume the following parametric Gaussian model: 

{ ( ) ( , )  },x 0 If f RF NX X m N 6 !i i i= = +  where IN  is the 
identity matrix of dimension N. Note that, as long as ,0!t
the true pdf ( )xpX m  does not belong to the assumed model 

.F  We will proceed exactly as in “Variance Estimation” by 
checking the Assumptions 1 and 2 and then by evaluating 
the MML estimator and the relative MCRB.

To evaluate the pseudotrue parameter ,0i  we need 
to find the minimum of the KLD between the true and 
assumed model. Following [7] again, the KLD between 

( , )0N 2v Rr  and ( , )0 IN Ni  is given by

( ) ( ) ( ) .ln lndetD p f N2
1 tr|X X

1 2 2i v i vR R= - + -i
- r r6 @

(S8)

Keeping in mind that ( ) ,Ntr R =  it is immediately verified 
that the minimum is given by ,0

2i v= r  i.e., the pseudotrue 
parameter is equal to the true power. After some basic cal-
culus, the terms A 0i  and B 0i  are obtained as

( )

,
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x x

ln
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( )

( )

.

x

x x x x

ln
B E

f

N E N E
4

2

2
tr

p
X m

p m
T

m p m
T

m

2

0
4

0
2 2

0

4

2

0 02

2
_

i
i

i

i i

v

R

=
+ -

=

i i i=

r

^

c

h

m'
" ",

1
,

(S10)

Finally, from (5), we get

( ) ( ) .
MN
2MCRB MCRB tr0

2
2

4
2i v v R= =r

r ^ h (S11)

The CRB for the estimation of the statistical power 
of the true model can be easily obtained as ( )CRB 2v =r

.MN2 4vr  As expected, the CRB is always greater 
that the MCRB on 2vr , and they are equal if, and only if, 

I ,NR =  i.e., when the model is correctly specified. We 
can go on to investigate the properties of the MML esti-
mator. Unlike the example in “Variance Estimation,” 
the MML estimator of the statistical power is consistent 
since, from (11), it converges to 0i  that is equal to the 
true power :2vr

( ) ( ) .x x xMN . .
m
T

m
m

M

M

a s1

1
0

2
MML "i i v= =

"3

-

=

t r/ (S12)

Moreover, the MML estimator is MS-unbiased, since

( ) ( )

( ) .

x x xE MN E

N tr

p p m
T

m
m

M
1

1
1 2 2

0

MMLi

v v iR

=

= = =

-

=

-

t

r r

" ", ,/
(S13)

Then, according to Theorem 1, its MSE is lower bounded 
by the MCRB in (5). Figure S3 shows the MSE of the MML 
estimator, the MCRB, the sample estimate of the MCRB, 
and the CRB as a function of the one-lag coefficient .t  The 
MCRB is a tight bound for the MSE of the MML estimator, 
and the sample MCRB accurately predicts it. Finally, we 
note that the MCRB is equal to the CRB only when ,0t =

i.e., when .INR =

Power Estimation in Correlated Data 

0.1

1

0 0.2 0.4 0.6 0.8 1

MML
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CRB
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One-Lag Coefficient: ρ

FIGURE S3. The MSE of the MML estimator, the MCRB, the estimated 
MCRB, and the CRB as functions of .t  Simulation parameters are set 
as , ,N M N8 3= = and .42v =r
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Bayesian framework is designed to allow prior knowledge to 
influence the estimation process in an optimal fashion. 
Specifically, within a Bayesian framework, estimation of the 
parameter vector i  is derived from the joint pdf ( , )f x,X ii

instead of solely the conditional (non-Bayesian) pdf .f xX ii ^ h
From basic probability theory, the joint density can be expressed 
as ( , ) ( ),f f fx x x,X X Xi i=i i ^ h  where clearly the posterior den-
sity f xX ii ^ h summarizes all the information needed to make 
any inference on i  based on the data { } .x xm m

M
1= =  The joint 

density can likewise be related to the conditional density that 
models the parameter’s influence on data measurements, i.e., 

( , ) ( ).f f fx x,X Xi i i=i i i^ h  Prior knowledge about parameter 
vector i  is reflected in the prior pdf ( ).f ii  When there is no 
prior knowledge, all outcomes for the parameter vector can be 
assumed to be equally likely. Such a noninformative prior pdf 
often leads to results consistent with standard non-Bayesian 
approaches, i.e., it yields algorithms and bounds that rely primar-
ily on .f xX ii ^ h  Thus, the Bayesian framework in a sense can 
be considered as a generalization of the non-Bayesian frame-
work [27], [43], [44].

When the model is perfectly specified, the optimal Bayes-
ian estimator under cost metrics, such as the squared error and 
the uniform cost, depends primarily on the posterior distribu-
tion .f xX ii ^ h  Indeed, the squared error cost is minimized by 
the conditional mean estimator ( ) { },Ex xfMSE Xi i= i

t  and the 
uniform cost is minimized by the maximum a posteriori (MAP) 
estimator 

i
( ) argmax fx xMAP Xi i= i

t ^ h [27], [44]. Under a perfect 
model specification, the asymptotic properties of Bayes estimators 
and of the posterior distribution have been investigated exten-
sively. Under suitable conditions, as the number of data samples 
increases, the Bayes estimator tends to become independent of 
the prior distribution [27, Ch. 4]. Thus, the influence of the prior 
distribution on a posteriori inferences decreases, and asymptotic 
behavior similar to the non-Bayesian ML estimator emerges. 
Indeed, strong consistency, efficiency, and normality properties 
of Bayes estimators have been established for a large class of 
prior distributions [41]. This asymptotic behavior has some intui-
tive appeal, since the prior pdf represents a statistical summary 
of one’s best guess (prior to an actual experiment) of the likeli-
hood the desired parameter will assume any particular value. As 
actual data measurements become available, however, it makes 
sense that one will eventually abandon the guidance provided by 
the prior pdf in light of the valuable information carried by the 
data measurements obtained from the actual experiment. This 
phenomenon is well established and has been observed in SP 
applications. When the prior ( )f ii  is incorrect but the model 
f xX ii ^ h is correct, then it is possible that a significantly larger 

number of data observations (or higher SNR) may be required 
before the Bayes estimator becomes independent of the influence 
of the incorrect prior pdf [21, p. 4737]. 

Misspecification within a Bayesian framework explores the 
possibility that the assumed joint pdf ( , )f x,X ii  may be incorrect. 
This, of course, includes the prior pdf ( )f ii  as well as the model 
f xX ii ^ h. Under model misspecification, the asymptotic prop-

erties of the posterior distribution also have been investigated 
extensively. The following discussion attempts to summarize 

some key results on this topic, although no claims are made here 
that the summary is complete or exhaustive. The goal here is to 
identify results of potential interest to the SP community in the 
authors’ viewpoint. The first discussion to follow will focus on 
published results that detail the asymptotic behavior and prop-
erties of the Bayesian posterior distribution under model mis-
specification, i.e., the asymptotic behavior of f xX ii ^ h as the 
amount of data increases. These results can be considered the 
Bayesian counterparts in the spirit of the contributions of Huber 
[20] and White [46] that detail ML estimator performance 
under misspecification, as discussed earlier. Second, a discus-
sion of results on misspecified Bayesian bounds is given. As this 
remains a relatively new area of research, there appear to be very 
few published results on this topic; hence, a brief discussion of 
some of the topic’s inherent issues is also provided.

Bayesian estimation under misspecified models
Since Bayes estimators are derived from the posterior density 

,f xX ii ^ h  considering its asymptotic behavior yields insights 
into the convergence properties of the associated estimators. 
Berk [4] was the first to investigate the asymptotic behavior of 
the posterior distribution under misspecification as the num-
ber of data observations becomes arbitrarily large. Specifical -
ly, consider a set of i.i.d. data measurements { }x xm m

M
1= =

according to joint pdf ( ) ( ).p px xX X mm

M

1
=

=
%  Let the 

assumed pdf of x be f f xxX Xm

M
m1
ii =

=
^ ^h h%  and the 

assumed prior pdf be ( ) .f ii  Define the set AH  such that

: .argmin lnE f xA p X_ ! iiH H -
!i H

^ h" " ,,3) (17)

For a large class of unimodal and well-behaved distributions, 
the set AH  consists of a single unique point, i.e., { },A 0iH =
but the definition clearly allows for the possibility that this set 
contains more than one point. It is also noteworthy [see also 
(1)] that the set AH  is simply the set of all points/vectors 
!i H that minimize the KLD ( )D p fX X i  between the true 

and assumed distributions. Berk noted this relation to the KLD 
in [4], i.e., prior to the Akaike [1] reference to Huber’s work 
[20]. Berk proved that, if { },A 0iH =  i.e., it consists of a sin-
gle unique point ,0i  then the following convergence in distri-
bution holds:

( ) ( , , , ) ,f f x x xx
.

X X M M

d
1 2 0"f_i i i id -

"3
ii ^ h (18)

where ( ) ( ) ( ) ( )a a aa d1 2 gd d d d=  and  ( )ad  i s  a  Di rac 
delta function.

From (18), one can presume that 0i  is the counterpart for 
the misspecified Bayesian estimation framework of the pseu-
dotrue parameter vector introduced in (1). This conjecture is 
validated by the fundamental results of Bunke and Milhaud 
[6] that provide strong consistency arguments for a class of 
mismatched (or pseudo) Bayesian (MB) estimators. Specifi-
cally, let ( , )L $ $  be a nonnegative, real-valued loss function such 
that ( , ) .L 0ii =  A familiar example of this type of functions 
is the one leading to the MSE between a given estimate it  and 
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a given vector ,i  i.e., ( , ) ( ) ( ).L T
MSE i i i i i i= - -t t t  Consid-

er now the class of (possibly mismatched) Bayesian estimates 
defined as

( ) ,

, ( )

argmin

argmin

E L

L f d .

x

x

f

X

MB |X_i i

i i i

j

j=

!

!
i

j

j

H

H H

i
t

^
^
h
h" ,

# (19)

Bunke and Milhaud [6] investigated the asymptotic behav-
ior of the class of estimators in (19) and their results can be 
recast as follows.

Theorem 3
For Theorem 3 [6], under certain regularity conditions (see [6, 
Assumptions A1–A11]) and provided that { },A 0iH =  it can 
be shown that

.x
. .a s

M 0MB "i i
"3

t ^ h (20)

Moreover,

, ,M 0x N
.

M

d
0MB 0+i i K-

"3 i
t^ ^ ^h h h (21)

where

,L L A B A L L T
2

1
1

1 1
2

1
10 0 0 0_Ki i i i

- - - -r r r r^ h (22)

( , )
,

( , )
,

L L
L L, ,i j

i j
i j

i j
1

2

2

2
0

0

0

0
2 2
2

2 2
2a b a i

a b a a
= =

=b i
a i

a i

=

=

r r6 6@ @ (23)

and the matrices A 0i  and B 0i  have been defined in (2) and 
(3), respectively. Two comments are in order:
1) The similarity between the results given in Theorem 1 for 

the MML estimator and the ones given in Theorem 2 for 
the MB estimator is now clear: under model misspecifica-
tion (and under suitable regularity conditions), both the 
MML and the MB estimators a.s. converge to the point 0i

that minimizes the KLD between the true and the assumed 
distributions. Moreover, they are both asymptotically nor-
mal-distributed with covariance matrices that are related to 
the matrices A 0i  and .B 0i

2) If, in (19), the squared error loss function ( , )LMSE a b

is used, then 2 ,L L I1 2=- =r r  and, consequently, the 
asymptotic covariance matrices of the MB estima-
t o r  and the MML estimator are the same, i .e. , 

.C A B A1 1
0 0 0 0 0K = =i i i i i

- -

While identifying key results from [4] and [6] in this arti-
cle, reference has been made to several assumptions (e.g., see 
[6, Assumptions A1–A11]) whose details were omitted here. 
While important (in particular, the uniqueness of the KLD 
minimizer is critical in Theorem 3), the inclusion of these 
details would unnecessarily clutter the discussion. However, 
the regularity conditions described by [6] characterize a 
wide spectrum of problems relevant to the SP community.

To conclude, the results discussed in this section are based 
on a parametric model ( )f xX i  for the data. A similar conver-

gence persists in the nonparametric case. Specifically, Kleijn 
and van der Vaart [25] address convergence properties of the 
posterior distribution in the nonparametric case as well as the 
rate of convergence.

Bayesian bounds under misspecified models
As outlined in the section “A Formal Theory of Statistical 
Inference Under Misspecified Models,” when the model is 
correctly specified, a wide family of Bayesian bounds can be 
derived from the covariance inequality [43]. As is well 
detailed in [34] and [43], this family includes the Bayesian 
CRB, the Bayesian Bhattacharyya bound, the Bobrovsky–
Zakaï bound, and the Weiss–Weinstein bound, among others. 
Establishing Bayesian bounds under model misspecification 
appears to have received very limited attention and represents 
an area of open research. The only results on the topic to the 
authors’ knowledge are given in [22] and [38]. The approach 
taken therein differs from the classical approach adopted in 
[43] with some loss in generality. In fact, the Bayesian bounds 
obtained in [22] and [38] attempt to build on the non-Bayesian 
results in [37]. Specifically, it is required that the true condi-
tional pdf ( )p xX ii  and the assumed model f xX ii ^ h share 
the same parameter space ;H  thus, any misspecification is 
exclusively due to the functional form of the assumed distri-
bution. This is essentially the particular case discussed in the 
non-Bayesian context in the section “An Interesting Case: A 
Lower Bound on the MSE via the MCRB,” and the bound that 
we are going to derive has a form similar to the non-Bayesian 
bound in (9).

Let  t he c ond i t ion a l  mean of  the e s t i m a t o r  be 
{ ( )} ( ),E xpX i n i=i
t  and define the error vector and the bias 

vector as ( , ) ( )x x_g i i i-t  and ( ) ( ) ,r _i n i i-  respec-
tively. As in (9), the total MSE is given by the sum of the 
covariance and squared bias. Thus, by use of the covariance 
inequality [43], a lower bound on MSE under model mis-
specification is given by

( )

,

E

M
E E E

E

1
MSE x

rr

p p
T

p
T

p
T

p
T

p
T

1

, ,

, , ,

X X

X X X

_

$

i gg

h hh hgg

+

-

i i

i i i

i

t^ h "

"
" " "
,

,
, , ,

(24)

where we dropped the dependences on x and i for notation 
simplicity. The vector function ( , )xh i  represents the score 
function [43], and a judicious choice of it leads to tight 
bounds. In [22] and [38], the following score function is con-
sidered with the aim of obtaining a bound for the Bayes MAP 
estimator and ML estimator in mind:

.( , ) ln lnf E f xx x| |X p X|Xd di ih i = -i i i ii^ ^h h" , (25)

This score function is the same as the one used for the MCRB 
in [37], and it leads to a version of the misspecified Bayesian 
CRB (MBCRB). To demonstrate this fact, we define the fol-
lowing two matrices based on the conditional expectation: 

( )E p
T

|X h ig N=i
" ,  and ( )E .Jp

T
|X ihh =i
" ,  Closed-form 
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expressions can be found in [37] for the case where both the 
true and the assumed conditional distributions are complex 
Gaussian, for example. The resulting lower bound on the MSE 
follows from (24) and is given by

( ) ( ) ( ) ( )

.

M
E E E

E

1MSE x J

rr

p p
T

p p

p
T

1
,X $i i i iN N

+

-
i i i i

i

t^ h
"
" " "
,
, , ,

(26)

The class of estimators to which the above MBCRB applies 
is that which has a mean and an estimator-score function cor-
relation that, respectively, satisfy the following constraints:

( ) ( ) ,

( , ) [ ( ) ( )] ( ) .

E E

E E

x

x x
p p

p
T

p,

,X

X

n

h i i n

i i

i iN

=

- =i

i i

i
t

t"
"

"
"

, ,
, , (27)

These constraints follow from the covariance inequality 
[37, Sect. III-C] and the choice of score function. This limits 
the applicability of the bound in contrast to bounds obtained 
when the model is perfectly specified. Thus, an obvious area 
of future effort is the development of Bayesian bounds under 
misspecified models with fewer constraints and broader appli-
cability. To conclude, we note that an example demonstrating 
the applicability of this Bayesian bound to a DOA estimation 
for sparse arrays is given in [22].

Examples of applications
In this section, we describe some examples related to the 
problems of DOA estimation and data covariance/scatter 
matrix estimation. These problems are relevant in many array 
processing and adaptive radar applications.

DOA estimation under model misspecification
The estimation of the DOAs of plane-wave signals by means of 
an array of sensors has been the core research area within the SP 
array community for years [42]. The fundamental prerequisite for 
any DOA estimation algorithm is that the positions of the sensors 
in the array are known exactly, i.e., known geometry. Many 
authors have investigated the impact of imperfect knowledge of 
the sensor positions on the DOA estimation performance or of 
the miscalibration of the array itself (see, e.g., [15] and [42], just 
to name two). Other authors have proposed hybrid or modified 
CRBs with the aim to predict the MSE of the DOA estimators in 
the presence of the position uncertainties [31], [39]. The goal of 
this section is to show that the misspecified estimation frame-
work presented in this article is a valuable and general tool to 
deal with modeling errors in the array manifold. The application 
of the MCRB and the MML estimator to the DOA estimation 
problem has recently been investigated in [35] for MIMO radar 
systems and in [37] for uniform linear arrays (ULAs).

Following [37], consider a ULA of N sensors and a single 
plane-wave signal impinging on the array from a conic angle 

.ir  Moreover, suppose that, due to an array misscalibration, the 
true position vector pn of the nth sensor, defined in a three-
dimensional Cartesian coordinate frame, is known up to an 
error term modeled as a zero-mean, Gaussian random vector, 

i.e., ( , ).0e INn e
2

3+ v  Then, the received data can be expressed 
as [ ( )] [ ] ,x s d cn n ni= +r  where [ ( )] ( ( ))exp jd k p en

T
n ni = +ir r

is the nth element of the true (perturbed) steering vector 
and ( ) ( ),2k ur im=i rr  where ( )u ir  is a unit vector pointing 
at the direction defined by ir  and m  is the wavelength of the 
transmitted signal. Moreover, s is an unknown deterministic 
complex scalar that accounts for the transmitted power, the 
source scattering characteristics, and the two-way path loss, 
while c n j= +  is the disturbance noise term composed of 
white Gaussian noise n and of interference signal (or jammer) j.
Given particular realizations of the position errors en, the clut-
ter vector is usually modeled as a zero-mean complex Gaussian 
random vector , ( ) ( ) ,0c I d dN N j j j

H2+ v i i+^ h  where j
2v  and 

ji  represent the power and the DOA of the jamming signal. 
The DOA estimation problem is clearly the estimation of ,ir

given the complex data vector x. Since, in practice, it is impos-
sible to be aware of the particular realizations of the position 
error vectors en, the user may decide to derive a DOA estimator 
starting from the nominal steering vector ( ),v ir  whose compo-
nents are [ ( )] ( ),exp jv k pn

T
ni = ir r  i.e., the user neglects the sen-

sor position errors. The true (unknown) data model is given by 
the pdf ( ) ( ), ( ) ( ) ,p sx d I d dN PX N j j j

H2 !i v i i= +r r^ h  while 
the assumed parametric model is

( , )

( ), ( ) ( ) , , [ , ) .

f f s

s s 0 2

x

v I v v C

F

N

X X

N j j j
H2 6 ! !

i

i v i i i r

=

= +^ h
"

,
(28)

The true pdf ( )p xX  does not belong to F ; in other words, the 
assumed parametric pdf ( | , )f sxX i  differs from ( )p xX  for every 
value of [ , ) .0 2!i r  This is because, even if both the true and 
the assumed pdfs are complex Gaussian, by neglecting the posi-
tion errors in the assumed steering vector, we are choosing the 
wrong parameterization for the mean value and the covariance 
matrix of the assumed Gaussian model. Therefore, how large is 
the performance loss due to this model mismatch? The MCRB 
presented in the section “The Misspecified CRB” answers this 
question. We omit the details of the calculation of the MCRB 
and the derivation of the joint MML estimator of the DOA and 
of the scalar s, and we refer readers to [37]. However, to provide 
some insights about this mismatched estimation problem, Figure 1
illustrates the matched CRB in the estimation of ,ir  i.e., the CRB 
on the DOA estimation evaluated by considering the true data 
pdf ( ),p xX  the MCRB, and the MSE of the MML estimator 
obtained from the assumed and misspecified pdf ( | , ) .f sxX i

Figure 1 plots the square roots of the bounds and of the MSE 
(RMSE) in units of beamwidths as a function of element-level 
SNR. The MCRB accurately predicts the performance of the 
MML estimator. If the system goal is a ten-to-one beamsplit 
ratio, i.e., –10 dB RMSE in beamwidths, then this could be 
accomplished with an SNR of 9.28 dB when the model is per-
fectly known, but not precisely knowing the true sensor posi-
tions requires an additional ~10 dB of SNR to achieve the same 
goal ( 10MCRB dB,-  for .19 4 dBSNR , ). However, if the 
system receives an . ,9 3 dBSNR ,  then the minimum achiev-
able beamsplit ratio in the presence of array errors is three to 
one, i.e., the 5MCRB dB,-  RMSE in beamwidths. This 
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information can be quite valuable in determining where to 
focus efforts for improve system performance.

Scatter matrix estimation under model misspecification
Another widely encountered inference problem is the estimation 
of the correlation structure, i.e., the scatter or covariance matrix, 
of a data set. The estimation of the covariance/scatter matrix is a 
central component of a wide variety of SP applications [30]:
adaptive detection and DOA estimation in array processing, 
principal component analysis, signal separation, interference 
cancellation, and the portfolio optimization in finance, just to 
name a few. Even if the data may come from disparate applica-
tions, they usually share a non-Gaussian, heavy-tailed statistical 
nature, as discussed in [49]. Estimating the covariance matrix of 
a set of non-Gaussian data, however, is not a trivial task. In fact, 
non-Gaussian distribution characterization typically requires 
additional parameters that must be jointly estimated along with 
the scatter matrix. Think, for example, of the (complex) t-distri-
bution that has been widely adopted as a suitable and flexible 
model able to characterize the non-Gaussian, heavy-tailed data 
behavior [26], [30], [40]. A complex, zero-mean, random vector 
x Cm

N!  is said to be t-distributed if its pdf can be expressed as

( | , , )

, ,

p

N
N1 tr

x

x x

X m

N m
H

m

N
1_

m h

r m

m

h
m

h
m

C
C

R

R
R R

+
+ =

m m
-

- + ^^
^ c c ^ hh
h m m h

(29)

where ( )$C  indicates the gamma function while m and h are the 
so-called shape and scale parameters, and R is the scatter matrix. 
This multidimensional pdf is obtained by assuming that vector xm

follows the compound-Gaussian model with Gaussian speckle 
and inverse-Gamma distributed texture [40]. For proper identifi-
ability, a constraint on ,R  e.g., ,Ntr R =^ h  needs to be imposed. 
The complex t-distribution has tails heavier than the Gaussian for 
every ( , ),0 3!m and it becomes the complex Gaussian distribu-
tion for ." 3m As can be clearly seen from (29), to perform
some inference on a t -distributed data set, we must jointly esti-
mate the shape and scale parameters along with the scatter matrix.
Unfortunately, as pointed out in [26], a joint ML estimator of these 
three quantities presents convergence and even existence issues. 
Moreover, as discussed in the section “A Covariance Inequality in 
the Presence of Misspecified Models,” the t-distribution may be 
only an approximation of the true heavy-tailed data model. To 
overcome these problems, the SP practitioner has fundamentally 
two choices: 1) to apply some robust covariance matrix estimator 
(see [30] and [49] for further details) or 2) to assume a simpler, but 
generally misspecified, model for characterizing the data, gaining 
the possibility to derive a closed-form estimator at the cost of a 
loss in the estimation performance [10], [12]. If option 2) is adopt-
ed, the most reasonable choice for the simplified data model is the 
complex Gaussian distribution:
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In fact, the joint (constrained) MML estimator of the scat-
ter matrix and of the data power can be derived as
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Two comments are in order:
1) It can be shown that CMML/t  converges to the true scatter 

matrix, i.e., ;
MCMML "/ /
"3

. .a st  thus, it can be successfully 
applied to estimate it [10], [12].

2) It is computationally inexpensive and easy to implement, 
which makes the use of CMML/t  feasible in real-time applica-
tions, e.g., in adaptive radar detection.
Along with knowledge of the MML estimator conver-

gence point, the performance loss that has resulted from model 
mismatch should also be assessed. To this purpose, since the 
Gaussian model is nested in heavy-tailed t-distributed model (see 
the section “An Interesting Case: A Lower Bound on the MSE 
via the MCRB”), we can evaluate the MCRB for the problem at 
hand and compare it with the CRB. As an example, in Figure 2,
we compare the curves relative to the constrained CRB (CCRB) 
for the estimation of the scatter matrix under matched conditions 
(i.e., when the true t-distribution is assumed), the constrained 
MCRB (CMCRB) [11] (i.e., when the misspecified Gaussian 
model is assumed), and the MSE of the constrained MML esti-
mator of (31) (details of the calculations can be found in [12]). The 
distance between the CCRB and the CMCRB curves provides 
a measure of the performance loss due to model mismatch. As 
expected, the loss increases when the shape parameter m  reaches 
zero, i.e., when the data have an extremely heavy-tailed behavior. 
However, when " 3m , i.e., when the t-distribution tends to the 
Gaussian one, the CCRB and the CMCRB tend to coincide. We 
note that the constrained MML estimator of the scatter matrix 
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FIGURE 1. The MSE of the MML estimator, the MCRB, for the DOA 
estimation problem. Simulation parameters are set as M 18=  element 
ULA, the array position errors of .0 01ev m= of standard deviation, 

, ,90 87t jc ci i= = and 10j
2 3v =  (see [37]).
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is an efficient estimator w.r.t. the CMCRB, as predicted by the 
theory in the section “The Mismatched ML Estimator.”

Concluding remarks
The objective of this article is to provide an accessible and, at 
the same time, comprehensive treatment of the fundamental 
concepts about CRBs and efficient estimators in the presence 
of model misspecification. Every SP practitioner is aware of 
the fact that, in almost all practical applications, a certain 
amount of mismatch between the true and the assumed statis-
tical data models is inevitable. Despite its ubiquity, the assess-
ment of performance bounds under model misspecification 
appears to have received limited attention from the SP 
community, while it has been deeply investigated by the statis-
tical community. The first aim of this tutorial is to propose to a 
wide SP audience a comprehensive review of the main contri-
butions to the mismatched estimation theory, both for the 
deterministic and Bayesian frameworks, with a particular 
focus on the derivation of CRB under model mismatching. 
Specifically, we have described how the classical tools of the 
estimation theory can be generalized to address a mismatched 
scenario. First, the MCRB has been introduced and the behav-
ior of the MML estimator investigated. Second, results related 
to the deterministic estimation framework have been extended 
to the Bayesian one. The existence and the asymptotic proper-
ties of a MB estimator have been discussed. Moreover, some 
general ideas about the possibility to derive MBCRBs have 
been provided. In the last part of the article, we showed how 
to apply the theoretical findings to two well-known relevant 
problems: the DOA estimation in array processing and the 
estimation of the disturbance covariance matrix for adaptive 
radar detection.

Of course, much work remains to be done. A question that 
naturally arises is whether it is possible to derive a more gen-
eral class of misspecified bounds. The first step toward this 
direction has been outlined by Richmond and Horowitz in 

[37], where a generalization of the theory to the Bhattacha-
ryya bound, to the BB, and to the Bobrovsky–Mayer–Wolf–
Zakaï bound has been proposed. Next, as discussed in the 
“Generalization to the Bayesian Setting” section, a future area 
of research is the derivation of general Bayesian lower bounds 
that could be obtained by relaxing or, hopefully, removing the 
constraints given in (27). Finally, a systematic and deep inves-
tigation of a general decision theory under model misspecifica-
tion is required since it could lead great advantages in a huge 
number of SP applications.
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LECTURE NOTES
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Soo-Chang Pei and Kuo-Wei Chang

The Mystery Curve: A Signal Processing Point of View

I n the first chapter of a recently pub-
lished book on artful mathematics 
[1], a linear combination of harmonic 

signals called mystery curves were intro-
duced. Although their Fourier-based 
analysis brings interesting results, this 
lecture note provides a different and 
important perspective, especially useful 
for our signal processing community. 
Based on polar coordinate systems and 
low-pass filtering approaches, the pat-
terns of the curves can be designed by 
locally curve tracing instead of trial and 
error, including not only two-dimen-
sional (2-D) but also three-dimensional 
(3-D) modeling. Concrete examples and 
online MATLAB codes are provided 
so that applications from art and logo 
design to amplitude modulation (AM)-
frequency modulation (FM) signal 
analysis are realizable.

Relevance
In [1], the first example given is a sum-
mation of three rotating circles ( )tn
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which is illustrated in Figure 1. This 
fivefold symmetric curve seems incom-
prehensible by the frequency compo-
nents one, six, and 14.

However, it can be shown that the 
symmetry comes from the difference of 
frequency and can be easily proved by 
Fourier series analysis. In this example,  
if we put n on the complex plane
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As we can see, the differences of fre-
quency ( , , )1 6 14-  are

( )

( )

1 6 5

6 14 20

1 14 15

- =-

- - =

- - =

and the greatest common divisor (gcd) 
of all the aforementioned frequency dif-
ferences is five, which is also the number 
of folds. An equivalent statement in [1] is 
that ( , , )1 6 14-  are all congruent to one 
modulo five. In addition, if the frequen-
cies are chosen randomly, as the code 
shown in _ _ .mysterycurve rand nofold m
[3], we can observe that the curves in 
Figure 2 are not always N-fold symme-
try. More examples can be found in [4].
As a result, the relationship between the 
frequencies and N -fold symmetry can 
be deduced.

Although the author of [1] solved the 
mystery and one could generate random 
mystery curves by setting parameters, 
it  is still hard to synthesize a desired 

N-fold pattern without trial and error. In 
this article, we propose an another way 
to generate the mystery curve. Instead 
of finding a j and jw from

( ) ,c t a ej
j

iw tj=/ (3)

we use the polar coordinate system

( ) ( ) .c t r t e ( )i t= i (4)

After deriving the properties and con-
straints of ( )r t  and ( ),ti  we can create a 
pattern by locally tracing a curve on the 
polar coordinate system. This is quite 
useful for an art or commercial applica-
tion such as logo design.

The beautiful N-fold symmetry 
curve can be extended to 3-D cases 
by similar definition in two dimen-
sions. Today, 3-D printing is popular 

2

1

0

–1

–2
–2 –1 0 1 2

FIGURE 1. The mystery curve. An animated ver-
sion can be found in [2].
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and affordable, and modern sculptures 
or artwork created by the 3-D mystery 
curve might decorate our living rooms 
in the near future. 

Prerequisites
The prerequisites for this lecture note 
consist of basic modular arithmetic, 
Fourier series analysis [5], and geomet-
ric representation of complex numbers. 
Some notations in this article are given 
as follows. A curve on the 2-D plane 
is defined as ( ), ( )x t y t^ h and in the 3-D 
space it is defined as ( ), ( ), ( ) .x t y t z t^ h
Since the symbol z  is already used for 
the z-axis, the complex representation 
of ( ), ( )x t y t^ h on the xy plane is denoted 
by ( ) ( ),( )c t x t iy t+=  where .i 1= -

A mystery curve is a periodic curve with 
N-fold symmetry. For convenience, the 
period is set to .2r

Problem statement
In this lecture note we will 1) investigate 
how the mysterious curve creates the 
N-fold rotation symmetry; 2) introduce 
the polar form description of the mys-
terious curve (It is much easier than the 
Cartesian coordinate to specify and trace 
the curve of the shape of the mysterious 
curve); 3) extend the 3-D mysterious 
curve; and 4) provide MATLAB code 
implementations for 2-D/3-D mysteri-
ous curves generation [3].

Solution

Review of mystery curve and Fourier 
series
In this section, we will review how to 
generate the mystery curve by Fourier 
series analysis. Recall that an N-fold 
symmetric curve ( )c t  must satisfy the 
following equation:

( ) ,e c t c t
N
2

N
i k2 r= +
r c m (5)

where the integers k  and N  are 
coprime. The physical meaning of (5) 
is that the time delay (right-hand side) 
is equal to some rotation of the past. 
Note that if k  and N  are not coprime, 

( , ) ,gcd k N d 12=  t hen  a  /N d  fold 
symmetry curve will be generated in-
stead. To derive the constraints of c(t), 
we expand it by Fourier series

( ) .c t C eint
n

n

=
3

3

=-

/ (6)

Rewrite (5) as

.C e e1 0
( )

int
n

n

N
i n k2

- =
3

3 r

=-

-` j/ (7)

Equation (7) implies that Cn  can be non-
zero only when n is congruent to k  mod-
ulo .N  In other words, let n Nn k= +l

and c(t) is in the form of

( )

.

c t C e

e C e

( )
n

n

i Nn k t

ikt
n

n

iNn t

=

=

3

3

3

3

=-

+

=-

l

l

l

l

l

l

/

/ (8)

For instance, (2) can be rewritten as

( )c t e e i e1
2
1

3
it i t i t5 15= + + -` j

with , ,N k5 1= = , / ,C C1 1 20 1= =

and / .C i 33 =-

We provide some random N-fold 
mystery curves in Figure 3. The com-
plex representation of all the curves is 
in the form of

( ) ,c t e C e C e C eikt in Nt in Nt in Nt
1 2 3

1 2 3= + +^ h
(9)

whe r e  N  i s  chosen  f rom t h r e e , 
five, or seven. More results can be 
found in [1], and the code is given in 

_ .mysterycurve rand m [3]. Codes in 
other programming languages such as 
Python and Mathematica can be found 
on the Internet [6], [7].

This method, however, needs trial 
and error to find good mystery curves. If 
we already have some drafts, scratches, 
or contours in our mind, this method 
will not help much. Note that every 
change on Cn  will affect the curve glob-
ally. To design a good pattern easily, one 
might want to draw a curve locally and 
then rotate it N  times. This can be done 
by considering polar coordinate system 
instead of Cartesian coordinate system, 
as we will discuss in the next section.

Mystery curve in polar form
Recall that any complex number 
c x iy= +  can be expressed in polar form

.c x iy rei= + = i

To derive the properties of mystery 
curve, we rewrite ( )c t  as
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FIGURE 2. The random curves generated by _ _ .mysterycurve rand nofold m  [3].
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( ) ( ) ( ) ( ) .c t x t iy t r t e ( )i t= + = i

Then (5) becomes

( ) ( ) .c t
N

e c t r t e2 ( )i
N

k i t
N

k2 2r+ = =
r i r+c cm m

(10)
Compare (10) to

.c t
N

r t
N

e2 2 ( )i t
N
2r r+ = + i r+c cm m (11)

We now get

( )r t
N

r t2r+ =` j (12)

( ) .t
N

t
N

k2 2
i

r
i

r+ = +c m (13)

Equation (12) shows that ( )r t  is a peri-
odic function with period / ,N2r  which 
is not surprising because the mystery 
curve is N-fold symmetric. On the other 
hand, (13) is not so trivial. It actually 
implies that ( )ti  is a linear function plus 
a periodic function. More precisely, we 
can prove

( ) ( ),t kt p ti = + (14)

where ( ) ( )/p t p t N2r= +  is a periodic 
function with period / .N2r

Proof
Let ( ) ( )p t t kti= -  then by definition 
and (13)

( )

( ) ( ) .

p t
N

t
N

k t
N

t
N

k kt
N

k

t kt p t

2 2 2

2 2

·r
i

r r

i
r r

i

+ = + - +

= + - -

= - =

c c cm m m

(15)

To illustrate the previous discussion, we 
take (2) as example. The phase of that 
mystery curve is given in Figure 4. The 
linear trend ,kt k 1=  here can be eas-
ily detected. The amplitude ( )r t is given 
in Figure 5, and the code is given in 

_ .expmysterycurve m [3].
The advantage of polar-form design-

ing is that the mystery curves can be eas-
ily generated and discovered by replacing 
the periodic functions, due to decou-
pling the amplitude ( )r t  and phase ( ).ti
Instead of ordinary triangular function 
sin or cos, the absolute value or fractional 
form of triangular functions such as

( )
| ( ) | | ( ) |cos sin

r t
t t

1=
+

(16)

( )
( )cos

r t
c Nt

c
2

1=
+

(17)

can be used since they are also periodic. 
The ( )r t  in (16) together with ( )t ti =

give us a diamond as shown in Fig-
ure 6(a). In Figure 6(b), we draw a peri-
odic function

( )
. ( )

.
sin

r t
t1 3 7

1=
+

Note the constant 1.3 is slightly greater 
than one to avoid division by zero. In Fig-
ure 6(c), we illustrate the mystery curve 
with this ( )r t  and ( ) ( ) .sint t t7i = +

In Figure 6(d) and (e), we simply use the 
same ( )ti  and replace the ( )r t  by

( )
. ( )

( )
sin

cos
r t

t
t

1 1 7
2 7 1

=
+

-

and

( )
( )

( ) ( )
.

sin
cos sin

r t
t

t t
2 7

2 7 14 1
=

+

+ -

This replacement works only in polar 
form. For example, the ( )sin t14  of the 
fivefold mystery curve in (1) cannot be 
easily substituted into any atypical peri-
odic function with the same period such 
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FIGURE 3. Random N-fold mystery curves with , , ,N 3 5 7or=  in the form of (9). The parameters 
, , , , , ,C C C n n n1 2 3 1 2 3  and k  are chosen randomly.
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FIGURE 4. The phase ( )ti  of (2). Clearly, it is a 
linear function plus a periodic function.
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a periodic function.
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as / . ( )( )sin t1 1 1 14+  because ( )v t  must 
be changed as well. More importantly, 

/ . ( )( )sin t1 1 1 14+  introduces some 
high harmonic frequency terms such as 

( ), ( ),cos cost t28 42  etc. Those terms 
contradict the condition that the differ-
ence of each frequency component is a 
multiple of five.

To illustrate how to design an N-fold 
symmetric pattern by polar form, 
assume we can trace the ( )r t  and ( )ti  in 
[ , / ],N0 2r  as shown by the blue curve in 
Figure 7. To satisfy conditions (12) and 
(13), the ( )r t  must repeat in [ / , ]N2 2r r

while ( )ti  repeats and adds a linear term. 
In Figure 8, we present another mystery 
curve made from the polar coordinate 
system. The code of using polar form is 
given in _ .mysterycurve made m2 [3].

The main property of the polar-form 
mystery curve is that its Fourier series 
expansion may not have finite terms. In 

Figure 9, we show the spectrum of the 
complex signal ( )c t  shown in Figure 8.
There are some significant bins in the 
spectrum, and we can perform low-pass 

filtering to approximate or smooth the 
signal. The filtered results are given 
in Figure 10(a) and (b). One can see 
that Figure 10(b) is already very similar 
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to Figure8, but there are only five nonzero 
terms in the frequency response.

From the view of  the polar form, we can 
also notice that the ( ) ( ) ( ( ))cosx t r t ti=

and ( ) ( ) ( ( ))siny t r t ti=  are actually 
AM-FM signals, which are widely used 
in speech analysis [8]–[10] and other 
areas [11], [12]. In particular, the ( )r t
is called the AM part and /d dti  is the 
instantaneous frequency that corre-
sponds to the FM part. In Figure 11(b),

an AM-FM signal is given. The envelope 
[AM part, ( )r t ] is given in Figure 11(a).
The mystery curve corresponding to the 
AM-FM signal is given in Figure 11(c).
This mystery curve, compared with the 
other curves mentioned in this article, is 
less sharp. The reason is that the AM sig-
nal has a slow changing envelope ( ( ))r t
and a rather fast phase ( ( ))ti  variation. 
In other words, in a small amount of time 

,tD  the difference of ( )r t  and ( )r t tD+

is small while the phase shift ( )ti  and 
( )t ti D+  is large, which makes the 

curve round.

Mystery curve in 3-D
Like the case in 2-D, the mystery curve 
in 3-D can be defined by time shift 
and rotation operation. Recall that, by 
the Euler rotation theorem, any com-
bination of three dimension rotations 
is equivalent to a single 2-D rotation 
[13] about an axis. So, without loss 
of generality, we can assume the axis 
to be the z-axis. Therefore, the ( )x t  and 

( )y t  must satisfy the same constraints 
as the 2-D case, and ( )z t  is a periodic 
signal with period / .N2r  For example, 
Figure 12(a) is a 2-D mystery curve, 
and if we put it into 3-D by setting 

( ) ( ),cosz t t1 5= +  the result is shown 
in Figure 12(b). The code is given in 

_ .mysterycurve D m3 [3].
Because the rotation axis is z, it 

is easy to generate a 3-D fivefold sym-
metric curve whose shape looks like a 
vase or pineapple, as we can observe 
in Figure 12(c), which contains only the 
color red, and Figure 12(d), which is dis-
tinguished by five colors.

Another example is given in Fig-
ure 12(e) and (f). In Figure 12(e),
we illustrate a threefold 3-D mys-
tery curve whose rotation axis is not 
z. To show the symmetry, we color 
the curve in red, green, blue (RGB) 
and provide another view angle in 
Figure 12(f ). The code is given in 

_ .mysterycurve D m3 2 [3].
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FIGURE 8. Another mystery curve made by polar 
form, as shown in _ .mysterycurve made m2  [3].
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What we have learned
In this article, we have learned some 
properties and results of the mystery 
curve. By introducing the polar form of 
such a signal, which is related to a spe-
cial case of AM-FM signal, we can now 
easily design these beautiful curves and 
the repeated patterns can be changed 
flexibly. We have also learned how to 
approximate the curve by taking finite 
terms after low-pass filter. By the 
Euler rotation theorem, the results we 
achieved from 2-D cases can extend to 
3-D cases directly.
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FIGURE 12. Mystery curves in 3-D. (a) The original 2-D mystery curve. (b) The 3-D mystery curve made from (a) by setting ( ) ( )cosz t t1 5= + . (c) The 
3-D curve looks like a pineapple. (d) The 3-D curve looks like a pineapple from another point of view. This curve is fivefold symmetric so that we use 
five different colors to indicate each fold. (e) Another 3-D mystery curve. This is a threefold symmetric curve, distinguished by the colors RGB, and the 
rotation axis is not z-axis. (f) The same curve as (e) with a different angle to show symmetry.
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Fast- and Low-Complexity atan2(a,b) Approximation

T his article presents a new entry to 
the class of published algorithms 
for the fast computation of the 

arctangent of a complex number. Our 
method uses a look-up table (LUT) to 
reduce computational errors. We also 
show how to convert a large-sized LUT 
addressed by two variables to an equiv-
alent-performance smaller-sized LUT 
addressed by only one variable. In addi-
tion, we demonstrate how and why the 
use of follow-on LUTs applied to other 
simple arctan algorithms produce unex-
pected and interesting results.

Introduction
The computation of the arctangent func-
tion atan2(a,b), i.e., obtaining the angle of 
a complex number ,c b aj= +  has been 
the subject of extensive study because 
this computation is needed in many appli-
cations, for example, in the frequency, 
phase, and time synchronization stages 
of digital communications, digital FM 
demodulation, target tracking in wireless 
sensor networks, and object recognition 
in the field of image processing. From a 
designer’s point of view, it is useful to have 
several computation choices since the per-
formance requirements (speed, accuracy, 
power consumption, etc.) may be different 
depending on the specific application, and 
one of those choices may be better suited 
than others for a given application.

A high-speed computat ion of 
atan2(a,b) can be achieved with LUTs, 

where the bit-level concatenation of a and 
b are the values used to address the ROM 
that stores the output of the function. The 
LUT method is fast but much memory is 
required when a decent arctangent accu-
racy is needed. Another popular option is 
to use high-order algebraic polynomials, 
like Chebyshev polynomials or the Taylor 
series [1]. These methods give good pre-
cision, but since the arctangent is highly 
nonlinear, they lead to long polynomials 
and intensive computations. In other cases, 
approximations based on rational func-
tions are used [2]–[4], as they may provide 
acceptable results with few computations. 
The coordinated rotation digital computer 
(CORDIC) algorithm, which requires only 
shift and add operations, is frequently used 
to compute the arctangent [1]. However, its 
sequential nature makes it less adequate 
when throughput speed is critical.

Instead of using a single complicated 
equation to achieve high accuracy, as pro-
posed by other authors, our proposal is a 
two-stage process with a first stage that 
uses a low-complexity coarse approxi-
mation and a second stage that improves 
the accuracy by means of a small LUT 
that stores precomputed error values (as 
a function of the first stage output). Our 
proposal computes a full-quadrant arc-
tangent faster than other popular options 
that achieve the same accuracy. We now 
describe the two processing stages of our 
proposed atan2(a,b) algorithm.

First stage
The idea behind this stage is to concep-
tually generate a continuous real-valued 

sinusoid ( )p t that has the same initial 
phase angle as the phase of our complex 
number .c b aj= +  If ,c c e j= i  that 
sinusoid would be

( ) ,cosp t c
T

t2· r
i= -` j (1)

where t is time and T  is the sinusoid’s 
period, as shown in Figure 1.

The reason we care about this ( )p t
sinusoid is that the time location of ( )p t ’s 
maximum value, tm in Figure 1, is pro-
portional to the desired phase angle of 

.c b a c ej j= + = i  The relationship 
between tm  and i  is found by setting the 
time derivative of ( )p t  equal to zero and 
solving for .tm  Doing so gives us

.t T
2m
r
i= (2)

The time-domain dimensions of 
variables tm  and T  must, of course, be 
identical. With no loss in generality, and 
out of convenience, we assume the time 
between the [ ]p n  samples is unity. Thus 
tm  is measured in units and T 4=  units. 
So when we use (2) to compute ,i  the 
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n
(t )

p [n]

p(t ) for c = b + ja

tm0 1 2 3
b

a
–b

–a

|c |

–|c |

FIGURE 1. The real-valued sequence [ ]p n  and 
continuous sinusoid ( )p t  associated with a 
given complex number .c c e j= i
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ratio /t Tm  will be dimensionless and 
i  will be measured in radians. In the 
first-stage processing we will estimate 
tm  and show how this will yield an esti-
mate of angle ,i  for a given accuracy, 
more efficiently than performing other 
atan2(a,b) algorithms.

It can easily be seen that the sequence 
[ ] { , , , }p n b a b a= - -  is a sampled 

version of ( ),p t  as defined by (1) as

[ ] , , , } { ,

, ,

, ,

,

, , , .

{ cos

sin cos sin

cos cos

cos cos

cos

p n b a b a c

c

c n p t

n

2

2
2

2
3

2
0 1 2 3

·

·

·

where

t nT
4

i

i i i

i
r

i

r
i

r
i

r
i

= - - =

- -

= - -

- -

= - =

=

=

^

`
`

^
^

`
`

^

^
^

h

j
h
h

j h

j
h

j

h

$
,

.

(3)

Our goal is to compute tm  from the 
[ ]p n  samples.
To clarify our scenario here, Figure 2

shows the various ( )p t  waveforms that 
result from various values of our complex 
number input .c  The time location of the 
absolute maximum of the sinusoidal ( )p t
waveform, ,tm is proportional to the angle 
of .c

The first step of the first-stage process-
ing is to determine the time location of the 
largest sample of four-sample sequence 

[ ]p n  (determined from the signs of a b+
and ),a b-  a parameter that we call off-
set. The second step of the first-stage pro-
cessing computes the time location of the 
maximum value of ( )p t  relative to offset,
a parameter that we call f.

Based on the previously given con-
cepts and relationships, we conclude the 
first step of the first-stage processing by 
determining the value for offset, which 
will be 0, 1, 2, or 3. In the second step of 
the first-stage processing, we complete 
the estimation of tm  approximating the 
value of time variable .f Specifically, 
we approximate the ( )p t  signal by a 
second-order Taylor series in the vicin-
ity of the largest [ ]p n  sample as detailed 
in “Appendix,” which gives us ,fr  an 
approximation of the time location of 
the maximum value of ( )p t  relative to 
that sample

( )
( )

( )
( )

.f f
p
p

p
p

0
0

2 0
1

r. /
-

=
m

l
(4)

In a general case, this computation 
would require three samples: the biggest 
of the four samples of the waveform, and 
also the two samples adjacent to that sam-
ple, as depicted for case 1 in Figure 2. But 
since those two adjacent samples have the 
same absolute value and opposite sign, 
only two samples are required in (4): 
the largest sample ( )p 0 and its follow-
ing sample ( ).p 1  Using (4), we compile 
our desired processing parameters in 
Table 1. (Note that a negative value of 
fr  indicates that ( )p t  maximum value 

occurred prior to the largest sample in 
[ ].)p n
Based on the values for offset and 

fr  from Table 1 and using (2), assum-
ing ,T 4=  the result of the first-stage 
processing is an approximation of 
atan2(a,b), normalized to the range 
[0, 1), as follows:

( , )

,

mod

mod

a b t

f
2
2

2 4
1

4
1

atan

offset

m

r
.

r r
i= =

+

(5)

where the mod operator is needed to 
translate negative values to the desired 
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FIGURE 2. The proposed atan2(a,b) algorithm illustrated for four different possible c b aj= +

values.

Table 1. The deduction of the expression for fr as a function of the signs of a + b and a – b.

Case 0a b 2+ 0a b 2- p(0) p(1) Offset
2 (0)

(1)
f

p
p

r =

1 1 0 b a 0 b
a

2

2 1 1 a –b 1 a
b

2
-

3 0 1 –b –a 2 b
a

2

4 0 0 –a b 3 a
b

2
-
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[0, 1) range. The computation of param-
eters offset and fr  are shown as the first-
stage processing in Figure 3.

The neat trick of our proposed algo-
rithm is that neither the [ ]p n  sequence 
nor the continuous ( )p t  signal need to 
be computed. Our first-stage processing 
produces a rough estimate of the angle 

of c b aj= +  based upon some simple 
logic and simple arithmetic using values 
a and .b  The offset can be computed 
using the signs of a b+  and ,a b-  as 
shown in Table 1. The determination of 
the two samples needed for the compu-
tation of fr  can also be performed using 
the signs of a b+  and .a b-  It should 

be pointed out that the variable used in 
the denominator in both expressions for 
fr  is always the largest absolute value 

between a and .b
Note that, in [5], Shima used an 

approximation for the one-variable 
atan(x) (derived from a first-order 
Lagrange polynomial interpolation of 

The derivation of (4) proceeds in three steps: 1) derive a 
polynomial expression approximating Figure S1’s continu-
ous ( )p t sinusoid in terms of known [ ]p n  samples; 2) set 
that expression’s time derivative equal to zero; and 3) 
replace t with f and solve for .f

Our derivation begins by assuming the largest of our known 
[ ]p n  samples is located at time .t 0=  Approximating 

Figure S1’s ( )p t  sinusoid with a second-order Taylor series 
expression in the vicinity of ,t 0=  we begin by writing

( ) ( ) ( ) ( ) ,p t p p t p t0 0 2
1 0 2. + +l m (S1)

where ( )p 0l  and ( )p 0m  represent the first and second deriv-
atives of ( )p t  at time ( ) .p t 0=  Given the (S1) polynomial, 
we next approximate the unknown ( )p 0l  and ( )p 0m  coeffi-
cients by using the central difference formula. Doing so we 
write the first-order derivative ( )p 0l  as

( )
( ) ( )

.p h
p h p h

0 2.
- -

l (S2)

Having an approximation of ( )p 0l , we next approximate 
the second-order derivative ( )p 0m  using the first-order deriv-
atives centered at the hypothetical ( / )p h 2-  and ( / )p h 2
samples in Figure S1. Those first-order derivatives are

( / )
( ) ( )

( / )
( ) ( )

.

p h h
p p h

p h h
p h p

2
0

2
0

and.

.

-
- -

-

l

l

Given ( / )p h 2-l  and ( / )p h 2-l , we write our desired sec-
ond-order derivative ( )p 0m  as

( )
( / ) ( / )

( ) ( ) ( ) ( )

( ) ( ) ( )
.

p h
p h p h

h
h

p h p
h

p p h

h
p h p p h

0
2 2

0 0

2 0
2

.

.

- -

-
-

- -

=
- + -

m
l l

(S3)

Assuming the time between our known [ ]p n  samples is 
unity sets h 1=  and recalling that, for our [ ]p n  samples, 

[ ] [ ],p p1 1- =-  we can rewrite (S2) and (S3) as

( )
( ) ( )

( )p
p p

p0 2
1 1

1.
- -

=l (S4)

( )
( ) ( ) ( )

( ).

p
p p p

p

0
1

1 2 0 1

2 0

2.
- + -

=-

m

(S5)

Substituting (S4) and (S5) as coefficients in (S1), our 
desired approximation of ( )p t  is

( ) ( ) ( ) ( ) .p t p p t p t0 1 0 2. + - (S6)

That completes the first step of our derivation. As the second step 
of our derivation we take the derivative of ( )p t  to produce

( ) ( ) ( ) .p t p p t1 2 0. -l (S7)

Setting (S7)’s ( )p t 0=l  gives us an approximation of the 
time location of the maximum value of Figure S1’s ( )p t  sig-
nal. Doing so and defining that estimated time value as fr
we write

( ) ( ) .p p f0 1 2 0 r= - (S8)

Finally, solving (S8) for our desired expression for f  in 
terms of known [ ]p n  sample values we arrive at the final 
form of (4) as

( )
( )

( )
( )

.f f p
p

p
p

0
0

2 0
1

r. /
-

=
m

l
(S9)

Appendix

t

p (t )

p (0)

p (−h/2)

p (−h)

p (h/2)

p (h)

h
2

–h
2

hf0

−h

FIGURE S1. The sinusoidal ( )p t  signal and the desired time value .f
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the function in two octants) that would 
lead to the same expression as ours 
assuming our /a b or /b a were substi-
tuted for his x  and his expression is 
extended to the four quadrants using 
trigonometric identities.

The coa rse approx imat ion of 
atan2(a,b) in this first stage can be mod-
eled using the following MATLAB-
style code, which returns a normalized 

/ ( )2i r  value for the arctangent:

function angl=ap_atan2(a,b)
b0=(a+b)>0;
b1=(a-b)>0;

  offset=2*not(b0)+ not
(xor(b1,b0));
if b0==b1

fr=-0.5*b/a;
else

fr=0.5*a/b;
end
angl=mod((offset+fr)/4,1);

end

Second stage
The normalized error obtained using 
the first stage is shown in Figure 4(a), 
as a function of the actual angle of the 
complex number .c b aj= +

This error function should not be 
directly stored in an LUT, as it needs 
to be addressed by the concatenation 
of the inputs a  and ,b requiring a large 
amount of storage. However, we use the 
trick of transforming that error function 
to one that only depends on the coarse 
approximation calculated in the pre-
vious stage. Therefore, our proposed 
second stage improves the accuracy of 
the first-stage result using an error LUT 
addressed by .fr

The MATLAB function “error-
LUTcontents” indicates how this two-
variable to one-variable addressing 
transformation is done where the abso-
lute value of the error is as a function of 
the absolute value of variable .fr

function f2=errorLUTcontents
(wLUT);
x=linspace(0,0.5,2ˆwLUT);
t=linspace(0,pi/4,2ˆwLUT);
c=exp(1j*t);

  f1=atan2(imag(c),
real(c))/(2*pi);

  f2=0.125*abs(imag(c))./
abs(real(c));
error=f1-f2;

  f2=interp1(4*f2,error,x,
’pchip’);

end

The contents of an LUT-named table 
that contains 2wLUT  words can be com-
puted using

table=errorLUTcontents
(wLUT);

In function “ap_atan2,” right after fr  is 
computed, the following two sentences 
would be used to include the second 
stage in the model

fix=sign(fr)*table(1+floor
(abs(fr)*2ˆ(wLUT+1)));

angl=mod(angl+fix,1);

Note that, if this method were imple-
mented using finite precision arithme-

tic, the least-significant bit of the table 
would be around three positions lower 
than the target accuracy desired for the 
whole operator.

In summary, our complete algorithm 
to approximate the angle of a complex 
number is to 1) identify the maximum 
of the four [ ]p n  samples in Figure 1 to 
determine the value of offset, 2) com-
pute the time location fr  of the ( )p t ’s 
maximum and combine that fr  with off-
set value from step 1, and 3) improve the 
result of step 2 using a relatively small-
error LUT.

Results and performance
In this section, we will compare our 
approach to several known low-com-
plexity approximations of the atan2 
function.

Table 2 summarizes the computa-
tional resources needed by our proposal 
and a few other atan2 approximations, 
grouped for akin accuracies. Whenever 

Stage 2Stage 1

a

b

fr fr
Even a/(2b)
Odd –b/(2a)

Offset
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Offset
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>0 >0
<0
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0
1
2
3

LUT

Mod 1 atan2(a,b)
1/4

a + b a – b

FIGURE 3. Building blocks for the proposed atan2(a,b) algorithm.
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second-stage error LUT.
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an algorithm is proposed for a two-octant 
one-variable atan(x), three extra addition/
subtractions are included in this table as 
the cost of extending the approximation 
to all the quadrants. In Table 2, we only 
consider divisions, multiplications, addi-
tions/subtractions, and storage require-
ments to evaluate the computational cost 
of the algorithms. Other required opera-
tions have a computational cost that can 
be highly platform dependent. Operators 
like binary shifts, mod(), floor(), bit string 
concatenations, etc. have no cost at all in 
fixed-point application-specific integrated 

circuit (ASIC) or field-programmable 
gate array (FPGA) implementations but 
may result in additional computational 
time in pure software implementations. 
For example, in a fixed-point FPGA 
implementation, the computation of 
offset = 2*not(b0)+not(xor(b1,b0)) doesn’t 
involve multiplications nor additions, just 
bit concatenations and simple logic opera-
tors. In such a case, the hardware architec-
ture could be implemented following the 
data flow illustrated in Figure 3.

When only the first stage of the 
algorithm, i.e., without the error LUT, 

is used, the approximation of the 
atan2(a,b), has a maximum error of 

. ,4 07! c  which corresponds to 6.5 exact 
bits [i.e., the number of most significant 
bits that are zero in the binary represen-
tation of the maximum absolute value 
of the error; this value can be obtained 
as ( ( ( ))),log max abs error2-  assuming 
a [0, 1) normalization of the values]. 
Another coarse approximation was 
presented in [6, eq. (12)], achieving the 
same accuracy with higher computa-
tional cost.

As shown in Table 2, by using a small 
error LUT of 32 values our proposal 
achieves similar accuracy to Lyons’ [2, 
eq. (2)] and Rajan et al.’s [3, eq. (9)], but 
requiring three and two fewer multipli-
cations, respectively. If larger LUT sizes 
are used, similar accuracy to [4]–(18)
and (16) can be achieved with fewer 
arithmetic resources by our method.

Finally, another option considered 
for comparison purposes is the meth-
od described in [7], which we call the 
Ratio+LUT method: first, the ratio 

/z a b=  is calculated with a division 
operation (to avoid a large LUT storing 
a two-variable function), second, the 
one-variable function atan(z) is comput-
ed using a LUT. Note that, to extend the 
computation to a full-quadrant atan2, 
four additions would be needed. As seen 
in Table 2, when using the Ratio+LUT, 
the size of this LUT would be four times 
larger than in our proposal, for the same 
final accuracy. Moreover, in fixed-point 
implementations of the algorithm, the 
largest value stored in the atan2 LUT 
would be 3.5 bits larger than in our case, 
making the quantization noise worse for 
the same LUT size and word length.

Using a different first stage
As we have shown (see Table 2), the first 
stage of our algorithm requires the least 
arithmetic resources. Nevertheless, in this 
section, we explore the idea of adding a 
second stage based on an error LUT to 
other atan2 algorithms. Adding a second 
stage could be an easy way of improving 
the accuracy of an existing implementa-
tion with minimum design cost.

We have used [6, eq. (12)], [2, eq. 
(2)], and [4, eq. (18)] as first stages in 
a two-stage algorithm. Their error was 

Table 2. The computational cost comparison of our proposed algorithm with various 
previously published arctangent algorithms.

Method / * + LUT Size (Words) Maximum Error (Degrees) 

[5, eq. (4.13)] 1 0 3 – .4 075!

[6, eq. (12)] 2 0 4 – .4 075!

Ours 1 0 5 32 .0 249!

[2, eq. (2)] 1 3 5 – .0 276!

Ratio+LUT 1 0 4 128 .0 224!

Ours 1 0 5 64 .0 126!

[4, eq. (18)] 1 4 4 – .0 162!

[3, eq. (9)] 1 3 5 – .0 086!

Ratio+LUT 1 0 4 256 .0 112!

Ours 1 0 5 1K .0 008!

[4, eq. (16)] 1 7 6 – .0 008!

Ratio+LUT 1 0 4 4K .0 007!
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computed, using a modified version of 
the “errorLUTcontents” function, and 
the maximum atan2 error was measured 
for several LUT sizes. The results are 
shown in Figure 5. When a second-stage 
LUT is used, the accuracy is improved 
significantly. As can be seen, the maxi-
mum error is halved (i.e., one exact bit 
more is achieved) when the size of the 
LUT is doubled.

Another interesting observation is that, 
when the second stage is added, the atan2 
maximum error depends on the maxi-
mum first derivative of the error curve 
stored in the LUT. This explains why, for 
example, for the same atan2 accuracy, [6,
(eq. 12)] would require a LUT twice as 
large as ours. Figure 6(a) shows the LUT 
contents for both approaches: ours with a 
solid line and [6, eq. 12)]’s with a dashed 
line. Figure 6(b) shows the absolute value 
of the difference between consecutive 
values in the LUT, for the specific case 
of an LUT with 256 words. As can be 
seen in those figures, our approach has a 
smaller maximum of the absolute value 
of the first derivative of the error curve. 

On the contrary, [4, (eq. 18)] achieves 
better accuracy than [2, (eq. 2)], but when 
a second-stage LUT is added, their accu-
racy is similar. That’s because, in this case, 
they have similar maximum values of 
the first derivative of their error curves. 
An important lesson learned is that atan2 
approximations with smaller first deriva-
tive error values are better suited for the 
addition of a second-stage LUT.

Conclusions
We propose a full-quadrant algorithm for 
the computation of the arctangent of a 
complex number ,c b aj= +  particularly 
suitable for implementations in hardware, 
e.g., FPGA, ASIC, etc., where there is no 
penalty incurred when accessing a LUT. 
The second stage of the method we pro-
pose could be applied to other low-com-
plexity algorithms for the approximation 
of the atan2 function, but for a given 
accuracy there is a tradeoff between the 
complexity of the approximation used for 
the first stage and the required storage 
resources used in the second stage. As 
we have shown, algorithms with a small-
er first derivative of their error curve are 
best suited for improving the accuracy 
by the addition of a second-stage LUT. 
Because our proposed method can be 
easily improved by increasing the size 
of a memory when higher accuracy is 
needed, it is an attractive arctan method 
in high-speed applications where moder-
ate accuracy is required (e.g., in systems 
where the precision of the measured a
and b variables is, say, 14 bits or fewer).
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but can they be a crystal ball to predict 
the stock market and earn a large excess 
return? Before we dream of the Alpha-
Go for market prediction, let us review 
a few basic principles on asset pricing 
to better understand the role AI could 
play. I refer to the stock market in this 
discussion, but the same applies to other 
assets and securities such as currencies, 
commodities, and bonds.

Stock price reflects a market 
equilibrium when supply meets 
demand, a state in which sellers 
and buyers agree
In a free market, the price “clears the 
market,” which means the price at which 
the quantity people buy and the quantity 
they sell are the same. Why do prices 
move? The basic concept is represented 
in the supply-demand curves. When the 
quantity that sellers are willing to sell 
does not meet the quantity that buyers 
are willing to buy, prices change until a 
new equilibrium is reached. See Figure 1
for the supply-demand curves. 

Now add this to the mix: assume 
that an AI tool can predict tomorrow’s 
stock price. Say the price is going to be 
US$10  higher tomorrow, represented 
by the red curves and P(t+1). What 
will happen?

If everyone in the market has a mag-
ic AI tool or at least knows the tool’s 
prediction, then today’s price 
will immediately rise to the 
predicted point. Why? Be-
cause no one would sell at a 
lower price. Indeed, as long 
as a few market participants 
have this knowledge, the 
price will change immediate-
ly. There are many examples 
of this in the real world such 
as an acquisition announce-
ment. Company A is trading 
at US$25. Company B an-
nounces it has entered into an 
agreement to purchase Com-
pany A in one month’s time 
for US$35. Company’s A 
stock immediately jumps 
to US$35 in anticipation of 
the deal close price. As a 

result, no one can make profit from a 
known prediction.

An informal way to think about it is 
that today’s price is the average price 
of the many possible prices we think 
we might see tomorrow, the “expected” 
price. And furthermore, when determin-
ing today’s price, people discount tomor-
row’s expected price because, in general, 
people have an aversion to future un-
certainty. The dark shadow curves 
in Figure 1 represent another possibil-
ity tomorrow.

When no one else but one person, 
say, Alice, has this magic AI tool, then 
there are two kinds of people trading. 
Alice, who knows the future price, and 
ignorant people trading at the wrong 
price today (see the aforementioned first 
argument) but will gain this knowledge 
tomorrow. So if Alice buys the stock to-
day, she would make a free profit when 
the price rises to where she knows it will 
be tomorrow. Note that as Alice buys 
the stock, the price would be moving up 
along the supply curve, and the demand 
curve would be moving slightly right to-
ward its correct place. The more Alice is 
buying, the more the demand curve will 
move to the right. Another compound-
ing effect would be that, though other 
people (suppliers) do not have Alice’s 
information, they may quickly infer 
from Alice’s order for a large quantity 

of shares that there is something there 
and raise their expected price, moving 
the supply curve to the left. In such a 
case, the free profit Alice can make is 
apparently limited. Of course, if Alice 
is not trading in a large quantity and no 
one pays attention to her trading, she 
may make a one-time profit for herself 
by keeping her information secret. Real-
world examples such as undetected in-
sider trading, or, arguably, the opaque 
strategies employed by Jim Simons at 
Renaissance Technologies, can only 
profit if others do not know or infer 
what they know.

Risks or uncertain future 
outcomes are an inherent nature 
of the financial market and the 
underlying economic activities 
Stock price is the result of a market 
equilibrium when market participants 
optimize risk-returns. The current stock 
price represents the best knowledge of 
sellers and buyers for the expected (aver-
age) future of the stocks/firms. The ex-
cess expected return in the stock market 
comes as the reward of holding market 
risk, also called systematic risk, which 
cannot be eliminated.

This is a more involved argument that 
can be best illustrated by the Capital Asset 
Pricing Model (CAPM). The argument 
also holds for other asset-pricing mod-

els. A CAPM (see Figure 2)
is an equilibrium relationship 
between stock prices and the 
market portfolio. It is ob-
tained when people optimize 
the expected return (mean of 
the stock return) for a given 
risk represented by volatility, 
i.e., the standard deviation 
of the stock return. This op-
timization leads to a market 
equilibrium, i.e., a mean-vari-
ance-efficient (MVE) tangen-
cy portfolio ,T such that the 
prices of all stocks satisfy the 
CAPM relationship accord-
ing to their correlation to the 
market portfolio, the optimal 
portfolio. A market index, 
such as the S&P 500 index, 

P
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Quantity

P (t +1)

P (t )

S (t )

D (t )
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FIGURE 1. An example of the supply-demand and price equilibrium move-
ment at today (time t) and tomorrow (time t+1).
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is often used as a proxy of the 
market portfolio. Note that 
the MVE tangency portfolio 
is the optimal portfolio in that 
it gives maximum expected 
return for a given volatility 
and risk-free rate. A CAPM is 
an equilibrium relationship that 
stock prices must satisfy with 
regard to their risks and corre-
lations. In a CAPM world, the 
market portfolio is the MVE 
tangency portfolio. No one can 
hold a better portfolio than the 
market portfolio—the MVE 
tangency portfolio .T  Readers 
can refer to [2] for an introduc-
tion to the CAPM with a signal 
processing perspective as well 
as finance jargon I use here.

Of course, such market 
equilibrium and optimal market port-
folio will only hold when major market 
participants agree on the knowledge, 
i.e., mean and covariance, of all stock 
returns. If an AI tool provides better 
estimate of the knowledge, as long as 
everyone in the market knows, no one 
can beat the market portfolio in a risk-
return sense. 

Now, what if only one group of inves-
tors, represented by Alice, has the better 
knowledge, and the other group of inves-
tors, represented by Bob, disagrees and 
stubbornly holds and acts on the wrong 
knowledge of the firms? In such a case 
[3], the informed Alice will hold the true 
MVE tangency portfolio ,T while the mis-
informed Bob in aggregate holds a non-
MVE portfolio .B The market portfolio 
M is now the value-weight portfolio of T
and .B  Let w denote the proportion of the 
total value of risk asset owned by Alice, 
and RA and RB denote the expected re-
turns of portfolios A and ,B  respectively. 
Then the market portfolio return RM is

( ) .R wR w R1M A B= + -

The relationship among portfolios is il-
lustrated in Figure 2.

Remarks
■ Apparently, Alice’s portfolio T has 

the highest Sharpe ratio and outper-
forms the market portfolio .M

■ The stubborn misinformed Bob’s 
portfolio underperforms the market. 

■ Note that, if the misinformed inves-
tors in aggregate hold the tangency 
portfolio, the CAPM still holds and 
no one will outperform the market. 

■ When the overall weight of the mis-
informed investors is large enough, 
it can drag down the market portfolio. 
This may happen in a market with 
many nonprofessional stubborn 
active investors. But in the U.S. stock 
market, the institutional investment 
composes the majority. Therefore, 
M is expected to be similar to the 
true tangency portfolio T .

■ If the nonprofessional retail investors 
are equipped with AI, they would act 
more like informed investors that 
will bring the market portfolio closer 
to ,M making the market more effi-
cient and practically losing less 
money compared to the informed 
professional investors. 

■ Here’s what’s interesting: if Bob 
knows that he is not as informed as 
Alice but doesn’t know who Alice is 
or what her secret holdings are, his 
best strategy is to be a passive inves-
tor holding the market portfolio. If all 
misinformed investors know they are 
misinformed and therefore hold the 
market portfolio, the market portfolio 
again becomes the optimal MVE 
tangency portfolio .T  However, if 

Bob uses a wrong AI tool or 
data and becomes overconfi-
dent that he’s the informed 
investor in the market, guess 
what—he becomes the stub-
born guy holding the wrong 
portfolio who’s worse off, 
dragging the market portfolio 
down and hurting all the pas-
sive investors. Warren Buffett 
put it this way: “If you’ve 
been playing poker for half 
an hour and you still don’t 
know who the patsy is, you’re 
the patsy.” The caveat is that 
it’s easier said than done: you 
have to have enough unbi-
ased data samples to draw 
statistically significant con-
clusion to know who the 
patsy is.

My conclusion? AI may provide new 
tools for information. But are you a sea-
soned financial professional who works 
closely with the market, or are you a 
casual investor? If you are one of us, 
the majority, don’t expect AI to bring a 
quick buck. If you are the former, you 
have a tough job but there’s a chance to 
make a fortune. 

Summary and Q&A
Q: Can AI (or any other technologies) 
help us better evaluate the risk?

A: Yes, it is possible. But from so-
ciety’s perspective, it is not necessarily 
a good thing. We want smart people to 
create totally new knowledge, prod-
ucts, art, etc. that always involve high 
risk. Accurate risk evaluation may cause 
these high-risk start-ups to find them-
selves short of funders, just like an in-
surance company may not want to insure 
certain high-risk patients.

Q: Can AI help us better allocate 
capital in a financial market?

A: Yes.
Q: Can AI replace some financial 

analysts?
A: Possibly. That may happen in any 

industry and has happened before in the 
stock market. The famed trading pits 
in New York City and Chicago stuffed 
with floor traders shoving and shouting 
are no more. They’ve been replaced by 
electronic exchanges. Now automation 
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FIGURE 2. Portfolio risk-return optimization and market equilibrium: rf

represents the risk-free rate. The risk-free rate is the theoretical rate of 
return of an investment with zero risk. In practice, it is often represented 
by the interest rate on U.S. Treasury bills.
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with AI is threatening financial manag-
ers who do work at their desktops.

Q: Can AI generate a few new suc-
cessful hedge funds?

A: Maybe, there is always a chance to 
become the next Jim Simons who was a 
mathematician, or D.E. Shaw, who was a 
computer scientist. But the overall quantity 
and amount of successful hedge funds are 
unlikely to change. The top hedge funds to-
day have no choice but to recruiting top AI 
talent. It’s a Darwinian world where you 
retain your edge or the hedge fund dies.

Q: But can AI make every smart AI 
expert excessive risk-free money from 
stock market?

A: The answer is a solid “no!”
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Xiao-Ping (Steven) Zhang

rtificial intelligence (AI) for finance 
is a hot topic these days. Top hedge 
funds are waging a talent war over 

AI experts the way sports teams com-
pete for pro athletes. Recently, a friend 
of mine, an AI expert working at a tech 
firm, got an offer from a top hedge fund. 
From a financial perspective, it is “an 
offer he can’t refuse,” as Don Corleone 
says. In the sci-fi film Transcendence,
Johnny Depp applied his newly digitized 
brain to the markets, pocketing hundreds 
of millions overnight. We’ve witnessed 
the invincibility of machines—AlphaGo, 
Watson, DeepBlue—and can’t help but 
wonder what’s next. In January of this 
year, a new AI named Libratus joined the 
club by defeating four of the world’s best 
professional poker players. How close 
are we to AI’s conquest of the game of fi-
nance? Will AI experts become the new 
titans of Wall Street?

Note that AI and signal process-
ing (SP) have a natural connection. In-
deed, AI for SP recently has achieved 
pioneering success in speech and image 
processing through deep neural network 
(DNN) technologies. There exists the 
unbridled expectation people and com-
panies might have on this connection 
(SP + AI) to make money.

To properly align our expectation, 
we need to understand the nature of fi-
nancial markets and, within the laws of 
that universe, what AI can do for us as a 

community and for you as an individual 
investor. From this perspective, I will 
show that AI cannot change the funda-
mental structure and dynamics of the 
financial market. Like all other technol-
ogies and innovations introduced to fi-
nance, AI may advance our markets and 
economy, automate away jobs, and even 
bring a select few vast wealth. But the 
vast majority of people—no matter their 
level of AI expertise—will not achieve 
large excess returns. So don’t plan for an 
early retirement just yet.

A fundamental function of the fi-
nancial market is resource allocation, 
i.e., for businesses or people to secure 
resources for promising investment 
pro  jects. Everyone knows, or quickly 
learns, that investment returns are not 
guaranteed. Investors assume risk when 
allocating resources because they have 
imperfect knowledge of the future. A 
good investment has expected rewards 
that outweigh these potential losses. 
Investors of high-risk projects such as 
start-ups demand high expected returns. 
To minimize the risk or achieve the op-
timum risk-return investment, people 
seek information that helps them see the 
future more clearly. The financial mar-
ket is driven by information.

Financial market innovations often 
help resources flow to the projects that 
we think are the most promising and 
needed. An example related to our daily 
lives is the invention of the credit card, 
which allows individuals easy access to 
capital (with high interest/risk) when 

people are in need. Many economists 
[1] believe that consumers’ continu-
ous spending using the debt accessible 
through credit cards in economic down 
times is an important cause for the Great 
Moderation in the United States in the 
1990s. It is easy to take for granted how 
much technology and the capability to 
evaluate personal credit through data 
are a driving force for the popularity of 
credit cards.

The stock market processes an incal-
culable amount of data, converting it to 
information about the future, and boil-
ing everything down into a single num-
ber: price. Due to the fluctuations of 
security prices, many people liken the 
stock and bond market to one giant ca-
sino and attempt to profit by speculating 
on what the asset prices should be. The 
best of quantitative hedge funds, such 
as Renaissance Technologies, D.E. 
Shaw, Two Sigma, and Citadel, have 
minted some of the world’s wealthiest 
people, encouraging those of us who are 
working in SP and AI to fantasize about 
our shot at a big win. If we can use our 
skills to predict tomorrow’s stock price, 
or even the direction of the market, 
we could make big money. It can feel 
as if we are just one DNN away from 
riches. Indeed, many open-source DNN 
tools are available for everyone to use in 
analysis.

DNN and future AI tools undoubted-
ly may help us to gain new information, 

To the Victor Go the Spoils: AI in Financial Markets
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You can simulate, prototype, 
and verify wireless systems 
right in MATLAB. Learn how 
today’s MATLAB supports RF, 
LTE, WLAN and 5G development 
and SDR hardware.
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The 25th IEEE International Conference on Image Processing (ICIP) will be held in the 
Megaron Athens International Conference Centre, Athens, Greece, on October 7-10, 2018. 
ICIP is the world's largest and most comprehensive technical conference focused on 
image and video processing and computer vision. The conference will feature world-class 
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Paper Submission
Authors are invited to submit papers of not more than four pages for technical content 

Submission Instructions, templates for the required paper format, and information on "no 
show" policy are available at 2018.ieeeicip.org.

Journal Paper Presentations
Authors of papers published in all IEEE Signal Processing Society fully owned journals as 
well as in IEEE Wireless Communication Letters will be given the opportunity to present 
their work at ICIP 2018, subject to space availability and approval by the Technical Program 
Chairs of IEEE ICIP 2018. 

Innovation Program
Following the tradition that started in 2016, the ICIP 2018 Innovation Program Chairs will 
arrange an outstanding event with prominent speakers from the Industry.

Tutorials, Special Sessions, and Challenge Sessions Proposals
Tutorials will be held on October 7, 2018. Tutorial proposals must include title, outline, 
contact information, biography and selected publications for the presenter(s), and a 
description of the tutorial and material to be distributed to participants. For detailed 
submission guidelines, please refer to the tutorial proposals page. Special Sessions and 
Challenge Session Proposals must include a topical title, rationale, session outline, contact 
information, and a list of invited papers/participants. For detailed submission guidelines, 
please refer the ICIP 2018 website at 2018.ieeeicip.org.

Important Dates
Special Session Proposals: November 15, 2017

December 15, 2017
Tutorial Proposals: December 15, 2017

January 15, 2018
Paper Submission: February 7, 2018

April 30, 2018
Camera-Ready Papers: May 31, 2018

Filtering, Transforms, Multi-Resolution Processing
Restoration, Enhancement, Super-Resolution
Computer Vision Algorithms and Technologies
Compression, Transmission, Storage, Retrieval
Multi-View, Stereoscopic, and 3D Processing
Multi-Temporal and Spatio-Temporal Processing
Biometrics, Forensics, and Content Protection
Biological and Perceptual-based Processing
Medical Image and Video Analysis
Document and Synthetic Visual Processing

Color and Multispectral Processing
Scanning, Display, and Printing

Computational Imaging
Video Processing and Analytics
Visual Quality Assessment
Deep learning for Images and Video
Image and Video Analysis for the Web
Image Processing for VR Systems
Image Procesing for Autonomous Vehicles
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SPAWC 2018 will be held in Kalamata, Greece on June 25-28, 2018. The workshop is 
devoted to advances in signal processing for wireless communications, networking, and 
information theory. The technical program features tutorials, plenary talks, thematic 
oral talks, as well as invited and contributed papers presented in poster format.

Thematically, SPAWC 2018 will in particular focus on the areas of:

Machine learning and data analytics
Physical-layer security and privacy
Biological communications and signal processing
5G and beyond

In addition, special session proposals and regular papers are also being solicited in the 
general areas of:

Smart antennas, MIMO systems, massive MIMO, and space-time processing
Reliable wireless communications for autonomous vehicles
Signal processing for ad-hoc, multi-hop, and sensor networks
Cooperative communication, coordinated multipoint transmission and reception
Distributed resource allocation and scheduling
Convex and non-convex optimization; game theory for communications
Heterogeneous networks, small cells
Millimeter wave, 60 GHz communications
Full duplex systems
Cognitive radio and networks
Cooperative sensing, compressed sensing, sparse signal processing
Machine-to-machine, device-to-device communications
Modeling, estimation and equalization of wireless channels
Acquisition, synchronization, localization and tracking
Low latency & delay-limited communications
Signal processing for optical, satellite, and underwater communications
Energy efficiency and energy harvesting

Three best papers, with students as primary authors, will be recognized at the workshop 
through a student-paper competition.  All invited and regular papers, with up to five pages in 
length, will be published through IEEE Xplore.   Papers will be submitted via EDAS.  

Special Session Proposals: Dec-4, 2017
Decisions Due for Special Sessions: Dec-25, 2017
Initial Invited and Regular Paper Submission: Feb-19, 2018
Paper Decisions Due: Apr-30, 2018
Camera-Ready Papers Due: May-14, 2018
Registration Deadline for Authors: May-14, 2018
Workshop Dates: 25-28 June, 2018
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SIGNAL AND INFORMATION PROCESSING 
OVER NETWORKS

IEEE TRANSACTIONS ON

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:
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Now accepting paper submissions
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Adaptation, Detection, Estimation, and Learning 
Distributed detection and estimation 
Distributed adaptation over networks
Distributed learning over networks
Distributed target tracking 
Bayesian learning; Bayesian signal processing
Sequential learning over networks 
Decision making over networks 
Distributed dictionary learning 
Distributed game theoretic strategies
Distributed information processing 
Graphical and kernel methods 
Consensus over network systems 
Optimization over network systems 

Communications, Networking, and Sensing 

Signal processing for distributed communications and 
networking
Signal processing for cooperative networking 
Signal processing for network security 
Optimal network signal processing and resource 
allocation 

Modeling and Analysis 
Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
Wireless/mobile multimedia 

Data Analysis 
Processing, analysis, and visualization of big data 
Signal and information processing for crowd 
computing 
Signal and information processing for the Internet of 
Things 
Emergence of behavior 

Emerging topics and applications 
Emerging topics 
Applications in life sciences, ecology, energy, social 
networks, economic networks, finance, social 
sciences, smart grids, wireless health, robotics, 
transportation, and other areas of science and 
engineering 
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IEEE TRANSACTIONS ON
C

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

W. Clem Karl
Boston University

OMPUTATIONAL IMAGING
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The 2018 IEEE Image, Video, and Multidimensional Signal Processing (IVMSP)
Workshop is the 13th of a series of unique meetings that bring together researchers 
in academia and industry to share the most recent and exciting advances in image, 
video, and multidimensional signal processing and analysis. The main themes of 
the 2018 IVMSP Workshop are Big Data, Social Media and Computational 
Imaging.

General chairs
Yiannis Kompatsiaris,

CERTH-ITI (GR)

Thrasyvoulos N. Pappas, 

Northwestern University (US)

Technical program co-chairs
Vasileios Mezaris, CERTH-ITI (GR)

Alessandro Foi, Tampere University 

of Technology (FIN)

Brendt Wohlberg, Los Alamos 

National Laboratory (US)

Financial chair
Anastasios Karakostas, 

CERTH-ITI (GR)

Publication co-chairs
Ioannis Patras, Queen Mary 

University of London (UK)

Giulia Boato, University of Trento 

(IT)

Publicity
Jenny Benois Pineau, University of 

Bordeaux (FR)

US Liaison
Charlie Bouman, Purdue University

(US)

Asia Liaison
Alex Kot (SING)

Local arrangement co-chairs
Anastasios Karakostas, 

CERTH-ITI (GR)

Sofia Tsekeridou, INTRASOFT 

International R&D (GR)

The scientific program of IVMSP 2018 will include plenary talks, regular and 
special sessions. We welcome contributions within the three main themes, as well 
as at their intersection, e.g. use of imagery from social networks for
learning models for image reconstruction tasks.

Big Data 
Deep learning methods for large scale multimedia 
Multimedia big data processing, analysis and retrieval
Distributed solutions and architectures for big multimedia 
Convergence between Internet of Things, wearables and social media
Big Data applications (summarization, surveillance, mobile, etc)

Social Media
Social media data collection, filtering, and indexing
Social media data representation and understanding
User profiling, collective behavior and privacy aspects of social media
Monitoring, sensing and prediction in social signals
Detection, analysis and verification of emergent events 

Computational Imaging
Image models, sparse, low rank, and statistical models
Image formation, model based inversion, image fusion, and optimization-
based methods
Computational imaging systems, computational photography and 
microscopy, medical and radar imaging
Hardware and software for computational imaging, embedded systems, 
big data, and non-traditional sensors

PAPER SUBMISSION
Papers cannot be longer than 5 pages (double-column IEEE conference format), 
including all text, figures, tables, references, etc. The 5th page is available for 
references only. See the website for additional information regarding the 
submission process: www.ivmsp2018.org.

BEST STUDENT PAPER AWARDS 
The IVMSP Best Student Paper Awards will be granted to the first, second and 
third best overall papers for which a student is the principal author and presenter. 
The selection will be based on the technical quality, originality, and clarity of the 
submission.

IMPORTANT DATES
Submission of full papers January 30, 2018
Notification of acceptance March 28, 2018
Author advance registration April 26, 2018
Camera-ready paper submission April 26, 2018

IEEE IVMSP Workshop 2018
10-12 June 2018 Zagori, Aristi Village, Greece

www.ivmsp2018.org
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Introduction to the Cooperative Special Issue on Graph Signal Processing in the IEEE Transactions on Signal and
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Sardellitti, S. Barbarossa, and P. Di Lorenzo 796
Almost Tight Spectral Graph Wavelets With Polynomial Filters http://dx.doi.org/10.1109/JSTSP.2017.2726972 . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. B. H. Tay, Y. Tanaka, and A. Sakiyama 812
Graph Learning From Data Under Laplacian and Structural Constraints http://dx.doi.org/10.1109/JSTSP.2017.2726975 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. E. Egilmez, E. Pavez, and A. Ortega 825
Graph Signal Recovery via Primal-Dual Algorithms for Total Variation Minimization http://dx.doi.org/10.1109/JSTSP.2017.2726978 . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Berger, G. Hannak, and G. Matz 842
Kernel-Based Reconstruction of Space-Time Functions on Dynamic Graphs http://dx.doi.org/10.1109/JSTSP.2017.2726976 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Romero, V. N. Ioannidis, and G. B. Giannakis 856
Time-Varying Graph Signal Reconstruction http://dx.doi.org/10.1109/JSTSP.2017.2726969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Qiu, X. Mao, X. Shen, X. Wang, T. Li, and Y. Gu 870
Robust Spatial Filtering With Graph Convolutional Neural Networks http://dx.doi.org/10.1109/JSTSP.2017.2726981 . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . F. P. Such, S. Sah, M. A. Dominguez, S. Pillai, C. Zhang, A. Michael, N. D. Cahill, and R. Ptucha 884
Nonmonotonic Front Propagation on Weighted Graphs With Applications in Image Processing and High-Dimensional

Data Classification http://dx.doi.org/10.1109/JSTSP.2017.2731520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Desquesnes and A. Elmoataz 897
Query Adaptive Fusion for Graph-Based Visual Reranking http://dx.doi.org/10.1109/JSTSP.2017.2726977 . . . . . . . M. Fang and Y.-J. Zhang 908
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OCTOBER 2017 VOLUME 24 NUMBER 10 ISPLEM (ISSN 1070-9908)

LETTERS

Max–Min Multicell-Aware Precoding and Power Allocation for Downlink Massive MIMO Systems
http://dx.doi.org/10.1109/LSP.2017.2715501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Zarei, J. Aulin, W. Gerstacker, and R. Schober 1433

Reflection Symmetry Axes Detection Using Multiple Model Fitting http://dx.doi.org/10.1109/LSP.2017.2735630 . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Nagar and S. Raman 1438
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Chen, Y. Fu, Y. Xiang, and R. Rong 1443
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Rämö, S. Bech, and S. H. Jensen 1448
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Sanyal, S. M. Ahmed, M. Jaiswal, and K. N. Chaudhury 1453

Extended Locality-Constrained Linear Self-Coding for Saliency Detection http://dx.doi.org/10.1109/LSP.2017.2737650 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Yang, J. Pu, G.-S. Xie, Y. Dong, and Z. Liu 1458

Detecting the Presence of ENF Signal in Digital Videos: A Superpixel-Based Approach http://dx.doi.org/10.1109/LSP.2017.2741440 . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Vatansever, A. E. Dirik, and N. Memon 1463

Sparse Overcomplete Denoising: Aggregation Versus Global Optimization http://dx.doi.org/10.1109/LSP.2017.2734119 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Carrera, G. Boracchi, A. Foi, and B. Wohlberg 1468

Weak RIC Analysis of Finite Gaussian Matrices for Joint Sparse Recovery http://dx.doi.org/10.1109/LSP.2017.2729022 . . . . . . . . . . . . . . .
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On the Spark of Binary LDPC Measurement Matrices From Complete Protographs http://dx.doi.org/10.1109/LSP.2017.2749043 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Liu, H. Zhang, and L. Ma 1616

Non-orthogonal Simultaneous Diagonalization of K-Order Complex Tensors for Source Separation
http://dx.doi.org/10.1109/LSP.2017.2751038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Maurandi and E. Moreau 1621

Automatic Modulation Classification Using Deep Learning Based on Sparse Autoencoders With Nonnegativity Constraints
http://dx.doi.org/10.1109/LSP.2017.2752459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. Ali and F. Yangyu 1626

A Consensus Nonlinear Filter With Measurement Uncertainty in Distributed Sensor Networks http://dx.doi.org/10.1109/LSP.2017.2751611

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Shen, Z. Jing, and P. Dong 1631
Distributed Learning With Time Correlated Information http://dx.doi.org/10.1109/LSP.2017.2751086 . . . . . . . . P. Guerreiro and J. Xavier 1636
Simultaneous Sparse Bayesian Learning With Partially Shared Supports http://dx.doi.org/10.1109/LSP.2017.2753770 . . . . . . . . . . W. Chen 1641
On Probability of Support Recovery for Orthogonal Matching Pursuit Using Mutual Coherence

http://dx.doi.org/10.1109/LSP.2017.2753939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Miandji, M. Emadi, J. Unger, and E. Afshari 1646
CorrC2G: Color to Gray Conversion by Correlation http://dx.doi.org/10.1109/LSP.2017.2755077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Z. Nafchi, A. Shahkolaei, R. Hedjam, and M. Cheriet 1651
No-Reference Image Quality Assessment Using Image Statistics and Robust Feature Descriptors

http://dx.doi.org/10.1109/LSP.2017.2754539 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Oszust 1656
Multimodal Image Registration Through Simultaneous Segmentation http://dx.doi.org/10.1109/LSP.2017.2754263 . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Aganj and B. Fischl 1661
Joint Human Detection and Head Pose Estimation via Multistream Networks for RGB-D Videos

http://dx.doi.org/10.1109/LSP.2017.2731952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .G. Zhang, J. Liu, H. Li, Y. Q. Chen, and L. S. Davis 1666

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_____________________

_________________

http://www.signalprocessingsociety.org
http://dx.doi.org/10.1109/LSP.2017.2749763
http://dx.doi.org/10.1109/LSP.2017.2749266
http://dx.doi.org/10.1109/LSP.2017.2750904
http://dx.doi.org/10.1109/LSP.2017.2750802
http://dx.doi.org/10.1109/LSP.2017.2750979
http://dx.doi.org/10.1109/LSP.2017.2751959
http://dx.doi.org/10.1109/LSP.2017.2749517
http://dx.doi.org/10.1109/LSP.2017.2749043
http://dx.doi.org/10.1109/LSP.2017.2751038
http://dx.doi.org/10.1109/LSP.2017.2752459
http://dx.doi.org/10.1109/LSP.2017.2751611
http://dx.doi.org/10.1109/LSP.2017.2751086
http://dx.doi.org/10.1109/LSP.2017.2753770
http://dx.doi.org/10.1109/LSP.2017.2753939
http://dx.doi.org/10.1109/LSP.2017.2755077
http://dx.doi.org/10.1109/LSP.2017.2754539
http://dx.doi.org/10.1109/LSP.2017.2754263
http://dx.doi.org/10.1109/LSP.2017.2731952
http://www.ieee.org/sp/index.html
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                              www.signalprocessingsociety.org     [21]  NOVEMBER 2017

Evaluating Multiexposure Fusion Using Image Information http://dx.doi.org/10.1109/LSP.2017.2752233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Rahman, R. Soundararajan, and R. V. Babu 1671

Does Vector Gaussian Approximation After LMMSE Filtering Improve the LLR Quality? http://dx.doi.org/10.1109/LSP.2017.2751570 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Haselmayr, O. Lang, A. Springer, and M. Huemer 1676

Generalized Least Squares for ESPRIT-Type Direction of Arrival Estimation http://dx.doi.org/10.1109/LSP.2017.2751303 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Steinwandt, F. Roemer, and M. Haardt 1681

Nonconvex Weighted �p Minimization Based Group Sparse Representation Framework for Image Denoising
http://dx.doi.org/10.1109/LSP.2017.2731791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Q. Wang, X. Zhang, Y. Wu, L. Tang, and Z. Zha 1686

A Fiber Bundle Geometry Approach for Edge Detection of Chromaticity Distributions http://dx.doi.org/10.1109/LSP.2017.2723426 . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Y. Wang, G. Y. Wang, and N. Wang 1691

Optimal Bandwidth for Multitaper Spectrum Estimation http://dx.doi.org/10.1109/LSP.2017.2719943 . . . . . . C. L. Haley and M. Anitescu 1696
A Multiple Image-Based Noise Level Estimation Algorithm http://dx.doi.org/10.1109/LSP.2017.2755687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Xu, X. Zeng, Y. Jiang, and Y. Tang 1701
A New Optimality Property of the Capon Estimator http://dx.doi.org/10.1109/LSP.2017.2729658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Aubry, V. Carotenuto, and A. De Maio 1706
Iterative Target Localization in Distributed MIMO Radar From Bistatic Range Measurements http://dx.doi.org/10.1109/LSP.2017.2747479

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Noroozi, A. Hosein Oveis, and M. A. Sebt 1709
Proactive Monitoring via Jamming in Amplify-and-Forward Relay Networks http://dx.doi.org/10.1109/LSP.2017.2727045 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Hu, Q. Zhang, P. Yang, and J. Qin 1714
Mixture Reduction on Matrix Lie Groups http://dx.doi.org/10.1109/LSP.2017.2723765 . . . . . . . . . . . . J. Ćesić, I. Marković, and I. Petrović 1719
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The Tenth IEEE Sensor Array and Multichannel 
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8th-11th July 2018, Sheffield, United Kingdom

General Chairs
Wei Liu
University of Sheffield, UK
Peter Willett
University of Connecticut, US

Technical Chairs
Sergiy Vorobyov
Aalto University, Finland
Yimin D. Zhang
Temple University, US

IEEE SAM TC Representative
Mónica Bugallo
Stony Brook University, US

Special Session Chair
Hing Cheung So
City University of Hong Kong, HK

Finance Chair
Patrick Naylor
Imperial College London, UK

Publicity Chair
Hongbin Li
Stevens Institute of Technology, US

Local Arrangement Chair 
Lyudmila Mihaylova
University of Sheffield, UK

Call for Papers

Technical Program
The SAM Workshop is an important IEEE Signal Processing Society 
event dedicated to sensor array and multichannel signal processing. 
The organizing committee invites the international community to 
contribute with state-of-the-art developments in the field. SAM 2018
will feature plenary talks by leading researchers in the field as well as 
poster and oral sessions with presentations by the participants. 

Welcome to Sheffield!
The workshop will be held at Sheffield, the “Steel City”. It is the third 
largest English district by population, and built on seven hills, like 
Rome. An estimated 2 million trees in the exuberant city, giving 
Sheffield the highest ratio of trees to people of any city in Europe. In 
particular, it is at the doorstep of the first UK national park -- the Peak
District, offering breath-taking views and fantastic opportunities for 
pastimes such as cycling, walking and wildlife watching.

Research Areas
Authors are invited to submit contributions in the following areas: 

Adaptive beamforming 
Array processing for biomedical applications 
Array processing for communications 
Blind source separation and channel identification 
Computational and optimization techniques 
Compressive sensing and sparsity-based signal processing 
Detection and estimation 
Direction-of-arrival estimation 
Distributed and adaptive signal processing
Intelligent systems and knowledge-based signal processing 
Microphone and loudspeaker array applications 
MIMO radar 
Multi-antenna systems: multiuser MIMO, massive MIMO and space-
time coding 
Multi-channel imaging and hyperspectral processing
Multi-sensor processing for smart grid and energy 
Non-Gaussian, nonlinear, and non-stationary models 
Performance evaluations with experimental data 
Radar and sonar array processing 
Sensor networks 
Source localization, classification and tracking
Synthetic aperture techniques 
Space-time adaptive processing 
Statistical modelling for sensor arrays 
Waveform diverse sensors and systems 

Submission of papers – Full-length five-page papers (last page with 
references only) will be accepted electronically at www.edas.info.

Submission of special session and tutorial proposals – details can be 
found at the workshop website. 

Important Dates

Tutorial Proposals 
22nd January, 2018

Special Session Proposals 
5th February, 2018

Submission of Papers 
24th February, 2018

Notification of Acceptance 
30th April, 2018

Final Manuscript Submission 
13th May, 2018

Advance Registration 
20th May, 2018
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Information for Authors
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For Transactions and Journals:
Authors are encouraged to submit manuscripts of Regular papers
(papers which provide a complete disclosure of a technical premise),
or Comment Correspondences (brief items that provide comment on
a paper previously published in these TRANSACTIONS).

Submissions/resubmissions must be previously unpublished and
may not be under consideration elsewhere.

Every manuscript must:
i. provide a clear statement of the problem and what the contri-

bution of the work is to the relevant research community;
ii. state why this contribution is significant (what impact it will

have);
iii. provide citation of the published literature most closely related

to the manuscript; and
iv. state what is distinctive and new about the current manuscript

relative to these previously published works.
By submission of your manuscript to these TRANSACTIONS, all listed
authors have agreed to the authorship list and all the contents and
confirm that the work is original and that figures, tables and other
reported results accurately reflect the experimental work. In addition,
the authors all acknowledge that they accept the rules established for
publication of manuscripts, including agreement to pay all overlength
page charges, color charges, and any other charges and fees associated
with publication of the manuscript. Such charges are not negotiable
and cannot be suspended. The corresponding author is responsible for
obtaining consent from all co-authors and, if needed, from sponsors
before submission.

In order to be considered for review, a paper must be within the
scope of the journal and represent a novel contribution. A paper is a
candidate for an Immediate Rejection if it is of limited novelty, e.g.
a straightforward combination of theories and algorithms that are
well established and are repeated on a known scenario. Experimental
contributions will be rejected without review if there is insufficient
experimental data. These TRANSACTIONS are published in English.
Papers that have a large number of typographical and/or grammatical
errors will also be rejected without review.

In addition to presenting a novel contribution, acceptable man-
uscripts must describe and cite related work in the field to put
the contribution in context. Do not give theoretical derivations or
algorithm descriptions that are easily found in the literature; merely
cite the reference.

New and revised manuscripts should be prepared following the
“Manuscript Submission” guidelines below, and submitted to the
online manuscript system, ScholarOne Manuscripts. Do not send
original submissions or revisions directly to the Editor-in-Chief or
Associate Editors; they will access your manuscript electronically
via the ScholarOne Manuscript system.
Manuscript Submission. Please follow the next steps.

1. Account in ScholarOne Manuscripts. If necessary, create
an account in the on-line submission system ScholarOne
Manuscripts. Please check first if you already have an
existing account which is based on your e-mail address
and may have been created for you when you reviewed or
authored a previous paper.

All IEEE journals require an Open Researcher and Con-
tributor ID (ORCID) for all authors. ORCID is a persistent
unique identifier for researchers and functions similarly to
an article’s Digital Object Identifier (DOI). The author will
need a registered ORCID in order to submit a manuscript
or review a proof in this journal.

2. Electronic Manuscript. Prepare a PDF file containing your
manuscript in double-column, single-spaced format using a
font size of 10 points or larger, having a margin of at least
1 inch on all sides. Upload this version of the manuscript as
a PDF file “double.pdf” to the ScholarOne- Manuscripts site.
Since many reviewers prefer a larger font, you are strongly
encouraged to also submit a single-column, double-spaced
version (11 point font or larger), which is easy to create
with the templates provided IEEE Author Digital Toolbox
(http://www.ieee.org/publications standards/publications/
authors/authors journals.html). Page length restrictions
will be determined by the double-column version. Proofread
your submission, confirming that all figures and equations
are visible in your document before you “SUBMIT”

Digital Object Identifier 10.1109/TIP.2017.27

your manuscript. Proofreading is critical; once you submit
your manuscript, the manuscript cannot be changed in any
way. You may also submit your manuscript as a .PDF or
MS Word file. The system has the capability of converting
your files to PDF, however it is your responsibility to con-
firm that the conversion is correct and there are no font or
graphics issues prior to completing the submission process.

3. EDICS (Not applicable to Journal of Selected Topics in Signal
Processing). All submissions must be classified by the author
with an EDICS (Editors’ Information Classification Scheme)
selected from the list of EDICS published online at the
publication’s EDICS webpage (*please see the list below).
Upon submission of a new manuscript, please choose the
EDICS categories that best suit your manuscript. Failure to
do so will likely result in a delay of the peer review process.

4. Additional Documents for Review. Please upload pdf versions of
all items in the reference list that are not publicly available,
such as unpublished (submitted) papers. Graphical abstracts
and supplemental materials intended to appear with the final
paper (see below) must also be uploaded for review at
the time of the initial submission for consideration in the
review process. Use short filenames without spaces or special
characters. When the upload of each file is completed, you
will be asked to provide a description of that file.

5. Supplemental Materials. IEEE Xplore can publish multimedia
files (audio, images, video, pseudocode and detailed
algebraic manipulations of proofs), datasets, and software
(e.g. Matlab code) along with your paper. Alternatively, you
can provide the links to such files in a README file that
appears on Xplore along with your paper. For details, please
see IEEE Author Digital Toolbox (http://www.ieee.org/
publications standards/publications/authors/authors journals.
html) under “Multimedia.” To make your work reproducible
by others, the TRANSACTIONS encourages you to submit
all files that can recreate the figures in your paper.

6. Submission. After uploading all files and proofreading them,
submit your manuscript by clicking “Submit.” A confir-
mation of the successful submission will open on screen
containing the manuscript tracking number and will be
followed with an e-mail confirmation to the corresponding
and all contributing authors. Once you click “Submit,” your
manuscript cannot be changed in any way.

7. Copyright Form and Consent Form. By policy, IEEE owns
the copyright to the technical contributions it publishes on
behalf of the interests of the IEEE, its authors, and their
employers; and to facilitate the appropriate reuse of this
material by others. To comply with the IEEE copyright
policies, authors are required to sign and submit a completed
“IEEE Copyright and Consent Form” prior to publication by
the IEEE. The IEEE recommends authors to use an effective
electronic copyright form (eCF) tool within the ScholarOne
Manuscripts system. You will be redirected to the “IEEE
Electronic Copyright Form” wizard at the end of your orig-
inal submission; please simply sign the eCF by typing your
name at the proper location and click on the “Submit” button.

Comment Correspondence. Comment Correspondences provide
brief comments on material previously published in these
TRANSACTIONS. These items may not exceed 2 pages in double-
column, single spaced format, using 9 point type, with margins of
1 inch minimum on all sides, and including: title, names and contact
information for authors, abstract, text, references, and an appropriate
number of illustrations and/or tables. Correspondence items are
submitted in the same way as regular manuscripts (see “Manuscript
Submission” above for instructions).

Authors may also submit manuscripts of overview articles, but
note that these include an additional white paper approval pro-
cess http://www.signalprocessingsociety.org/publications/overview-
articles/. [This does not apply to the Journal of Selected Topics in
Signal Processing. Please contact the Editor-in-Chief.]
Manuscript Length. For the initial submission of a regular paper,
the manuscript may not exceed 13 double-column pages (10 point
font), including title; names of authors and their complete contact
information; abstract; text; all images, figures and tables, appendices
and proofs; and all references. Supplemental materials and graphical
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abstracts are not included in the page count. For regular papers,
the revised manuscript may not exceed 16 double-column pages
(10 point font), including title; names of authors and their complete
contact information; abstract; text; all images, figures and tables,
appendices and proofs; and all references. For Overview Papers,
the maximum length is double that for regular submissions at
each stage (please reference http://www.signalprocessingsociety.org/
publications/overview-articles/ for more information).

Note that any paper in excess of 10 pages will be subject to
mandatory overlength page charges. Since changes recommended as
a result of peer review may require additions to the manuscript, it
is strongly recommended that you practice economy in preparing
original submissions. Note: Papers submitted to the TRANSACTIONS
ON MULTIMEDIA in excess of 8 pages will be subject to mandatory
overlength page charges.

Exceptions to manuscript length requirements may, under extra-
ordinary circumstances, be granted by the Editor-in-Chief. However,
such exception does not obviate your requirement to pay any and all
overlength or additional charges that attach to the manuscript.

Resubmission of Previously Rejected Manuscripts. Authors of
manuscripts rejected from any journal are allowed to resubmit their
manuscripts only once. At the time of submission, you will be asked
whether your manuscript is a new submission or a resubmission
of an earlier rejected manuscript. If it is a resubmission of a
manuscript previously rejected by any journal, you are expected to
submit supporting documents identifying the previous submission
and detailing how your new version addresses all of the reviewers’
comments. Papers that do not disclose connection to a previously
rejected paper or that do not provide documentation as to changes
made may be immediately rejected.

Author Misconduct. Author misconduct includes plagiarism, self-
plagiarism, and research misconduct, including falsification or mis-
representation of results. All forms of misconduct are unacceptable
and may result in sanctions and/or other corrective actions. Plagiarism
includes copying someone else’s work without appropriate credit,
using someone else’s work without clear delineation of citation,
and the uncited reuse of an author’s previously published work that
also involves other authors. Self-plagiarism involves the verbatim
copying or reuse of an authors own prior work without appro-
priate citation, including duplicate submission of a single journal
manuscript to two different journals, and submission of two dif-
ferent journal manuscripts which overlap substantially in language
or technical contribution. For more information on the definitions,
investigation process, and corrective actions related to author mis-
conduct, see the Signal Processing Society Policies and Procedures
Manual, Section 6.1. http://www.signalprocessingsociety.org/about-
sps/governance/policy-procedure/part-2. Author misconduct may also
be actionable by the IEEE under the rules of Member Conduct.

Extensions of the Author’s Prior Work. It is acceptable for
conference papers to be used as the basis for a more fully developed
journal submission. Still, authors are required to cite their related
prior work; the papers cannot be identical; and the journal publication
must include substantively novel aspects such as new experimental
results and analysis or added theoretical work. The journal publication
should clearly specify how the journal paper offers novel contribu-
tions when citing the prior work. Limited overlap with prior journal
publications with a common author is allowed only if it is necessary
for the readability of the paper, and the prior work must be cited as
the primary source.

Submission Format. Authors are required to prepare manuscripts
employing the on-line style files developed by IEEE, which include
guidelines for abbreviations, mathematics, and graphics. All manu-
scripts accepted for publication will require the authors to make final
submission employing these style files. The style files are available
on the web at the IEEE Author Digital Toolbox under “Template
for all TRANSACTIONS.” (LaTeX and MS Word). Please note the
following requirements about the abstract:

The abstract must be a concise yet comprehensive reflection of
what is in your article.
The abstract must be self-contained, without abbreviations,
footnotes, displayed equations, or references.
The abstract must be between 150–250 words.
The abstract should include a few keywords or phrases, as this
will help readers to find it. Avoid over-repetition of such phrases
as this can result in a page being rejected by search engines.

In addition to written abstracts, papers may include a graphical
abstract; see http://www.ieee.org/publications standards/publications/
graphical abstract.pdf for options and format requirements.

IEEE supports the publication of author names in the native
language alongside the English versions of the names in the author
list of an article. For more information, see “Author names in native
languages” (http://www.ieee.org/publications standards/publications/
authors/auth names native lang.pdf) on the IEEE Author Digital
Toolbox page.

Refining the Use of English Language in Your Manuscript.
English language editing services can help refine the language of your
article and reduce the risk of rejection without review. IEEE authors
are eligible for a 10% discount at American Journal Experts; visit
http://www.aje.com/go/ieee/ to learn more. Please note these services
are fee-based and do not guarantee acceptance. You are also free to
select another professional editing service, or to ask a colleague who
is fluent in English to assist with editing. However, if the revised
manuscript does not meet the English usage criteria, then you must
use the designated editing service (AJE [http://www.aje.com/en]) for
a fee, or you must withdraw the manuscript.

Open Access. The publication is a hybrid journal, allowing either
Traditional manuscript submission or Open Access (author-pays OA)
manuscript submission. Upon submission of your final files, if you
choose to have your manuscript be an Open Access article, you
commit to pay the discounted OA fee if your manuscript is accepted
for publication in order to enable unrestricted public access. As of
01 January 2017, the OA fee is $1,950. Any other application charges
(such as charge for the use of color in the print format) will be billed
separately once the manuscript formatting is complete but prior to
the publication. Any other application charges (such as overlength
page charge and/or charge for the use of color in the print format)
will be billed separately once the manuscript formatting is complete
but prior to the publication. If you would like your manuscript to be
a Traditional submission, your article will be available to qualified
subscribers and purchasers via IEEE Xplore. No OA payment is
required for Traditional submission.

Page Charges.
Voluntary Page Charges. Upon acceptance of a manuscript for
publication, the author(s) or his/her/their company or institution will
be asked to pay a charge of $110 per page to cover part of the cost
of publication of the first ten pages that comprise the standard length
(two pages, in the case of Correspondences).

Mandatory Page Charges. The author(s) or his/her/their company
or institution will be billed $220 per each page in excess of the first
ten published pages for regular papers. (**NOTE: Regular Papers
accepted to IEEE TRANSACTIONS ON MULTIMEDIA in excess of
8 pages will be subject to mandatory overlength page charges, and
correspondence papers accepted to T-MM in excess of 6 published
pages will also be subject to overlength page charges.) These are
mandatory page charges and the author(s) will be held responsible
for them. They are not negotiable or voluntary. The author(s) signifies
his willingness to pay these charges simply by submitting his/her/their
manuscript to the TRANSACTIONS. The Publisher holds the right to
withhold publication under any circumstance, as well as publication
of the current or future submissions of authors who have outstanding
mandatory page charge debt. No mandatory overlength page charges
will be applied to overview articles in the Society’s journals.

Color Charges. The color-in-print charge is a flat rate of $275
per figure. The corresponding author of the article will have the
opportunity to address the color-in-print option during an “Article
Setup” step. All invoices and payments are handled through an
automated payment portal system. The payment portal allows various
payment types such as credit card, bank wire transfers, check, pre-
approved waivers, special payment circumstances, and third party
billing. Please note that split payments are not supported at this time.
If you have any questions, please contact oaprocessing@ieee.org for
Open Access processing and reprints@ieee.org for all other charges.

*EDICS Webpages:
IEEE TRANSACTIONS ON SIGNAL PROCESSING:
http://www.signalprocessingsociety.org/publications/periodicals/tsp/TSP-EDICS/
IEEE TRANSACTIONS ON IMAGE PROCESSING:
http://www.signalprocessingsociety.org/publications/periodicals/image-processing/tip-edics/
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE / ACM:
http://www.signalprocessingsociety.org/publications/periodicals/taslp/taslp-edics/
IEEE TRANSACTIONS ON INFORMATION, FORENSICS AND SECURITY:
http://www.signalprocessingsociety.org/publications/periodicals/forensics/forensics-edics/
IEEE TRANSACTIONS ON MULTIMEDIA:
http://www.signalprocessingsociety.org/tmm/tmm-edics/
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING:
http://www.signalprocessingsociety.org/publications/periodicals/tci/tci-edics/
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS:
http://www.signalprocessingsociety.org/publications/periodicals/tsipn/tsipn-edics/
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Join Now for 2018
The IEEE Signal Processing Society is the world’s premier association for 
signal processing engineers and industry professionals, servings its nearly 

17,000 members with highly-ranked publications, world class conferences, 
professional development resources, job opportunities, and more.

Access members-only discounts on SPS publications and conferences. Gain 
eligibility to apply for travel grants to our flagship conferences ICASSP, ICIP, 
and GlobalSIP.

SAVE

CONNECT
Network with other professionals through SPS conferences, workshops, 
Technical Committees, Special Interest Groups, and local events curated by 
more than 180 worldwide SPS Chapters.

ADVANCE
Further your career with world-class educational resources, including the 
new SPS Resource Center, opportunities for awards and recognition, and 
volunteer opportunities across society activities.

SCAN TO JOIN

@ieeeSPS

/ieeeSPS
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Benefit and Package Essential
Membership

Preferred
Membership

Inside Signal Processing eNewsletter

IEEE Signal Processing Magazine Digital
Electronic

Digital
Electronic

Print

IEEE Signal Processing Content Gazette

Signal Processing Digital Library
     Electronic access to seven solely-owned SPS 
     publications through IEEE Xplore®

SPS Resource Center

IEEE Professional Member Price
Membership through 31 December 2017

$22.00 $39.00

IEEE Student Member Price
Membership through 31 December 2017

$11.00 $20.00

Affiliate Member Price
Membership through 31 December 2017

$96.50 $113.50

JOIN SPS TODAY AND RECEIVE

In addition, all SPS members receive:

 › Networking and collaboration opportunities with a global network of nearly 
   17,000 signal processing professionals
 › Discounts on SPS conferences and workshops, including our flagship 
   conferences ICASSP, ICIP, and GlobalSIP
 › Discounts on print editions of SPS-sponsored publications
 › Eligibility to apply for travel grants to SPS conferences
 › Connect with members near you through local events curated by SPS’ 180+    
   worldwide Chapters
 › Career growth and professional development tools and resources
 › Eligibility to join a Technical Committee or Special Interest Group to meet SPS 
  members with similar technical interests to develop and strengthen technical 
  communities within signal processing, having a voice in awards, conferences, 
  publications, education, and more
 › Volunteer opportunities throughout Society activities, including publications, 
   conferences, membership, public visibility, and more.
 › Students get exclusive access to competitions, job fairs, and networking events
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