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Call for Papers and Sponsors

ICASSP

The 43rd IEEE International Conference on Acoustics, Speech and Signal Processing
April 22 - 27,2018, Seoul, Korea

_ http ://201 8 |eee|cassp.org

Slgnal Processmg and Art|f|C|aI Intelllgence Changlng the WorId o

Submission of Papers

Authors are invited to submit papers of not more than four pages of technical content including figures
and references, with an optional fifth page containing only references. Submission instructions, paper
format templates, and other important information will be made available on the ICASSP 2018 website,
http://2018.ieeeicassp.org.

Conference Topics
The conference will feature world-class international speakers, tutorials, exhibits, lectures and poster
sessions from around the world. Topics include but are not limited to:

« Audio and acoustic signal processing

- Sensor array & multichannel signal processing

« Bio-imaging and biomedical signal processing

« Signal processing education

« Design & implementation of signal processing systems
- Signal processing for communications & networking
« Image, video & multidimensional signal processing

« Signal processing theory & methods

« Industry technology tracks

- Signal processing for big data

« Information forensics and security

« The Internet of Things & RFID

+ Machine learning for signal processing

« Speech processing

« Spoken language processing

« Multimedia signal processing

+ Remote sensing and signal processing

« Signal processing for brain machine interface
« Signal processing for smart systems

« Signal processing for cyber security

« Computational imaging

Call for Tutorials

Tutorials at ICASSP form an important part of the program, giving attendees the opportunity to learn
about current research areas that are of growing interest to the signal processing community. Those
who are interested in presenting a tutorial may want to contact one of the tutorial chairs before
preparing a formal proposal. It is important to keep in mind, for any tutorial, that it should be tutorial in
nature, and within the grasp of a wide audience.

Call for Special Sessions

The program for ICASSP 2018 will include Special Sessions that complement the traditional program
with new and emerging topics of significant interest to the signal-processing community, particularly
those that are in line with the theme of the conference. Please refer to the conference webpage for
information about Special Session proposals.

Call for Exhibitors and Sponsors

ICASSP 2018 offers exhibitors and sponsors an opportunity to showcase their company's products and
innovative solutions at the Signal Processing Society's flagship conference that will be held for the first
time in the Korean Peninsula. Please refer to the conference webpage for information about signing up
to become an exhibitor or sponsor at ICASSP.

Signal Processing Letters

Authors of IEEE Signal Processing Letters (SPL) papers will be given the opportunity to present their
work at ICASSP 2018, subject to space availability and approval by the Technical Program Chairs. SPL
papers published between January 1, 2017 and December 31, 2017 are eligible for presentation at
ICASSP 2018. Because they are already peer-reviewed and published, SPL papers presented at ICASSP
2018 will neither be reviewed nor included in the proceedings.
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Important Dates

August 4,2017
Special Session Proposals Due

August 11,2017
Tutorial Proposals Due

September 8,2017
Notification of Special Session Acceptance

September 15,2017
Notification of Tutorial Acceptance

October 27,2017
Paper Submissions Due

January 12,2018
Signal Processing Letters Due

January 26,2018
Notification of Paper Acceptance

February 9, 2018
Revised Paper Upload Deadline

February 16,2018
Author Registration Deadline

General Chairs
Monson Hayes
Hanseok Ko

Technical Program Chairs
Dan Schonfeld

Pascale Fung

Nam |k Cho
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FROM THE EDITOR ""““

Min Wu | Editor-in-Chief | minwu@umd.edu

Abraham Lincoln was a highly re-

garded president of the United States
whose pursuit of social justice paved the
way to end the slavery in this country.
Fewer people, however, know his dis-
tinction as an engineering innovator and
that he was the first and only U.S. presi-
dent thus far to hold a patent. President
Lincoln received the U.S. Patent 6469 in
May 1849 titled “Buoying Vessels over
Shoals,” which was inspired by his expe-
rience navigating boats on the Ohio and
Mississippi Rivers. When commenting on
the role of the patent system that offers the
inventor the exclusive use of his/her in-
vention for a limited time, President Lin-
coln noted that the patent system “added
the fuel of interest to the fire of genius, in
the discovery and production of new and
useful things.”

From about a century after Lincoln’s
invention and throughout the next sev-
eral decades, signal processing has con-
tributed significantly to technology
innovations and changed how we work
and live. Smartphones, digital photogra-
phy, the global positioning system, and
medical diagnosis are tangible exam-
ples around us, and our magazine has
touched on them through special issues
and column articles. What many of us
take for granted and wouldn’t pause to
think about are numerous examples that
we don’t see, such as when we store our
data on hard drives. This is one of the best

To many people around the world,
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Innovations Powered by Signal Processing

examples that recently comes to mind to
showcase the profound impact of signal
processing research.

Aleksandar Kavcic and José Moura’s
academic research at Carnegie Mellon
University in the 1990s studied the ef-
fect when data would become densely
packed in magnetic disk drives, and they
proposed signal processing algorithms
to enable the accurate detection of data
stored in high-density disks—which
became the norm a decade later in bil-
lions of computers. Their pioneering
research also made front-page news
when a US$750 million settlement was
announced concerning the infringe-
ment of their corresponding patents, the
second-largest payment over any technol-
ogy patents to date. You can read more
about the Kavcic—Moura detector for
high-density magnetic recording on the
IEEE Signal Processing Society’s online
blog: http://signalprocessingsociety.org/
publications-resources/blog/why-

signal-processing-pioneer-takes-road-

less-traveled.

Innovations have continuously come
from both industry and universities,
often in complementary ways, although
there may be stereotypical views on the
roles that each side plays. Every once in a
while, I have friends working in industry
questioning the practical values of univer-
sity research beyond writing papers and
training students. Indeed, many publica-
tions may not see widespread real-world
use. More often, we see academic pub-
lications as well as industrial products
making incremental improvements over

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

the prior art as opposed to making revo-
lutionary advances, and it is common that
exploratory research has been carried out
well before the market ecosystem or the
supporting technologies to become ready.

The immediacy of deployment is
perhaps one of the differentiating fac-
tors between product development and
exploratory research, but as history
reveals, it is not the primary indicator of
the impact of innovations. Kavcic and
Moura showed to the world the impact
of their innovations from what started
out as exploratory research in signal pro-
cessing. One attribute that enables their
impact (as opposed to a purely intellec-
tual exercise or a bean-counting effort
to add to one’s publication list) is the
educated anticipation of the technologi-
cal trends (in their case, the increasing
density of the data being packed in stor-
age drives) and the willingness to tackle
challenges beyond making epsilon-del-
ta improvement.

To qualify my words here, incremen-
tal improvements have their important
roles in technological advances, and
many progresses made—big or small—
are standing on the shoulders of giants;
we continuously build on the efforts of
our technical community in direct and
indirect ways. But the willingness to go
beyond, to nurture out-of-the-box think-
ing, and to encourage taking higher risks
opens up opportunities for bigger leaps in
innovation, even if we may not succeed at
most attempts.

(continued on page 9)
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Mind the (Gender) Gap

talked about the many ways that diver-

sity drives innovation in our field and in
all facets of life. Returning to this discus-
sion, I'd now like to focus on women in
engineering (WIE). There are numerous
examples of women throughout history
who had to overcome serious hurdles to

In my last “President’s Message” [1], 1

make valuable contributions to science
and culture. I will mention three exem-
plary role models.

Sophie Germain, the great French
mathematician, was not allowed to attend
the Ecole Polytechnique in the late 1700s;
she used a male pseudonym and eventu-
ally won the Paris Academy of Science
grand prize for the theory of elasticity.
Another famous renegade in popular cul-
ture and in the signal processing field is
the actress Hedy Lamarr, who invented
a spread spectrum technology in 1941
to scramble radio signals on torpedoes.
In the 1960s, her technology was imple-
mented on naval ships during the Cuban
Miissile Crisis. Her applications ultimately
galvanized the digital communications
boom and are currently used in many
devices, including the global positioning
system, cell phones, and fax machines.

Last but not least is Madam Curie,
whose incredible achievements influ-
enced me from an early age. She was my
idol, and I used to dream that one day I
would also do great things. As a young
girl, I did not know exactly what my own
“great thing” would be. But I was lucky to
also have a mother who instilled in me the

Digital Object Identifier 10.1109/MSP.2017.2704998
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Rabab Ward | SPS President | rababw®@ece.ubc.ca

confidence that, with hard work, I could
reach any goals I set. I certainly faced
many obstacles, but whenever I came up
against a closed door, I looked for another
door to open.

I was born and raised in Lebanon. In
1961, I was not allowed to study engineer-
ing at the American University of Beirut,
even though my grades were higher than
all of the male students in the country at
that time. So I went to Egypt and enrolled
in medical school. But my heart wasn’t
in medicine, so I switched to engineer-
ing. I returned home in 1967 and became
the first female member of the Lebanese
Professional Engineering Society. When
I later joined the University of California
in Berkeley, I was the only woman among
all of the Ph.D students in electrical engi-
neering. In fact, the first woman to earn
her Ph.D. degree in electrical engineering
at Berkeley was an Egyptian woman who
graduated four years before me.

Upon my graduation in 1972, unlike
my male colleagues, I could not find a
job in academia. I looked upon that as an
opportunity—to have children and also to
work abroad, which led to my becoming
the first woman appointed in engineering
at the University of Zimbabwe. Eventually
I joined the University of British Colum-
bia’s Faculty of Applied Science, and, in
1981, I received a tenure track professor-
ship and became the first woman engi-
neer professor at British Columbia.

Looking back, I realize that the vast
majority of those who helped me suc-
ceed were males as, at that time, I did not
know other female engineers in my field
who could extend a mentoring hand. I've

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

enjoyed a fulfilling career in electrical
engineering, specifically in the signal pro-
cessing field. And I've since enjoyed the
privilege of working with many talented
women students, colleagues, scientists,
engineers, innovators, and business people.

The number of women studying and
working in science, technology, engi-
neering, and mathematics (STEM) has
increased so much since I was a girl. But
since the early 2000s, the number of
women engineering undergraduates has
remained stagnant at about 20% in the
United States, and only 11% of practicing
engineers in the United States are women,
with typically lower annual salaries lower
than men (in 2013, it was US$65,000
for women compared to US$79,000 for
men). It’s no wonder that only 27% of
women remain in the STEM fields after
the age of 30.

According to 2016 research, STEM
Fortune 500 firms are no more diverse
than in 2001, indicating an entrenched
gender gap. The picture is similar in the
United Kingdom, where only 9% of the
engineering workforce are women. At the
same time, the United States and the Unit-
ed Kingdom are dealing with a shortage
of STEM workers. With STEM jobs set
to grow 17% by 2024, we need to provide
more resources and incentives to women,
to fill the labor market gap. Furthermore,
according to research, companies with
gender parity are 15% more likely to per-
form better.

There is encouraging news coming
from other countries. Thirty-five percent of
engineering students in India are women.
In some Arab countries, enrollments are
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as high as 60%. The number of women Namrata Vaswani, will act as a resource with not only nurturing their confidence
studying and working in computer science for women in the SPS and engineering, but having confidence in them and their
has surged, and by 2014, 25% of startups in building a global community of women abilities. The availability of hands-on ex-
the Middle East were owned by women. In in signal processing fields and positioning perience in elementary and high schools
China, women account for approximately them to gain visibility and raise awareness is crucial as is the dedication of teachers
40% of the STEM workforce. However, about opportunities for leadership roles, who truly believe in girls’ abilities, chal-
women in every country have to contend award nominations, and more. lenging and encouraging boys and girls
with their own culture’s biases and work- A recent report on women in the SPS equally. A supportive, inclusive network
place challenges. by a committee chaired by Mari Osten- would provide girls and women with the

At the IEEE, the percentage of female dorf found that women make up approxi- tools to build communities that motivate
Members is approximately 10.6%—a 3% mately 15% of our technical committees, them to persist in this field.
point increase (from 7.5%) since 2000. 10.7% of our associate editors, and 17% of Gender inclusivity in engineering is
Over the past few years, the [IEEE WIE leadership roles in our Society. The per- not only good for society, it is also ben-
has become one of the world’s largest centage of women winning major SPS eficial for business. It fuels innovation and
international professional organizations, (nonservice) awards since 1990 (2.2%) is, enriches every facet of our life. Let’s do
dedicated to the professional development however, much lower than the percentage more to make our businesses, our research
of women. WIE has made big strides, of female fellows (10%). We hope that the labs, our academic institutions, and our
growing from 3,000 members in 2001 establishment of the Women in Signal domestic environments enriching places,
to 15,000 in 2013 and is now extremely Processing Directory will increase visibil- where girls and women can thrive.
active in more than 70 countries. ity of women in the field to be considered

During an outreach activity for the for awards and leadership roles. Reference
SPS in 2015, I met an outstanding female There is a delicate line to walk be- Eioljegﬁag%Zfr;jyi‘:‘g“i';aﬂ?my %‘EE Signal
engineer, Maryam Al Thani, in Abu tween inclusivity and tokenism. How can
Dhabi who is very active with WIE. we include and empower women with- w C\j_d
That year she ran for election to the out exploiting their gender or placing too
United Arab Emirates Federal National much focus on gender? I think it starts 5P|
Council (the body that represents the
Emirates’ nationals). How how did she
acquire the confidence, at this relatively
young age, to run for the highest posi- 20 I 8_20 I 9
tion in her country? She told me that her
leadership skills came by actively vol- IEEE'USA Government
unteering in IEEE WIE. Although she Fellowships
did not win that election, she is confident . .
that she will one day. Congressional Fellowships

Today, women account for 9.4% of the Seekiqg U.S. IEEE members interested in
IEEE Signal Processing Society’s (SPS’s) E%ir;?g‘j gryce;: ;2;: (r)\rg]aflocr:mMn? itn:::r of
membership. The SPS started holding the
Women in Signal Prqcessing (WISP) lun- Engineering & Diplomacy Fellowship
cheon at the International Conference on y . i

K X Seeking U.S. [EEE members interested in
Acoustics, Speech, and Signal Process- spending a year serving as a technical adviser
ing (ICASSP) in 1997. Since 2015, this at the U.S. State Department.
luncheon has been held at the majority of
our large conferences: ICASSP, the IEEE f="  USAID Fellowship
International Conference on Image Pro- U%D Seeking U.S. IEEE members who are interested
cessing, and GlobalSIP. Each luncheon newnesmemeens 1N S€rving as advisors to the U.S. government
features an invited guest speaker, dis- as a USAID Engineering & International
. . .. Development Fellow.

cussions, and networking. Although it is
called Women in Signal Processing, men The application deadline for 2018-2019
also enjoy at[ending this event. FeIIowships is 8 December 2017.

This year, the activities of the SPS For eligibility requirements and application information, go to
committee on women have expanded be- www.ieeeusa.org/policy/govfel

. or contact Erica Wissolik by emailing
yond conference events. During the WISP e.wissolik@ieee.org or by calling +1 202 530 8347.
Luncheon at ICASSP 2017, we debuted
the new Women in Signal Processing
Directory. The directory, visualized by IEEE*IJSA @ IE E E
IEEE SIGNAL PROCESSING MAGAZINE | July 2017 | 5
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focuses on a different publication of
the IEEE Signal Processing Society
(SPS). This issue of the magazine high-
lights articles in IEEE Journal of Select-
ed Topics in Signal Processing (JSTSP).

JSTSP solicits special issues on
topics that cover the entire scope of the
SPS. JSTSP only publishes papers that
are submitted in response to a specific
call for papers, which can be found at
https://signalprocessingsociety.org/
publications-resources/ieee-journal-
selected-topics-signal-processing.
Instructions for submitting papers to a
particular special issue can be found
by clicking on the “Information for
Authors” tab under the “JSTP Menu”
on this page. The procedure for prepar-
ing and submitting a proposal for a
special issue can be found by selecting
the “Special Issue Proposal Submis-
sion” tab. All special issue proposals
are evaluated by our senior editorial
board for relevance, timeliness, techni-
cal merit, impact, and general interest
to the Society.

This issue’s “Reader’s Choice” col-
umn lists the top ten papers most down-
loaded from January 2015 to March
2017. Your suggestions and comments
are welcome and should be sent to
Associate Editor Chungshui Zhang at
zcs @mail.tsinghua.edu.cn.

E ach “Reader’s Choice” column in
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An Overview of Massive MIMO:
Benefits and Challenges
Lu, L.; Li, G.Y.; Swindlehurst, A.L.;
Ashikhmin, A.; Zhang, R
In this paper, the authors present a com-
prehensive overview of state-of-the-art
research on the topic. The paper includes
an informational theoretic analysis;
implementation issues related to channel
estimation, detection, and precoding
schemes; the energy efficiency; and the
challenges and opportunities.

October 2014

Channel Estimation and Hybrid
Precoding for Millimeter Wave
Cellular Systems

Alkhateeb, A.; Ayach, O.E.; Leus, G.;
Heath, R.W.
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This paper develops an adaptive algo-
rithm to estimate the millimeter wave
channel parameters, which exploits the
poor scattering nature of the channel.
Furthermore, a novel hierarchical multi-
resolution codebook is designed to con-
struct training beamforming vectors
with different beamwidths.

October 2014

Standardized Extensions of High
Efficiency Video Coding (HEVC)
Sullivan, G.J.; Boyce, J.M.; Chen, Y.;
Ohm, J.-R.; Segall, C.A.; Vetro, A.

This paper describes extensions to the
High-Efficiency Video Coding (HEVC)
standard that are active areas of current
development in the relevant international
standardization committees. The design
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for these extensions represents the latest
state of the art for video coding and
its applications.

December 2013

MPEG-H 3D Audio—The New
Standard for Coding of Immersive
Spatial Audio
Herre, J.; Hilpert, J.; Kuntz, A.;
Plogsties, J.
The ISO/MPEG standardization group
has started the MPEG-H 3D Audio
development effort to facilitate high-
quality bit rate-efficient production,
transmission, and reproduction of such
immersive audio material. This paper
provides an overview of the MPEG-H
3D Audio project and technology and an
assessment of the system capabilities
and performance.

August 2015

Gradient Projection for Sparse
Reconstruction: Application to
Compressed Sensing and Other
Inverse Problems

Figueiredo, M.A.T.; Nowak, R.D.;
Wright, S.J.

This paper proposes gradient projec-
tion (GP) algorithms for the bound-
constrained quadratic programming
formulation of sparse reconstruction.
Computational experiments show that

SignalProcessing

these GP approaches perform well in
a wide range of applications, often
being significantly faster (in terms
of computation time) than compet-
ing methods.

December 2007

Advances in Cognitive Radio
Networks: A Survey
Wang, B.; Liu, K.J.R.
This paper surveys recent advances in
research related to cognitive radios. The
fundamentals of cognitive radio technol-
ogy and architecture of a cognitive radio
network and its applications are intro-
duced. The existing works in spectrum
sensing are reviewed, and important
issues in dynamic spectrum allocation
and sharing are investigated in detail.
February 2011

An Overview of Signal Processing
Techniques for Millimeter Wave
MIMO Systems
Heath, R W.; Gonzdlez-Prelcic, N.;
Rangan, S.; Roh, W.; Sayeed, A.M.
This article provides an overview of sig-
nal processing challenges in millimeter
wave wireless systems, with an emphasis
on those faced by using multiple-input,
multiple output communication at higher
carrier frequencies.

April 2016
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A Real-Time End-to-End Multilingual
Speech Recognition Architecture
Gonzalez-Dominguez, J.; Eustis, D.;
Lopez-Moreno, L.; Senior; A.;
Beaufays, F.; Moreno, PJ.
In this paper, the authors present an end-
to-end multilingual automatic speech rec-
ognition system architecture, developed
and deployed at Google, that allows users
to select arbitrary combinations of spo-
ken languages. They leverage recent
advances in language identification and a
novel method of real-time language
selection to achieve similar recognition
accuracy and nearly identical latency
characteristics as a monolingual system.
June 2015

Hybrid Digital and Analog
Beamforming Design for
Large-Scale Antenna Arrays
Sohrabi, F.; Yu, W.
This paper considers a hybrid beamform-
ing architecture in which the overall
beamformer consists of a low-dimen-
sional digital beamformer followed by a
radio-frequency (RF) beamformer imple-
mented using analog phase shifters. This
paper establishes that if the number of
RF chains is twice the total number of
data streams, the hybrid beamforming
structure can realize any fully digital
beamformer exactly, regardless of the
number of antenna elements.

April 2016

A Survey of Stochastic Simulation
and Optimization Methods in
Signal Processing
Pereyra, M.; Schniter; P.; Chouzenoux,
E.; Pesquet, J.-C.; Tourneret, J.-Y.;
Hero, A.O.; McLaughlin S.
This survey paper offers an introduction
to stochastic simulation and optimization
methods in signal and image processing.
The paper addresses a variety of high-
dimensional Markov chain Monte Carlo
methods as well as deterministic surro-
gate methods, such as variational Bayes,
the Bethe approach, belief and expecta-
tion propagation, and approximate mes-
sage-passing algorithms.

March 2016
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Nominations Open for 2017
|EEE Signal Processing Society Awards

(SPS) Awards Board is now accept-

ing nominations for all Society-lev-
el awards, from paper awards to the
major society awards. Nominations are
due by 1 September 2017 and should be
submitted to Theresa Argiropoulos
(t.argiropoulos @ieee.org), who will
collect the nominations on behalf of
Awards Board Chair H. Vincent Poor.
Nominators should take into consider-
ation the need for representation of
diversity in the nomination slate when
submitting their nominations. Detailed
information and nomination/endorse-

The IEEE Signal Processing Society

ment forms for SPS awards can be found
online. Full details on the nomination
process are available at http://signal
processingsociety.org/get-involved/
awards-submit-award-nomination.

Please note that, this year, the Society
will be testing new awards software, so
nominations for the Technical Achieve-
ment Award must be submitted online
through this link: https://ieee.secure-
platform.com/a/page/society_awards/

ieeesignalprocessingsocietyawards.

All other awards will be handled
though the normal submission process
and should be submitted to Theresa
Argiropoulos via e-mail.

m  Who can nominate: Nominations are
accepted from any Society individu-
al member, Society committee, or
Society board. Nominations from

Digital Object Identifier 10.1109/MSP.2017.2697105
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individual members can be support-

ed by up to two endorsement forms

from two other individual members.

m Which Awards: Each year, the SPS
honors outstanding individuals who
have made significant contributions
related to signal processing through
the Society Award, the Industrial
Leader Award, the Industrial
Innovation Award, the Technical
Achievement Award, the Education
Award, the Meritorious Service
Award, and the Meritorious Chapter/
Regional Service Award. The Society
also recognizes outstanding publica-
tions in SPS journals and the maga-
zine through the Best Paper Award,
Donald G. Fink Overview Paper
Award, Sustained Impact Paper
Award, Signal Processing Letters Best
Paper Award, Signal Processing
Magazine Best Column Award,
Signal Processing Magazine Best
Paper Award, and the Young Author
Best Paper Award.

Nominations for the Best Paper
Award and Young Author Best Paper
Award should refer to the papers pub-
lished in the following Society journals:
m [EEE Journal of Selected Topics in

Signal Processing (JSTSP)

m IEEE/ACM Transactions on Audio,
Speech, and Language Processing
(T-ASLP)

m [EEE Transactions on Image Process-
ing (T-1P)

m [EEE Transactions on Information
Forensics and Security (T-1FS)

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

m [EEE Transactions on Signal Pro-
cessing (T-SP).

SPS awards changes

Over the past few years, the Society
approved some procedural changes to
the SPS Awards program, including
some new changes approved late last
year. Please note that these changes
are in effect for the 2017 nomination
period. The changes are intended to
provide an effective means to encour-
age award nominations in all catego-
ries from the SPS community at large,
including individuals, technical com-
mittees, editorial boards, and other
major boards, except in the cases of
conflict of interests. Technical com-
mittees and boards may pass on to
the Awards Board one or multiple
nominations that they receive for
all awards.

The Society created a new award
called the Meritorious Regional/
Chapter Service Award, which focuses
on outstanding contributions of any
member of the Society to regional
activities of the SPS. As a result of the
creation of this award, the judging crite-
ria for the Meritorious Service Award
was redefined. The Meritorious Service
Award judging criteria now reflects that
judging will be based on recognizing
outstanding efforts and contributions
aimed at promoting the technical and
educational activities of the entire SPS,
i.e., that benefit the membership of the
SPS at large.

>
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The Overview Paper Award was
renamed the Donald G. Fink Overview
Paper Award. The award description
remains untouched; just the name of the
award was modified.

The Society Award was modified to
incorporate a presentation of an Interna-
tional Conference on Acoustics, Speech,
and Signal Processing (ICASSP) plenary
lecture, which will be called the “Norbert
Wiener Lecture.” Each Society Award
recipient is expected to present a Norbert
Wiener lecture at the 2018 ICASSP. This
lecture is one of the plenary lectures
given on the day of the banquet of
ICASSP, but it is not a banquet speech.

As a reminder, for the Young Author
Best Paper Award, a board or committee
cannot nominate one of its members for
the award. Please note that this includes
nominating an author of a paper where a
member of a nominating board or com-
mittee is also an author on the paper, even
though this member is not the “young
author” being considered for the award.

The paper awards nomination form
requests citation impact information, so
please provide this valuable information.
The Awards Board will continue to
review the nominations and make selec-
tions on paper awards.

For all major awards other than paper
awards, the Awards Board will be
responsible for vetting the nominations
and producing a short list of no more
than three nominations per award. The
Board of Governors will continue to vote
on the selection of the major awards.

A board or committee cannot nominate
one of its current members for an award.
However, the board/committee member
can be nominated by another board or
committee. Current elected members
of a committee/board may participate as
individual nominators for other mem-
bers of the same board/committee. In
the case of major award nominations,
please note: boards or committees that
submit nominations, but have voting
Board of Governors members sitting on
their boards or committees, must ensure
that Board of Governors voting members
do not participate in the board/commit-
tee award nomination or selection process.

Individual nominations can have multi-
ple conominators listed on the nomination
form. In addition, individual nominations
can include up to two endorsements to
strengthen the nomination from two
other individual members. Nominations
supported by committee/boards cannot
be accompanied by endorsements. IEEE
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SPS membership is no longer required
for endorsements. All endorsements must
be submitted via e-mail to the specified
address, which will provide the nomina-
tion with a date and time stamp. If more
than two endorsements are submitted,
only the first two received endorsements
will be forwarded to the SPS Awards
Board for consideration. A nominator
cannot serve as an endorser for a nomi-
nation he/she is submitting. If the Society
policies state that a particular board/
committee/individual is not eligible to
nominate for a particular award, then
members of that same group of individu-
als are not eligible to be endorsers.

Technical committee and special
interest group award nomination proce-
dures have been approved with suggested
award nomination and voting procedures.
For full details on each award as well as
the new Society and technical commit-
tee/special interest group awards policies
and endorsement form, please visit http://
signalprocessingsociety.org/get-involved/
awards-submit-award-nomination.

If you have any questions regarding
the process, please do not hesitate to con-
tact Awards Board Chair H. Vincent Poor
at poor @princeton.edu. B

FHOM T"E EanoH (continued from page 3)

opens up opportunities for bigger leaps in
innovation, even if we may not succeed
at most attempts.

As in almost any litigation, for col-
leagues who either work for or hold
shares and other interests in the opposing
company involved in the patent dispute,
the success of the inventors and their insti-
tution in this high-profile litigation may
be rather bitter. This is understandable as
one’s judgment can be influenced when
such personal interests are involved. Still,
I hope as professionals working on the
forefront of technology advances, we can
look beyond our personal gains or losses
to celebrate the positive impact of innova-
tions powered by signal processing.

SignalProcessing

Perhaps our discussions on the inno-
vations powered by signal processing
have stimulated reflections from you. To
help capture the thoughts of our read-
ers, we formally launch the “Community
Voices” column on page 10 in this issue.
The first discussion topic is “What is
considered a successful career for signal
processing trained professionals?”
SPM’s Area Editor Dr. Andres Kwasinski
took the lead and gathered input from the
community and compiled highlights. My
appreciation also goes to Dr. Charles
Casimiro Cavalcante, a reader in Brazil,
who was the very first to respond to the
open calls on this new initiative, and to
several readers from a variety of sectors
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together with our retired veterans of the
magazine editorial board who kindly
share their perspectives.

The second topic for the “Commu-
nity Voices” column is “What’s the fu-
ture of signal processing?” Please take
a moment to share your views on this
web form https://www.surveymonkey
.com/r/SPSCommunity Voices2. We
look forward to reading your input and
sharing highlights in a future issue
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What Do You Consider a “Successful” Career?

Perspectives from signal processing-trained professionals

elcome to the first article in a newly

launched column, “Community

Voices,” in IEEE Signal Processing
Magazine. The motivation behind this
column is to strengthen ties with read-
ers and members in the signal process-
ing community. In doing so, we set out to
collect reflections from diverse members
of our community on questions that are
of interest to many. A readily available
form on the Internet as well as e-mail
exchanges were used to gather respons-
es. This first article of the “Community
Voices” column focuses on the question
“For a person with signal processing
training, what do you consider as a suc-
cessful career?”

We begin with input from Charles
Casimiro Cavalacante from Brazil, who
was the first to respond to the web form.
We welcome your feedback on this new
initiative and your ideas in suggesting
future topic questions. The second topic
on the future of signal processing is
open for input. Please refer to “The Fu-
ture of Signal Processing” for the topic
and web links. We hope that you enjoy
this new column and look forward to
hearing from you.

Charles Casimiro Cavalacante

Signal processing is broad, and career
prospects for signal processing prac-
titioners are just as diverse. There are
practitioners in biomedical engineering,
industrial automation, electronic design,
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Andres Kwasinski and Min Wu

The Future of Signal Processing

After half a century of development, some say signal processing is already
matured in terms of theories and techniques and perhaps would not have a new
research breakthrough. Others have observed the problem of “signal processing

inside.”

What are your thoughts about the future of signal processing? Please pro-
vide your input by filling out this web form: https://www.surveymonkey

.com/r/SPSCommunityVoices2.

A selection of the responses will be published in an upcoming issue of IEEE
Signal Processing Magazine or Inside Signal Processing eNewsletter, subject to

editing for language and length.

acoustics and audio
applications, image
and video process-
ing; robotics, navi-
gation systems, data
and financial analyt-
ics, communication
systems, and many others. There are
growing research areas in data analyt-
ics, perceptual computing, smart energy
technologies, and sensor systems for
enterprise and industrial applications.
There is a wealth of signal processing
expertise in research institutions pushing
signal processing reach into many fields
through research projects and training of
the next cadre of practitioners.

While judging career success is a
subjective exercise, there are good indi-
cators common to most people’s ideal
of a successful career. These include
drawing satisfaction from day to day job
activities, progressive growth in project
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responsibilities and influence, and doing
recognized and rewarding work that
has measurable impact.

Given the breadth of signal pro-
cessing career opportunities and un-
derstanding what constitutes career
success, what does a successful signal
processing career look like? I am a
midcareer practitioner with experience
in both academia and in industry. I
consider myself a work in progress to-
ward career success. Signal processing
has enabled me to contribute to model-
ing high-speed computer interconnects
and gain insight into channel equaliza-
tion challenges, train students on filter
design, and witness the excitement of
translating design-rule steps to circuit im-
plementation for a rudimentary working
guitar pickup. These are some rungs on a
ladder toward a satisfying career.

Listening to senior engineers dis-
cuss their most impactful work and the
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process that took them from ideation to re-
sults shows that careers are a journey
indeed. In short, a successful career is
a hodgepodge of experiences, growth
through overcoming challenges, project
successes, and willingness to embrace
new ways of using signal processing train-
ing in different engineering problems.

Author
CharlesCasimiroCavalcante(charles@
gtel.ufc.br) received a Ph.D. degree
from the University of Campinas. He
is an associate professor at the Univer-
sidade Federal do Ceara, Brazil, and
holds the Statistical Signal Processing
Chair. He has been a visiting assistant
professor in the Department of Com-
puter Science and Electrical Engi-
neering at the University of Maryland,
Baltimore County. He is a Senior Mem-
ber of the IEEE and of the Brazilian
Telecommunications Society.

Khaled El-Maleh

I have witnessed the
great impact of sig-
nal processing in our
lives! With signal pro-
cessing training span-
ning three degrees

‘@& i (my B.Eng., M.Eng.,
and Ph.D. degrees) followed by more
than 17 years of industry experience, I
have been fortunate to have a successful
and rich signal processing career. I think
the main reasons for this success have
been realizing the great value of continu-
ing my relationship with academic insti-
tutions (both students and professors),
with the IEEE Signal Processing Soci-
ety, as well as working on developing
multimedia consumer products using
signal processing algorithms. Examples
of such products are smartphones with
wide-band telephony, advanced camera
and video telephony, and streaming.
In addition, I have recently expanded
my signal processing knowledge in
emerging areas like the Internet of
Things, automotive, mobile health care,
and smart cities.

Author
Khaled El-Maleh (kelmaleh@qualcomm
.com) received his Ph.D. degree in
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electrical and computer engineering
from McGill University, Canada. He
is a senior director of technology in the
Intellectual Property (IP) Department
of Qualcomm leading the Sensor and
Display IP Portfolio Team, Multime-
dia Technology Team, and related IP
Strategy areas. He is a technologist
and strategist with focus on entrepre-
neurship and innovation, as well as an
accomplished inventor with more than
200 U.S. and international patents. He
was awarded the Qualcomm Career
Thought Leadership Award in 2009
and the IP Department 2013 Distin-
guished Contributor Award.

Gene A. Frantz
z ' J 1 first will start with
an equation, which
is the basis for my
answer: DSP + Divide
= Math.
When we began
! the drive into digital
signal proessing (DSP), both in theory
and hardware, we avoided the divide
operator, as hardware didn’t do the
divide operation well. In spite of that,
DSP technology advanced in both theo-
ry and hardware, finding new uses and
new users. These new uses demanded
high-performance math engines. Late-
ly, new terms such as cloud comput-
ing, the Internet of Things, big data,
smart sensors, etc. are driving us even
harder than those initial drivers of DSP
(speech, modems, hard disk drives,
and three-dimensional graphics). Now,
with this as a background, I can answer
the question of what does a successful
career look like? It is a career where the
technology I helped to create became
a societal necessity within the span
of my career. For many of us, this has
happened multiple times. It will con-
tinue to happen. All we need to do is to
continue to look for those new uses and
new users and then make it happen.

Author

Gene A. Frantz (Gene.Frantz@octa

vosystems.com) is an engineering man-
ager/professor in practice at Rice Uni-
versity, Houston, Texas. He took this
position after 39 years at Texas In-
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struments (TI), where he retired as
TT’s Principal Fellow. He is a recog-
nized leader in DSP technology both
within TI and throughout the indus-
try. He holds 48 patents in the area of
memories, speech, consumer products,
and DSP. He has written more than
100 papers and articles and continually
presents at universities and conferences
worldwide. He is an IEEE Fellow.

Shan He

A successful career
with signal process-
ing training is one
where you can utilize
your analytical skill
obtained during the
training to either
directly solve a technical problem, such
as working as an engineer, or assist oth-
ers to clarify their solution and to obtain
rights associated with solution, for
example, working in the patent law area.
I am currently practicing patent law,
and I found my signal processing back-
ground bring me tremendous advantage
over other patent practitioners. This
is because my strong technical back-
ground enables me to understand the
invention quicker and deeper, which
allows me to assist inventors to achieve
the broadest possible legal protection for
their invention.

Author

Shan He (shanhe@gmail.com) received
her Ph.D. degree in 2007 from the Uni-
versity of Maryland, majoring in com-
munications and signal processing. She
worked as a research scientist in the
research lab of Thomson Multimedia
for three years. She then switched her
career path in 2010 to become a patent
agent with Lee & Hayes, PLLC, serving
clients including the world’s most valu-
able technology companies. She expects
to obtain her law degree in Decem-
ber 2017.

Hing Cheung So

From my point of view, a successful
engineer is an excellent problem solver.
To solve a problem, the first step is to
identify it and investigate if it is worth
tackling. The second step is to formulate
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the problem—de-
scribe it clearly with
unambiguous require-
ments. Next, we ap-
ply our knowledge as
well as creativity to
- A devise solutions and
then choose the best among the pro-
posed alternatives according to the pre-
set criteria or via balancing all the pros
and cons. Finally, the solution is put
into practice.

In fact, the problem-solving skill set
is well trained through fundamental sig-
nal processing courses including Sig-
nals and Systems and Digital Signal
Processing. For example, we learn that
problems in linear time-invariant sys-
tems can be solved by either a time- or
transform-domain approach, and a digi-
tal system can be designed using differ-
ent finite impulse-response or infinite
impulse-response filters that meet the
same specifications. In the former, we
also experience that the time-domain
solver is easier in certain scenarios
and vice versa, while one filter can be
implemented with minimum complex-
ity in the latter, stimulating us to think
about the optimum choice. In addition,
to be successful, I believe we should
only focus on the most investable prob-
lems (i.e., think big) and realize the best
solution in an efficient and persistent
manner. A spirit of humility, open-
mindedness, and willingness to learn is
important, too.

Author

Hing Cheung So (h.c.so@cityu.edu.hk)
received his Ph.D. degree in electronic
engineering from The Chinese Univer-
sity of Hong Kong. He is a professor
in the Department of Electronic Engi-
neering, City University of Hong Kong.
From 1990 to 1991, he was an electronic
engineer with the Research and Devel-
opment Division, Everex Systems Engi-
neering Ltd., Hong Kong. He has been
on the editorial boards of IEEE Signal
Processing Magazine, IEEE Transac-
tions on Signal Processing, Signal Pro-
cessing, and Digital Signal Processing.
He is a Fellow of the IEEE.

Pramod K. Varshney

E— Signal processing is
involved in a very
wide variety of sys-
tems and applications,
and a person trained
in this field can have
a broad impact. Pos-
sibilities include hardware, software,
and algorithmic developments in the
areas of defense, security, health, educa-
tion, quality of life, and even social good.
Since signal processing training prepares
one to tackle a broad range of problems, a
successful career will include agility and
the ability to learn quickly so as to con-
tribute to ever-changing technological
trends and needs. The key is to be able
to adapt and move to new areas. When [
look back at my career, with my training

THE

in statistical signal processing, I have
been able to contribute to wide-ranging
applications such as intelligent radars
deployed on several U.S. Air Force
platforms, fault detection for health
management of air and space vehicles,
mammography automation, and secur-
ing wireless sensor networks. In my
opinion, a successful career would be
one in which signal processing training
is applied to solve diverse problems so
as to impact societal needs and improve
quality of life.

Author

Pramod K. Varshney (varshney@syr
.edu) received his Ph.D. degree in elec-
trical engineering from the University
of Illinois at Urbana-Champaign. He
is with Syracuse University, New York,
where he is currently a distinguished
professor of electrical engineering and
computer science and the Director of
the Center for Advanced Systems and
Engineering. He is also an adjunct pro-
fessor of radiology at Upstate Medical
University, Syracuse. He received the
IEEE 2012 Judith A. Resnik Award,
Doctor of Engineering Honoris causa
from Drexel University in 2014, and
the ECE Distinguished Alumni Award
from the University of Illinois in 2015.
He was the president of the International
Society of Information Fusion during
2001 and is a Fellow of the IEEE.
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Update your contact information
so you don’t miss an issue of this magazine!

Change your address
E-MAIL: address-change@ieee.org
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SPECIAL REPORTS

John Edwards

Innovative Sensors Promise Longer and Healthier Lives

Signal processing leads to devices that provide faster
and more insightful monitoring and diagnoses

e live in a world full of sensors, and
Wsensors are changing how we live

and, more significantly, how long
we live.

The health-care and medical appli-
cations sensor market is projected to
expand at a compound annual growth
rate of 13.1% between 2016 and 2022,
according to a report issued in March
2017 by the research firm Frost & Sul-
livan. A key factor driving sensor sales
is the growing availability of consumer
and clinical devices that use sensor
technology to diagnose, monitor, and
track disease and fitness.

Within the next few years, an emerg-
ing generation of smaller, less expen-
sive, and highly sophisticated sensors
will find their way into a wide range of
personal and professional devices. With
more patient care moving out of hos-
pitals, the use of sensor-enabled home
diagnostic and monitoring devices is
expected to soar, the report notes. The
market for sensors used in wearable
health and fitness devices is also poised
to grow rapidly.

As sensor demand grows, research
incorporating signal processing is lead-
ing to the development of innovative
sensors designed to provide noninva-
sive diagnostics of different diseases,
reliably monitor body functions and
measure the impact of medications and
activities on the human body.
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FIGURE 1. Assistant Prof. Kasper Jensen investigates optical magnetic field sensor technology in a

NIELS BOHR INSTITUTE

“'. . 'l'lh ‘ \

laboratory at the Niels Bohr Institute’s Center for Quantum Optics.

Magnetic nerve field sensing

The human body is controlled by elec-
trical impulses. These signals create
ultraweak magnetic fields that physi-
cians could potentially use to diagnose
various diseases. Niels Bohr Institute
researchers recently succeeded in devel-
oping an optical magnetic field sensor
that promises to provide extremely pre-
cise measurements of weak magnetic
fields emitted by nerve signals within
real-world environments.

Until now, minute magnetic fields
generated by nerves within a human
body could only be detected with very
sensitive superconducting magnetic
field sensors cooled by liquid helium

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

to near absolute zero (=273 °C). But the
Niels Bohr researchers were able to cre-
ate a far more practical optical magnetic
field sensor that’s capable of functioning
at both room and body temperatures.
“We have a small glass container—
1 mm x 1 mm x 8 mm—which is filled
with cesium gas,” says research term
member Kasper Jensen, an assistant
professor at the institute’s Center for
Quantum Optics (Figure 1). Each cesi-
um atom rotates around itself, with the
axis acting like a tiny bar magnet. When
a sensor incorporating the container is
held close to a nerve that’s emitting an
electrical pulse, it detects the magnetic
field, which causes a change in the tilt

1053-5888/17©2017IEEE
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of the cesium atoms’ axes. By sending a
laser beam through the gas, it becomes
possible to read the nerve signals’
ultrasmall magnetic fields. Recent labo-
ratory tests conducted by the research-
ers showed that it is possible to use the
sensor to detect the magnetic field in a
frog’s sciatic nerve, which resembles
nerves in the human body.

A magnetometer-type sensor can
be used for the noninvasive diagnostics
of various afflictions, including brain
and heart diseases. “The key point is
that a magnetometer placed outside the
human body can detect signals from
organs inside the human body,” Jensen
says. “The magnetometer does not have
to touch the human body, and it is, there-
fore, a noninvasive method.”

The sensor’s operation relies on both
quantum mechanics and atomic phys-
ics. “Each cesium atom has a quantum
mechanical property called ‘spin,’ and,
due to this property, the atom responds to
magnetic fields,” Jensen says. “One can
think of the total spin of all the cesium
atoms in the glass container as one large
vector that points in a certain direction.”
When a magnetic field arrives, the spin-
vector changes its direction.

“The spin-vector’s direction can be
measured optically with laser light,”
Jensen continues. “The light is detected
with a photodiode, and from this detect-
ed signal we can determine the direc-
tion of the spin-vector and the magnetic
field.” The actual detected signal is the
photo-detector’s output voltage. “From
that voltage we need to do some signal
processing to get information about the
magnetic field,” Jensen says.

The photo-detector has a high band-
width (greater than 10 MHz), and the
computer-based data-acquisition card the
researchers use offers a high sampling
rate (fixed to 10 MHz). “To avoid alias-
ing, we placed a 1.9-MHz low-pass filter
in between the photo-detector and the
data-acquisition card,” Jensen says. “The
data is acquired and then processed,
visualized and saved with [National
Instruments] LabVIEW program.”

The nerve impulse itself is relative-
ly slow, corresponding to dc —2-kHz
frequency components. “We do not
really need the high sampling rate

SignalProcessing

that the data-acquisition card provides,”
Jensen says. “Our LabVIEW program,
therefore, bins the data.” This action
reduces the amount of data (in mega-
bytes), enabling further data analysis to
be accomplished faster. “We now have a
time-signal S(z), which has been low-pass
filtered and binned,” Jensen says. “That
time-signal is saved to the computer, and
we do further analysis using [The Math-
Works] MATLAB software.”

The researchers’ experiments are
run in two modes: pulsed and continuous.
The data analysis
is different for each
mode. “In the con-
tinuous mode, we
need to do a decon-
volution procedure to
calculate the mag-
netic field B(f) from
the time-signal S(¢),”
Jensen says. “We
deconvolve with the response func-
tion: 7(¢) — cos(Qf)exp (— #/T).” The re-
sponse function tells the researchers how
the spin of the cesium atoms responds to
a magnetic field. If there is a short pulse of
magnetic field, the spin will start to oscillate
at the frequency Q = 400 Hz and then de-
cay exponentially with the time constant
T = 0.5ms (numbers are approximate).
“In the pulsed mode, we calculate the
Fourier transform of S(f) and find the
Fourier component at a specific fre-
quency—in our case = 400 Hz,” Jen-
sen says. “The amplitude of the 400 Hz
component tells us whether the nerve
impulse was there or not.”

Jensen says the researchers did con-
sider using a software lock-in amplifier
for data analysis. “Compared to a Fou-
rier transform, lock-in detection can be
useful when one has a phase-stable sig-
nal,” Jensen remarks. “We tried it out a
bit but abandoned it as the phase of the
signals we were looking for was chang-
ing in a way we did not fully under-
stand.” The researchers also pondered
using a wavelet analysis. “This was,
however, complicated by the fact that
we did not know in advance the exact
temporal shape of the signals we were
looking for,” Jensen says.

Jensen is optimistic that the tech-
nology will eventually find multiple
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A key factor driving sensor
sales is the growing
availahility of consumer
and clinical devices that
use sensor technology to
diagnose, monitor, and
track disease and fitness.
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real-world diagnostic applications.
“However, so far, our main focus has
been to do basic and applied research,
and we do not have our magnetometers
for sale,” he states.

Sensing skin hydration

North Carolina State University
researchers have developed a wear-
able, wireless sensor that can moni-
tor a person’s skin hydration to detect
dehydration before it can begin posing
health issues. The lightweight, flex-
ible, and stretchable
device can be built
into devices that are
worn on the wrist
or attached to the
body as a chest patch
(Figure 2). “It turns
out that measuring hy-
dration of the human
body is challenging,
making it hard to make quantitative
measurements,” says research team
member John Muth, a professor of
electrical and computer engineering at
North Carolina State University. In ath-
letic training, for instance, the typical ap-
proach has been for an athlete measuring
himself or herself, without any clothes,
before and after activity. “This provides
a measure of the change in hydration,
since the weight change corresponds to
water loss,” Muth says. In clinical
settings, however, a caregiver typically
makes a relatively qualitative assessment
simply by looking at the patient or by
pulling some skin and seeing how rap-
idly it relaxes.

Adh .
Nanowire Patch

NORTH CAROLINA STATE UNIVERSITY

Circuit + Battery

FIGURE 2. North Carolina State University
researchers have developed a wearable, wire-
less sensor that can monitor a person’s skin
hydration to detect dehydration before it can
begin posing health issues.
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Health and medicine experts have
long known that the skin’s dielectric
properties change

to athletic performance,” he explains.
“First responders can dehydrate when
working in extreme

with hydration. Exist- Muth estimates that conditions.” In tests
ing desktop hydra- adding the sensor to a performed on custom-
tion measyrement wearahle smart device ¥nade art1f'1c1al sk¥ns
systems typically use incorporating a wide
a rigid probe pressed Would cost only range of hydration
against the skin to ahout US$1. levels, the research-

determine impedance.

Yet such calculations tend to vary in
accordance to the amount of pressure
applied. “Our innovations were to devel-
op a conformal, somewhat stretchable,
electrode that can be worn against the
body and to miniaturize the electronics,”
Muth says. The new sensor includes two
electrodes that are constructed out of an
elastic polymer composite containing
conductive silver nanowires to monitor
impedance. Since the skin’s electrical
properties change in a predictable man-
ner based on the individual’s hydration
state, the electrodes can tell how hydrat-
ed the skin is. The entire system is about
the size of an Apple Watch.

The device offers multiple potential
applications, Muth notes. “High-perfor-
mance athletes would like to know more
about their hydration state when train-
ing, since this can be directly linked

=il
8

UNIVERSITY OF TEXAS AT DALLA‘S

ers found that the
wearable sensor’s performance was
unaffected by ambient humidity.

An Analog Devices 5933 network
analyzer chip handles most of the sig-
nal processing. “When the skin is in
contact with the electrode, we are look-
ing for a change in impedance that is
connected to the hydration state of the
skin,” he says. “The network analyzer
chip approach allows us to measure the
complex impedance as a function
of frequency.”

The chip uses direct digital syntheses
to produce a sinusoidal output voltage
at a known frequency and amplitude
that is then applied to the electrode.
“The voltage across the electrode is
received and amplified, and passes
through a low pass filter,” Muth says. “A
discrete Fourier transform (DFT) is per-
formed for each frequency in the sweep,

=

( A

FIGURE 3. Shalini Prasad (right), professor of bioengineering at the University of Texas at Dallas, and
doctoral student Rujuta Munije have designed a wearable, flexible biosensor that can reliably detect
and quantify glucose from very small amounts of human perspiration. A close-up of the sensor is

shown in the top-left corner.

SignalProcessing

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

L 4

2o 3o

Qmags

THE WORLD'S NEWSSTAND®

storing both the real and imaginary
components of the DFT result.” The
impedance is then calculated by multi-
plying a scaling factor obtained by mea-
suring a known impedance by one over
the magnitude of the DFT result. “The
phase angle in radians is calculated by
taking the arctangent of the ratio of the
imaginary and real parts,” Muth says.
“Once the magnitude of the impedance
and phase angle are known, the resistive
and reactive components are calculated
for each frequency.”

Once an individual measurement has
been made, a variety of techniques can
be used to average the data or to detect
specific events, such as the onset of
sweating. “We still need to investigate
how motion artifacts can influence the
data,” Muth says. “Knowledge of how to
fuse other data, such as the body tem-
perature, external humidity, heart rate
or other parameters, could also be useful
since often people are also interested in
these other parameters.”

Both the watch and patch can wire-
lessly transmit sensor data to external
devices, allowing data to be monitored
by the user or a designated third party,
such as a doctor in a hospital or clinic.
Muth estimates that adding the sensor to
a wearable smart device would cost only
about US$1.

Monitoring glucose via
perspiration

Can a person’s glucose level be quickly
and conveniently monitored through
skin perspiration? That was the question
University of Texas at Dallas research-
ers sought to answer as they began
designing a wearable device that could
be used by individuals with diabetes, or
atrisk of developing the disease, to mea-
sure their blood sugar levels.

Shalini Prasad, a University of Texas
at Dallas professor of bioengineering,
and doctoral student Rujuta Munje
recently demonstrated a sensor they
designed to reliably detect and quantify
glucose in human perspiration (Fig-
ure 3). Conventional patient-type blood
glucose readers use a small blood sam-
ple, typically obtained via a finger prick.
The new textile-based sensor, however,
detects glucose from a tiny amount of
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ambient perspiration on a person’s skin.
“Our sensor mechanism uses the same
chemistry and enzymatic reaction found
in blood glucose testing strips,” Prasad
says. “Our design, however, accounts
for the low volume of ambient sweat
typically present in areas such as under
a wrist device or patch.”

The new device requires perspira-
tion volumes of under a microliter—
approximately equal the amount of
liquid that would fit into a cube the size
of a salt crystal—to make an accurate
measurement that’s then displayed on
a digital readout, according to Prasad.
The sensor is based on an off-the-shelf
polymer-based textile material. The
current prototype is a small, flexible,
rod-shaped device measuring about an
inch long. “The innovation is that we
positioned the electrodes onto the tex-
tile in a manner that allows a very small
volume of sweat to spread effectively
through the surface,” Prasad says.

The researchers turned to Kalman
filtering to differentiate readings. “The

Kalman filter is one that works very
well for dynamic systems that have a lot
of uncertainty associated with them,”
Prasad remarks. “You apply Kalman
filtering to a particular sector to try to
establish, with a great degree of cer-
tainty, whether glucose is the molecule
that is specifically interacting with
the sensor surface or whether the cur-
rent change that’s happening is due to
something else.”

According to Prasad, sensor calibra-
tion response was calculated using n = 4
samples. The response to the varying
glucose concentration was captured
in terms of percentage change in total
impedance (Z,,) between the base-
line step impedance and the impedance
obtained for that particular concentra-
tion. The Z, .4 was captured at 100 Hz,
the highest signal over noise ratio.
Specific signal threshold (SST) was
estimated by measuring replicates of
a blank buffer sample and calculating
the mean result and standard deviation.
The noise level was defined as the three
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times of standard deviation in base-
line (zero dose) measurement. Limit of
detection was identified as the lowest
glucose concentration likely to be reli-
ably distinguished from the SST and at
which detection is feasible. “We have
shown that this particular sensor works
robustly not just in a lab environment,
but kind of in a translation environment
as well,” Prasad says. It can adjust itself
to variations in environmental condi-
tion such as temperature, humidity, the
people who are wearing it, and so forth.”

The researchers are now look-
ing toward refining the sensor into a
device that could potentially replace
blood sample-based glucose readers.
“We believe it could easily be incorpo-
rated into existing consumer electronics
platforms,” Prasad says.

Author

John Edwards (jedwards@johnedwards
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any scientific fields study data with an underlying
structure that is non-Euclidean. Some examples
include social networks in computational social sci-
ences, sensor networks in communications, func-
tional networks in brain imaging, regulatory networks in
genetics, and meshed surfaces in computer graphics. In
many applications, such geometric data are large and com-
plex (in the case of social networks, on the scale of billions)
and are natural targets for machine-learning techniques.
In particular, we would like to use deep neural networks,
which have recently proven to be powerful tools for a broad
range of problems from computer vision, natural-language
processing, and audio analysis. However, these tools have
been most successful on data with an underlying Euclidean or
grid-like structure and in cases where the invariances of these
structures are built into networks used to model them.
Geometric deep learning is an umbrella term for emerging
techniques attempting to generalize (structured) deep neural mod-
els to non-Euclidean domains, such as graphs and manifolds. The
purpose of this article is to overview different examples of geometric
deep-learning problems and present available solutions, key difficul-
ties, applications, and future research directions in this nascent field.

t

Overview of deep learning

Deep learning refers to learning complicated concepts by building them from
simpler ones in a hierarchical or multilayer manner. Artificial neural networks are
popular realizations of such deep multilayer hierarchies. In the past few years, the growing
computational power of modern graphics processing unit (GPU)-based computers and the avail-

ability of large training data sets have allowed successfully training neural networks with many layers

and degrees of freedom (DoF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks, from

@
o
\
speech recognition [2], [3] and machine translation [4] to image analysis and computer vision [5]-[11] (see [12] \.\l

Geometric Deep Learning - .”
Going beyond Euclidean data //
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and [13] for many additional examples of successful applications of deep learning). Today, deep learning

has matured into a technology that is widely used in commercial applications, including Siri speech recog-

nition in Apple iPhone, Google text translation, and Mobileye vision-based technology for autonomously
driving cars.

One of the key reasons for the success of deep neural networks is their ability to leverage sta-

tistical properties of the data, such as stationarity and compositionality through local statistics,

which are present in natural images, video, and speech [14], [15]. These statistical properties

have been related to physics [16] and formalized in specific classes of convolutional neural

networks (CNNs) [17]-[19]. In image analysis applications, one can consider images as

= functions on the Euclidean space (plane), sampled on a grid. In this setting, stationarity
is owed to shift invariance, locality is due to the local connectivity, and compositional-

— ity stems from the multiresolution structure of the grid. These properties are exploited
@ by convolutional architectures [20], which are built of alternating convolutional and

Y downsampling (pooling) layers. The use of convolutions has a twofold effect. First, it

allows extracting local features that are shared across the image domain and great-
ly reduces the number of parameters in the network with respect to generic deep
architectures (and thus also the risk of overfitting), without sacrificing the expres-
sive capacity of the network. Second, the convolutional architecture itself imposes
some priors about the data, which appear very suitable especially for natural images
[17]-[19], [21].

While deep-learning models have been particularly successful when dealing
with speech, image, and video signals, in which there are an underlying Euclide-
an structure, recently there has been a growing interest in trying to apply learning

on non-Euclidean geometric data. Such kinds of data arise in numerous applica-

tions. For instance, in social networks, the characteristics of users can be modeled

as signals on the vertices of the social graph [22]. Sensor networks are graph models

of distributed interconnected sensors, whose readings are modeled as time-depen-
dent signals on the vertices. In genetics, gene expression data are modeled as signals
defined on the regulatory network [23]. In neuroscience, graph models are used to rep-
resent anatomical and functional structures of the brain. In computer graphics and vision,

\ \\ N \..\ three-dimensional (3-D) objects are modeled as Riemannian manifolds (surfaces) endowed
\ \ N with properties such as color texture.

. % The non-Euclidean nature of such data implies that there are no such familiar properties as

global parameterization, common system of coordinates, vector space structure, or shift

. & ® invariance. Consequently, basic operations like convolution that are taken for granted in

the Euclidean case are even not well defined on non-Euclidean domains. The purpose
of this article is to show different methods of translating the key ingredients of suc-
cessful deep-learning methods, such as CNNss, to non-Euclidean data.

Geometric learning problems

Broadly speaking, we can distinguish between two classes of geometric
learning problems. In the first class of problems, the goal is to characterize
-@ the structure of the data. The second class of problems deals with analyz-
ing functions defined on a given non-Euclidean domain. These two class-
es are related, because understanding the properties of functions defined
® on a domain conveys certain information about the domain, and vice
versa, the structure of the domain imposes certain properties on the func-

tions on it.

Structure of the domain
As an example of the first class of problems, assume to be given a set of
data points with some underlying low-dimensional structure embedded into a
high-dimensional Euclidean space. Recovering that low-dimensional structure
is often referred to as manifold learning or nonlinear dimensionality reduction
o and is an instance of unsupervised learning (note that the notion of manifold in this
e | setting can be considerably more general than a classical smooth manifold; see, e.g.,
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[24] and [25]). Many methods for nonlinear dimensionality
reduction consist of two steps: first, they start with con-
structing a representation of local affinity of the data points
(typically, a sparsely connected graph). Second, the data
points are embedded into a low-dimensional space, trying to
preserve some criterion of the original affinity. For example,
spectral embeddings tend to map points with many connec-
tions between them to nearby locations, and multidimension-
al scaling (MDS)-type methods try to

preserve global information, such as graph

geodesic distances. Examples of manifold

learning include different flavors of MDS

[26], locally linear embedding [27], sto-

chastic neighbor embedding [28], spectral

embeddings, such as Laplacian eigenmaps

[29] and diffusion maps [30], and deep models [31]. Instead
of embedding the vertices, the graph structure can be pro-
cessed by decomposing it into small subgraphs called motifs
[36] or graphlets [37]. Finally, most recent approaches [32]-
[34] tried to apply the successful word-embedding model
[35] to graphs.

In some cases, the data are presented as a manifold or
graph at the outset, and the first step of constructing the affin-
ity structure described previously is unnecessary. For instance,
in computer graphics and vision applications, one can analyze
3-D shapes represented as meshes by constructing local geo-
metric descriptors capturing, e.g., curvature-like properties
[38], [39]. In social network analysis applications the topologi-
cal structure of the social graph representing the social rela-
tions between people carries important insights allowing, e.g.,
to classify the vertices and detect communities [40]. In natural-
language processing, words in a corpus can be represented by
the co-occurrence graph, where two words are connected if
they often appear near each other [41].

Data on a domain

Our second class of problems deals with analyzing functions
defined on a given non-Euclidean domain. We can further
break down such problems into two subclasses: problems
where the domain is fixed and those where multiple domains
are given. For example, assume that we are given the geo-
graphic coordinates of the users of a social network, represent-
ed as a time-dependent signal on the vertices of the social
graph. An important application in location-based social net-
works is to predict the position of the user given his or her
past behavior as well as that of his or her friends [42]. In this
problem, the domain (social graph) is assumed to be fixed;
methods of signal processing on graphs, which have previous-
ly been reviewed in IEEE Signal Processing Magazine [43],
can be applied to this setting, in particular, to define an
operation similar to convolution in the spectral domain. This,
in turn, allows generalizing CNN models to graphs [44], [45].
In computer graphics and vision applications, finding similari-
ty and correspondence between shapes are examples of the
second subclass of problems: each shape is modeled as a man-
ifold, and one has to work with multiple such domains. In this

setting, a generalization of convolution in the spatial domain
using local charting [46]—[48] appears to be more appropriate.

Brief history
The main focus of this review is on this second class of prob-
lems, namely, learning functions on non-Euclidean structured
domains, and, in particular, attempts to generalize the popular
CNN s to such settings. The first attempts to generalize neural
networks to graphs we are aware of are due
to Gori et al. [49], who proposed a scheme
combining recurrent neural networks (RNN’s)
and random walk models. This approach
went almost unnoticed, reemerging in a
modern form in [50] and [51] due to the
renewed recent interest in deep learning.
The first formulation of CNNs on graphs is due to Bruna et al.
[52], who used the definition of convolutions in the spectral
domain. Their article, while being of conceptual importance,
came with significant computational drawbacks that fell short
of a truly useful method. These drawbacks were subsequently
addressed in the follow-up works of Henaff et al. [44] and
Defferrard et al. [45]. In the latter article, graph CNNs (GCNN5)
allowed achieving some state-of-the-art results.

In a parallel effort in the computer vision and graphics
community, Masci et al. [47] showed the first CNN model on
meshed surfaces, resorting to a spatial definition of the convo-
lution operation based on local intrinsic patches. Among other
applications, such models were shown to achieve state-of-the-
art performance in finding correspondence between deformable
3-D shapes. Follow-up works proposed different construction of
intrinsic patches on point clouds [48], [53] and general graphs [54].

The interest in deep learning on graphs or manifolds has
exploded in the past year, resulting in numerous attempts to
apply these methods to a broad spectrum of problems ranging
from biochemistry [55] to recommender systems [56]. Because
such applications originate in different fields that usually do
not cross-fertilize, publications in this domain tend to use dif-
ferent terminology and notation, making it difficult for a new-
comer to grasp the foundations and current state-of-the-art
methods. We believe that our article comes at the right time,
attempting to systemize and bring some order into the field.

Signal processing, differential geometry,

and graph theory

Geometric deep-learning frameworks dealt with in this paper are
based on notions in differential geometry and graph theory.
Unfortunately, these topics are insufficiently known in the signal
processing community, and to our knowledge, there is no intro-
ductory-level reference treating these so different structures in a
common way. One of our goals is to provide an accessible over-
view of these models, resorting as much as possible to the
intuition of traditional signal processing.

One of the key differences between Euclidean and non-
Euclidean learning settings is the lack of traditional opera-
tions such as convolutions. Various non-Euclidean convolutional
architectures differ in the way a convolution-like operation is
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formulated on graphs and manifolds. One way is to resort to the
analogy of the convolution theorem, defining the convolution in
the spectral domain. An alternative is to think of the convolu-
tion as a template matching in the spatial domain. Such a distinc-
tion is, however, far from being clear-cut: as we will see, some
approaches draw their formulation from the spectral domain,
essentially boiling down to applying filters in the spatial domain.
It is also possible to combine these two approaches, resorting
to spatio-frequency analysis techniques, such as wavelets or
the windowed Fourier transform. We have provided sidebars to
illustrate important concepts, and Table 1 lists the notations used
throughout the article. Additional materials, data, and examples
of code are available at geometricdeeplearning.com. Table 2 pro-
vides a summary of the geometric deep-learning methods pre-
sented in this article.

Deep learning on Euclidean domains

Geometric priors
Consider a compact d-dimensional Euclidean domain
Q=10,11c R’ on which square-integrable functions
fe€L*(Q) are defined (e.g., in image analysis applications,
images can be thought of as functions on the unit square
Q =1[0,1]%. We consider a generic supervised learning
setting, in which an unknown function y : I*(Q) — Y is ob-
served on a training set
{fie2@).yi=y(Mlicr M
In a supervised classification setting, the target space Y
can be thought discrete, with Y/ | being the number of classes.
In a multiple object recognition setting, we can replace Y by
a multi-K-dimensional simplex, which represents the poste-
rior class probabilities p(ylx). In regression tasks, we may
consider Y/ = R™. In the vast majority of computer-vision and
speech-analysis tasks, there are several crucial prior assump-
tions on the unknown function y. As we will see in the fol-
lowing sections, these assumptions are effectively exploited by
CNN architectures.

Stationarity
Let

T =fx—v), xveEQ, ?2)
be a translation operator acting on functions f€& L*(Q) [we
assume periodic boundary conditions to ensure that the opera-
tion is well defined over L*(Q)]. Our first assumption is that
the function y is either invariant or equivariant with respect to
translations, depending on the task. In the former case, we
have y(7.f) = y(f) for any f€ [*(Q) and v € Q. This is
typically the case in object classification tasks. In the latter,
we have y(7.f) = 7.y (f), which is well defined when the
output of the model is a space in which translations can act
(e.g., in problems of object localization, semantic segmenta-
tion, or motion estimation). Our definition of invariance
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Notation
R" m-dimensional Euclidean space
a,a,A Scalar, vector, matrix
a Complex conjugate of a
Q,x Arbitrary domain, coordinate on it
fe 2(Q) Square-infegrable function on Q
8x(x),8i Delta function at x’, Kronecker delta
{fy}ier Training set
T Translation operator
7,Lc Deformation field, operator
f Fourier transform of f
fxg Convolution of f and g
X, TX, T.X Manifold, its fangent bundle, tangent space at x
Gy Riemannian metric
fe 2(X) Scalar field on manifold X
Fe B(TX) Tangent vector field on manifold X
A Adjoint of operator A
vV, div, A Gradient, divergence, Laplace operators
V,EF Vertices and edges of a graph, faces of a mesh
wii, W Weight matrix of a graph
fe 2(V) Functions on vertices of a graph
Fe 2(&) Functions on edges of a graph
i, i Laplacian eigenfunctions, eigenvalues
hi-, ) Heat kernel
D Matrix of first k Laplacian eigenvectors
Ak Diagonal matrix of first k Laplacian eigenvalues
£ Pointwise nonlinearity (RelU)
vir(x), Tor Convolutional filter in spatial and spectral domain
should not be confused with the traditional notion of transla-
tion invariant systems in signal processing, which corresponds
to translation equivariance in our language (because the output
translates whenever the input translates).
local deformations and scale separation
Similarly, a deformation L, where 7:Q — Q is a smooth
vector field, acts on I*(Q) as L:f(x) = f(x—7(x)). De-
formations can model local translations, changes in point
of view, rotations, and frequency transpositions [18]. Most
tasks studied in computer vision are not only translation
invariant/equivariant but also stable with respect to local
deformations [57], [18]. In tasks that are translation invari-
ant, we have
|y(Lef) = y(NH] =]Vl 3
Al
*
> Je
Qmags
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CNN Architecture

CNNs are currently among the most successful deep-learn-
ing architectures in a variety of tasks; in particular, in com-
puter vision. A typical CNN used in computer-vision
applications (see Figure S1) consists of multiple convolu-
tional layers (6), passing the input image through a set of
fillers T followed by pointwise nonlinearity & (typically,
half-rectifiers £(z) = max (0, z) are used, although practi-
tioners have experimented with a diverse range of choices
[13]). The model can also include a bias term, which is
equivalent to adding a constant coordinate to the input.

A network composed of K convolutional layers put
together U(f) = (Crt ... - Crr» Cri) (f) produces pixel-
wise features that are covariant with respect to translation
and approximately covariant to local deformations.

Convolutions
+ RelLU

Input Image

Pooling' -
Convolutions

Typical computer-vision applications requiring covari-
ance are semantic image segmentation [8] or motion
estimation [59].

In applications requiring invariance, such as image clas-
sification [7], the convolutional layers are typically inter-
leaved with pooling layers (8) progressively reducing the
resolution of the image passing through the network.
Alternatively, one can integrate the convolution and
downsampling in a single linear operator (convolution
with stride). Recently, some authors have also experiment-
ed with convolutional layers that increase the spatial reso-
lution using interpolation kernels [60]. These kernels can
be learned efficiently by mimicking the so-called algo-
rithme & trous [61], also referred to as dilated convolution.

Airedale Terrier (16)
Fox Terrier (5.7)
Pomeranian (2.7)
Arctic Fox (1.0)
Eskimo Dog (0.6)
Wolf (0.4)

Siberian Husky (0.4)

Pooling Convolutions ...
+ RelLU
+ RelLU

FIGURE S1. The typical CNN architecture used in computer-vision applications such as image classification.

Method Type Data

SCNN [52] Spectral Graph
GCNN/ChebNet [45] Spectrum free  Graph

GCN [77] Spectrum free  Graph

GNN [78] Spectrum free  Graph

Geodesic CNN [47] Charting Mesh

Anisotropic CNN [48] Charting Mesh/point cloud
MoNet [54] Charting Graph/mesh/point cloud
Localized SCNN [89] Combined Mesh/point cloud

for all f,t. Here, || VT | measures the smoothness of a given
deformation field. In other words, the quantity to be predicted
does not change much if the input image is slightly deformed.
In tasks that are translation equivariant, we have

| y(Lef) = Ley(H] = Vel @
This property is much stronger than the previous one, because
the space of local deformations has a high dimensionality, as
opposed to the d-dimensional translation group. It follows
from (3) that we can extract sufficient statistics at a lower spa-
tial resolution by downsampling demodulated localized filter
responses without losing approximation power. An important
consequence of this is that long-range dependencies can be
broken into multiscale local interaction terms, leading to hier-
archical models in which spatial resolution is progressively
reduced. To illustrate this principle, denote by
Y(x1,x2;v) = Prob(f(u) = x1 and f(u+v) = x2) (@)
the joint distribution of two image pixels at an offset v from
each other. In the presence of long-range dependencies,
this joint distribution will not be separable for any v.
However, the deformation stability prior states that
Y(x1,x2;v) = Y(x1,x2;v(1 + €)) for small €. In other words,
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whereas long-range dependencies indeed exist in natural
images and are critical to object recognition, they can be
captured and downsampled at different scales. This princi-
ple of stability to local deformations has been exploited in
the computer-vision community in models other than
CNNs, for instance, deformable parts models [58]. In prac-
tice, the Euclidean domain () is discretized using a regular
grid with n points; the translation and deformation operators
are still well defined so the above properties also hold in the
discrete setting.

CNNs

Stationarity and stability to local translations are both lever-
aged in CNNs (see “CNN Architecture” and [1], [12], [13],
and references therein for a more in-depth review of CNNs
and their applications.) A CNN consists of several con-
volutional layers of the form g= Cr(f), acting on a
p-dimensional input f(x) = (fi(x),...,fp(x)) by applying a
bank of filters ' = (y.r),l=1,...,¢,I' =1,...,p and point-
wise nonlinearity &,

)4
mm=%20wwﬂm} ©)

I'=1

producing a g-dimensional output g(x) = (g1(x), ...,g¢(x))
often referred to as the feature maps. Here,

FN@= [ fae=x)ye)a )

denotes the standard convolution. According to the local
deformation prior, the filters I" have compact spatial support.

Additionally, a downsampling or pooling layer g = P(f)
may be used, defined as

gix) =P{fix):x eNX}), [=1,....q, 8)

where N(x) C Q is a neighborhood around x and P is a per-
mutation-invariant function, such as an L,-norm (in the latter
case, the choice of p = 1, 2, or oo results in average, energy, or
max pooling).

A convolutional network is constructed by composing sev-
eral convolutional and optionally pooling layers, obtaining a
generic hierarchical representation

U@(f) = (CF(K)...P... o Cr@ o CF"’)(f), (9)

where © = {T'V, ... . T®} is the hypervector of the network
parameters (all the filter coefficients). The model is said to be
deep if it comprises multiple layers, though this notion is
rather vague, and one can find examples of CNNs with as few
as a couple and as many as hundreds of layers [11]. The output
features enjoy translation invariance/covariance depending on
whether spatial resolution is progressively lost by means of
pooling or kept fixed. Moreover, if one specifies the convolu-
tional tensors to be complex wavelet decomposition operators

*
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and uses complex modulus as pointwise nonlinearities, one
can provably obtain stability to local deformations [17].
Although this stability is not rigorously proved for generic
compactly supported convolutional tensors, it underpins the
empirical success of CNN architectures across a variety of
computer-vision applications [1].

In supervised learning tasks, one can obtain the CNN
parameters by minimizing a task-specific cost L on the train-

ing set {fi,yi}e 1.
mgn > L(Us(f),yi)s (10

iel

for instance, L(x,y) =||x—y|. If the model is sufficiently
complex and the training set is sufficiently representative,
when applying the learned model to previously unseen data,
one expects U(f) = y(f). Although (10) is a nonconvex
optimization problem, stochastic optimization methods offer
excellent empirical performance. Understanding the structure
of the optimization problems (10) and finding efficient strate-
gies for its solution is an active area of research in deep
learning [62]—[66].

A key advantage of CNNs explaining their success in nu-
merous tasks is that the geometric priors on which CNNs are
based result in a learning complexity that avoids the curse of
dimensionality. Thanks to the stationarity and local defor-
mation priors, the linear operators at each layer have a con-
stant number of parameters, independent of the input size
n (number of pixels in an image). Moreover, thanks to the
multiscale hierarchical property, the number of layers grows
at a rate O (logn), resulting in a total learning complexity of
O (logn) parameters.

The geometry of manifolds and graphs

Our main goal is to generalize CNN-type constructions to
non-Euclidean domains. In this article, by non-Euclidean
domains, we refer to two prototypical structures: manifolds
and graphs. While arising in very different fields of mathemat-
ics (differential geometry and graph theory, respectively), in
our context, these structures share several common character-
istics that we will try to emphasize throughout our review.

Manifolds

Roughly, a manifold is a space that is locally Euclidean. One
of the simplest examples is a spherical surface modeling our
planet: around a point, it seems to be planar, which has
led generations of people to believe in the flatness of the
Earth. Formally speaking, a (differentiable) d-dimensional
manifold X is a topological space where each point x has a
neighborhood that is topologically equivalent (homeomor-
phic) to a d-dimensional Euclidean space, called the tangent
space and denoted by 7. X [see Figure 1(a)]. The collection
of tangent spaces at all points (more formally, their disjoint
union) is referred to as the tangent bundle and denoted by
TX. On each tangent space, we define an inner product
() s Te X X Te X — R, which is additionally assumed to
depend smoothly on the position x. This inner product is
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e

(b)

FIGURE 1. (2) The tangent space and tangent vectors on a 2-D manifold
(surface). (b) Examples of isometric deformations.

called a Riemannian metric in differential geometry and
allows performing local measurements of angles, distances,
and volumes. A manifold equipped with a metric is called a
Riemannian manifold.

It is important to note that the definition of a Rieman-
nian manifold is completely abstract and does not require a
geometric realization in any space. However, a Riemannian
manifold can be realized as a subset of a Euclidean space (in
which case it is said to be embedded in that space) by using the
structure of the Euclidean space to induce a Riemannian met-
ric. The celebrated Nash embedding theorem guarantees that
any sufficiently smooth Riemannian manifold can be realized
in a Euclidean space of sufficiently high dimension [67]. An
embedding is not necessarily unique; two different realizations
of a Riemannian metric are called isometries.

Two-dimensional (2-D) manifolds (surfaces) embedded
into R* are used in computer graphics and vision to describe
boundary surfaces of 3-D objects, colloquially referred to as
3-D shapes. This term is somewhat misleading because 3-D
here refers to the dimensionality of the embedding space rath-
er than that of the manifold. Thinking of such a shape as made
of infinitely thin material, inelastic deformations that do not
stretch or tear it are isometric. Isometries do not affect the met-
ric structure of the manifold, and consequently, they preserve
any quantities that can be expressed in terms of the Rieman-
nian metric (called intrinsic). Conversely, properties pertain-
ing to the specific realization of the manifold in the Euclidean
space are called extrinsic. As an intuitive illustration of this
difference, imagine an insect that lives on a 2-D surface [Fig-
ure 1(b)]. The surface can be placed in the Euclidean space
in any way, but as long as it is transformed isometrically, the

L 4
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insect would not notice any difference. The insect in fact does
not even know of the existence of the embedding space, as its
only world is 2-D. This is an intrinsic viewpoint. A human
observer, on the other hand, sees a surface in 3-D space—this
is an extrinsic point of view.

Calculus on manifolds

Our next step is to consider functions defined on manifolds.
We are particularly interested in two types of functions: A sca-
lar field is a smooth real function f:X — R on the manifold.
A tangent vector field F: X — TX is a mapping attaching a
tangent vector F(x) € T.X to each point x. As we will see in
the following, tangent vector fields are used to formalize the
notion of infinitesimal displacements on the manifold. We
define the Hilbert spaces of scalar and vector fields on mani-
folds, denoted by I*(X) and L*(TX), respectively, with the
following inner products:

(£8) 2w = [ f@g@dx, an

(F.G) 2oy = [ (F,G@) rxdx. (12)
Here, dx denotes a d-dimensional volume element induced by
the Riemannian metric.

In calculus, the notion of derivative describes how the
value of a function changes with an infinitesimal change of
its argument. One of the big differences distinguishing clas-
sical calculus from differential geometry is a lack of vector
space structure on the manifold, prohibiting us from naively
using expressions like f(x + dx). The conceptual leap that is
required to generalize such notions to manifolds is the need to
work locally in the tangent space.

To this end, we define the differential of f as an opera-
tor df:TX — R acting on tangent vector fields. At each
point x, the differential can be defined as a linear functional
df(x) =(Vf(x)," ) r.x acting on tangent vectors F(x) € T: X,
which model a small displacement around x. The change
of the function value as the result of this displacement
is given by applying the functional to the tangent vector,
df(x) F(x) =( Vf(x), F(x) ) .x, and can be thought of as an
extension of the notion of the classical directional derivative.

The operator V£:I*(X) — [*(TX) in the previous defi-
nition is called the intrinsic gradient and is similar to the
classical notion of the gradient defining the direction of the
steepest change of the function at a point, with the only dif-
ference that the direction is now a tangent vector. Similarly,
the intrinsic divergence is an operator div: I2(TX) - [2(X)
acting on tangent vector fields and is (formal) adjoint to the
gradient operator [71],

(FVf) eax) =(V'FE.f) 2 =(—divF.f) 2. (13)

Physically, a tangent vector field can be thought of as a flow
of material on a manifold. The divergence measures the net
flow of a field at a point, allowing to distinguish between field
sources and sinks. Finally, the Laplacian (or Laplace—Beltrami
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Physical Interpretation of Laplacian Eigenfunctions

Given a function f on the domain X, the Dirichlet energy

eorlf) = [ | VFx \|jxxdx= J fix) afix) dx, (S1)

measures how smooth it is [the last identity in (S1) stems
from (15)]. We are looking for an orthonormal basis on
X, contfaining k smoothest possible functions (Figure S2),
by solving the optimization problem

rr]ﬂlnSDir(¢o) st [ pol=1
m¢!n80ir(¢;) st gill=1,i=1,2,..k—1
¢i L span{go, ..., Pi-1}. (S2)

In the discrete setting, when the domain is sampled at n
points, (S2) can be rewritten as

minktroce(d)ZAd)k) st O D=1, (S3)

DreR™

where @ = (o, ... pr1). The solution of (S3) is given by
the first k eigenvectors of A satisfying

AD, = DAy, (S4)

where A =diag(Ao,...,Ak-1) is the diagonal matrix of
corresponding eigenvalues. The eigenvalues
0=2 <21 <A1 are nonnegative due to the posi-
tive semidefiniteness of the Laplacian and can be inter-
preted as frequencies, where ¢o=const with the
corresponding eigenvalue Ao =0 plays the role of the
direct current component.

The Laplacian eigendecomposition can be carried out
in two ways. First, (S4) can be rewritten as a general-
ized eigenproblem (D—W)®=A®A«, resulting in
A-orthogonal eigenvectors, ®[A®;=1. Alternatively,
introducing a change of variables ¥« = A'/2®;, we can
obtain a standard eigendecomposition problem
A2 D-W)A2¥, =¥, A, with orthogonal eigen-
vectors Wi W, =1. When A=D is used, the matrix
A=A"2D-W)A /2 is referred to as the normalized
symmetric Laplacian.

FIGURE S2. An example of the first four Laplacian eigenfunctions ¢, ...,¢s on (a) a Euclidean domain (1-D line), and (b) and (c) non-Euclidean
domains [(b) a human shape modeled as a 2-D manifold, and (c) a Minnesota road graph]. In the Euclidean case, the result is the standard Fourier
basis comprising sinusoids of increasing frequency. In all cases, the eigenfunction ¢o corresponding to zero eigenvalue is constant (direct current

component).1-D: one-dimensional.

operator in differential geometric jargon) A: LX) - (X)) is
an operator,

Af=—div(Vf), (14)

acting on scalar fields. Employing relation (13), it is easy to
see that the Laplacian is self-adjoint (symmetric),

(VEVE) 2ax) = CALE) oo = (LAF) 2. (15)

The left-hand-side in (15) is known as the Dirichlet energy
in physics and measures the smoothness of a scalar field on
the manifold (see “Physical Interpretation of Laplacian Eigen-
functions”). The Laplacian can be interpreted as the differ-
ence between the average of a function on an infinitesimal
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An important application of spectral analysis and, histori-
cally, the main motivation for its development by Joseph
Fourier, is the solution of partial differential equations.
Here, we are particularly interested in heat propagation
on non-Euclidean domains. This process is governed by
the heat diffusion equation, which in the simplest setting of
homogeneous and isotropic diffusion has the form

fi(x, 1) =—cAf(x, )
{F(x, 0) = fo(x) (Initial condition) (S5)
with additional boundary conditions if the domain has a
boundary. f(x,t) represents the temperature at point x at
time . Equation (S5) encodes Newton’s law of cooling,
according to which the rate of temperature change of a
body (left-hand side) is proportional to the difference
between its own temperature and that of the surrounding

FIGURE $3. The examples of heat kernels on non-Euclidean domains
[(a) manifold, and (b) graph]. Observe how moving the heat kernel
to a different location changes its shape, which is an indication of the
lack of shift invariance.

sphere around a point and the value of the function at the point
itself. It is one of the most important operators in mathemati-
cal physics, used to describe phenomena as diverse as heat
diffusion (see “Heat Diffusion on Non-Euclidean Domains”),
quantum mechanics, and wave propagation. As we will see in
the following, the Laplacian plays a central role in signal pro-
cessing and learning on non-Euclidean domains, as its eigen-
functions generalize the classical Fourier bases, allowing to
perform spectral analysis on manifolds and graphs.

righthand side. The proportion coefficient ¢ is referred to
as the thermal diffusivity constant; here, we assume it to
be equal to one for the sake of simplicity. The solution of
(S5) is given by applying the heat operator H' = e™ to
the initial condition and can be expressed in the spectral
domain as

floot) =l = 3 (i dewme il
= [ blx) X e il gilx) dx'.
i=0

hi(x,x')

(S6)

hi(x,x’) is known as the heat kernel (Figure S3) and repre-
sents the solution of the heat equation with an initial condi-
tion fo(x) = 8x (), or, in signal processing terms, an impulse
response. In physical terms, h:(x,x’) describes how much
heat flows from a point x to point x" in time t. In the
Euclidean case, the heat kernel is shift invariant,
hi(x,x') = hi(x— x’), allowing to interpret the integral in (Sé)
as a convolution f(x, t) = (fo = hi)(x). In the spectral domain,
convolution with the heat kernel amounts to low-pass filtering
with frequency response e Larger values of diffusion time
result in lower effective cutoff frequency and thus smoother
solutions in space (corresponding to the intuition that longer
diffusion smoothes more the initial heat distribution).

The crosstalk between two heat kernels positioned at
points x and x" allows to measure an intrinsic distance

o (x,x') = [ (hilx,y) = hilx’, Y) dly (57)
= ZO e M (gilx) — ¢ilx)? (S8)

referred to as the diffusion distance [30]. Note that when
interpreting (S7) and (S8) as spatial- and frequency-
domain norms | - iz and | - llz, respectively, their equiv-
alence is the consequence of the Parseval identity. Unlike
geodesic distance that measures the length of the shortest
path on the manifold or graph, the diffusion distance has
an effect of averaging over different paths. It is thus more
robust fo perturbations of the domain, e.g., introduction or
removal of edges in a graph or cuts on a manifold.

It is important to note that all the previous definitions are
coordinate free. By defining a basis in the tangent space, it is
possible to express tangent vectors as d-dimensional vectors
and the Riemannian metric as a d x d symmetric positive-
definite matrix.

Graphs and discrete differential operators
Another type of constructions we are interested in are graphs,
which are popular models of networks, interactions, and
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similarities between different objects. For simplicity, we will
consider weighted undirected graphs, formally defined as a
pair (V,8), where V = {1,...,n} is the set of n vertices, and
EC VXYV is the set of edges, where the graph being undi-
rected implies that (i,j) € & if (j,i) € &. Furthermore, we
associate a weight a; > 0 with each vertex i €V, and a
weight w; = 0 with each edge (i,j) € &.

Real functions f:V — R and F:& — R on the vertices
and edges of the graph, respectively, are roughly the discrete
analogy of continuous scalar and tangent vector fields in
differential geometry (it is tacitly assumed here that F is
alternating, i.e., F;; =—Fj;). We define Hilbert spaces *(V)
and I* (&) of such functions by specifying the respective inner
products,

(.8 zevy= 2 aifigi (16)
eV

(F,G) e = 2, wiF;Gy. 17)
ie&

Let fe*(V) and F € [*(8) be functions on the ver-
tices and edges of the graphs, respectively. We can define
differential operators acting on such functions analogously to
differential operators on manifolds [72]. The graph gradient is
an operator V:L*(V) — L*(&) mapping functions defined on
vertices to functions defined on edges,

VP =fi—fis (18)

automatically satistying (Vf)i; =—(Vf) . The graph divergence
is an operator div: [*(8) = (V) doing the converse,

(divF); =— z wiiFjj. (19)

1
i jijes

It is easy to verify that the two operators are adjoint with
respect to the inner products (16) and (17),

(F.Vf) 2@ =(V F.f) 2oy =(=divF.f) 2v). (20)

The graph Laplacian is an operator A:L*(V)— L*(V)
defined as A =—divV. Combining definitions (18) and (19), it
can be expressed in the familiar form

AHi=L > witfi—p). @1

diihee

Note that (21) captures the intuitive geometric interpreta-
tion of the Laplacian as the difference between the local aver-
age of a function around a point and the value of the function
at the point itself.

Denoting by W = (wj;) the n x n matrix of edge weights [it is
assumed that wj; = 0 if (i,) ¢ &1, by A = diag(ai,...,an.) the
diagonal matrix of vertex weights,andby D = diag(zﬁj L Wil
the degree matrix, the graph Laplacian application to a function
feIL*(V) represented as a column vector f = (fi, ST
can be written in matrix-vector form as

*
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Af=A""(D-W). (22)

The choice of A =1 in (22) is referred to as the unnormal-
ized graph Laplacian; another popular choice is A = D pro-
ducing the random walk Laplacian [73].

Discrete manifolds

As previously mentioned, there are many practical situations
in which one is given a sampling of points arising from a
manifold but not the manifold itself. In computer graphics
applications, reconstructing a correct discretization of a man-
ifold from a point cloud is a difficult problem of its own,
referred to as meshing (see “Laplacian on Discrete Manifolds”).
In manifold-learning problems, the manifold is typically approxi-
mated as a graph capturing the local affinity structure. We
stress that the term manifold as used in the context of generic
data science is not geometrically rigorous and can have less
structure than a classical smooth manifold we have defined
beforehand. For example, a set of points that looks locally Eu-
clidean in practice may have self-intersections, infinite curva-
ture, different dimensions depending on the scale and
location at which one looks, extreme variations in density,
and noise with confounding structure.

Fourier analysis on non-Euclidean domains

The Laplacian operator is a self-adjoint positive-semidefinite
operator, admitting on a compact domain an eigendecomposi-
tion with a discrete set of orthonormal eigenfunctions
do.P1, ... (satisfying {$i,¢; ) r2x) = ;) and nonnegative real
eigenvalues 0 = Ao < A1 < ... (referred to as the spectrum of
the Laplacian),

A¢i:Ai¢i9i:0’1’ e (23)

[Note that in the Euclidean case, the Fourier transform of a
function defined on a finite interval (which is a compact set) or
its periodic extension is discrete. In practical settings, all
domains we are dealing with are compact.]

The eigenfunctions are the smoothest functions in the
sense of the Dirichlet energy (see “Physical Interpretation
of Laplacian Eigenfunctions”) and can be interpreted as a
generalization of the standard Fourier basis [given, in fact,
by the eigenfunctions of the one-dimensional (1-D) Euclid-
ean Laplacian, —<d2 / x2>eim = ©?e™] to a non-Euclidean
domain. It is important to emphasize that the Laplacian
eigenbasis is intrinsic due to the intrinsic construction of the
Laplacian itself.

A square-integrable function f on X can be decomposed
into Fourier series as

f@) =2 (i) pandix), (24)
0T

fi

where the projection on the basis functions producing a dis-
crete set of Fourier coefficients (fo, f1,...) generalizes the analy-
sis (forward transform) stage in classical signal processing,
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Laplacian on Discrete Manifolds

In computer graphics and vision applications, 2-D mani-
folds are commonly used to model 3-D shapes. There are
several common ways of discretizing such manifolds. First,
the manifold is assumed to be sampled at n points. Their
embedding coordinates xi, ..., x, are referred to as a point
cloud. Second, a graph is constructed upon these points,
acting as its vertices. The edges of the graph represent the
local connectivity of the manifold, telling whether two
points belong to a neighborhood or not. The graph can
be endowed, e.g., with Gaussian-edge weights

Il xi—xjl1%/202

wij=¢€ (SQ)

This simplest discretization, however, does not correctly
capture the geometry of the underlying continuous mani-
fold (e.g., the graph Laplacian would typically not con-
verge to the continuous Laplacian operator of the
manifold with the increase of the sampling density [68]).
A geometrically consistent discretization is possible with
an additional structure of faces F€ V x V x YV, where
(i,j, k) € F implies (i,f), (i, k), (k, j) € E The collection of

faces represents the underlying continuous manifold as

() (b)

FIGURE $4. The two commonly used discretizations of a 2-D manifold:
(a) an undirected graph and (b) a triangular mesh.

and summing up the basis functions with these coefficients is
the synthesis (inverse transform) stage.

A centerpiece of classical Euclidean signal processing is the
property of the Fourier transform diagonalizing the convolu-
tion operator, colloquially referred to as the convolution theo-
rem. This property allows to express the convolution f* g of
two functions in the spectral domain as the elementwise prod-
uct of their Fourier transforms,

Fo@= [~ fmeds [“gwe dr.  (29)
Unfortunately, in the non-Euclidean case, we cannot even
define the operation x —x" on the manifold or graph, so the

a polyhedral surface consisting of small triangles glued
together. The triplet (V,8,5) is referred to as tri-
angular mesh. To be a correct discretization of a mani-
fold (a manifold mesh), every edge must be shared by
exactly two triangular faces; if the manifold has a
boundary, any boundary edge must belong to exactly
one friangle.

On a triangular mesh, the simplest discretization of the
Riemannian metric is given by assigning each edge a
length ¢; > 0, which must additionally satisfy the triangle
inequality in every triangular face. The mesh Laplacian is

given by (21) with

2 2
=+ 0+ G

Ao R o
Wi —ﬂ;,‘+ﬁ/h+ﬁ,‘h.
I 8aiik

8aijk ! e

a=+1 (S11)

Qijk,
jk: (i, K € F

where aii = y/siik(sik — 0i) (sik — 0j) (sik — ) is the area of
triangle ijk given by the Heron formula, and
sik =(1/2)(0;+ 0+ 0k) is the semiperimeter of triangle
ifk. The vertex weight q; is interpreted as the local area
element (shown in red in Figure S4). Note that the weights
(S10) and (S11) are expressed solely in terms of the dis-
crete metric ¢ and are thus infrinsic. When the mesh is infi-
nitely refined under some technical conditions, such a
construction can be shown to converge to the continuous
Laplacian of the underlying manifold [69].

An embedding of the mesh (amounting to specifying the
vertex coordinates Xi,...,X,) induces a discrete metric
;i =|Ix; — x;ill,, whereby (S10) become the cotangent
weights

wi = %(COfO{f,“f‘COfﬁi{) (S12)

ubiquitously used in computer graphics [70].

notion of convolution (7) does not directly extend to this case.
One possibility to generalize convolution to non-Euclidean
domains is by using the convolution theorem as a definition,

(f*) @) =2 (i) 2o (gdi) 2api(x).

i=0

(26)

One of the key differences of such a construction from the
classical convolution is the lack of shift invariance. In terms
of signal processing, it can be interpreted as a position-
dependent filter. While parameterized by a fixed number of
coefficients in the frequency domain, the spatial representa-
tion of the filter can vary dramatically at different points
(see Figure S3).
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Rediscovering Standard GNNs Using Gorrelation Kernels
In situations where the graph is constructed from the data, in the Fourier basis, hence translation invariant, hence
a straightforward choice of the edge weights (S9) of the  classical convolutions. Furthermore, the “Spectrum-Free
graph is the covariance of the data Let F denote the input ~ Methods” section explains how spatial subsampling can
data distribution and also be obtained via dropping the last part of the spec-
trum of the Laplacian, leading to pooling, and ultimately
L =EF-EFF-ERT (S13) to standard CNNis.
be the data covariance matrix. If each point has the same
variance o =02, then diagonal operators on the
Laplacian simply scale the principal components of F.
In natural images, because their distribution is approxi-
mately stationary, the covariance matrix has a circulant
structure oij~ oi-; and is thus diagonalized by the
standard discrete cosine transform (DCT) basis. It
follows that the principal components of F roughly corre-
spond to the DCT basis vectors ordered by frequency.
Moreover, natural images exhibit a power spectrum .
Elf(w)’~l o[, because nearby pixels are more corre- "
lated than faraway pixels [14]. It results that principal (@) (b)
components of the covariance are essentially ordered
from low to high frequencies, which is consistent with  FIGURE $5. The 2-D embedding of pixels in 16 x 16 image patches
the standard group structure of the Fourier basis. When  using a Euclidean radial basis function (RBF) kernel. The RBF kernel is
applied to natural images represented as graphs with constructed as in (S9), by using th_e covariance o as_EucIidean dis-
weights defined by the covariance, the SCNN construc- IR S LR S e e )
. . . using the first two eigenvectors of the resulting graph Laplacian. The
fion recovers the standard CNN, without any prior  ¢ojors in (a) and (b) represent the horizontal and vertical coordinates
knowledge [76] (Figure S5). Indeed, the linear operators of the pixels, respectively. The spatial arrangement of pixels is roughly
®I';y®" in (27) are by the previous argument diagonal  recovered from correlation measurements.
The previous discussion also applies to graphs instead of
manifolds, where one only has to replace the inner product in
(24) and (26) with the discrete one (16). All of the sums over
i would become finite, as the graph Laplacian matrix A has n
eigenvectors. In matrix-vector notation, the generalized convo-
lution f* g can be expressed as Gf = ® diag(g)®'f, where
¢ =(g1,....8n) is the spectral representation of the filter,
and ® = (¢1,...,¢,) denotes the Laplacian eigenvectors (S8).
The lack of shift invariance results in the absence of circulant 18
(Toeplitz) structure in the matrix G, which characterizes the Domain X X
Euclidean setting. Furthermore, it is easy to see that the convo- Basis 0] [ y
lution operation commutes with the Laplacian, GAf = AGf. Signal  f oro'f YIy't
(a) (b) ()
Uniqueness and stability
Finally, it is important to note that the Laplacian eigenfunctions FIGURE 2. A toy example illustrating the difficulty of generalizing spectral
are not uniquely defined. To start with, they are defined up to | filtering across non-Euclidean domains. (a) A function defined on a mani-
sign, i.e., A(+ ¢) = A(£ ¢). Thus, even isometric domains fold (function values are represented by color). (b) The result of the ap-
might have different Laplacian eigenfunctions. Furthermore, if plication of an edge-detection filter in the frequency domain. (c) The same
a Laplacian eigenvalue has multiplicity, then the associated filterqpplied on the same function but on a different (nearly isomgtric)
. . . . domain produces a completely different result. The reason for this
cigenfunctions can be defined as orthonormal basis spanning behavior is that the Fourier basis is domain dependent and the filter
the corresponding eigensubspace (or said differently, the eigen- | coefficients learned on one domain cannot be applied to another one
functions are defined up to an orthogonal transformation in the in a straightforward manner.
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this section, we will use the problem of classification of a sig-
nal on a fixed graph as the prototypical application. We have

Citation Network Analysis Application seen that convolutions are linear operators that commute with
o ) o the Laplacian operator. Therefore, given a weighted graph, a
The CORA_C”G“on netw9rk [90_] is a graph containing first route to generalize a convolutional architecture is by first
2,708 ver.hces Tep'fese”““g arficles and 5,429 .edge.s restricting our interest to linear operators that commute with
repre.senhng c”chons. (F|glfre S6). Each article is the graph Laplacian. This property, in turn, implies operating
described by a 1,433-dimensional bog-of-vYord.f; feoture on the spectrum of the graph weights, given by the eigenvec-
vector and belongs to seven classes. For simplicity, the tors of the graph Laplacian.
network is treated as an undirected graph. Applying the
S;NN with Wo spectral convolutional layers parame- Spectra/ CNN
terlze.c.l ac.cordlng to (37), the authors of [77] obtained Similarly to the convolutional layer (6) of a classical
classification accuracy of 81.6% [compared to the pre- Euclidean CNN, Bruna et al. [52] define a spectral convolu-
vious best result of 75.7%). In [54], this result was slight- tional layer as
ly improved further, reaching 81.7% accuracy with the
use of MoNet architecture. o= 5( Zq: q’krz,z'q)kaz'), @27
I=1
where the n X p and n X ¢ matrices F = (fi,...,f,) and
G = (g1, ...,gy represent the p- and g-dimensional input and
output signals on the vertices of the graph, respectively (we
use n=|YV| to denote the number of vertices in the graph),
'y is a k X k diagonal matrix of spectral multipliers
representing a filter in the frequency domain, and & is a
nonlinearity applied on the vertex-wise function values. Using
only the first k eigenvectors in (27) sets a cutoff frequency that
depends on the intrinsic regularity of the graph and also the
sample size. Typically, k < n, because only the first Laplacian
eigenvectors describing the smooth structure of the graph are
useful in practice.

If the graph has an underlying group invariance, such a
construction can discover it. In particular, standard CNNs
can be redefined from the spectral domain (see “Rediscover-

f ing Standard CNNs Using Correlation Kernels”). However,
i in many cases the graph does not have a group structure, or
the group structure does not commute with the Laplacian,
FIGURE S6. The classifying of a research article in the CORA data and so we cannot think of each filter as passing a template
set with MoNet. Shown is the citation graph, where each node across V and recording the correlation of the template with
is an article and an edge represents a citation. Vertex fill and that location.
OTHIG .colors. IERTESET 1173 L o] £ grqunq-truth 1551 We should stress that a fundamental limitation of the
respectively; ideally, the two colors should coincide. (Figure . L. . .
reproduced from [54].) spectral construction is its restriction to a single domain. The
reason is that spectral filter coefficients (27) are basis depen-
dent. It implies that if we learn a filter with respect to basis
@, on one domain, and then try to apply it on another domain
eigensubspace). A small perturbation of the domain can lead to with another basis W, the result could be very different (see
very large changes in the Laplacian eigenvectors, especially Figure 2). Itis possible to construct compatible orthogonal bases
those associated with high frequencies. At the same time, the across different domains resorting to a joint diagonalization
definition of heat kernels (S6) and diffusion distances (S8) procedure [74], [75]. However, such a construction requires the
does not suffer from these ambiguities, e.g., the sign ambiguity knowledge of some correspondence between the domains. In
disappears as the eigenfunctions are squared. Heat kernels also applications like social network analysis, e.g., where dealing
appear to be robust to domain perturbations. with two time instances of a social graph in which new ver-
tices and edges have been added, such a correspondence can
Speclrul methods be easily computed and is therefore a reasonable assumption.
We have now finally gotten to our main goal, namely, con- Conversely, in computer graphics applications, finding cor-
structing a generalization of the CNN architecture on non- respondence between shapes is in itself a very hard problem,
Euclidean domains. We will start with the assumption that the so assuming known correspondence between the domains is a
domain on which we are working is fixed, and for the rest of rather unreasonable assumption.
30 IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |
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Assuming that k= O(n) eigenvectors of the Laplacian
are kept, a convolutional layer (27) requires pgk = O(n)
parameters to train. We will see next how the global and
local regularity of the graph can be combined to produce
layers with constant number of parameters (i.e., such that
the number of learnable parameters per layer does not depend
upon the size of the input), which is the case in classical
Euclidean CNNs.

The non-Euclidean analogy of pooling is graph coarsen-
ing, in which only a fraction a <1 of the graph vertices is
retained. The eigenvectors of graph Laplacians at two differ-
ent resolutions are related by the following multigrid property:
let ®, ® denote the n X n and an X an matrices of Laplacian
eigenvectors of the original and the coarsened graph, respec-
tively. Then,

b~ P<I><I°‘”>, (28)

0

where P is an on X n binary matrix whose ith row encodes the
position of the ith vertex of the coarse graph on the original
graph. It follows that strided convolutions can be generalized
using the spectral construction by keeping only the low-fre-
quency components of the spectrum. This property also allows
us to interpret (via interpolation) the local filters at deeper lay-
ers in the spatial construction to be low frequency. However,
because in (27) the nonlinearity is applied in the spatial
domain, in practice one has to recompute the graph Laplacian
eigenvectors at each resolution and apply them directly after
each pooling step.

The spectral construction (27) assigns a DoF for each
eigenvector of the graph Laplacian. In most graphs, indi-
vidual high-frequency eigenvectors become highly unstable.
However, similarly as the wavelet construction in Euclidean
domains, by appropriately grouping high-frequency eigenvec-
tors in each octave, one can recover meaningful and stable
information. As shown next, this principle also entails better
learning complexity.

Spectral CNN with smooth spectral multipliers

To reduce the risk of overfitting, it is important to adapt the
learning complexity to reduce the number of free parameters
of the model [44], [52]. On Euclidean domains, this is
achieved by learning convolutional kernels with small spatial
support, which enables the model to learn a number of param-
eters independent of the input size. To achieve a similar learn-
ing complexity in the spectral domain, it is thus necessary to
restrict the class of spectral multipliers to those corresponding
to localized filters.

For that purpose, we have to express spatial localization
of filters in the frequency domain. In the Euclidean case,
smoothness in the frequency domain corresponds to spatial
decay, because

2

3 f(w)
dw*

fjwlxlzklf(x) Pdx = ff‘” dw, (29)

*
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by virtue of the Parseval identity. This suggests that, to learn a
layer in which features will be not only shared across loca-
tions but also well localized in the spatial domain, one can
learn spectral multipliers that are smooth. Smoothness can be
prescribed by learning only a subsampled set of spectral
multipliers and using an interpolation kernel to obtain the rest,
such as cubic splines.

However, the notion of smoothness also requires some
geometry in the spectral domain. In the Euclidean setting, such
a geometry naturally arises from the notion of frequency, e.g.,
in the plane, the similarity between two Fourier atoms L
and ¢ can be quantified by the distance || — @’ |, where
x denotes the 2-D planar coordinates, and @ is the 2-D fre-
quency vector. On graphs, such a relation can be defined by
means of a dual graph with weights w;; encoding the similarity
between two eigenvectors ¢; and ¢ ;.

A particularly simple choice consists in choosing a 1-D
arrangement, obtained by ordering the eigenvectors according
to their eigenvalues. [In the mentioned 2-D example, this would
correspond to ordering the Fourier basis function according to
the sum of the corresponding frequencies w1 + w2. Although
numerical results on simple low-dimensional graphs show that
the 1-D arrangement given by the spectrum of the Laplacian
is efficient at creating spatially localized filters [52], an open
fundamental question is how to define a dual graph on the
eigenvectors of the Laplacian in which smoothness (obtained
by applying the diffusion operator) corresponds to localization
in the original graph.] In this setting, the spectral multipliers
are parameterized as

diag(T'1,r) = Bar, (30)
where B = (b)) = (8;(A:)) is a kX g fixed interpolation ker-
nel [e.g., B;(A) can be cubic splines], and o is a vector of g
interpolation coefficients. To obtain filters with constant spa-
tial support (i.e., independent of the input size n), one should
choose a sampling step y ~ n in the spectral domain, which
results in a constant number ny ' = O(1) of coefficients ot
per filter. Therefore, by combining spectral layers with graph
coarsening, this model has O (logn) total trainable parameters
for inputs of size n, thus recovering the same learning com-
plexity as CNNs on Euclidean grids.

Even with such a parameterization of the filters, the spec-
tral CNN (27) entails a high computational complexity of per-
forming forward and backward passes, because they require an
expensive step of matrix multiplication by ®; and ®;. While
on Euclidean domains such a multiplication can be efficiently
carried in O (nlogn) operations using fast-Fourier-transform-
type algorithms, for general graphs such algorithms do not
exist and the complexity is O(n*). We will see next how to
alleviate this cost by avoiding explicit computation of the
Laplacian eigenvectors.

Spectrum-free methods
A polynomial of the Laplacian acts as a polynomial on its eigen-
values. Thus, instead of explicitly operating in the frequency

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

SignalProcessing

| i
¢

31

ags
SSTAND®



http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

SignalProcessing

32

domain with spectral multipliers as in (30), it is possible to
represent the filters via a polynomial expansion:

ga(A) = Pga(N)D', (31)

where

=1

ga() = 2 a1, (32)
j=0

o is the r-dimensional vector of polynomial coefficients, and

ga(A) =diag(ga(A1),...,g«(An)), resulting in filter matrices

' = ga/,,r(A) whose entries have an explicit form in terms

of the eigenvalues.

An important property of this representation is that it auto-
matically yields localized filters, for the following reason.
Because the Laplacian is a local operator (working on one-hop
neighborhoods), the action of its jth power is constrained to j
hops. Because the filter is a linear combination of powers of
the Laplacian, overall (32) behaves like a diffusion operator
limited to r hops around each vertex.

GCNN, also known as ChebNet

Defferrard et al. used the Chebyshev polynomials generated
by the recurrence relation [45]

T; (1) = 2AT;-1 (A) — Tj-2(2),
To(A)=1,

T (1) = A. (33)

A filter (32) can thus be parameterized uniquely via an expan-
sion of order r — 1 such that

~ r71 ~
ga(d) =3 a;®T;(M) D'
j=0

r—1 -
=2 o;Ti(d), (34)
j=0

where A =22,"A—1T and A =24,' A —1 denotes a rescal-
ing of the Laplacian mapping its eigenvalues from the interval
[0,A4] to [—1,1] (necessary because the Chebyshev polyno-
mials form an orthonormal basis in [— 1, 1]).

Denoting £ = T,-(A)f, we can use the recurrence rela-
tion (33) to compute fO = 2AfUD —fU ~? with f® =f and
f© = Af. The computational complexity of this procedure is
therefore O (rn) operations and does not require an explicit
computation of the Laplacian eigenvectors.

Graph convolutional network
Kipf and Welling [77] simplified this construction by further
assuming r = 2 and A, = 2, resulting in filters of the form

ga(f) = aof+ a1 (A—-Df

=aof — o, D"""WD £, (35)

Further constraining o = ao =—a1, one obtains filters repre-
sented by a single parameter,

*
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ga(F) = a(I+D WD . (36)
Because the eigenvalues of I+ D "*WD™"2 are now in the
range [0,2], repeated application of such a filter can result in
numerical instability. This can be remedied by a renormalization

gal(f) = oD PWD 2, 37)

where W=W +Tand D = diag(zj#ifvij).

Note that though we arrived at the constructions of Cheb-
Net and graph convolutional network (GCN) starting in the
spectral domain, they boil down to applying simple filters act-
ing on the r- or one-hop neighborhood of the graph in the spa-
tial domain. We consider these constructions to be examples

of the more general graph neural network (GNN) framework.

GNN
GNNs [78] generalize the notion of applying the filtering

operations directly on the graph via the graph weights.
Similarly as Euclidean CNNs learn generic filters as linear
combinations of localized, oriented bandpass and low-pass fil-
ters, a GNN learns at each layer a generic linear combination
of graph low-pass and high-pass operators. These are given,
respectively, by f+— Wf and f— Af and are thus generated
by the degree matrix D and the diffusion matrix W. Given a
p-dimensional input signal on the vertices of the graph, repre-
sented by the n X p matrix F, the GNN considers a generic
nonlinear function 7¢:R?” X R? — RY, parameterized by train-
able parameters O that is applied to all nodes of the graph,

gi = o ((Wh);,(Df);). (38)
In particular, choosing 7(a,b) =b —a, one recovers the
Laplacian operator Af, but more general, nonlinear choices
for n yield trainable, task-specific diffusion operators.
Similarly as with a CNN architecture, one can stack the result-
ing GNN layers g = Co(f) and interleave them with graph
pooling operators. Chebyshev polynomials 7,(A) can be
obtained with r layers of (38), making it possible, in principle,
to consider ChebNet and GCN as particular instances of the
GNN framework.

Historically, a version of GNN was the first formulation
of deep learning on graphs, proposed in [49] and [78]. These
works optimized over the parameterized steady state of some
diffusion process (or random walk) on the graph. This can be
interpreted as in (38) but using a large number of layers where
each Coe is identical, as the forward propagation through the
Ce approximate the steady state. Recent works [50], [51], [55],
[79], [80] relax the requirements of approaching the steady
state or using repeated applications of the same Ce.

Because the communication at each layer is local to a ver-
tex neighborhood, one may worry that it would take many lay-
ers to get information from one part of the graph to another,
requiring multiple hops (this was one of the reasons for the
use of the steady state in [78]). However, for many applica-
tions, it is not necessary for information to completely traverse

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

SignalProcessing

| i
¢

ags
SSTAND®



http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

SignalProcessing

*
Three-Dimensional Shape Correspondence Application
Finding intrinsic correspondence between deformable min— > log Ue (f(x}) (yi) (S14)
shapes is a classical tough problem that underlies a broad ® ier
range of vision and graphics applications, including tex-  with respect to the network parameters ©. The loss penal-
ture mapping, animation, editing, and scene understand-  izes for the deviation of the predicted correspondence
ing [107]. From the machine-learning standpoint,  from the ground truth. We note that, while producing
correspondence can be thought of as a classification ~ impressive results [Figure S7(b)], such an approach
problem, where each point on the query shape is  essentially learns pointwise correspondence, which then
assigned to one of the points on a reference shape (serv-  has to be postprocessed to satisfy certain properties,
ing as a label space) [108]. It is possible to learn the cor-  such as smoothness or bijectivity. Correspondence is an
respondence with a deep intrinsic network applied to  example of structured output, where the output of the net-
some input feature vector f(x] at each point x of the  work at one point depends on the output in other points
query shape X, producing an output Us (f(x)) (y), which is  (in the simplest setting, correspondence should be
interpreted as the conditional probability p(y | x} of x  smooth, i.e., the output at nearby points should be simi-
being mapped to y [Figure S7(a)]. Using a training set of  lar) Litany et al. [109] proposed intrinsic structured pre-
points with their ground-ruth correspondence {x; yi}ic;, ~ diction of shape correspondence by integrating a layer
supervised learning is performed minimizing the multino-  computing functional correspondence [106] into the deep
mial regression loss neural network.
FIGURE S7. (a) The learning shape correspondence: an intrinsic deep network Ue is applied pointwise to some input features defined at each point.
The output of the network at each point x of the query shape X is a probability distribution of the reference shape Y that can be thought of as a
soft correspondence. (b) The intrinsic correspondence established between human shapes using intrinsic deep architecture (MoNet [54] with three
convolutional layers). Signature of histogram orientations (SHOT) descriptors capturing the local normal vector orientations [110] were used in
this example as input features. The correspondence is visualized by transferring texture from the leftmost reference shape. For additional examples,
see [54].
the graph. Furthermore, note that the graphs at each layer of can depend on the vertex type, allowing extremely rich archi-
the network need not be the same. Thus, we can replace the tectures [50], [51], [55], [79], [80].
original neighborhood structure with one’s favorite multiscale
coarsening of the input graph and operate on that to obtain the Churting-bused methods
same flow of information as with the convolutional nets above We now consider the second subclass of non-Euclidean learn-
(or rather more like a locally connected network [81]). This ing problems, where we are given multiple domains. A proto-
also allows producing a single output for the whole graph (for typical application the reader should have in mind throughout
translation-invariant tasks), rather than a per-vertex output, by this section is the problem of finding correspondence between
connecting each vertex to a special output node. Alternatively, shapes, modeled as manifolds (see “Three-Dimensional
one can allow 7 to use not only Wf and Af at each node but Shape Correspondence Application”). As we have seen, defin-
also W' for several diffusion scales s > 1 (as in [45]), giving ing convolution in the spectral domain has an inherent draw-
the GNN the ability to learn algorithms like the power method back of the inability to adapt the model across different
and more directly accessing spectral properties of the graph. domains. We will therefore need to resort to an alternative
The GNN model can be further generalized to replicate other generalization of the convolution in the spatial domain that
operators on graphs. For instance, the pointwise nonlinearity 7 does not suffer from this drawback.
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Furthermore, note that in the setting of multiple domains,
there is no immediate way to define a meaningful spatial pool-
ing operation, as the number of points on different domains can
vary, and their order can be arbitrary. It is, however, possible to
pool pointwise features produced by a network by aggregating
all the local information into a single vector. One possibility
for such a pooling is computing the statistics of the pointwise
features, e.g., the mean or covariance [47]. Note that after such
a pooling, all of the spatial information is lost.

On a Euclidean domain, due to shift invariance the con-
volution can be thought of as passing a template at each point
of the domain and recording the correlation of the template
with the function at that point. Thinking of image filtering,
this amounts to extracting a (typically square) patch of pix-
els, multiplying it elementwise with a template and summing
up the results, then moving to the next position in a slid-
ing window manner. Shift invariance implies that the very
operation of extracting the patch at each position is always
the same.

One of the major problems in applying the same para-
digm to non-Euclidean domains is the lack of shift invariance,
implying that the patch operator extracting a local patch would
be position dependent. Furthermore, the typical lack of mean-
ingful global parameterization for a graph or manifold forces
to represent the patch in some local intrinsic system of coor-
dinates. Such a mapping can be obtained by defining a set of
weighting functions vi(x,),...,vs(x, ) localized to positions

Geodesic Polar
Coordinates

()

Diffusion
Distance

(a)

Anisotropic
Heat Kernel

(b)

=

=
N&EY
‘\\\*\s 2

FIGURE 3. (a)—(c) The examples of intrinsic weighting functions used to
construct a patch operator at the point marked in black (different colors
represent different weighting functions). (a) Diffusion distance allows to
map neighbor points according to their distance from the reference point,
thus defining a 1-D system of local intrinsic coordinates. (b) Anisotropic
heat kernels of different scale and orientations and (c) geodesic polar
weights are 2-D systems of coordinates. (d)—(f) The representation of
the weighting functions in the local polar (p,6) system of coordinates
(red curves represent the 0.5 level set).

THE WORLD'S N

near x (see examples in Figure 3). Extracting a patch amounts
to averaging the function f at each point by these weights,

Dj(x)fzfo(x')vj(x,x')dx',j= 1,...,J, 39)

providing for a spatial definition of an intrinsic equivalent of
convolution

(f* &) =2 g;DjW)f, (40)
j

where g denotes the template coefficients applied on the patch
extracted at each point. Overall, (39) and (40) act as a kind of
nonlinear filtering of f, and the patch operator D is specified
by defining the weighting functions vi,...,v;. Such filters are
localized by construction, and the number of parameters is
equal to the number of weighting functions J = O(1). Several
frameworks for non-Euclidean CNNs essentially amount to
different choices of these weights. The spectrum-free methods
(ChebNet and GCN) described in the previous section can
also be thought of in terms of local weighting functions, as it is
easy to see the analogy between (40) and (34).

Geodesic CNN

Because manifolds naturally come with a low-dimensional
tangent space associated with each point, it is natural to work
in a local system of coordinates in the tangent space [47]. In
particular, on 2-D manifolds one can create a polar system of
coordinates around x where the radial coordinate is given by
some intrinsic distance p(x") = d(x,x"), and the angular coor-
dinate 6(x) is obtained by ray shooting from a point at equi-
spaced angles. The weighting functions in this case can be
obtained as a product of Gaussians

, _ N N2 N_pa2/e2
viox) = e (p()=p)?*205 , ~(O(x")=6)* 203 (41)

where i =1,...,J and j=1,...,J" denote the indices of the
radial and angular bins, respectively. The resulting JJ' weights
are bins of width o, X 0 in the polar coordinates [Figure 3(c)
and (f)].

Anisotropic CNN
We have already seen the non-Euclidean heat equation (S5),
whose heat kernel #:(x,-) produces localized blob-like
weights around the point x [see Figure S3(a)]. Varying the dif-
fusion time ¢ controls the spread of the kernel. However, such
kernels are isotropic, meaning that the heat flows equally fast
in all the directions. A more general anisotropic diffusion [48]
equation on a manifold

fi(x,0) ==div (A (x) Vf(x,1)) (42)
involves the thermal conductivity tensor A (x) (in the case of
2-D manifolds, a 2 x 2 matrix is applied to the intrinsic gradient
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in the tangent plane at each point), allowing modeling heat
flow that is position and direction dependent [82]. A particular
choice of the heat conductivity tensor proposed in [53] is

a T
Awo(x) =Ro(x){ | |Ro (x), 43)

where the 2 x 2 matrix Re(x) performs rotation of 6 with
respect to some reference (e.g., the maximum curvature)
direction and o > 0 is a parameter controlling the degree of
anisotropy (a = 1 corresponds to the classical isotropic case).
The heat kernel of such anisotropic diffusion equation is given
by the spectral expansion

hoor (6,X") = D €™ Papi (x) Poei (X'), (44)

i=0

where @ao0(x),Pao1 (x), ... are the eigenfunctions and
Aago, Aes1, ... the corresponding eigenvalues of the anisotro-
pic Laplacian

Acof (x) ==div(Awo (x) V(). (45)

The discretization of the anisotropic Laplacian is a modifica-
tion of the cotangent formula (S12) on meshes or graph
Laplacian (S9) on point clouds [48]. The anisotropic heat ker-
nels /qe:(x,-) look like elongated rotated blobs [see Figure 3(b)
and (e)], where the parameters ¢,6 and ¢ control the elonga-
tion, orientation, and scale, respectively. Using such kernels as
weighting functions v in the construction of the patch operator
(39), it is possible to obtain a charting similar to the geodesic
patches (roughly, 6 plays the role of the angular coordinate and
t of the radial one).

Mixture model network

Finally, as the most general construction of patches, Monti et
al. [54] proposed defining at each point a local system of
d-dimensional pseudocoordinates u(x,x") around x. On these
coordinates, a set of parametric kernels vi(u),...,vs(u) is
applied, producing the weighting functions in (39). Rather
than using fixed kernels, as in the previous constructions,
Monti et al. use Gaussian kernels

vi) = exp( - ) T} @—p),

whose parameters (d X d covariance matrices Xi,...,X; and
d X 1 mean vectors u1,...,;) are learned [this choice allows
interpreting intrinsic convolution (40) as a mixture of
Gaussians, hence the name of the approach]. Learning not
only the filters but also the patch operators in (40) affords
additional DoF to the mixture model network (MoNet) archi-
tecture, which makes it currently the state-of-the-art approach
in several applications. It is also easy to see that this approach
generalizes the previous models, and, e.g., classical Euclidean
CNNs as well as geodesic and anisotropic CNNs can be
obtained as particular instances thereof [54]. MoNet can also
be applied on general graphs using as the pseudocoordinates u
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some local graph features, such as vertex degree, geodesic dis-
tance, and so forth.

Combined spatial /spectral methods

The third alternative for constructing convolutionlike opera-
tions of non-Euclidean domains is jointly in spatial-frequen-
cy domain.

Windowed Fourier transform

One of the notable drawbacks of classical Fourier analysis is
its lack of spatial localization. By virtue of the uncertainty
principle, one of the fundamental properties of Fourier trans-
forms, spatial localization comes at the expense of frequency
localization and vice versa. In classical signal processing, this
problem is remedied by localizing frequency analysis in a
window g(x), leading to the definition of the windowed
Fourier transform (WFT, also known as short-time Fourier
transform or spectrogram in signal processing),

SH(x,0) = f:; f&x) g’ —x)e ™ dx’ (46)
grax')
=(f8x0 ) P®). 47

The WFT is a function of two variables: spatial location of
the window x and the modulation frequency . The choice
of the window function g allows control of the tradeoff
between spatial and frequency localization (wider windows
result in better frequency resolution). Note that WFT can be
interpreted as inner products (47) of the function f with
translated and modulated windows g\, referred to as the
WEFET atoms.

The generalization of such a construction to non-Euclide-
an domains requires the definition of translation and modu-
lation operators [83]. While modulation simply amounts to
multiplication by a Laplacian eigenfunction, translation is not
well defined due to the lack of shift invariance. It is possible
to resort again to the spectral definition of a convolution-like
operation (26), defining translation as convolution with a
delta function,

(g+8:)(0) = D (g.di )2 (S, pi ) v di(x)

i=0

=2 2idi(x)pi(x). (48)

i=0

The translated and modulated atoms can be expressed as

8xi(0) = ¢;(X) 2 &idi(x) i(x), 49)
i=0
where the window is specified in the spectral domain by its
Fourier coefficients g. The WFT on non-Euclidean domains
thus takes the form

SHE ) =(fgeirew =2 gi¢ix) (f;di¢; ). (50)

i=0

Due to the intrinsic nature of all the quantities involved in its
definition, the WFT is also intrinsic.
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Wavelets

Replacing the notion of frequency in time—frequency repre-
sentations by that of scale leads to wavelet decompositions.
Wavelets have been extensively studied in general graph
domains [84]. Their objective is to define stable linear decom-
positions with atoms well localized both in space and frequency
that can efficiently approximate signals with isolated singu-
larities. Similarly to the Euclidean setting, wavelet families
can be constructed either from spectral constraints or from
spatial constraints.

The simplest of such families are Haar wavelets. Several
bottom-up wavelet constructions on graphs were studied in
[85] and [86]. In [87], the authors developed an unsupervised
method that learns wavelet decompositions on graphs by
optimizing a sparse reconstruction objective. In [88], ensem-
bles of Haar wavelet decompositions were used to define deep
wavelet scattering transforms on general domains, obtaining
excellent numerical performance. Learning amounts to find-
ing optimal pairings of nodes at each scale, which can be effi-
ciently solved in polynomial time.

localized SCNN

Boscaini et al. used the WFT as a way of constructing patch
operators (39) on manifolds and point clouds and used in an
intrinsic convolution-like construction (40). The WFT allows
expressing a function around a point in the spectral domain in
the form D;(x)f = (Sf)(x.j) [89]. Applying learnable filters to
such patches (which in this case can be

interpreted as spectral multipliers), it is

possible to extract meaningful features that

also appear to generalize across different

domains. An additional DoF is the defini-

tion of the window, which can also be

learned [89].

an eigenvalue problem on an appropriately defined operator on
the graph. For instance, the Fiedler vector (the eigenvector asso-
ciated with the smallest nontrivial eigenvalue of the Laplacian)
carries information on the graph partition with minimal cut
[73], and the popular PageRank algorithm approximates page
ranks with the principal eigenvector of a modified Laplacian
operator. In some contexts, one may want develop data-driven
versions of such algorithms that can adapt to model mismatch
and perhaps provide a faster alternative to diagonalization
methods. By unrolling power iterations, one obtains a GNN
architecture whose parameters can be learned with backpropa-
gation from labeled examples, similarly to the learned sparse
coding paradigm [91]. We are currently exploring this connec-
tion by constructing multiscale versions of GNNs.

Recommender systems
Recommending movies on Netflix, friends on Facebook, or
products on Amazon are a few examples of recommender
systems that have recently become ubiquitous in a broad range
of applications. Mathematically, a recommendation method
can be posed as a matrix completion problem [92], where col-
umns and rows represent users and items, respectively, and
matrix values represent a score determining whether a user
would like an item or not. Given a small subset of known ele-
ments of the matrix, the goal is to fill in the rest. A famous
example is the Netflix challenge [93] offered in 2009 and car-
rying a US$1 million prize for the algorithm that can best pre-
dict user ratings for movies based on
previous ratings. The size of the Netflix
matrix is 480,000 movies x 18,000 users
(8.5 billion elements), with only 0.011%
known entries.
Several recent works proposed to incor-
porate geometric structure into matrix com-
pletion problems [94]-[97] in the form of

Applicuiions column and row graphs representing simi-
larity of users and items, respectively (see
Network analysis Figure 4). Such a geometric matrix comple-

One of the classical examples used in many
works on network analysis is citation net-
works. A citation network is a graph where
vertices represent articles and there is a
directed edge (i, j) if article i cites article j.
Typically, vertex-wise features representing
the content of the article (e.g., histogram of frequent terms in
the article) are available. A prototypical classification applica-
tion is to attribute each article to a field. Traditional approach-
es work vertex-wise, performing classification of each vertex’s
feature vector individually. More recently, it was shown that
classification can be considerably improved using information
from neighbor vertices, e.g., with a CNN on graphs [45], [77].
An example of the application of spectral and spatial graph
CNN models on a citation network is shown in “Citation
Network Analysis Application.”

Another fundamental problem in network analysis is rank-
ing and community detection. These can be estimated by solving

tion setting makes meaningful, e.g., the
notion of smoothness of the matrix values
and was shown beneficial for the perfor-

mance of recommender systems.
In a recent work, Monti et al. [56] pro-
posed addressing the geometric matrix
completion problem by means of a learnable model combining
a multigraph CNN (MGCNN) and a recurrent neural network
(RNN). Multigraph convolution can be thought of as a general-
ization of the standard bidimensional image convolution, where
the domains of the rows and the columns are now different (in
our case, user and item graphs). The features extracted from
the score matrix by means of the MGCNN are then passed to
an RNN, which produces a sequence of incremental updates
of the score values. Overall, the model can be considered as
a learnable diffusion of the scores, with the main advantage
compared to traditional approach being a fixed number of vari-
ables independent of the matrix size. The MGCNN achieved
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FIGURE 4. The geometric matrix completion exemplified on the famous
Netflix movie recommendation problem. The column and row graphs
represent the relationships between users and items, respectively.

state-of-the-art results on several classical matrix completion
challenges and, on a more conceptual level, could be a very
interesting practical application of geometric deep learning to
a classical signal processing problem of matrix completion.

Computer vision and graphics

The computer-vision community has recently shown an
increasing interest in working with 3-D geometric data,
mainly due to the emergence of affordable range-sensing
technology, such as Microsoft Kinect or Intel RealSense.
Many machine-learning techniques successfully working on
images were tried as is on 3-D geometric data, represented
for this purpose in some way digestible by standard frame-
works, e.g., as range images [98], [99] or

rasterized volumes [100], [101]. The main

drawback of such approaches is their

treatment of geometric data as Euclidean

structures. First, for complex 3-D objects,

Euclidean representations, such as depth

images or voxels, may lose significant

parts of the object or its fine details or even

break its topological structure. Second, Euclidean representa-
tions are not intrinsic and vary when changing pose or
deforming the object. Achieving invariance to shape defor-
mations, a common requirement in many vision applications,
demands very complex models and huge training sets due to
the large number of DoF involved in describing nonrigid
deformations [see Figure 5(a)].

In the domain of computer graphics, on the other hand,
working intrinsically with geometric shapes is a standard prac-
tice. In this field, 3-D shapes are typically modeled as Rie-
mannian manifolds and are discretized as meshes. Numerous
studies (see, e.g., [102]-[106]) have been devoted to designing
local and global features, e.g., for establishing similarity or
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FIGURE 5. An illustration of the difference between (a) classical CNN
applied to a 3-D shape (checkered surface) considered as a Euclidean
object and (b) a geometric CNN applied intrinsically on the surface. In the
latter case, the convolutional filters (visualized as a colored window) are
deformation invariant by construction.

correspondence between deformable shapes with guaranteed
invariance to isometries.

However, different applications in computer vision and
graphics may require completely different features. For instance,
to establish feature-based correspondence between a collection
of human shapes, one would desire the descriptors of corre-
sponding anatomical parts (e.g., noses, mouths) to be as simi-
lar as possible across the collection (see Figure 6(a)). In other

words, such descriptors should be invariant
to the collection variability. Conversely, for
shape classification, one would like descrip-
tors that emphasize the subject-specific char-
acteristics and, e.g., distinguish between two
different nose shapes (see Figure 6b). Decid-
ing a priori which structures should be used
and which should be ignored is often hard
or sometimes even impossible. Moreover, axiomatic modeling
of geometric noise, such as 3-D scanning artifacts, turns out to
be extremely hard.

By resorting to intrinsic deep neural networks on mani-
folds, the invariance to isometric deformations is automati-
cally built into the model, thus vastly reducing the number
of DoF required to describe the invariance class. Roughly
speaking, the intrinsic deep model will try to learn residual
deformations that deviate from the isometric model. Geomet-
ric deep learning can be applied to several problems in 3-D
shape analysis, which can be divided into two classes. First are
problems like local descriptor learning [47], [53] or correspon-
dence learning [48] (see the example in “Three-Dimensional
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phase space. Such a system can be recast as a signal defined
over a graph with |V;|= N; vertices and edge weights
W= (¢(ai, aji, i1, xj,1)) expressed through a similarity
kernel capturing the appropriate priors. GNNs are currently
being applied to perform event classification, energy
regression, and anomaly detection in high-energy physics
experiments, such as the Large Hadron Collider, and neutri-
no detection in the IceCube Observatory. Recently, models
based on GNNs have been applied to predict the dynamics
of N-body systems [111], [112], showing excellent predic-
tion performance.

FIGURE 6. (a) The features used for shape correspondence should ideally
manifest invariance across the shape class (e.g., the knee feature shown Molecule design
here should not depend on the specific person). (b) The features used for
shape retrieval, on the contrary, should be specific to a shape within the A key problem in material and drug design is predicting the
class to allow distinguishing between different people. Similar features physical, chemical, or biological properties (such as solubility
are marked with the same color. Handcrafting the right feature for each of toxicity) of a novel molecule from its structure. State-of-
application is a very challenging task. the-art methods rely on hand-crafted molecule descriptors,
such as circular fingerprints [113]-[115]. A recent work from
Shape Correspondence Application”), in which the output Harvard University in Cambridge, Massachusetts [55] pro-
of the network is pointwise. The inputs to the network are posed modeling molecules as graphs (where vertices represent
some pointwise features, e.g., color texture or simple geo- atoms and edges represent chemical bonds) and employing
metric features, such as normals. Using a GCNN:s to learn the desired molecule prop-
CNN architecture with multiple intrinsic erties. The authors’ approach has signifi-
convolutional layers, it is possible to pro- cantly outperformed handcrafted features.
duce nonlocal features that capture the con- This work opens a new avenue in molecule
text around each point. The second type design that might revolutionize the field.
of problems, such as shape recognition,
require the network to produce a global Medical imaging
shape descriptor, aggregating all the local An application area where signals are natu-
information into a single vector using, e.g., rally collected on non-Euclidean domains
the covariance pooling [47]. and where the methodologies we reviewed
could be very useful is brain imaging. A
Particle physics and chemistry recent trend in neuroscience is to associate
Many areas of experimental science are interested in studying functional magnetic resonance imaging traces with a precom-
systems of discrete particles defined over a low-dimensional puted connectivity rather than inferring it from the traces
phase space. For instance, the chemical properties of a mole- themselves [116]. In this case, the challenge consists in pro-
cule are determined by the relative positions of its atoms, and cessing and analyzing an array of signals collected over a
the classification of events in particle accelerators depends complex topology, which results in subtle dependencies. For
upon position, momentum, and spin of all the particles involved example, in a recent work from Imperial College London
in the collision. [117], GCNNs were used to detect disruptions of the brain
The behavior of an N-particle system is ultimately derived functional networks associated with autism.
from solutions of the Schrodinger equation, but its exact
solution involves diagonalizing a linear system of exponential Open problems and future directions
size. In this context, an important question is whether one can The recent emergence of geometric deep-learning methods in
approximate the dynamics with a tractable model that incor- various communities and application domains, which we tried
porates by construction the geometric stability postulated by to overview in this article, allows us to proclaim, perhaps with
the Schrodinger equation and at the same time has enough some caution, that we might be witnessing a new field being
flexibility to adapt to data-driven scenarios and capture com- born. We expect the following years to bring exciting new
plex interactions. methods and applications, and conclude our review with a few
An instance / of an N-particle system can be expressed as observations of current key difficulties and potential directions
of future research.
fiy = g’: 08t =1, Many .di.sciplines dealing with geometric da.ta.emplo.y
= some empirical models or handcrafted features. This is a typi-
cal situation in geometry processing and computer graphics,
where (orj;) model particle-specific information, such as the where axiomatically constructed features are used to analyze
spin, and (xj;) are the locations of the particles in a given 3-D shapes, or computational sociology, where it is common
38 IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |
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to first come up with a hypothesis and then test it on the data
[22]. Yet, such models assume some prior knowledge (e.g.,
isometric shape deformation model) and often fail to cor-
rectly capture the full complexity and richness of the data.
In computer vision, departing from handcrafted features
toward generic models learnable from the data in a task-
specific manner has brought a breakthrough in performance
and led to an overwhelming trend in the community to favor
deep-learning methods. Such a shift has not occurred yet
in the fields dealing with geometric data due to the lack of
adequate methods, but there are the first indications of a
coming paradigm shift.

Generalization

Generalizing deep-learning models to geometric data
requires not only finding non-Euclidean counterparts of basic
building blocks (such as convolutional and pooling layers)
but also generalization across different domains. Ge-
neralization capability is a key requirement in many applica-
tions, including computer graphics, where a model is learned
on a training set of non-Euclidean domains (3-D shapes) and
then applied to previously unseen ones. Spectral formulation
of convolution allows designing CNNs on

a graph, but the model learned this way on

one graph cannot be straightforwardly

applied to another one, because the spec-

tral representation of convolution is domain

dependent. A possible remedy to the gen-

eralization problem of spectral methods is

the recent architecture proposed in [118],

applying the idea of spatial transformer

networks [119] in the spectral domain.

This approach is reminiscent of the con-

struction of compatible orthogonal bases by means of joint
Laplacian diagonalization [75], which can be interpreted as
an alignment of two Laplacian eigenbases in a k-dimension-
al space.

The spatial methods, on the other hand, allow generaliza-
tion across different domains, but the construction of low-
dimensional local spatial coordinates on graphs turns out to
be rather challenging. In particular, the construction of aniso-
tropic diffusion on general graphs is an interesting research
direction. The spectrum-free approaches also allow general-
ization across graphs, at least in terms of their functional form.
However, if multiple layers of (38) are used with no nonlinear-
ity or learned parameters 6, simulating a high power of the
diffusion, the model may behave differently on different kinds
of graphs. Understanding under what circumstances and to
what extent these methods generalize across graphs is currently
being studied.

Time-varying domains

An interesting extension of geometric deep-learning problems
discussed in this review is coping with signals defined over a
dynamically changing structure. In this case, we cannot
assume a fixed domain and must track how these changes

affect signals. This could prove useful to tackle applications
like abnormal activity detection in social or financial net-
works. In the domain of computer graphics and vision, poten-
tial applications deal with dynamic shapes (e.g., 3-D video
captured by a range sensor).

Directed graphs

Dealing with directed graphs is also a challenging topic, as
such graphs typically have nonsymmetric Laplacian matri-
ces that do not have orthogonal eigendecomposition allow-
ing easily interpretable spectral-domain constructions.
Citation networks, which are directed graphs, are often treat-
ed as undirected graphs (including in our example in
“Three-Dimensional Shape Correspondence Application”)
considering citations between two articles without distin-
guishing which article cites which. This obviously may lose
important information.

Synthesis problems

Our main focus in this review was primarily on analysis prob-

lems on non-Euclidean domains. Not less important is the

question of data synthesis. There have been several recent
attempts to try to learn a generative model
allowing to synthesize new images [120]
and speech waveforms [121]. Extending
such methods to the geometric setting
seems a promising direction, though the
key difficulty is the need to reconstruct the
geometric structure (e.g., an embedding of
a 2-D manifold in the 3-D Euclidean space
modeling a deformable shape) from some
intrinsic representation [122].

Computation

The final consideration is a computational one. All existing
deep-learning software frameworks are primarily optimized
for Euclidean data. One of the main reasons for the computa-
tional efficiency of deep-learning architectures (and one of the
factors that contributed to their renaissance) is the assump-
tion of regularly structured data on a 1-D or 2-D grid, allow-
ing to take advantage of modern GPU hardware. Geometric
data, on the other hand, in most cases do not have a grid
structure, requiring different ways to achieve efficient com-
putations. It seems that computational paradigms developed
for large-scale graph processing are more adequate frame-
works for such applications.
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ptimal
Mass Transport

Signal processing and machine-
learning applications

ransport-based techniques for signal and data analysis have

recently received increased interest. Given their ability to

provide accurate generative models for signal intensities and

other data distributions, they have been used in a variety of
applications, including content-based retrieval, cancer detection,
image superresolution, and statistical machine learning, to name a
few, and they have been shown to produce state-of-the-art results.
Moreover, the geometric characteristics of transport-related met-
rics have inspired new kinds of algorithms for interpreting the
meaning of data distributions. Here, we provide a practical over-
view of the mathematical underpinnings of mass transport-related
methods, including numerical implementation, as well as a review,
with demonstrations, of several applications. Software accompa-
nying this article is available from [43].

Purposes for optimal mass transport

Motivation and goals

Numerous applications in science and technology depend on
effective modeling and information extraction from signal and
image data. Examples include being able to distinguish between
benign and malignant tumors in medical images; learning mod-
els (e.g., dictionaries) for solving inverse problems; identifying
people from images of faces, voice profiles, or fingerprints; and
many others. Techniques based on the mathematics of optimal
mass transport, also known as Earth Mover’s Distance in engi-
neering-related fields, have received significant attention
recently given their ability to incorporate spatial (in addition to
intensity) information when comparing signals, images, and
other data sources, thus giving rise to different geometric inter-
pretations of data distributions. These techniques have been
used to simplify and augment the accuracy of numerous pattern
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recognition-related problems. Some examples covered in

this article include image retrieval [32], [44], signal and

image representation [25], [27], [40], [50], inverse problems

[30], cancer detection [4], [39], texture and color modeling

[18], [41], shape and image registration [22], [29], and

machine learning [12], [17], [19], [28], [36], [42], to name a

few. This article is meant to serve as an introductory guide

to those wishing to familiarize themselves with these emerg-

ing techniques. Specifically, we

m provide a brief overview of key mathematical concepts
related to optimal mass transport

m describe recent advances in transport-related methodology
and theory

m provide a practical overview of their applications in mod-
ern signal analysis, modeling, and learning problems.

Why transport?

In recent years, numerous techniques for signal and image
analysis have been developed to address important learning
and estimation problems. Researchers working to unveil solu-
tions to these problems have found it necessary to develop
techniques to compare signal intensities across different sig-
nal/image coordinates. A common problem in medical imag-
ing, for example, is the analysis of magnetic resonance
images with the goal of learning about brain morphology dif-
ferences between healthy and diseased populations. Decades
of research in this area have culminated with techniques such
as voxel- and deformation-based morphology that make use
of nonlinear registration methods to understand differences in
tissue density and locations. Likewise, the development of
dynamic time-warping techniques was necessary to enable the
comparison of time series data more meaningfully without
confounds from commonly encountered variations in time.
Furthermore, researchers desiring to create realistic models of
facial appearance have long understood that appearance mod-
els for the eyes, lips, nose, and other facial features are signifi-
cantly different and thus must be dependent on a position
relative to a fixed anatomy. The pervasive success of these as
well as other techniques, such as optical flow, level-set meth-
ods, and deep neural networks, have shown that 1) nonlinearity
and 2) modeling the location of pixel intensities are essential
concepts to keep in mind when solving modern regression
problems related to estimation and classification.

The previously mentioned methodology for modeling
appearance and learning morphology, time series analysis and
predictive modeling, deep neural networks for classification of
sensor data, and the like is algorithmic in nature. The trans-
port-related techniques reviewed in this article are nonlinear
methods that, unlike linear methods such as Fourier, wave-
lets, and dictionary models, explicitly model signal intensities
and their locations. Furthermore, they are often based on the
theory of optimal mass transport from which fundamental
principles can be put to use. Thus, they hold the promise to
ultimately play a significant role in the development of a theo-
retical foundation for certain subclasses of modern learning
and estimation problems.

A brief historical note

The optimal mass transport problem seeks the most efficient
way of transforming one distribution of mass to another, rela-
tive to a given cost function. The problem was initially studied
by the French mathematician Gaspard Monge in his seminal
work “Mémoire sur la Théorie des Déblais et des Remblais”
[35] in 1781. In 1942, Leonid V. Kantorovich, who, at that
time, was unaware of Monge’s work, proposed a general for-
mulation of the problem by considering optimal mass trans-
port plans, which, as opposed to Monge’s formulation, allows
for mass splitting [23]. Kantorovich shared the 1975 Nobel
Prize in Economic Sciences with Tjalling Koopmans for
his work in the optimal allocation of scarce resources.
Kantorovich’s contribution is considered “the birth of the
modern formulation of optimal transport” [49], and it made the
optimal mass transport problem an active field of research in
the following years.

A significant portion of the theory of the optimal mass
transport problem was developed in the 1990s, starting with
Brenier’s seminal work on the characterization, existence, and
uniqueness of optimal transport maps [9], followed by Caf-
farelli’s work on regularity conditions of such mappings [10]
and Gangbo and McCann’s work on a geometric interpreta-
tion of the problem [20]. A more thorough history and back-
ground on the optimal mass transport problem can be found
in Villani’s book Optimal Transport: Old and New [49] and
Santambrogio’s book Optimal Transport for Applied Math-
ematicians [45]. The significant contributions in mathemati-
cal foundations of the optimal transport problem together
with recent advancements in numerical methods [6], [14], [31],
[37] have spurred the recent development of numerous data-
analysis techniques for modern estimation and detection (e.g.,
classification) problems.

Formulation of the problem and methodology

While reviewing both the continuous and discrete formula-
tions of the optimal transport problem (i.e., Monge’s and
Kantorovich’s formulations), the geometrical characteristics of
the problem, and the transport-based signal/image embed-
dings, we have elected to avoid measure-theoretic notation,
and other detailed mathematical language, in lieu of a more
informal and intuitive description of the problem. However, it
must be said that certain mathematical precision is required to
best understand the differences between Monge’s and
Kantorivich’s formulation, their geometric interpretations, and
other points. The interested reader may find it useful to con-
sult [24] for a more complete and mathematical description of
the concepts explained in the following sections.

Optimal transport: Formulation

Over the past century or so, the theory of optimal transport
(Earth mover’s distance) has developed two main formulations,
one utilizing a continuous map (Monge’s formulation) and
another utilizing what is called a transport plan (Kantarovich’s
formulation), for assigning the spatial correspondence neces-
sary for the related transport problem. Although Monge’s
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continuous formulation is helpful in problems where a point-to-
point assignment is desired, Kantarovich’s formulation is more
general and also covers the case of discrete (Dirac) masses (in
our case, signal intensities). These not only differ in mathemat-
ical formulation but also have consequences with regard to
their respective numerical solutions as well as applications.

Monge's continuous formulation
The Monge optimal mass transport problem is formulated as
follows. Consider two signals or images I, and ; defined over
their respective domains Qo and Q. Here, Qo and Q; are
typically subsets of R? and can often be taken as the unit
square (or cube in three dimensions). Although a detailed
measure-theoretic formulation is typically required (see [24]),
we bypass the rigorous formulation here and simply assume
that Io(x) and I1(y) correspond to signal intensities at posi-
tions x € Qo and y € Q. For digital signals, an interpolating
model can be used to construct these functions defined over
continuous domains from sampled discrete data. The signals
are required to be nonnegative, i.e., Io(x) =0 Vxe& Qo
and /1(y) =0 Vye Q. In addition, the total amount of
signal (or mass) for both signals should be equal to the
same constant (which is generally chosen to be 1):
L(}Io(x)dx = fﬂ.ll (y)dy = 1. In other words, I, and I, are
assumed to be probability density functions (PDFs).

Monge’s optimal transportation problem is to find a func-
tion f:Qo— Q; that pushes [, onto /; and minimizes the
objective function,

M(lo, 1)) = fienﬂgpjg; c(x, f(x))Io(x)dx, (1)

where ¢:Qox Qi — R" is the cost of moving pixel intensity
Io(x) from x to f(x) [Monge considered the Euclidean distance
as the cost function in his original formulation,
c(x, f(x)) =|x—f(x) ], and MP stands for a measure preserv-
ing map that moves all the signal intensity from I, to /;. That
is, for a subset B C Q| the MP requirement is that

fL ey ToCOdx = fB 11 (y)dy. )

If fis one to one, this just means that for A C Qo,

fA To(x)dx = /f ).

Such maps f& MP are sometimes called transport maps
or mass-preserving maps. Simply put, the Monge formulation
of the problem seeks to rearrange signal /; into signal /; while
minimizing a specific cost function. In cases when fis smooth
and one to one, then the requirement (2) can be written in a
differential form as

det(Df(x) 11 (f(x) = lo(x) 3

almost everywhere, where Df is the Jacobian of f [see
Figure 1(a)]. Note that both the objective function and the
constraint in (1) are nonlinear with respect to f(x). Hence, for

more than a century, the answers to questions regarding
existence and characterization of the Monge’s problem
remained unknown.

For certain measures, the Monge’s formulation of the opti-
mal transport problem is ill posed in the sense that there is no
transport map to rearrange one PDF to another. For instance,
consider the case where [, is a Dirac mass and /; is not. Kan-
torovich’s formulation alleviates this problem by finding the
optimal transport plan as opposed to the transport map.

Kantorovich's formulation

Kantorovich formulated the transport problem by optimizing
over transportation plans, which we denote as y. One can
think of y as the joint distribution of /, and /; describing
how much mass is being moved to different coordinates; i.e.,
let A be a subset of Qo and similarly B € Q. For notation-
al simplicity, we will not make a distinction between a
probability distribution and its density. More precisely,
we associate a probability distribution to a signal [, by
Io(A) = /A TIo(x)dx.

The quantity y (A X B) tells us how much mass in set A is
being moved to set B. Here, the MP constraint can be expressed
as Y(QoxB) =11(B) and y(A X Q1) = Io(A). Kantorovich’s
formulation for the optimal transport problem can then be
written as

Koy =min [ c(uy)dy(xy). @

Note that the integration notation dy (x,y) is meant to rep-

resent the fact that this integral is more general than the routine

Iy ll /-—f-.\,l

A={x: f(x) e B}

i 0 0000 = [ h(¥)dY = . 1y 0t (O FXDA()ax
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FIGURE 1. (a) The Monge transport map and (b) Kantorovich’s
transport plan.
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Riemman-type integral commonly used in signal processing,
and the integral can cover integration over domains that are more
general. The minimizer of the optimization problem above, 7",
is called the optimal transport plan. However, unlike the Monge
problem, in Kantorovich’s formulation, the objective function
and the constraints are linear with respect to y (x,y). Moreover,
Kantorovich’s formulation is in the form of a convex optimi-
zation problem. We also note that the Monge problem is more
restrictive than the Kantorovich problem; i.e., in Monge’s ver-
sion, mass from a single location in Qo is being sent to a single
location in ;. Kantorovich’s formulation, however, considers
transport plans that can deal with arbitrary measurable sets and
has the ability to distribute mass from the one location in one
density to multiple locations in another [see Figure 1(b)]. For any
transport map f:Qo — ; there is an associated transport plan,
determined by

vaxp = [

(xEA: f()EB

} Io(x)dx. 4)
Furthermore, when an optimal transport map f exists, it can
be shown that the transport plan y* derived from (5) is an
optimal transportation plan [49].

The Kantorovich problem is especially interesting in a dis-
crete setting, i.e., for PDFs of the form Io = ZiM:l pid(x —x;)
and I; = Zjlzl qj6(y—yj), where &(x) is the Dirac delta
function. Generally speaking, for such PDFs a transport map
that pushes /; into /; does not exist. In these cases, mass split-
ting, as allowed by the Kantorovich formulation, is necessary
[see Figure 1(b)]. The Kantorovich problem can be written as

K(10,11)=rnyin226(x1',y1)7ij
i
s.t. Z')/ij =pi, ZWZ qj
J 1

yi=0,i=1,..M,j=1,..,N, ©6)
where v, identifies how much of the mass particle m; at x;
needs to be moved to y; [see Figure 1(b)]. The optimization
above has a linear objective function and linear constraints;
therefore, it is a linear programming problem. This problem
is convex (which, in practice, translates to a relatively easier
process of finding a global minimum), but not strictly so,
and the constraint provides a polyhedral set of M x N matri-
ces. In practice, a nondiscrete measure is often approximated
by a discrete measure, and the Kantorovich problem is
solved through the linear programming optimization
expressed in (6).

Basic properties

Consider a transportation cost c¢(x, y) that is continuous and
bounded from below. Given two signals I, and /; as previously
shown, there always exists a transportation plan minimiz-
ing (4). This holds true for both when signals /, and I; are
functions and when they are discrete probability distribu-
tions [49]. Another important question is regarding the exis-
tence of an optimal transport map instead of a plan. Brenier

[9] addressed this problem for the special case where
c(x,y) =lx—yl|? Bernier’s results were later relaxed to
more general cases by Gangbo and McCann [20], which led
to the following theorem.

Theorem

Let [, and /; be nonnegative functions of the same total mass
and with bounded support. When c¢(x,y) = h(x —y) for some
strictly convex function /4, then there exists a unique optimal
transportation map f minimizing (1). In addition, the opti-
mal transport plan is unique and given by (5). Moreover, if
c(x,y) =Ix—yl? then there exists a (unique up to adding a
constant) convex function ¢ such that f~ = V¢. A proof is
available in [20] and [49].

Optimal mass transport: Geometric properties

Wasserstein metric

Let Q be a bounded subset of R? on which the signals are
defined. As an example, for signals (d = 1) or images (d = 2),
this can simply be the space [0,1]¢. Let P(Q) be the set of
probability densities supported on (). The p-Wasserstein met-
ric, Wp, for p =1 on P(Q) is then defined as using the opti-
mal transportation problem (4) with the cost function
c(x,y) =lx—yl?. Forlyand I, in P(Q),

1
oo, = (*infyewr [ 1x=y17dy( y)’.

For any p = 1, Wp is a metric on P(£2). The metric space
(P(Q),W,) is referred to as the p-Wasserstein space. To under-
stand the nature of the optimal transportation distances, it is
useful to note that for any p = 1, the convergence with respect
to W, is equivalent to the weak convergence of measures; i.c.,
Wp(In,I) — 0 as n — oo if and only if for every bounded and
continuous function f:Q — R

/Qf(x)lﬂ(x)dxa fQ S I(x)dx.

For the specific case of p = 1, the p-Wasserstein metric
is also known as the Monge—Rubinstein metric [49] or the
Earth mover’s distance [44]. The p-Wasserstein metric in one
dimension has a simple characterization. For one-dimensional
(1-D) signals I, and /;, the optimal transport map has a closed-
form solution. Let F; be the cumulative distribution function
of [;fori=0, 1, 1ie.,

Fi(x) = Lm) Ldx fori=0,1.
Note that this is a nondecreasing function going from O to 1.
We define the pseudoinverse of F, as follows: for z € (0, 1),
F'(2) is the smallest x for which Fo(x) = z, i.e.,

Fo'(z) =inf{x € Q: Fo(x) = z).

If Io > 0, then F|, is continuous and increasing (and thus
invertible), and the inverse of the function Fj is equal to
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the pseudoinverse we just defined. In other words, the pseu-
doinverse is a generalization of the notion of the inverse of
a function. The pseudoinverse (i.e., the inverse if 7o > 0
and I > 0) provides a closed-form solution for the p-Was-
serstein distance:

1
Wotto. 1y =(['1F3' @~ Fr' @ dz)". ™)

The closed-form solution of the p-Wasserstein distance in one
dimension is an attractive property, as it alleviates the need for
optimization. This property was employed in the sliced-
Wasserstein metrics as defined below.

SlicedWasserstein mefric

The idea behind the sliced-Wasserstein metric is to first obtain
a set of 1-D representations for a higher-dimensional proba-
bility distribution through projections (slicing the measure)
and then calculate the distance between two input distribu-
tions as a functional on the Wasserstein distance of their 1-D
representations. In this sense, the distance is obtained by
solving several 1-D optimal transport problems, which have
closed-form solutions.

The projection of high-dimensional PDFs is closely relat-
ed to the well-known Radon transform in the imaging and
image processing community [8], [25]. The d-dimensional
Radon transform R maps a function 7€ Li1(RY) where
Li(RY:= {LR! — ledll(x)ldxf 0} into the set of its
integrals over the hyperﬂélanes of R”. It is defined as

RI(1,0): = fR 1(t6 + 564 ds,
vieR voe ST,

here, 6% is the subspace orthogonal to 6, and S971 is the unit
sphere in R?. Note that R:Li (R?) — L; (R x S*~"). In other
words, the Radon transform projects a PDF, 1€ P(Rd),
where d > 1, into an infinite set of 1-D PDFs RI(.,0). The
sliced-Wasserstein metric for PDFs I, and I, on R? is then
defined as

1
SWolo, 1) = ( [[,, Wh(RIo(.0)RI1(,0)d6)"

where p =1, and W, is the p-Wasserstein metric, which,
for 1-D PDFs, RIo(.,8) and RIi(.,6) has a closed-form
solution [see (7)]. For more details and definitions of the
sliced-Wasserstein metric, we refer the reader to [8], [25]
and [29].

Wasserstein spaces, geodesics, and Riemannian structure
In this section, we assume that Q is convex. Here, we highlight
that the p-Wasserstein space (P (), W,) is not just a metric
space but has additional geometric structure. In particular, for
any p =1 and any lo,I; € P(Q), there exists a continuous
path (interpolation) between I, and /; whose length is the
distance between [, and /.

*
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Furthermore, the space with p =2 is special because it pos-
sesses a structure of a formal, infinite dimensional, Rieman-
nian manifold. That structure was first noted by Otto [38], who
developed the formal calculations for using this structure. The
precise description of the manifold of probability measures
endowed with Wasserstein metric can be found in [1].

Next, we review the two main notions that have a wide
use. We characterize the geodesics in (P(Q), W,), and in the
case of p = 2, we describe what is the local, Riemannian
metric of (P(Q),W>). Finally, we state the seminal result
of Benamou and Brenier [5], who provided a characteriza-
tion of geodesics via action minimization, which is useful in
computations and also gives an intuitive explanation of the
Wasserstein metric.

We first recall the definition of the length of a curve in a
metric space. Let (X, d) be a metric space and I:[a,b] — X.
Then the length of 7, denoted by L(/) is

L) = sup S A1) 0(1).

meN,a=t0<t1 <+ <tmw=b j=1

A metric space (X, d) is a geodesic space if, for any I, and /,,
there exists a curve I:[0,1] — X such that 1(0) = Io, I(1) = 1)
and for all 0 <s <r=<1,d(I(s),I(t)) = L(I|s.1). In particu-
lar, the length of [ is equal to the distance from I, to ;. Such a
curve / is called a geodesic. The existence of geodesics is use-
ful because it allows one to define the average of [, and I, as
the midpoint of the geodesic connection between them.

An important property of (P(Q),W)) is that it is a geodesic
space and that geodesics are easy to characterize. Specifically,
they are given by the displacement interpolation (also known as
a McCann interpolation). When a unique transportation map
f" from I, to I, exists that minimizes (1) for ¢ (x,y) =lx—y 17,
the geodesic is obtained by moving the mass at constant speed
from x to f (x). More precisely, for r € [0,1] and x € Q let

fr)=0—-Dx+1f ()

be the position at time  of the mass initially at x. Note that fo
is identity mapping and f1 = f". Pushing forward the mass by
£+, which by (3) has the form

Io(x)
det(Df7 (x))

if £ is smooth, provides the desired geodesic from I, to 1,. The
velocity of each particle 9,f; = f"(x) — x is the displacement of
the optimal transportation map. Figure 2 conceptualizes the geo-
desic between two PDFs in P(Q) and visualizes it for three dif-
ferent pairs of PDFs.

An important fact regarding the 2-Wasserstein space is
Otto’s presentation of a formal Riemannian metric for this
space [38]. It involves shifting to a Lagrangian point of view.
To explain, consider the path I(x, 7) in P () with I(x, 7) smooth.
Then s(x,t) = 91/9t(x,f) can be considered a tangent vector
to the manifold or a density perturbation. Instead of thinking

L(f; () =
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transforms adopt a Lagrangian point

of view for analyzing signals; i.e., they

I(x, t) = det(Dg;(x))(g; (X))
gr (%) = x

t=0 t=0.25 t=0.5t=0.75 t=1
(x, 1) = (1 = t)lg(x) + th(x)

are able to move signal (pixel) intensi-
ties around. Moreover, the transforms
can be viewed as Euclidean embedd-
ings for the data, under the previously
described transport-related metric space
structure. The benefit of such a Eu-
clidean embedding is that they facili-
tate the application of many standard
data-analysis algorithms (e.g., learn-
ing). Here, we briefly describe these

(a)

FIGURE 2. Geodesics in (a) the 2-Wasserstein space and in (b) the Euclidean space between various
1-D and two-dimensional (2-D) PDFs. Note that the geodesic in the 2-Wasserstein space captures
the nonlinear structure of the signals and images and provides a natural morphing. (Face portraits

courtesy of the public CMU Pose, Illumination, and Expression database.)

of increasing/decreasing the density, this perturbation can be

viewed as resulting from moving the mass by a vector field. In

other words, consider vector fields v(x, 7) such that

s=—V-(lv). ®)

There are many such vector fields. Otto defined the size of

s(-,1) as the square root of the minimal kinetic energy of the
vector field that produces the perturbation to density s, i.e.,

/ v 1 21dx. )

<S,S >: vﬂ}fg}m
Utilizing the Riemmanian manifold structure of P(Q) togeth-
er with the inner product presented in (9), the 2-Wasserstein
metric can be reformulated into finding the minimizer of the
following action among all curves in P(£)) connecting
Iy and [, [5],

W3 (Io,11) = infr, fo : /Q I(x,t)\v(x,t)|2dxdz
st. 3 I+V-(Iv)=0
1(,0)=1o(- ), 1(-,1) =L (),

where the first constraint is the well-known continu-
ity equation.

Optimal transport: Embeddings and transforms

The optimal transport problem and, specifically, the
2-Wasserstein metric and the sliced-2-Wasserstein metric
have been recently used to define nonlinear transforms for
signals and images [25], [27], [40], [50]. In contrast to com-
monly used linear signal transformation frameworks (e.g.,
Fourier and wavelet transforms) that employ signal intensi-
ties only at fixed coordinate points, thus adopting an Eulerian
point of view, the idea behind transport-based transforms is
to consider the intensity variations together with the loca-
tions of the intensity variations in the signal. Therefore, such

(b)

transforms and some of their promi-
nent properties.

The linear opfimal fransportation
framework

The linear optimal transportation (LOT)
framework was proposed by Wang et al.
[50]. The framework was used in [4] and [39] for pattern rec-
ognition in biomedical images and specifically histopathology
and cytology images. Later, it was extended in [27] as a gener-
ic framework for pattern recognition, and it was used in [26]
for the single-frame superresolution reconstruction of face
images. The LOT framework, which provides an invertible
Lagrangian transform for images, was initially proposed as a
method to simultaneously amend the computationally expen-
sive requirement of calculating pairwise 2-Wasserstein dis-
tance between N signals for pattern recognition purposes and
to allow for the construction of generative models for images
involving textures and shapes. For a given set of images
I € P,(Q), for i = 1,...,N, and a fixed template I, all non-
negative and having been normalized to have the same sum,
the transform projects the images to the tangent space at I,.
The projections are acquired by finding the optimal velocity
fields corresponding to the optimal transport plans between I,
and each image in the set.

The framework provides a linear embedding for P»(Q)
with respect to a fixed signal Io € P>(Q). This means that the
Euclidean distance between an embedded signal, denoted as
T;, and the fixed reference, 1y, is equal to Wa(lo, I;), and the
Euclidean distance between two embedded normalized signals
is, generally speaking, an approximation of their 2-Wasserstein
distance. The geometric interpretation of the LOT framework
is presented in Figure 3. The linear embedding then facilitates
the application of linear techniques such as principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA) to
probability measures.

The cumulative distribution transform

Park et al. [40] considered the LOT framework for 1-D PDFs
(positive signals normalized to integrate to 1), and since in
dimension one the transport maps are explicit, they were able
to characterize the properties of the transformed densities.
Similar to the LOT framework, let /; for i = 1,...,N and [,
be signals (PDFs) defined on R. The framework first
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calculates the optimal transport maps between /; and I, using
filx) = Fi'e Fo(x) for all i =1,...,N. Then the forward and
inverse transport-based transform, denoted as the cumulative
distribution transform (CDT) by Park et al. [40], for these
density functions with respect to the fixed template I, is
defined as

Ii=(fi—1d)y/Io  (Analysis)
Li=(fr"Y o=fi") (Synthesis)

where (lo cffl)()c) = Io(ffl(x)). Note that the L,-norm
(Euclidean distance) of the transformed signals, I;, corre-
sponds to the 2-Wasserstein distance between /, and /;. In con-
trast to the higher-dimensional LOT, however, the Euclidean
distance between two transformed (embedded) signals I; and
1), is the exact 2-Wasserstein distance between I; and I; (see
[40] for a proof) and not just an approximation. Hence, the
transformation is isometric (preserves) with respect to the
2-Wasserstein metric. This isometric nature of the CDT was
utilized in [28] to provide positive definite kernels for machine
learning of n-dimensional signals.

From a signal processing point of view, the CDT is a non-
linear signal transformation that captures certain nonlinear
variations in signals including translation and scaling. Specifi-
cally, it gives rise to the transformation pairs presented in Table 1.
From Table 1, one can observe that although /(z — 7) is non-
linear in T (when I(.) is not a linear function), its CDT repre-
sentation 1(f) + ’L'm becomes affine in T (a similar effect
is observed for scaling). In effect, the Lagrangian transforma-
tions (compositions) in original signal space are rendered into
Eulerian perturbations in transform space, borrowing from
the partial differential equation (PDE) parlance. Furthermore,
Park et al. [40] demonstrated that the CDT facilitates certain
pattern recognition problems. More precisely, the transforma-
tion turns certain not linearly separable and disjoint classes of
signals into linearly separable ones. Formally, let C be a set of
1-D maps, and let P,Q C P>(Q) be sets of positive PDFs born
from two positive PDFs po,qo € P>(Q) (which we denote as
mother density functions or signals) as

P={plp="h(po-h),Vh e C},
0={qlg="H(qo-h),Yh e C}.

If there exists no & € C for which po = h'(qo * h), then the
sets P and Q are disjoint but not necessarily linearly separable
in the signal space. A main result of [40] states that the sig-
nal classes P and Q are guaranteed to be linearly separable in
the transform space (regardless of the choice of the reference
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FIGURE 3. A graphical representation of the LOT framework. The framework
embeds the PDFs (i.e., signals or images) /;in the tangent space (i.e., the
set of all tangent vectors) of P(Q) with respect to a fixed PDF /. As a con-
sequence, the Euclidean distance between the embedded functions /i and
I» provides an approximation for the 2-Wasserstein distance, Wa (11, l2).

above conditions. We refer the reader to [40] for further infor-
mation. Figure 4(a) and (b) demonstrates the linear separation
property of the CDT. The signal classes P and Q are chosen to
be the set of all translations of a single Gaussian and a Gauss-
ian mixture including two Gaussian functions with a fixed
mean difference, respectively. The discriminant subspace is
calculated for these classes, and it is shown that although the
signal classes are not linearly separable in the signal domain,
they become linearly separable in the transform domain.

The Radon CDT

The CDT framework was extended to 2-D density functions
(images) through the sliced-Wasserstein distance in [25] and
was denoted the Radon CDT. It is shown in [25] that similar
characteristics of the CDT, including the linear separation
property, also hold for the Radon CDT. Figure 4 clarifies the
linear separation property of the Radon CDT and demonstrate
the capability of such transformations. In particular, Figure 4(c)
and (d) shows a facial expression data set with two classes (i.e.,
neutral and smiling expressions) and its corresponding repre-
sentations in the LDA discriminant subspace calculated from
the images [Figure 4(c)] and the Radon CDT of the data set

Table 1. The CDT pairs. Note that the composition holds for all strictly

monotonically increasing functions g.

Signal Domain  CDT Domai
signal 1)) if C satisfies the following conditions: Property I(')%"" omain i omain
1) heC> Wltec ; :
2) hi,h € C= phi+(1—p)h2 € C, Vp €[0,1] Translation I{x—7) ’}ﬂﬂm
3) hi,h, € C= hi(hy),h2(h) € C Sealin e i e-1) I
4) W (poeh) # qo, Yh € C. ing (ax) T ol
The set of translations C = {fIf(x) =x+7.7 €R} and | Compostion g (Ilgll g~ -+ %)= x1/Tolx
scaling C = {fIf(x) = ax,a € R"}, for instance, satisfy the Jlolx)
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CDT
Signal Space Transform Space
P / \ Q \J P Q
P={plp=h'(py0 h), Vhe C} _ CDT, ~ . _ =
Plp="1(po 0 1), P(X) = po(x + 7) == B(X) = Fo(¥) + 7 lp(x)
Q={qlg=h"(go0 h), Vhe C} cDT - ~
C={hh(X)=x+7,7ecR} q(X) = Qo(x + 7) == g(x) = Go(X) + 7 VIy(x)
oP| op
x Q| | X Q
*\\_\ S = (/’/
: \_\\\ //,
B e
Projection of the Data Onto a 3-D Projection of the Transformed Data Onto a
Discriminant Subspace 3-D Discriminant Subspace
(a) (b)
Random CDT
Image Space Transform Space
Class 1 Class 1 --- -
ons: S - [
. — | ™
' e Class 1
koo =, | = o x Class 2
x x X 3
™% x = " . : x <4 ﬁ % & x o °0 ’ o
. b . s % [ X X o
x W' ’)‘ * x % Xxxl x)“){xxoooo °8°°
= x:x’,’(‘ .x;x 5 K % X :o o o Lo
8 Ew x x x X o, o
x | eClass1| x % % s # ¢
| | | x Class 2 L o X B ]
Projection of the Data Onto a 2-D Projection of the Transformed Data Onto a
Discriminant Subspace 2-D Discriminant Subspace
(c) (d)

FIGURE 4. Examples for the linear separability characteristic of the CDT and the Radon CDT. The discriminant subspace for each case is calculated using
the penalized-linear discriminant analysis. It can be seen that the nonlinear structure of the data is well captured in the transform spaces. (a) and (b) The
linear separation property of the CDT. (c) A facial expression data set with two classes and its corresponding representations in the LDA discriminant
subspace and (d) the Radon CDT of the data set and the corresponding representation of the transformed data in the LDA discriminant subspace. 3-D:

three-dimensional. (Face portraits courtesy of the public CMU Pose, lllumination, and Expression database.)
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and the corresponding representation of the transformed data simplifies to a one-to-one assignment problem that can be solved
in the LDA discriminant subspace [Figure 4(d)]. It is clear that in O(N?logN). In addition, several multiscale approaches and
the image classes become more linearly separable in the trans- sparse approximation approaches have recently been intro-
form space. In addition, the cumulative percentage variation duced to improve the computational performance of the linear
(CPV) of the data set in the image space, the Radon transform programming solvers [37], [46].
space, the Ridgelet transform space, and the Radon-CDT space
are shown in Figure 5. The figure shows that the variations in Enfropy-regu/ar ized solution
the data set could be explained with fewer components in the Cuturi’s work [14] provides a fast and easy-to-implement vari-
Radon-CDT space. ation of the Kantorovich problem by considering the transpor-

tation problem from a maximum-entropy perspective. The
Numerical methods idea is to regularize the Wasserstein metric by the entropy of
The development of robust and efficient numerical methods the transport plan. This modification simplifies the problem
for computing transport-related maps, plans, metrics, and geo- and enables much faster numerical schemes with complexity
desics is crucial for the development of algorithms that can be
used in practical applications. We next present several notable
approaches for finding transportation maps and plans. Table 2
provides a high-level overview of these methods. 100¢
. . 80
A Ilnear programming problem
The linear programming problem is an optimization problem - 60
with a linear objective function and linear equality and 5
inequality constraints. Several numerical methods exist for e, ~_Image Space
solving linear programming problems, among which are 20‘," Radon Space
the simplex method and its variations and the interior-point ; + Ridgelet Space
methods. The computational complexity of the mentioned Ok Radon.CDY Space
numerical methods, however, scales at best cubically in the 0 20 4,0 60 80
. . . . Number of Eigenvalues (k)
size of the domain. Hence, assuming the measures considered n
have N particles, the number of unknowns y;s is N? and the CPV = 2;7;/1,
computational complexities of the solvers are at best Zn=14n
ON? log N) [14], [44]. The computational complexity of the J,; = ith Eigenvalue
linear programming methods is a very important limiting fac-
tor for the applications of the Kantorovich problem. FIGURE 5. The cumulative percentage of the face data set in Figure 4 in the
We note that, in the special case where [, and /; both have | image space, the Radon transform space, the Ridgelet transform space,
N equidistributed particles, the optimal transport problem and the Radon-CDT transform space.
Comparison of Numerical Approaches
Method Remark
Linear programming Applicable to general costs. Good approach if the PDFs are supported at very few sites.
Multiscale linear programming Applicable to general costs. Fast and robust method, though fruncation involved can lead to
imprecise distances.
Auction algorithm Applicable only when the number of particles in the source and the target is equal and all of their
masses are the same.
Entropy-regularized linear Applicable to general costs. Simple and performs very well in practice for moderately large problems.
programming Difficult o obtain high accuracy.
Fluid mechanics This approach can be adapted fo generalizations of the quadratic cost, based on action along paths.
AHT minimization Quadratic cost. Requires some smoothness and positivity of densities. Convergence is guaranteed
only for infinitesimal step size.
Gradient descent on the dual problem  Quadratic cost. Convergence depends on the smoothness of the densities, hence a multiscale
approach is needed for nonsmooth densities (i.e., normalized images).
Monge-Ampére solver Quadratic cost. One in [7] is proved to be convergent. Accuracy is an issue due to the wide stencil used.
Semidiscrete approximation An efficient way to find the map between a continuous and discrete signal [31].
AHT: Angenent, Haker, and Tannenbaum.
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O(N?) [14] or O(Nlog(N)) using the convolutional
Wasserstein distance presented in [47] (compared to O (N %) of
the linear programming methods), where N is the number of
delta masses in each of the measures. The disadvantage is that
it is difficult to obtain high-accuracy approximations of the
optimal transport plan. The entropy-regularized p-Wasserstein
distance, also known as the Sinkhorn distance, between PDFs
I, and I, defined on the metric space (£,d) is defined as

WP (Io, I1) = infye wp fg 470 )y @, ydxdy

FA[ YN y)ddy.  (10)

where the regularizer is the negative entropy of the plan. We
note that this is not a true metric since WZ, 2o, I1) > 0. Since
the entropy term is strictly concave, the overall optimization
in (10) becomes strictly convex. It is shown in [14] that the
entropy-regularized p-Wasserstein distance in (10) can be
reformulated as

Wy a(lo,1) = A* inf KL(y 1 ),

where Ki(x,y) = exp(—d”(x,y)/2) and KL(y|%Ky) is the
Kullback-Leibler (KL) divergence between y and %K. In
short, the regularizer enforces the plan to be within 1/ radius
in the KL-divergence sense from the transport plan
Yoot y) = o) 1Y)

Cuturi shows that the optimal transport plan y in (10) is of
the form D,Ka1D., where D, and D,, are diagonal matrices
with diagonal entries v,w € RY [14]; therefore, the number of
unknowns in the regularized formulation is reduced from N?
to 2N. The new problem can then be solved through computa-
tionally efficient algorithms such as the iterative proportional
fitting procedure, also known as the iterative proportional fit-
ting procedure algorithm, or, alternatively, through the Sink-
horn—Knopp algorithm.

I = det(DV ) 11 (V 1), ¢(X) = %xz = k(%)

FIGURE 6. A visualization of the iterative update of the transport potential
and correspondingly the transport displacement map through CWVB itera-
tions. (Face portraits courtesy of the public Extended Yale Face Database B.)

*
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Flow minimization (AHT)

Angenent, Haker, and Tannenbaum [2], proposed a flow min-
imization scheme to obtain the optimal transport map from
the Monge problem. The method was used in several image-
registration applications [22], pattern recognition [27], [50],
and computer vision [26]. A brief review of the method is
provided here.

Let I:X — R and I1:Y — R™ be continuous probability
densities defined on convex domains X,Y € R?. To find the
optimal transport map, f, AHT starts with an initial trans-
port map, fo:X — Y calculated from the Knothe—Rosenblatt
coupling [49]. Then it updates f;, to minimize the transport cost
while constraining it to remain a transport map from / to /.
The updated equation for finding the optimal transport map in
AHT is calculated to be

fir1 09 = fi@) + €D (fi = V(A div ().

where € is the step size, Df} is the Jacobian matrix, and A
is the Poisson solver with Neumann boundary conditions.
AHT show that for infinitesimal step size, €, fi(x) converges
to the optimal transport map. For a detailed derivation of the
preceding equation, see [2] and [24].

The AHT method is, in essence, a gradient descent method
on the Monge formulation of the optimal transport problem.
Chartrand, Wohlberg, Vixie, and Bollt (CWVB) [11] proposed
an alternative gradient-descent method based on Kantorovich’s
dual formulation of the transport problem that updates the
optimal potential transport field, 7(x), where f(x) = Vn(x).
Figure 6 presents the iterations of the CWVB method for two
face images taken from the YaleB face database.

Monge-Ampére equation
The Monge—Ampere PDE is defined as

det(H¢) = h(x,¢,D¢)

for some functional # and where H¢ is the Hessian matrix of
¢. The Monge—-Ampere PDE is closely related to the Monge
problem for the quadratic cost function. According to Bernier’s
theorem (discussed in the “Basic Properties” section), when 7,
and [/, are absolutely continuous PDFs defined on sets
X,Y C R", the optimal transport map that minimizes the
2-Wasserstein metric is uniquely characterized as the gradi-
ent of a convex function ¢:X — Y. Moreover, we showed that
the mass-preserving constraint of the Monge problem can be
written as det(Df)I1(f) = lo. Combining these results, one
can have

To(x)

det(D(VE)) = 7 w4y

(11

where DV¢ = H¢, and, therefore, the equation shown above
is in the form of the Monge—Ampere PDE. Now, if ¢ is a con-
vex function on X satisfying V¢ (X) =Y and solving (11),
then f~ = V¢ is the optimal transportation map from I, to I;.
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The geometrical constraint on this problem is rather unusual
in PDEs and is often referred to as the optimal transport
boundary conditions. Several authors have proposed numeri-
cal methods to obtain the optimal transport map through solv-
ing the Monge—Ampere PDE in (11) [7], [33]. In particular, the
scheme in [7] is monotone, has complexity O(N) (up to
logarithms), and is provably convergent. We conclude by
remarking that several regularity results on the optimal trans-
port maps were established through the Monge—Ampere
equation (see [24] for references).

Semidiscrete approximation
Several works [31], [34] have considered the problem in which
one PDF, [, has a continuous form while the other, /, is dis-
crete, I1(y) = Zqié (y—yi). It turns out there exist weights
w; such that the optimal transport map f:X — Y can be
described via a power diagram. More precisely, the set of x
mapping to y; is the following cell of the power diagram:
PD,(y) = {x:1x—yil*—wi <lx—y;1*—wj;,Vj}.

The main observation is that the weights w; are minimizers

of the following unconstrained convex functional:

Z(quf—

i

/ (||x—y,«||2—w,~)10(x)dx)).

PDw(yi)

Works by Mérigot [34] and Levy [31] use Newton-based
schemes and multiscale approaches to minimize the functional.
The need to integrate over the power diagram makes the imple-
mentation somewhat geometrically delicate. Nevertheless, a
recent implementation by Levy [31] gives impressive results
in terms of speed. This approach provides the transportation
mapping (not just the approximation of a plan).

Applications

Image retrieval

One of the earliest applications of the optimal transport prob-
lem was in image retrieval. Rubner et al. [44] employed the dis-
crete Wasserstein metric, which they denoted the Earth mover’s
distance, to measure the dissimilarity between image signa-
tures. In image-retrieval applications, it is common practice
first to extract features (i.e., color features, texture feature,
shape features, and so on) and then generate high-dimensional
histograms or signatures (histograms with dynamic/adaptive
binning) to represent images. The retrieval task then simplifies
to finding images with similar representations (e.g., small dis-
tance between their histograms/signatures). The Wasserstein
metric is specifically suitable for such applications because it
can compare histograms/signatures of different sizes (histo-
grams with different binning). This unique capability turns the
Wasserstein metric into an attractive candidate in image-
retrieval applications [32], [44]. In [44], the Wasserstein metric
was compared with common metrics such as Jeffrey’s diver-
gence, the y? statistic, the L, distance, and the L, distance in an
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image-retrieval task, and it was shown that the Wasserstein
metric achieves the highest precision/recall performance
among all.

Speed of computation is an important practical consid-
eration in image-retrieval applications. For almost a decade,
the high computational cost of the optimal transport problem
overshadowed its practicality in large-scale image-retrieval
applications. Recent advancements in numerical methods,
including the work of Merigot [34] and Cuturi [14], among
many others, have reinvigorated optimal transport-based dis-
tances as a feasible and appealing candidate for large-scale
image-retrieval problems.

Registration and morphing

Image registration deals with finding a common geometric
reference frame between two or more images. It plays an
important role in analyzing images obtained at different times
or using different imaging modalities. Image registration and,
more specifically, biomedical image registration are active
areas of research. Registration methods find a transformation f
that maximizes the similarity between two or more image rep-
resentations (e.g., image intensities and image features).
Among the plethora of registration methods, nonrigid registra-
tion methods are especially important given their numerous
applications in biomedical problems. They can be used to
quantify the morphology of different organs, correct for physi-
ological motion, and allow for comparison of image intensi-
ties in a fixed coordinate space (atlas). Generally speaking,
nonrigid registration is a nonconvex and nonsymmetric prob-
lem, with no guarantee of the existence of a globally opti-
mal transformation.

Various works in the literature deploy the Monge prob-
lem for image warping and elastic registration. Utilizing the
Monge problem in an image-warping/registration setting has
a number of advantages. First, the existence and uniqueness
of the global transformation (the optimal transport map) is
known. Second, the problem is symmetric, meaning that the
optimal transport map for warping I, to I, is the inverse of
the optimal transport map for warping /; to I,. Last, it pro-
vides a landmark-free and parameter-free registration scheme
with a built-in mass preservation constraint. These advan-
tages motivated several follow-up works to investigate the
application of the Monge problem in image registration and
warping [21], [22].

In addition to images, the optimal mass transport prob-
lem has also been used in point cloud and mesh registration
[29] (see [24] for more references), which have various appli-
cations in shape analysis and graphics. In these applications,
shape images (2-D or 3-D binary images) are first represented
using either sets of weighted points (e.g., point clouds), using
clustering techniques such as K-means or fuzzy C-means,
or with meshes. Then a regularized variation of the optimal
transport problem is solved to match such representations. The
regularization on the transportation problem is often imposed
to enforce the neighboring points (or vertices) to remain near
each other after the transformation.
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tributions of the images is often not
satisfying, because a color-transfer
map may not transfer the colors of
neighboring pixels in a coherent
manner and may introduce arti-
facts in the color-transferred image.
Therefore, the color-transfer map
is often regularized to make the
transfer map spatially coherent [41].
Figure 7 shows a simple example of

Intensity

\

Cumulative
Distribution
of Gray
Values

Input Image Target Image

Cumulative

Distribution 0.5
of RGB 0
Values (=)

FIGURE 7. (a) Gray value and (b) color transfer via optimal transportation. RGB: red, green, blue.

Color transfer and texture synthesis

Texture mixing and color transfer are appealing applica-
tions of the optimal transport framework in image analysis,
graphics, and computer vision. Here, we briefly discuss
these applications.

Color transfer
The purpose of color transfer is to change the color palette
of an image to impose the feel and look of another image.
Color transfer is generally performed through finding a
map, which morphs the color distribution of the first
image into the second one. For grayscale images, the color-
transfer problem simplifies to a histogram-matching prob-
lem, which is solved through the 1-D optimal transport
formulation [16]. In fact, the classic problem of histogram
equalization is a 1-D transport problem [16]. The color-
transfer problem, on the other hand, is concerned with
pushing the 3-D color distribution of the first image into the
second one. This problem can also be formulated as an
optimal transport problem, as demonstrated in [41] (see [24]
for more references).

A complication that occurs in the color transfer on real
images, however, is that a perfect match between color dis-

gray-value and color transfer via the
optimal transport framework. It can
be seen that the cumulative distri-
bution of the gray-value and col-
or-transferred images are similar to
that of the input image.

Transferred Image

Texture synthesis and mixing
Texture synthesis is the problem of
synthesizing a texture image that
is visually similar to an exemplar
input-texture image and has vari-
ous applications in computer graph-
ics and image processing. Many
methods have been proposed for
texture synthesis, such as synthesis
by recopy and synthesis by statis-
tical modeling. Texture mixing,
however, considers the problem of
synthesizing a texture image from
a collection of input-texture images
in a way that the synthesized tex-
ture provides a meaningful integra-
tion of the colors and textures of the input-texture images.
Metamorphosis is one of the successful approaches in texture
mixing; it performs the mixing via identifying correspon-
textons) among
input textures and progressively morphing between the shapes
of elements. In other approaches, texture images are first param-
etrized through a tight frame (often steerable wavelets), and sta-
tistical modeling is performed on the parameters.

Other successful approaches include random phase and
spot noise texture modeling [18], which model textures as sta-
tionary Gaussian random fields. These models are based on
the assumption that the visual texture perception is based on
the spectral magnitude of the texture image. Therefore, uti-
lizing the spectral magnitude of an input image and random-
izing its phase will lead to a new synthetic texture image that
is visually similar to the input image. Ferradans et al. [18] uti-
lized this assumption together with the Wasserstein geodesics
to interpolate between spectral magnitude of texture images
and provide synthetic mixed texture images. Figure 8 shows
an example of texture missing via the Wasserstein geodesic
between the spectral magnitudes of the input-texture images.
The in-between images are synthetically generated using the
random-phase technique.

dences between elementary features (i.e.,
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Image denoising and restoration
The optimal transport problem has also been used in several
image-denoising and -restoration problems [30]. The goal in
these applications is to restore or reconstruct an image from
noisy or incomplete observation. Lellmann et al. [30] utilized
the Kantorovich—Rubinsten discrepancy term together with a R-Channel
total variation (TV) term in the context of image denoising. Spectral
They called their method Kantorovich—Rubinstein-TV (KR- Magnitude
TV) denoising. Note that the KR metric is closely related to CGEriz
the 1-Wasserstein metric (for 1-D signals they are equivalent).
The KR term in their proposed functional provides a fidelity B-Channel
term for denoising, and the TV term enforces a piecewise con-
stant reconstruction. @il = U= @= 009 =
Transporf-based morphomefry FIGURE 8. An example of texture mixing via optimal transport using the
Given their suitability for comparing mass distributions, | method presented in Ferradans et al. [18].
transport-based approaches for performing pattern recogni-
tion of morphometry encoded in image intensity values have
also lately emerged. Recently described approaches for those deformation-based methods in that it has numerically
transport-based morphometry (TBM) [4], [27], [50] work by exact, uniquely defined solutions for the transport plans or
computing transport maps or plans between a set of images maps used; i.e., images can be matched with little perceptible
and a reference or template image. The transport plans/maps error. The same is not true in methods that rely on registration
are then utilized as an invertible feature/transform onto via the computation of deformations, given the significant
which pattern recognition algorithms such as PCA or LDA topology differences commonly found in medical images.
can be applied. In effect, it utilizes the LOT framework Moreover, TBM allows for comparison of the entire inten-
described in the “The Linear Optimal Transportation sity information present in the images (shapes and textures),
Framework™ section. These techniques have recently been while deformation-based methods are usually employed to
employed to decode differences in cell and nuclear morphol- deal with shape differences. Figure 9 shows a schematic of
ogy for drug screening [4], cancer detection histopathology the TBM steps applied to a cell nuclei data set. It can be seen
[39], and cytology images, as well as applications such as the that TBM is capable of modeling the variation in the data set.
analysis of galaxy morphologies [27]. In addition, it enables one to visualize the classifier, which

Deformation-based methods have long been used in ana- discriminates between image classes (in this case malignant
lyzing biomedical images. TBM, however, is different from versus benign).

Transport Mode 1 Mode 2
Wasserstein Geodesic Ma f,—id i L e 0 e |
SBGANAIO O © 0o o0 0 0 00
20 -0 0 o 20 20 -0 0 o 20
(b)
@) ()
FIGURE 9. The schematic of the TBM framework. (a) The optimal transport maps between input images /1, ..., /v and a template image /, are calculated.
(b) and (c) Next, linear statistical modeling such as PCA, LDA, and canonical correlation analysis is performed on the optimal transport maps. The resulting
transport maps obtained from the statistical modeling step are then applied to the template image to visualize the results of the analysis in the image space.
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Superresolution

Superresolution is the process of reconstructing a high-
resolution image from one or several corresponding low-
resolution images. Superresolution algorithms can be broadly
categorized into two major classes, multiframe superresolu-
tion and single-frame superresolution, based on the number of
low-resolution images they require to reconstruct the
corresponding high-resolution image. The TBM approach was
used for single-frame superresolution in [26] to reconstruct
high-resolution faces from very low-resolution-input face
images. The authors utilized the TBM in combination with
subspace learning techniques to learn a nonlinear model for
the high-resolution face images in the training set.

In short, the method consists of a training and a testing
phase. In the training phase, it uses high-resolution face
images and morphs them to a template high-resolution face
through optimal transport maps. Next, it learns a subspace
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for the calculated optimal transport maps. A transport map
in this subspace can then be applied to the template image to
synthesize a high-resolution face image. In the testing phase,
the goal is to reconstruct a high-resolution image from the
low-resolution input image. The method searches for a syn-
thetic high-resolution face image (generated from the trans-
port subspace) that provides a corresponding low-resolution
image, which is similar to the input low-resolution image.
Figure 10 shows the steps used in this method and demon-
strates reconstruction results.

Machine learning and statistics

The optimal transport framework has recently attracted ample
attention from the machine-learning and statistics communities
[12], [19], [25], [28], [36]. Some applications of the optimal
transport in these arenas include various transport-based learning
methods [19], [28], [36], [48], domain adaptation, Bayesian

Mode 1 Mode 2 Mode 3 Mode 4

+0

PCA Modes

Generative Modeling of Face Images .
ith jth

o = 0j/2 =0; Mode Mode

"
det(Df (N o(f(x))

1x) = x+ aVi(x) + oV(x)

Low-Resolution
Input

High-Resolution
Reconstruction

High-Resolution
Image
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(d)

FIGURE 10. (a) In the training phase, optimal transport maps that morph the template image to high-resolution training face images are calculated.
(b) Statistical modeling of transport maps. PCA is used to learn a linear subspace for transport maps for which a linear combination of obtained
eigenmaps can be applied to the template image to obtain synthetic face images. (c) A geometric interpretation of the problem and (d) reconstruction
results in transport-based single-frame superresolution. (Face portraits courtesy of the public Extended Yale Face Database B.)
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inference [12], [13] and hypothesis testing [15], [42] among oth-
ers. Here, we provide a brief overview of the recent developments
of transport-based methods in machine learning and statistics.

learning

Transport-based distances have recently been used in several
works as a loss function for regression, classification, and
other techniques. Montavon, Miiller, and Cuturi [36], for
instance, utilized the dual formulation of the entropy-regu-
larized Wasserstein distance to train restricted Boltzmann
machines (RBMs). Boltzmann machines are probabilistic
graphical models (Markov random fields) that can be catego-
rized as stochastic neural networks and are capable of extract-
ing hierarchical features at multiple scales. RBMs are bipartite
graphs that are special cases of Boltzmann machines, which
define parameterized probability distributions over a set of
d-binary input variables (observations) whose states are repre-
sented by & binary output variables (hidden variables). The
parameters of RBMs are often learned through information
theoretic divergences such as KL divergence. Montavon et al.
[36] proposed an alternative approach through a scalable
entropy-regularized Wasserstein distance estimator for RBMs
and showed the practical advantages of this distance over the
commonly used information divergence-based loss functions.

In another approach, Frogner et al. [19] used the entropy-
regularized Wasserstein loss for multilabel classification. They
proposed a relaxation of the transport problem to deal with
unnormalized measures by replacing the equality constraints
in (6) with soft penalties with respect to KL divergence. In
addition, Frogner et al. [19] provided statistical bounds on
the expected semantic distance between the prediction and
the ground truth. In yet another approach, Kolouri et al. [28]
utilized the sliced-Wasserstein metric and provided a family
of positive definite kernels, denoted sliced-Wasserstein ker-
nels, and showed the advantages of learning with such kernels.
The sliced-Wasserstein kernels were shown to be effective
in various machine-learning tasks, including classification,
clustering, and regression.

Solomon et al. [48] considered the problem of graph-based
semisupervised learning, in which graph nodes are partially
labeled and the task is to propagate the labels throughout the
nodes. Specifically, they considered a problem in which the
labels are histograms. This problem arises, for example, in traf-
fic density prediction, in which the traffic density is observed
for a few stop lights over 24 h in a city and the city is interested
in predicting the traffic density at the unobserved stop lights.
They pose the problem as an optimization of a Dirichlet ener-
gy for distribution-valued maps based on the 2-Wasserstein
distance and present a Wasserstein propagation scheme for
semisupervised distribution propagation along graphs.

More recently, Arjovskly et al. [3] compared various dis-
tances, i.e., TV, KL divergence, Jenson—Shannon divergence,
and the Wasserstein distance in training generative adversar-
ial networks (GANs). They demonstrated (theoretically and
numerically) that the Wasserstein distance leads to a superior
performance compared to the later dissimilarity measures.

They specifically showed that their proposed Wasserstein
GAN does not suffer from common issues in such networks,
including instability and mode collapse.

Domain adapfation

Domain adaptation is one of the fundamental problems in
machine learning that has gained proper attention from the
machine-learning research community in the past decade.
Domain adaptation is the task of transferring knowledge from
classifiers trained on available labeled data to unlabeled test
domains with data distributions that differ from that of the train-
ing data. The optimal transport framework was recently present-
ed as a potential major player in domain adaptation problems
[12], [13]. Courty et al. [12], for instance, assumed that there
exists a nonrigid transformation between the source and target
distributions, and they find this transformation using an entropy-
regularized optimal transport problem. They also proposed a
label-aware version of the problem in which the transport plan
is regularized so a given target point (testing exemplar) is asso-
ciated only with source points (training exemplars) belonging to
the same class. Courty et al. [12] showed that domain adaptation
via regularized optimal transport outperforms the state-of-the-
art results in several challenging domain adaptation problems.

Bayesian inference

Another interesting and emerging application of the optimal
transport problem is in Bayesian inference [17]. In Bayesian
inference, one critical step is the evaluation of expectations
with respect to a posterior probability function, which leads to
complex multidimensional integrals. These integrals are com-
monly solved through the Monte Carlo numerical integration,
which requires independent sampling from the posterior distri-
bution. In practice, sampling from a general posterior dis-
tribution might be difficult, so, therefore, the sampling is
performed via a Markov chain that converges to the posterior
probability after a certain number of steps. This leads to the
celebrated Markov chain Monte Carlo (MCMC) method. The
downside of the MCMC method is that the samples are not
independent, and, hence, the convergence of the empirical
expectation is slow. El Moselhy and Marzouk [17] proposed a
transport-based method that evades the need for Markov-chain
simulation by allowing direct sampling from the posterior dis-
tribution. The core idea in their work is to find a transport map
(via a regularized Monge formulation) that pushes forward the
prior measure to the posterior measure. Then, sampling the
prior distribution and applying the transport map to the sam-
ples will lead to a sampling scheme from the posterior distri-
bution. Figure 11 shows the basic idea behind these methods.

Hypothesis fesfing

The Wasserstein distance is used for goodness-of-fit testing in
[15] and for two-sample testing in [42]. Ramdas et al. [42] pre-
sented connections between the entropy-regularized
Wasserstein distance, multivariate Energy distance, and the
kernel maximum mean discrepancy and provided a “distribu-
tion-free” univariate Wasserstein test statistic. These and other
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FIGURE 11. (a) The prior distribution p, the posterior distribution g, and the
corresponding transport map f that pushes pinto g. One million samples,
X, were generated from distribution p. (b) The empirical distribution

of these samples denoted as p and (c) the empirical distribution of
transformed samples, y; = f(x;), denoted as g.

applications of transport-related concepts show the promise of
the mathematical modeling technique in the design of statisti-
cal data-analysis methods to tackle modern learning problems.
Finally, note that, in the interest of brevity, a number of other
important applications of transport-related techniques were
not discussed above but are certainly interesting in their own
right. For a more detailed discussion and more references please
refer to [24].

Summary and conclusions

Transport-related methods and applications have come a long
way. Although earlier applications focused primarily in civil
engineering and economics problems, they have recently begun
to be employed in a wide variety of problems related to signal
and image analysis and pattern recognition. In this article,
seven main areas of application were reviewed: image retrieval,
registration and morphing, color transfer and texture analysis,
image restoration, TBM, image superresolution, and machine
learning and statistics. Transport and related techniques have
gained increased interest in recent years. Overall, researchers
have found that the application of transport-related concepts
can be helpful in solving problems in diverse applications.
Given recent trends, it seems safe to expect that the number of
application areas will continue to grow.

In its most general form, the transport-related techniques
reviewed in this article can be thought as mathematical mod-
els for signals and images and in general data distributions.
Transport-related metrics involve calculating differences not
only of pixel or distribution intensities but also where they are
located in the corresponding coordinate space (a pixel coor-
dinate in an image or a particular axis in some arbitrary fea-
ture space). As such, the geometry (e.g., geodesics) induced by
such metrics can give rise to dramatically different algorithms
and data interpretation results. The interesting performance
improvements recently obtained could motivate the search for
a more rigorous mathematical understanding of transport-relat-
ed metrics and applications.

The emergence of numerically precise and efficient ways
of computing transport-related metrics and geodesics, as pre-
sented in the “Numerical Methods” section, also serves as
an enabling mechanism. Coupled with the fact that several

set for their increased use as tools or building blocks based
on which complex computational systems can be built. The
confluence of these emerging ideas may spur a significant
amount of innovation in a world where sensor and other data
are becoming abundant and computational intelligence to
analyze these is in high demand. We believe transport-based
models will become an important component of the ever-
expanding tool set available to modern signal-processing and
data-science experts.
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o Adaptive
mportance Sampling

The past, the present, and the future

fundamental problem in signal processing is the estimation of

Ménica E. Bugollo, unknown parameters or functions from noisy observations.
Important examples include localization of objects in wireless sen-

sor networks [1] and the Internet of Things [2]; multiple source
reconstruction from electroencephalograms [3]; estimation of power spec-
and Petar M. Djuri¢ tral density for speech enhancement [4]; or inference in genomic signal
processing [5]. Within the Bayesian signal processing framework, these

problems are addressed by constructing posterior probability distributions

of the unknowns. The posteriors combine optimally all of the information

about the unknowns in the observations with the information that is pres-

ent in their prior probability distributions. Given the posterior, one often

wants to make inference about the unknowns, e.g., if we are estimating

Dratal Obrect Hontiior 10,1 T09MSF 2017269922 paramc.&tc'arsz finding the values'that .maximize their Posten’or or the values
Date of publication: 11 July 2017 that minimize some cost function given the uncertainty of the parameters.
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Unfortunately, obtaining closed-form solutions to these types
of problems is infeasible in most practical applications, and
therefore, developing approximate inference techniques is of
utmost interest.

A methodology that comes to the rescue for solving most
difficult problems of inference is based on random drawing
of samples. It was first applied systematically by the Italian
physicist Enrico Fermi when he studied neutron diffusion [6].
However, no publication is available from him on this topic.
Later, the methodology came to be known as Monte Carlo
(MC) sampling.

The MC methods we know today were created by Stani-
‘slaw Ulam, John von Neumann, and others [7]. Their efforts
coincided with the development of the first general computer
and resulted in the Metropolis algorithm [8]. The next major
advancement of MC methods came with a generalization of
the Metropolis algorithm proposed by Hastings in 1970 [9].
All of these methods represent a family of simulation-based
algorithms that aim at generating samples from a target
probability distribution (often a posterior
distribution in a Bayesian setting). The
algorithms are based on constructing a
Markov chain that has the desired dis-
tribution as its equilibrium distribution,
which is why they are referred to as Mar-
kov chain MC (MCMC) algorithms [10]
(a review of the history of MCMC sampling can be found
in [7]). The most prominent MCMC algorithms remain the
Metropolis—Hastings (MH) and Gibbs sampling algorithms
[10]. Since the 1990s, MCMC-based methods have seen tre-
mendous growth and success.

Overview of importance sumpling
An important alternative to MCMC sampling is the class of
importance sampling (IS) methods. The IS methods are ele-
gant, theoretically sound, simple to understand, and widely
applicable [7]. Assume that the aim is to approximate a
given target probability distribution. The basic IS mechanism
consists of 1) drawing samples from simple proposal densi-
ties, 2) weighting the samples by accounting for the mis-
match between the target and the proposal densities, and
3) performing the desired inference using the weighted sam-
ples. IS was first used in statistical physics for inference of
rare events and, in particular, for estimating the probability
of nuclear particles that penetrate shields [11]. Later, IS was
also used as a variance reduction technique based on simu-
lating from a proposal density instead of the target
density [12]. The interest in IS techniques was running in
parallel to the emergence of Bayesian computational meth-
ods. The interest was not only driven by their simplicity but
also by their ability to estimate normalizing constants of the
target distribution, a feature not shared by MCMC methods
that turns out to be useful in many practical problems (e.g.,
model selection).

The performance of IS methods directly depends on the
choice of the proposal densities [7]. When the method is

The MG methods we know
today were created hy
Stanislaw Ulam, John von
Neumann, and others.
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applied naively, only few of the IS weights take relevant val-
ues, while the rest are negligible. This phenomenon is widely
known in the IS literature as weight degeneracy [7]. If the goal
is to estimate the mean of the samples of a target distribu-
tion, then the proposals must be adapted to parts of the space
where the posterior probability is large, while if the focus is
on a problem related to system reliability, then the probability
of rare events is better approximated by placing the proposals
in the tails of the posterior. Locating the regions from which
samples should be drawn may not be easy, which suggests
that the main challenge in implementing IS methods lies in
finding good proposal densities. However, designing these
proposals usually cannot be done a priori, and thus, adaptive
procedures must be constructed and applied iteratively. The
objective is that with passing iterations the quality of the sam-
ples improves, and the inference from them becomes more
accurate. This leads us to the concept of adaptive IS (AIS).
AIS methods are endowed with the nice feature of being able
to learn from previously sampled values of the unknowns and,
consequently, to become more accurate. It
is important to note that the AIS algorithms
must remain simple, i.e., both the drawing
of samples and the computation of their
weights should be easily managed.

In this article, we first go over the basics
of IS and then proceed with explaining the
learning process that takes place in AIS and with presenting
several state-of-the-art methods. We discuss AIS estimators
and their convergence properties and then show numerical
results on signal processing examples. The article also provides
an outlook of the research in AIS. For a clearer presentation,
in Table 1 we display the notation used throughout the article.

Background (with examples)

Problem statement

Let us consider a generic inference problem in which a d.-
dimensional vector of unknown static real parameters,
x € X CR%, has a probability density function (pdf)
given by

- 7 (X)

T(X)=—-, 1
=" M

where 7 (x) is a nonnormalized nonnegative target function,

and Z= | z(x)dx is a finite normalizing constant that may

be unknown. The goal is to compute some particular moment

of x, which can be defined as

= fX (%) 7 (%) dx, )

where f(-) can be any function of x that is integrable with
respect to 77 (X).

The previous mathematical formulation can be used to
represent different problems, including the estimation of rare
events [12] or Bayesian inference [7]. For instance, when esti-
mating rare events, Z is perfectly known and the moment of
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interest can be f(x) = [y >0, where g(x) is a given func-
tion and I is the indicator function that takes the value 1 if
g(x) > 0 and 0 otherwise. In this case, 7(x) is completely
characterized, and the challenge is in computing the integral
given by (2). In Bayesian inference, 7 (x) often represents the
posterior distribution that is linked to some observed data,
y e R%, and is expressed as

{(y|x)po(x)
Z(y)

7 (x) =p(x|y) = o< 0(y|x)po(x), 3

Table 1. A summary of notation.

Notation Description
d, Dimension of the unknown parameter vector
x € R% Unknown realization of a parameter vector
d, Dimension of the observed data vector
y € R Observed data vector
i lteration variable
J Total number of iterations
N Number of proposal distributions in an iteration
K Number of generated samples per proposal in
an iteration
7 Target pdf
7K Approximated target pdf with K samples and weights
[ Likelihood function
po Prior distribution
4 Normalizing constant
K Natural estimator computed from K samples generated
from the target
1K Nonnormalized estimator computed from K samples
1K Self-normalized estimator computed from K samples
x(nk,)i kth sample of the nth proposal at iteration |
w(nlf’, IS weight associated with x(k’
w(,,lf)’ Normalized IS weight associated with x(k’
f Test function/moment of the target
qn,i nth proposal function in the jth iteration
On, Parameters defining the proposal gn,j; e.g.,
0n,i = [tn,j Cn,j] for a Gaussian
Mni Location parameter (usually mean) of the proposal gn,j
Coj Scale parameter (usually covariance) of the
proposal gn,;
Pnij Weight in the mixture of the nth proposal at iteration
v Gradient
H. Hessian evaluated at x
Aj Gradient step at iteration |
E#[] Expected value with respect to the pdf 7

THE

where p(x|y) is the posterior pdf, {(y|x) is the likelihood
function, po(x) is the prior pdf, and Z(y) is the model evi-
dence or partition function. For some specific statistical
models, e.g., when po(x) is a conjugate prior of ¢(y|x) [13],
Z(y)= | 0(y|x)po(x)dx can readily be obtained. In gener-
al, howe(\\/,er, computing Z can be a very difficult problem.
For this reason, we define the nonnormalized target function
7(%) = 0(y| X)po(X). @)
From here on and without loss of generality, we focus on the
generic case, where Z(y) is unknown. To simplify the notation,
we drop the dependence of Z on y and write Z = Z(y). In the
rest of the article, we refer to Z as a normalizing constant. This
term is more general than model evidence or marginal like-
lihood, which are often used in Bayesian theory. Finally, we
concentrate on real parameters and observations for the sake
of clarity in the exposition. However, all of the AIS methods
presented and the considerations performed throughout the
article are directly applicable to multidimensional-complex
target densities.

MC methods: motivation and basics
Obtaining closed-form solutions of the described problem
is infeasible in most practical applications, and therefore,
the next best thing is to develop approximate inference
techniques with good accuracy. Let us assume that it is pos-
sible to draw K independent samples, {x(k)}kK: 1, from the
target distribution 7 (x). The integral / can then be approxi-
mated by
k=1 3 < ® _ 5
=% Z ),  where x¥ ~ 7 (x). 3)

With the drawn samples, we can approximate the target

probability distribution corresponding to the density 7 (x) as

K
700 = 5 2 8= x), ©)
where 8(x — x*) is the Dirac delta function centered at x*
With this approximation, we can estimate / in (2) by

= fX F(x) 7 (%) dx

~ fx Fx) 5 (x)dx = sz f fx6x—xDax, (7

1
K/
which yields (5).

The estimator X is consistent with K, because it converg-
es almost surely to / by the strong law of large numbers [7].
Moreover, it can be easily shown that the estimator is unbiased,
ie, E;[IX] =1, and, assuming that f(x) is real and square
integrable, its variance is given by [7]

Varz (I*) =

Varz (f(X))
— % (8)

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

SignalProcessing

>
*3Je
Qmags

WORLD'S NEWSS



http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

*

IEEE - “
SignalProcessing e
This methodology is known as the MC method [7], and it was i | & R
first described in [14]. A g F&x). (13)

As previously pointed out, very often, 7 (x) does not have a
known closed form, and it is not possible to draw samples from
it. Moreover, in some other settings, it might not be convenient
to generate samples from the target distribution even if it is
possible. This is the case of rare-event estimation, where it is
not efficient to simulate samples from 7 (x) because the esti-
mation of / would depend on a very low number of effective
samples [15].

IS: motivation and basics
The IS methodology was first used in statistical physics for
rare-event inference. More specifically, it was applied to esti-
mate the probability of nuclear particles that penetrate
shields [11]. Later, IS was also used as a variance reduction
technique based on simulating from a proposal density instead
of the target one, reducing the computational effort to com-
pute rare events from the target distribution [12]. The interest
in IS techniques has run in parallel to the growth of the theory
of Bayesian inference. The reason for this is that often it is not
possible to generate samples from the posterior distribution
because it can only be evaluated up to a normalizing constant.
Let us consider K independent samples, {x (k)} k=1, drawn
from a single proposal pdf, ¢(x), with heavier tails than the
target, 7 (x). Each sample has an associated importance weight
given by

®
Wb = % k=1,...,K, ®
q X

where the weights represent the significance of the samples in
the approximation of the target by the considered proposal.
Using the samples and weights, the integral in (2) can be
approximated by a self-normalized estimator as

1 K
5 2w ), (10)

where Z=(1/K)Zf-, w® is an unbiased estimator of
Z= fxﬂ(x)dx [7]. Tt is not difficult to see that now we
approximate the target distribution by

K x) = f whs(x — x®), an
k=1

where the w®

obtained by

s are normalized weights of the samples

(12)

If the normalizing constant is known, then it is possible to
use the nonnormalized estimator

Note that I¥ is only asymptotically unbiased, whereas I*
is unbiased. Both I¥ and 7* are consistent estimators of 7, and
their variance is directly related to the discrepancy between
7Z(x)| f(x)| and g(x) [7]. However, when several different
moments of the target must be estimated or the function f is
unknown a priori, a common strategy in IS is to decrease the
mismatch between the proposal ¢ (x) and the target 7 (x) [16].
This is equivalent to minimizing the variance of the weights
and, consequently, the variance of the estimator VA

Multiple IS: motivation and basics

The target density can only be evaluated pointwise, and
therefore it cannot be easily characterized in many cases.
This entails that finding a single good proposal pdf, g(x),
is not always possible. A robust alternative consists of
using a set of proposal pdfs, {g.(x)}h=1. The resulting
method is referred to as multiple IS (MIS), and it was
greatly advanced during the 1990s in statistics and com-
puter graphics simulation [12], [17], [18]. MIS constitutes
the basis of most of the state-of-the-art AIS algorithms
[19]-[24].

A general MIS framework has recently been proposed
in which different sampling and weighting schemes can be
combined [25]. Here, we briefly review the most common
sampling and two common weighting schemes. Suppose that
we draw one sample from each proposal pdf, i.e.,

Xn"’qn(x)’ n= 1’-", N7 (14)
where, because K = 1, we drop the superscript ®. The most
common weighting strategies in the literature are

1) standard MIS (s-MIS) [19]:

— (X
qn(Xn) ’

=1,..,N. (15)

2) deterministic mixture (DM) MIS (DM-MIS) [18]:

n (Xn)

L Zq(xn)

1*1

= (Xn) _
oy

n=1,..,N, (16)

where y (x) represents the mixture pdf composed of all of the
proposal pdfs evaluated at x.

From the weighted set {X.,wa} 1= 1, generated by either the
s-MIS or the DM-MIS methods described previously, we can
compute a self-normalized estimator I and a nonnormalized
estimator I in the same way as in (10) and (13), respectively.
The self-normalized IV is consistent and asymptotically unbi-
ased, whereas the nonnormalized IV is both consistent and
unbiased. The DM approach is superior with respect to that of
s-MIS in terms of variance of the estimator 1", as proved in
[25]. Although both alternatives perform the same number of
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target evaluations, the DM estimator is computationally more
expensive with respect to the number of proposal evaluations.
In particular, s-MIS and DM require N and N? evaluations,
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large weights in Figure 1(b). Figure 1(d) and 1(e) use the con-
cept of MIS, i.e., there we use two proposal pdfs. The weights
in Figure 1(d) are calculated using the standard formulation

respectively. Therefore, in scenarios where
the number of proposals N is large, the
O(N?) in the number of proposal evalua-
tions can be prohibitive. Alternative effi-
cient solutions have recently been devised to
mitigate this excess of computational load
[26], [27].

Figure 1 illustrates the processes of sam-

All of the AIS methods
presented and the
considerations performed
are directly applicable to
multidimensional-complex
target densities.

of weight update from (15), while in Fig-
ure 1(e), they are computed according to
(16). It is clear that a smaller variance of the
weights is achieved with the DM approach.

Finally, the validity of the possible dif-
ferent weighting schemes for MIS is justi-
fied in [25] by using the concept of a proper
set of weighted samples. More precisely, the

pling and weighting based on the different

methods explained in this section. More

specifically, Figure 1(a) displays the generated samples and
associated weights when sampling from the target distribution
is possible. We observe that all of the weights are equal in this
case. For both Figure 1(b) and (c), the generation of samples is
performed using a single proposal pdf. However, the proposal
pdfs, plotted with dashed lines, are differently located, and
therefore one can appreciate how the second choice is more
appropriate by observing the variability of the weight values.
Note that the scale of the vertical axes is different to show the

suitability of a particular MIS scheme is

guaranteed if the nonnormalized estimator
1" and the normalizing constant estimator Z are unbiased and
consistent, which also implies that the self-normalized estima-
tor I" is consistent.

Adaptive importance sampling

The basics of AlS
The AIS methodology is based on an iterative process for
gradual evolution of the single or multiple proposal densities

0.25 1.4 0.25
0.2 12 0.2
1
0.15 08 0.15
0.1 0.6 0.1
0.4
0.05 !
02 0.05
0 0 <=l . 0
o o n o n o n o n o
§ o § 7 o7 - - 9
(b)
3 0.25
25 v
2
0.15
1.5
1 0.1
0.5 0.05 ",’ “ ‘M” i
0 . 0 -"' .fwl\””“‘””‘ HMH. |‘||.l¥-.
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§ 77! - -« § 7T - -«
(d) (e)

FIGURE 1. The approximations of the target pdf, 7z (x), by different discrete probability distributions (displayed by thin bars with weights corresponding
to heights of the bars). The target pdfs are shown by solid lines, while the proposal pdfs are plotted with dashed lines. (a) The MC sampling directly from
the target, the ideal situation: an approximation with equally weighted samples, as they are drawn directly from the target. (b) IS, single-proposal pdf,
and (c) IS, single-proposal pdf [with a better location than that in (b)]. (b) and (c) are approximations with IS and a single proposal to show the effect of
the location: A better proposal placement leads to more uniform weights. (d) MIS with standard weights, and (e) MIS with DM weights. (d) and (e) are
approximations with MIS and two proposals to show the effect of the choice of the weighting scheme: The DM approach leads to more uniform weights

than the standard approach.
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FIGURE 2. A generic flow diagram of the AIS methodology, showing the three steps that must be performed iteratively by any AlS algorithm (sampling,

weighting, and adaptation) and the data flow among these steps.

to accurately approximate the target pdf. The procedure
consists of three basic steps: generation of samples from a
proposal or set of proposals (sampling), calculation of the
importance of each of the samples (weighting), and updating
(adapting) the parameters that define the proposal(s) to obtain
the new proposal(s) for the next iteration. Figure 2 shows a
simple flow diagram of the steps of AIS with only one propos-
al pdf. The diagram also shows the possible data dependencies
among the basic steps.

In the general case, the algorithm is initialized with
a set of N proposals {¢.(x|6,1)}2=1, each one parame-
terized by a vector 0,1. After drawing a set of samples,
xfff)], n=1,...,N,k=1,...,K (recall that K is the number
of samples generated by a proposal), and weighting them, one
obtains a discrete probability distribution that approximates
the target distribution, {x;’f)l, wi,]f)l}, n=1,...Nk=1,...,K.
Then, the parameters of the nth proposal are updated from 6,1
to 6,,2. This process is repeated, i.e., sampling, weighting, and
moving from 6, to 6,+1, until an iteration stoppage criterion
is met (e.g., a maximum number of iterations, J, is reached).
Table 2 outlines the main steps of the general algorithm.

Figure 3 shows the evolution in the approximation of a
target pdf, 7(x), which in this case is a mixture of two
Gaussian pdfs. In this example just one Gaussian pro-
posal (N = 1) is used, ¢1(x), with initial vector parameter
O01.1=[1 ol]=[—4 3], where (1 and o7 denote the mean
and the variance, respectively. Figure 3 displays three itera-
tions of the AIS algorithm, where the initial parameter vector

Table 2. The generic AIS algorithm.

Initialization
Choose K, N, J, {On,l},,N:1
Forj=1,..,J
1) Sampling
Draw K samples from each of the N proposal pdfs,
{qnil@ndthn, x¥ k=1, K,n=1,...,N.
2) Weighting
Calculate the weights, w(r,k,),, for each of the generated KN samples.
3) Adaptation

Update the proposal parameters {04, }h=1 — {041} 02 1.

Outputs
Return the KNJ pairs {xf,lf),, wgf),} forall k=1,....,Kn=1,..,
N,j=1,...1

the proposal is much more adequate than the starting pro-
posal in that it effectively covers both modes of the target.
To approximate the integral / in (2), there exist different
possibilities for combining all of the KNJ weighted samples,
xﬁf}, wflk 3 3 generated by the AIS method [28]. A common (and
straightforward) choice is to assign to each sample a normal-

ized weight 171/5,13-, which considers all of the weights, i.e.,

(k)

01,1 is updated in the next proposal so that it can produce v ’(1"]) = # 17)
samples and weights that yield a better approximation of the ¥y Y w")
target distribution. Note that the final scale and location of I=liz1/=1
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FIGURE 3. A proposal adaptation through AlS. The initial proposal g+ (X)
(too narrow and poorly placed) is iteratively moved toward a better loca-
tion at some intermediate location between the two modes of the target
pdf and widened to properly cover the effective support of the target.

Hence, the self-normalized AIS estimator is I =X/,
(k) g (K
INEND w,(l,}f(xg,,])- )

Modern AIS methods
AIS methods got their turn in the spotlight of MC computa-
tions after the publication of the population MC (PMC)
sampling method by Cappé€ et al. in 2004 [19], notwithstanding
the existence of several AIS schemes at that time (see [28]
for a review). The PMC methodology offered a framework to
adapt a population of proposals that was simple, flexible, and
free from the convergence and ergodicity issues of adaptive
MCMC techniques. The original PMC algorithm used a
multinomial resampling stage (note that any of the better
alternative resampling strategies developed for particle fil-
ters can also be used [29]) and was unstable due to the use
of the s-MIS weighting strategy of (15). However, the pro-
posed approach raised a considerable interest within the
computational statistics community, and improved PMC
algorithms shortly followed, like the D-kernel PMC [30],
[31] or the mixture PMC (M-PMC) [20]. Furthermore, sev-
eral authors have recently shown that the performance of
PMC can be improved even more through the use of a non-
linear transformation of the weights [32] or the combination
of the DM weighting scheme of (16) and sophisticated resa-
mpling schemes [24].

On the other hand, encouraged by the renewed interest in
AIS methods spurred by the PMC approach, several authors

*
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have proposed AIS algorithms that do not fall within the PMC
framework. For instance, the idea of incremental IS mixtures
[originally proposed in (33)] was taken up again by Cornuet
et al. in the adaptive MIS (AMIS) method [21]. AMIS uses
a single proposal per iteration, but applies the DM weighting
scheme of (16) using a mixture composed of the present and
all past proposal pdfs. Much more robust and stable estimators
are thus obtained, but at the expense of a substantial increase in
the computational cost. An alternative to AMIS is the recently
proposed adaptive population IS (APIS) algorithm [22]. APIS
is also based on the DM weighting scheme of (16), but it uses a
mixture with a fixed number of proposals per iteration. In this
way, APIS inherits the robustness and stability of AMIS but
with the benefit of allowing a user-controllable computational
cost that does not increase as the algorithm is iterated. More-
over, gradient information can be incorporated to the APIS
algorithm to improve the performance in high-dimensional
state spaces [34].

Finally, note that the combination of MCMC and AIS tech-
niques has also been considered in several works. For instance,
MCMC steps can be used to accelerate the adaptation of the
AIS technique [22], or the MCMC outputs can be used to build
a proposal distribution for AIS estimation [35]. Sequential MC
samplers have also been suggested as AIS schemes in static
scenarios [36].

Implementation and classification of AlS algorithms

Implementation of AlS algorithms

Many important AIS algorithms have been proposed in the lit-

erature in the last two decades. In this section, we describe in

detail some of the most popular AIS algorithms.

m Standard PMC [19]: In this algorithm, N proposals are
adapted via resampling, which is a well-known mechanism
in MC methodologies that allows us to select the most
promising samples and to eliminate those with low weights
to avoid particle degeneracy [29]. At each iteration, exactly
one sample is drawn from each proposal and weighted
with the standard IS weights calculated by (15). Then, N
multinomial resampling steps (with replacement) are per-
formed within the population of the N drawn samples (one
sample is generated per proposal, i.e., K = 1). The surviv-
ing set of particles constitutes the set of location parame-
ters for the next population of proposals.

m M-PMC [20]: For this method, the proposal used to gener-
ate K samples at each iteration is a mixture of N kernels,
where the mixture is adapted to decrease the Kullback—
Leibler (KL) divergence between the mixture and the
target. In its simplest version, the algorithm adapts the
location, scale, and weight of each kernel in the mixture.

m Nonlinear PMC (N-PMC) [32]: In this algorithm, the
weights are computed in two steps. First, standard impor-
tance weights w&k) are obtained. Then, a nonlinear func-
tion is applied to calculate a set of transformed weights
vvvﬁ-k). The goal of this transformation is to reduce the vari-

ance of the weights and avoid, or at least mitigate, the
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weight degeneracy problem. While the standard weights
can be used for estimation, the nonlinearly transformed
weights are crucially used for the adaptation step. The
latter can be carried out in different ways, with [32] advo-
cating for a simple Gaussian proposal where both the
mean vector and the covariance matrix are adapted through
the iterations.

m Layered AIS (LAIS) [23]: The adaptive process of the
LAIS algorithm is independent of the samples drawn at
each iteration. In particular, the algorithm can be seen as a
two-layer procedure in which the location parameters of
the proposals are adapted through one or several MCMC
steps with the target as the stationary distribution. In its
basic version, a single MCMC step is independently per-
formed at each location parameter.

m DM-PMC [24]: This algorithm meets the simplicity of
the standard PMC of [19] with a very high performance.
DM-PMC calculates the weights using (16) instead of
(15), which provides two important advantages, specifi-
cally, the variance of the estimators is decreased (see
[25]) and the resampling step with the DM weights pro-
motes the replication of proposals in relevant parts of the
target that are underrepresented by the set of proposals

Table 3. The psevdocodes of PMC, DM-PMC, and LAIS.
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AR P

Qmags

THE WORLD'S NEWSSTAND

(i.e., the exploration is coordinated). DM-PMC generates
K samples per each of the N proposals (instead of one,
as in [19]). At each iteration, the population of KN
samples must be reduced to N via either global or local
resampling (LR).

m AMIS [21]: In this algorithm, just one proposal is used
and adapted over the iterations. The adaptive procedure
consists of estimating the moments of the target with the
available set of K weighted samples and fitting the
moments of the proposal. Its key feature is the reweight-
ing of all of the past samples with a temporal mixture
weight where the whole sequence of proposals is used in
the denominator.

®m Gradient APIS (GAPIS) [34]: Similar to the LAIS algo-
rithm, GAPIS adapts N proposals by a process that is
independent of the samples. In its basic version, the loca-
tion parameters of the proposals are adapted via a gradient
ascent of the target and the scale parameter by using the
Hessian of the target. An advanced implementation is pro-
posed that adds a repulsive interaction among proposals to
promote a cooperative exploration of the target.

In Tables 3 and 4, six out of the seven previous algorithms
are outlined by means of pseudocodes. Note that we follow

PMC DM-PMC LAIS
Initialization
LN K=1 JN,K, JN,K,
{001}l 1 = (a1, Ca}hl s {0n1}051 = {tn, o} il {0n1}051 = {tn, Ca}hl s
For j=1,...,J
1) Sampling
X~ Gnj(X|2n,j, Cr) X~ j(x g2, €0) X0~ |20, €1)
n=1,....N n=1,....N n=1,...,N
k=1,...,K k=1,...,K
2) Weighting
(%)) k) 4 (x(nk,)i W 4 (ka,li
Y G i) M 3 gyl Wni = i x!
NI i,j | Xp NI i xn,'
n=1,...,N Ni:1ql : Ni:1ql :
n=1,.,N n=1,...,N
k=1,...,K k=1,...,K

3) Adaptation

Multinomial resampling with replacement over

Multinomial resampling with replacement over

One (or more) MCMC steps from n,j to tn,j+1,

{Xnj, Wnj = Wh,j N W ik ng]i NK with 7 as a stationary distribution, for
R N (x5 Wni = ~—% Fost k=1 -1 N
Wi, (m] n reeer N
i=1 Z] Z] Wij
. N [=tm=
to update {tnjs 1}n-1. to update {tn,j+1}n=1.
Outputs
Xn,j, Wa,j x W Wi x i
{xn,i; wa,i} {xn,j, Wi, e W
n=1,...,N n=1,...,N n=1,...,N
i=1,..J k=1, K k=1,..K
i=1,.., 1 i=1,0 1
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Table 4. The psevdocodes of AMIS, GAPIS, and M-PMC.

AMIS

GAPIS

Initialization

M-PMC

JKN=1, 61={u,Ci}

J, N, K, {en,l}nN:] = {,un,1,Cn},,N:1

JNCK, {0n )01 = {1, 201, €1,nk oy

Forj=1,...J
1) Sampling
0 0] IR
x;' ~qj(x|u; C) X, i~ qn, (X | £en,j, o) X'~ 2 piiqiilx | Cij),
k=1,...,K n=1,...,N i=1
k=1,..., K k=1,...,K.
2) Weighting
K 3 K
W__ 7 (Xg' )) K _ 7 (X(n,],' W _ 4 (x;(' ))
YTRT w "l W M W
T2 qilx) -szmw ;mmﬂ&)
i=1 i= i=
k=1,...,K n=1,...,N k=1,...,K
k=1,...,K

3) Adaptation

Update gj+1 and Cj+1 with the empirical
mean and covariance using all of the weighted
samples.

Use a suitable A; fo update

Mnj+1 = fnj+ AjVlog(7 (ten,))) and the
Hessian matrix of —log (7 (x)) to update
Criv1=(Hu,)".

Update {0n,j+1,4nj+1,Cn e 1}ne1 by minimiz-
ing the KL distance between the proposal and the
target approximation.

Outputs
e, i) i Wik
=1,...K n=1,...,N
i=1,...J k=1,..,K
i=1,..J

the structure sampling, weighting, and adaptation described in
Figure 2 and Table 2. We have skipped the N-PMC scheme
in these tables for the sake of clarity. We simply point out that,
in this algorithm, the standard weights wf,k; are transformed
using a nonlinearity ®, e.g., Wﬁ,k; = q)(k,{wg,}}f:l) These
transformed weights are then fed to the adaptation stage.
In [32], the nonlinearity ®(-,-) is either a
tempering or a simple truncation of the larg-
est weights, while the adaptation is carried

out as in the AMIS method of Table 4.

Classification of relevant AlS algorithms

Table 5 serves as a summary and compares
the main features of different AIS imple-
mentations. The features include the num-
ber of proposals, the weighting procedure,
the updating strategy of the parameters, and
the updated parameters. Note that most of the algorithms use
more than one proposal. However, due to the adaptive proce-
dure, even with N = 1, more than one proposal is used. This
is exploited in AMIS and in some implementations of LAIS,
where the temporal mixture of proposals is used to reweight
the samples via DM IS weights. Note that the different adap-

The interest in IS
technigues was not only
driven hy their simplicity
hut also hy their ahility
to estimate normalizing
constants of the target
distribution.

tive mechanisms can be classified into a mechanism based on
1) resampling, 2) moment matching, and 3) independent adap-
tive processes. Moreover, the moment matching can include
all of the past weighted samples (AMIS) or just those of the
current iteration (APIS). Figure 4 shows three possible depen-
dence charts related to generated samples and the adaptation
of the proposal parameters. Note also that,
although all of the proposal parameters can
be adapted, in the basic implementation of
most algorithms, just the location parame-
ters are adapted.

Table 6 provides a comparison of the
computational complexity of the different
algorithms. We display the number of target
and proposal evaluations and also the same
quantities per drawn sample. We observe
that in AMIS, the number of proposal
evaluations is increased with the number of iterations, while
in the algorithms with DM weights, this problem appears
when we increase the number of proposals. In the latter case,
the strategies proposed in [26] and [27] can be employed to
reduce the number of proposal evaluations. Although this is
not displayed in Table 6, the GAPIS algorithm also requires
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Table 5. A comparison of various AIS algorithms according to different features.

Algorithm # Proposals Weighting
Standard PMC N> 1 Standard
M-PMC N> 1 Spatial mixture
N-PMC Either Nonlinear

LAIS N>1 Generic mixture
DM-PMC N>1 Spatial mixture
AMIS N=1 Temporal mixture
GAPIS N> 1 Spatial mixture
APIS N> 1 Spatial mixture

Adaptation Strategy Parameters Adapted
Resampling Location
Resampling Location

Moment estimation
MCMC

Resampling

Location/scale
Location
Location
Moment estimation Location/scale
Gradient process Location/scale

Moment estimation Location

FIGURE 4. A graphical description of three possible dependencies between the adaptation of the proposal parameters 6, and the samples. Note that
Gnt = Qnt(X|On1). (@) The proposal parameters are adapted using the last set of drawn samples (standard PMC, DM-PMC, N-PMC, M-PMC, APIS).
(b) The proposal parameters are adapted using all drawn samples up to the latest iteration (AMIS). (c) The proposal parameters are adapted using an

independent process from the samples (LAIS, GAPIS).

NJ radient and Hessian evaluations in total, i.e., one per pro-
posal at each iteration.

A brief summary and comparison

of AlS algorithms

In this section, we provide intuition behind the relevant AIS
algorithms presented previously. The standard PMC [19]
opened the door for the fast growth of the AIS methodology.
While the simplicity is its main advantage, the use of the stan-
dard IS weights of (15) has two adverse effects: 1) the vari-
ance of the estimators is increased, and 2) each importance
weight measures the difference between the target and a spe-
cific proposal (regardless of where the other N — 1 proposals
are placed). The latter effect precludes a stable and coordinat-
ed adaptation of the whole mixture of proposals and provokes
a path degeneracy due to the resampling step.

The M-PMC [20] addresses the weak points of the standard
PMC by applying a robust Rao-Blackwellization step in the
adaptation of the proposals. The goal in M-PMC is to iteratively
decrease the KL divergence between the target and the mixture of
proposals (for the first time, they are seen as a mixture instead of
a collection of proposals). M-PMC is more robust and allows for
the adaptation of the covariance of each proposal and its weight
in the mixture. The disadvantage is the extra computational cost
and the potential instability in the adaptation of the covariance
(it can tend to a delta) and in the mixture weights (the mixture
can end up being formed by just one proposal).
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Table 6. A comparison of various AIS algorithms according to

the computational complexity.

Number Number of
Number Number of  of Target Proposal
of Target Prorosul Evaluations/  Evaluations/
Algorithm Evaluations  Evaluations  Sample Sample
Standard NJ NJ 1 1
PMC
N-PMC NJ NJ 1 1
MPMC KJ KNJ 1 N
LAIS KN+ 1)) KN2J 1+1/N N
DMPMC KN KN2J ] N
AMIS KJ KFP 1 J
GAPIS KNJ KNZJ 1 N
APIS KNJ KN ] N

The DM-PMC addresses the open challenges of the stan-
dard PMC in a different way. The use of DM IS weights,
followed by the resampling step, implicitly aims at iteratively
reducing the mismatch between the target and the mixture of
proposals [see (16)]. In addition, DM-PMC allows to draw
K > 1 samples per proposal per iteration, which improves
the local exploration in the region of each proposal and then
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increases the stability of the algorithm. Two variants of the
algorithm, global resampling (GR)-PMC and LR-PMC,
allow for different resampling steps to transition from NK
samples in iteration J to N proposals in iteration j+ 1. The
advantage of DM-PMC and its variants is the simplicity in
the implementation and the high performance. The disad-
vantage is that only the location parameters of the proposals
are adapted.

In general, all of the PMC-based algorithms use the
set of weighted samples to adapt the proposals. While
this recycling is efficient, the interdependence between
the samples and the next generation of proposals hinders
the theoretical analysis of the algorithms.

The LAIS algorithm disconnects the sampling and the
adaptive procedures by establishing a two-layer scheme [see
Figure 4(c)]. In its simplest version, the adaptive layer of LAIS is
driven by MH chains, enjoying some of the advantages of the
MCMC methods, e.g., their good behavior in high dimension.
The LAIS scheme is simple and shows good performance, but
again, it does not adapt the covariance of the proposals.

The GAPIS algorithm also decouples the adaptation and
sampling procedures, adding the information of the gradient
and Hessian of the target in the adaptation of the proposals.
This scheme performs well in challenging problems, even in
high dimensions, and is able to adapt the location and scale
parameters of the proposals. Its main disadvantage is the
complexity associated with the computation of the gradient and
the Hessian.

The AMIS algorithm is also simple because the proposal
adaptation is carried out via moment matching. The algorithm
has shown good performance in a variety of problems. Fur-
thermore, it is robust because the IS weights are permanently
recomputed via Rao-Blackwellization by using the DM idea
with the mixture of temporal proposals. The main disadvantage
is precisely this recomputation of all of the weights at every iter-
ation, which precludes its use when the needed number of iter-
ations J is high. The DM-PMC, LAIS, and GAPIS methods
are particularly well suited to multimodal target distributions,
which are often hard for conventional algorithms (e.g., nonadap-
tive importance samplers or classical MCMC schemes).

Finally, note that the nonlinear transformation of the
importance weights featured by the N-PMC method (to reduce
the weight variance) can readily be applied to other schemes
(DM-PMC, AMIS, etc.). This is especially useful at the first
stages of the adaptation, when the proposal(s) can still be poor-
ly aligned with the target density, and the use of transformed
weights can often prevent severe sample impoverishment.
Once the proposal is roughly adapted, the nonlinear transfor-
mation can be dropped and conventional weights can be used
to reduce the computational cost.

Discussion of AIS methods
Convergence of IS estimators

The convergence of IS schemes is often assessed in terms of
the approximation of integrals of test functions. Specifically,

*

Qmags

if X is a random vector of interest, taking values on R
and with pdf 7(x), then we study the approximation of
the integral

1(f)= [ f07(0ax (1)

where f: R% — R is a real test function, assumed integrable
with respect to the density 7 (x) (now we make the test func-
tion f explicit in the notation of the integral). Note that I( f)
is the expected value of the real random variable f(X),
which can be alternatively denoted by Ez[f(X)], and the
integrability assumption simply states that this expectation
exists, i.e., Ez[ f(X)] < co.

A standard IS scheme with a proposal function ¢ (x) pro-
duces a set of random weighted samples {x(k),w(k)} N_ |, where
x® ~ g(x) and w® = ﬂ(x(k))/q(x(k)), that we use to approxi-
mate the integral I(f) as

K (1 W)
*(f)= 2 whrx®).

W k=1

(19)

M=

i=1
Note that ¥ (f) is a random variable itself. Intuitively, we
expect that the error I( f) — I(f) should vanish, in some prop-
er probabilistic sense, when K — oo. This is, indeed, a conse-
quence of the strong law of large numbers [7]. Assuming that
q(x) > 0 whenever 7z (x) > 0, it can be proved that [37]

,}1”3071( (f)=I(f) almost surely (a.s.), (20)
which implies that I¥(f) is a consistent estimator of I( f).
Under additional, yet mild, assumptions on the weight and test
functions, e.g.,

E:xlwX)] <o and Ez[fPXwX)] <o, (21
a central limit theorem (CLT) also holds for the IS estimator
[37]. [Note that here we use the notation w(X) to remind the
reader that the weights are functions of the random vector X
and therefore are random variables themselves.] In particular,

JKIE(H) = 1(f) £ NO.0> (), (22)

where ¢ denotes convergence of the limit in distribution and
the limit variance depends on the test function, namely,
0*(f) o Ex[(fX) = Ex[ OO wX)].

Equation (22) is one of various results that show how IS
estimators converge with the optimal MC rate O(1//K),
i.e., the errors are asymptotically of the same order as with
the standard MC estimator constructed with K independent
identically distributed samples from the target pdf 7(x).
The same optimal rate is obtained for the convergence of
the L, norms of the errors IX (f)— I(f) if we assume that
both the test function f and the weight function w are
bounded, specifically,
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Ifl= sup|f(x)| < oo and
XERL[\
7 (X) ‘
wl,= sup|wx)|= su —<oo, (23)
H H XEp| ( | XE]IE’ q(X)

where | Z ||, indicates the L, norm of the random variable Z

with a pdf g(z), ie. |Z],= ([ Z’¢@dz| . Whenever
(23) holds, it can be proved that [38]
- c
1)~ 1 ()], < L= 4

\/E )

for any p = 1 and some constant ¢ < oo independent of K.
The inequality in (24) is easily extended, using a standard
argument based on the Markov inequality and the Borel—
Cantelli lemma [39], to yield limx— 1% (f) = I(f) a.s.

A more sophisticated analysis allows us to obtain an upper
bound for the random error (not just for its L, norm) of the
form [38]

() =T5(f)| < 25)

,—g ’

where € € (0,(1/2)) is an arbitrarily small constant and U. is
an almost surely finite random variable independent of K. The
inequality (25) holds for every value of K, hence it is stronger
than the classical CLT of (22). As (22), it displays the optimal
MC error rate O(l/«/f), because € > 0 can be chosen as
close to zero as desired.

Convergence of AlS estimators

The results summarized above hold for general importance
samplers. In an AIS framework, however, it is of specific
interest to study the convergence of the estimators as the
proposals are adapted. This issue is tackled in the classical
article [40], where the estimators that result from aggregating
weighted samples produced through several consecutive itera-
tions are analyzed. Assuming that an AIS algorithm is run
through J iterations, producing K samples per iteration for a
total of JK samples overall (here we work with one proposal
function per iteration), we construct the aggregated estimator
of I(f) as

K

z (k) (k)

22

M\

1

() =4 (26)

(k)

Il Ma

In the setup of [40], the proposal functions ¢;(x) are select-
ed from a parametric family ¢(x; @), where 6 = [0, .. Ol T
€ R"™. The conditions to be satisfied by ¢(x;0) are fairly
general: ¢(x;0) is a continuous function of 6, the weight
function w = (7(x)/q(x;0)) is uniformly bounded (over the
space of x and 60), and ¢(x;0) > 0 whenever 7z(x) > 0. In
addition, it is assumed that there exists an optimal choice of the
proposal function, of the form ¢ (x;0,), where 6, = E7[£(x)]
for some (possibly unknown) integrable function £:R%* — R™.

*

The latter is a regularity assumption: it implies that, if the
weights are proper and K — oo, it is possible to approximate
the target proposal ¢(X;0,) as tightly as we wish. Under these
assumptions, in [40] it is proved that

lim IJXK(f)—I(f) a.s., and

Jlim VIR (P ()= 100)) £ N0 (). @7)

where the limit variance o (f) is finite, and it depends on
the test function and the normalization constant of 7.
Convergence of the first limit in (27) guarantees consistency,
while the second expression is a CLT that shows that the
asymptotic optimal error rate O(1/JK) can be achieved with-
out discarding any samples. Consistency of the aggregate esti-
mator I”*¥(f) can be proved in a rather straightforward
manner for most AIS schemes as long as the importance
weights are proper at each iteration and the weight function
remains bounded, even if an optimal or desired proposal
q(x;0,) does not exist (or simply changes from one iteration
to the next).

AlS and high-dimensional target pdfs
The error bounds of (24) and (25) or the variances in the
CLTs (22) and (27) depend on the dimension d. of the target
random vector X, often in an intricate manner. Few analytical
results on the effect of the dimension are available in the
literature. In simplified scenarios, and through numerical
studies, it has been shown that often the number of samples
K has to be increased exponentially with d, to attain a pre-
scribed performance [41]. However, it has not been proved
that this is necessarily the case, and some recent theoretical
results actually suggest otherwise. In [42], the stability
of the effective sample size (ESS), constructed as
ESSK (XK 1w(k)) /Zk, (w ;-k))z, of a sequential MC sam-
pler as the dimension increases, dx — oo, is analyzed. The
ESS, related to the variance of the weights, is commonly used
to assess the numerical stability of the adaptive algorithms
and detect the degeneracy phenomenon. In this AIS scheme,
the target pdf 7(x) is approximated through a sequence of
bridge densities 7o(X), 71(X),..., 7;(X),..., 7;(X), where
7mo(x) is sufficiently easy to approximate via IS and
7;7(x) = 7(x). The intuition is that we can start approximat-
ing 7o and, assuming 7,-1(x) and 7z ;(X) are similar enough,
we can then move parsimoniously through the sequence of
bridge pdfs until we obtain an approximation of
7(x) = m;(x). In this setup, the proposal functions g;(x) are
devised as Markov kernels that jump from 7;-1(x) to 7;(x).
In the specific scheme analyzed in [42], the bridge pdfs are
constructed by tempering, i.e., selecting a sequence of posi-
tive real numbers 0 < €9 < €1 < -+ < e€;=1 and then set-
ting 7;(x) = 79(x).

Under the strongly simplifying assumption of X being a
vector of independent variables, i.e., 7(x)= Hj’;lﬁi(xi),
but still assuming that the sample vector xi-k) is drawn jointly
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(and not independently, entrywise) from the proposal g;(x),
it is proved in [42] that limg, -« ESS;( = (C a.s., where C is
a positive constant, even if the number of samples K is held
constant. Moreover, this can be achieved when the number
of bridge pdfs is J = O(d.). These results indicate that this
particular AIS method remains numerically stable (i.e., the
weights do not degenerate) as the dimension d. becomes
arbitrarily large; however, they are mainly of theoretical
(rather than practical) interest because of the strong assump-
tions involved. Nevertheless, they suggest that AIS schemes
may beat the curse of dimensionality in some scenarios if
properly designed.

A comparison of the convergence properties

of IS and MCMC methods

MCMC [43] and AIS methods are often competing techniques
to tackle the same class of inference problems, hence a brief
comparison of their theoretical properties is relevant.
MCMC schemes generate a chain of correlated samples
xD x® . x®, using a suitable Markov kernel 7((x(k7 n x("))
to draw x® conditional on x*~ V. Different algorithms, e.g., the
Gibbs sampler or the MH method [43], yield different kernels.
In any case, K{(-,-) is designed so as to guarantee, under mild
assumptions, that limi-. px = 7 a.s., where pi denotes the
pdf of the kth element of the chain, which generates x®
i.e., the generated sequence x®_ k=1,2,..., has 7 as a station-
ary pdf [7], [43], [44]. There are no known rates for the conver-
gence of pi toward 7. However, it has been found that this

rate can be very low in some scenarios. Moreover, it has to be
taken into account that estimators constructed from an
MCMC run of length K have the form

1 S *
x),
K- k()k=kzo+1f( )

Thieme = (28)
where the first ko samples are discarded to allow for the conver-
gence of pr. While E[Ificmc(f)] = I(f), assuming py = 7,
the random variates f(x(k)) are correlated and, therefore, the
analysis of Var(I§icuc) is difficult. Again, it can be shown that
Ihieme (f) — I(f) ass., but no error rates are available.

These double asymptotics inherent to MCMC [we need
the chain to burn-in so that px — 7, then we need K — oo
for Ifieme (f) — I(f)] often make these algorithms slower
and computationally less efficient than AIS schemes [32],
[38]. Moreover, in problems where the normalizing constant
zZ= ( f 7 (X) dx) is of interest (e.g., for model validation or
model selection), AIS is a natural solution, as it readily yields
unbiased estimates Zf = (l/K)Zle w®, j=1,..,J, while
MCMLC is often harder to apply [45]. There have been many
recent attempts to devise algorithms that combine MCMC
and AIS principles to take advantage of the strengths of both
approaches [35], [46].

A pictorial comparison between IS and MCMC approach-
es is provided in Figure 5. In an MH-type sampler, a new
state in the chain is proposed, and it is accepted or rejected
with a suitable probability . The number of repetitions of
the same current state x* plays the role of a weight in the
estimator I§cuc (f). However, unlike in IS, given a sample
x®, the weighting procedure is not provided by a determin-
istic function [e.g., by 7 (x)/q(x)] but instead is a result of

Generation Generation
a stochastic process defined by the acceptance MCMC tests
K 0
performed at each iteration.
Weighting Acceptance Test Parallelization
Wi 1-o IS methods are easily parallelizable, as the samples x* are
wy W . independent and, therefore, can be generated concurrently. In
Wy @ ° comparison, competing MCMC methods are much harder to
[ T 1 6 parallelize, because the samples in a Markov chain are inher-
X, || AR AR ently sequential. With the availability of state-of-the-art multi-
xK) x@ xM  x@ <O K core computers and graphics processing units (GPUs), this
: o may be a key factor in favor of IS schemes. See [47] for a
I 1' ; é : II( > comparison of various MC schemes running on GPU systems.
In the specific case of AIS schemes, it is relatively straight-
l forward to identify two stages in all of the presented algorithms.
Estimation Estimation The first stage, which includes sampling and weighting, is a
- K ~ K readily parallelizable task. This is the same as in standard IS,
() = X @ F(x¥) () = 3 ) P .
P K= kg k= ks where each sample can (ideally) be generated and processed

() (b)

FIGURE 5. A graphical representation of IS and MCMC procedures to
provide an estimator 7¥(f) of /(f). More specifically, we have considered
the MH type of MCMC algorithms, where a novel possible state x’ is
drawn from g(x), and it is accepted, thus setting x¥ = x with a suitable
probability o. Otherwise, the next state of the chain is set equal to the
previous ong, i.e., x¥ = x*=" with probability 1 — . (a) The impor-
tance sampler and (b) the MH-type sampler.

independently. The second stage, however, involves adaptation
and, for some schemes, resampling. In this stage, it is neces-
sary to process together all of the samples and weights, e.g., to
calculate the parameters of the new proposals in schemes like
AMIS or N-PMC, or even to run MCMC steps in the LAIS
method. The adaptation step can be expected to be nonpar-
allelizable, or parallelizable to a lesser extent, on standard
computing devices.
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Applications and challenges
While the range of applications of AIS algorithms is broad, it
is worth discussing some particular fields where this method-
ology has either been applied with special success (compared
to state-of-the-art techniques) or appears as a promising tool
to tackle hard and long-standing problems.
The problems of detection and estima-
tion in wireless sensor networks have been

The DM-PMC, LAIS, and

AIS techniques also enable consistent parameter estima-
tion in a-stable distributions with very heavy tails [38]. o-
stable distributions are often denoted as S(«,p,7,5), where
0 < o =2 determines the weight of the tails (the smaller the
value of o, the heavier the tails), B is a skewness parameter,
and y > 0 and § determine the scale and
location. Except for particular cases, the
associated pdfs can only be approximated

of great interest to the signal processing GAPIS methods are numerically. Fast, classical methods for
community for more than a decade. They particularly well suited parameter estimation are known to work
involve scenarios where data related to a to multimodal target only for o = 0.5 (i.e., with moderate tails).
particular signal of interest are collected at distributions, which The results in [38], including an example

various different sites of a network. Often,
these observations can only be shared under
tight constraints (due to scarce commu-
nication bandwidth, limited power, etc.),
and estimation has to be performed with partial data or in a
distributed fashion. One example of this class of problems,
the localization of an object using signal-strength measure-
ments, is presented in the “Localization Problem in a Wire-
less Sensor Network™ section. A general challenge in this field
is the design of schemes for the distributed implementation
of AIS schemes with a minimal communication among the
nodes of the network. Ideas based on the exchange of sum-
mary statistics have been explored, especially in the context
of sequential IS (see, e.g., [48]), but efficient schemes (accurate
yet affordable in terms of both communication and computa-
tion) are still needed.

The fitting of Gaussian processes (GPs) for nonlinear
regression problems is another example, which is explored in
the section “Learning Hyperparameters for GP Regression
Models.” GPs have found a plethora of applications in problems
where one needs to approximate smooth functions for which a
parametric model is not available at all, and the complete func-
tion has to be learned from a discrete collection of data points
[49]. While GPs are powerful models, their performance can
be very sensitive to the fitting of a number of hyperparameters.
The example in the aforementioned section shows that AIS can
efficiently tackle this problem.

AIS has also shown advantages compared to state-of-the-
art methods in performing inference for stochastic kinetic
models (SKMs) [32]. SKMs are used in biochemistry or
ecology to model complex interactions among populations
of different species [50]. In ecology, SKMs yield a general-
ization of classical predator—prey models. In biochemistry,
an SKM represents a system with n types of molecules (spe-
cies) and k types of reactions. In both cases, it is of interest
to track and predict the species populations, which evolve as
a multidimensional continuous-time jump process, and esti-

are often hard for
conventional algorithms.

with real data, show that AIS methods can
overcome this limitation and open the door
to address problems formerly intractable.

Finally, a challenging arena for the
application of AIS methods includes a number of problems
where very large-scale models are used and need to be fit-
ted from (often scarce) data. This includes many large-scale
systems used in geophysics, e.g., in oceanography [52], cli-
mate modeling [53] or cosmology [54]. In all of these cases,
algorithms that attain a good tradeoff between computational
complexity and accuracy of the resulting estimators are very
much needed, and advanced AIS holds potential to be success-
fully applied.

Numerical examples

Localization problem in a wireless sensor network

We consider the problem of positioning a target in a wireless
sensor network using range measurements [55]. We assume that
the measurements of the sensors are contaminated by additive
white Gaussian noise with different unknown powers. This situ-
ation is common in many practical scenarios where, even if the
sensors are of the same manufacturer and model, the noise level
can be different due to various factors. They include signal
propagation conditions, manufacturing imperfections, and envi-
ronmental conditions (e.g., humidity or temperature).
Moreover, these conditions can change over time. Hence, in
practice the central node of the network has to reestimate the
noise powers (in addition to the target’s position and possibly
other parameters of the model) whenever a new block of obser-
vations is acquired.

More specifically, we denote the unknown target’s posi-
tion with the random vector A = [A1,A>]" and a specific
realization of it as A. Let there be M sensors at locations
h,,m=1,2,---, M. The model for the observations is

Vi =20log(| A =l ) + vim, m=1,..., M,

mate the rates that govern the dynamics. It has been shown i=1,2,...,No, 29)
[32] that AIS schemes (in this case, the N-PMC algorithm)
can attain the same performance as state-of-the-art particle | where || - || denotes the L, norm, y;,» is the ith observation of

MCMC methods [51] with a fraction of the computational
cost for modest SKMs. The accurate fitting of complex,
high-dimensional SKMs is an open problem with outstand-
ing real-world applications.

the Mth sensor, N, is the number of observations of each of
the sensors, and the v;»s are independent Gaussian random
variables with pdfs N(viu;0, y,zn),m =1,..., M. We denote
the vector of standard deviations as y =[y1,...,Yu]. We adopt
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a uniform prior U (Ry) for the position [A1,A2] ", over a pre-
defined support, and a uniform prior for y;, also over a preset
range, Ry. Thus, the posterior pdf is

Ay

2 M
Y) x Q(y|ll,l2,')/l, 7YM)H p(ll) H p(}’m),
i=1 m=1

No

A 1 1 ( 2 ]
= exp(— im—2010g(| A — h )
I11 Nerees p( A o Iy
x I(R)T(Ry), (30)

where N, is the number of observations, y; is the ith obser-
vation of the mth sensor, and I.(S) is an indicator function
that takes a value equal to one if ¢ € S, and is equal to
zero otherwise. Thus, in this problem x = AT, yT] T and
di= M+ 2.

Our goal is to compute the minimum mean square error
(MMSE) estimate, which corresponds to the expected value
of the posterior 7(A, y|y1,¥2,..., yu), where the yus are vec-
tors whose elements are the measurements of the mth sensor.
Because the MMSE estimate cannot be computed analytically,
we applied several AIS methods to approximate it via MC
quadrature. In particular, we worked with the standard PMC
method [19], two different DM-PMC techniques [24], AMIS
[21], and LAIS [23].

In our experiment, we had M = 6 sensors, and the loca-
tions of the sensors were at h; = [3,— 8], h.=[8,10]",
hs=[-4,-6]", ha=[-8,1]", hs=[10,0]", and he=
[0,10]7. In all of the cases, we employed Gaussian pro-
posal densities, @n;(X|tnj,Cnj) = N(X|ttnj,Cnj) with
Mn1 ~U([1,4]") for n=1,..., N. The target was located at
A=[A1=2.5,1,=2.5]", and the vector of standard deviations
was Yy=[y1=1,y2=2,73=1,74=0.5,75 = 3,76 = 0.2].
We generated N, = 20 observations for each sensor according

Table 7. The results of standard PMC [19] (localization example).

MSE 25.12 396 135 1.08 072 0.61 070
N 5 10 50 100 500 1,000 2,000
J 2000 1,000 200 100 20 10 5

E S=N/=10*

Range MMSE = 0.61 —  Maximum MSE = 25.12

THE

to the model given by (29). The uniform prior U (Rx) over the
position [A1,A2] T had a support Ri = [— 30 X 30] 2 and the
uniform prior of the y;s was U ([0.01,20]). Thus, the over-
all prior of y was U(R,) with R, = [0.01,20]™. Then, we
obtained the measurement vectors yi,...,yv, where y; € R,
Note that, regarding the dimension of the observations, we
have dy = N,M = 120.

For the PMC, the DM-PMCs and LAIS we set
C.j=C,=C=0’T with c=1 In AMIS, we have
N=1and C,;=C;= O'%I, and we set o1 € {1,2}. In
the adaptation layer of LAIS, to obtain {,un,j},,Nzl, from
the previous population {g,,;-1}h=1, we employ parallel
MH chains with a Gaussian random-walk proposal pdf,
On(Mnj nj-1, 1) = N(unj| ttnj-1, 0°I)  with o= 1L
Moreover, we also test the application of N independent
parallel MH algorithms with the same Gaussian random-walk
proposal pdf, @, (tn,: | tnj-1,0°1), employed in the adaptation
of LAIS.

We fix the total number of evaluations of the posterior
density to E = 10%, because this is usually the most costly
step in MC algorithms. Let us recall that J denotes the total
number of iterations and K the number of samples drawn
from each proposal at each iteration. Moreover, we denote
as S the total number of samples employed in the final IS
estimator. In LAIS, the total number of evaluations of the
target pdfis E = NJ(K+ 1), whereas S = NJK (i.e., E> S
due to the use of the Markov adaptation process). For the
rest of the methods, we have E = S = NKJ (note that N =1
in AMIS, while K =1 in standard PMC and MH). Sev-
eral combinations of N, J, and K are tested for the fixed
E = 10* evaluations.

We computed the mean square error (MSE) of the dif-
ferent estimators obtained with respect to the ground truth,
x=[A",y"]". The results, averaged over 500 independent
runs, are provided in Tables 7-12 (one table per technique)
with the best and worst MSE values highlighted in boldface.
In this particular experiment, with a unimodal posterior pdf
and a good initialization ,un,1~’L(([1,5]d*), the PMC tech-
niques and the AMIS method provide the smallest MSE
values. The standard PMC method seems to perform bet-
ter if one uses a larger value of N and a smaller number of
iterations J. In fact, the use of a small number of proposal
pdfs can lead to catastrophic results in this case. The DM-
PMC techniques substantially mitigate this problem, with

Table 8. The results of GR-DM-PMC [24] (localization example).

MSE 0.96 0.89 0.75 0.84 0.85 147 081 0.76 0.79 0.84 0.80 0.81
N 5 5 5 10 10 10 50 50 100 100 500 1,000
J 50 100 10 10 5 200 5 10 5 10 5 5
K 40 20 200 100 200 5 40 20 20 10 4 2
E S=NTM=10*
Range  MMSE = 0.75 —— Maximum MSE = 1.47
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Table 9. The results of LR-DM-PMC [24] (localization example).

THE

MSE 1.14 1.52 0.77 077 079
N 5 5 5 10 10
J 50 100 10 10 5

K 40 20 200 100 200
E S=NIM= 10*

Range MMSE = 0.77 — Maximum MSE = 2.91

291 1.01 1.24 1.26 1.44 1.32 1.49
10 50 50 100 100 500 1,000
200 5 10 5 10 5 5

40 20 20 10 4 2

GR-DM-PMC showing a more robust behavior with respect
to the parameter choice than LR-DM-PMC. AMIS provides
very good results, although it shows some sensitivity with
respect to the choice of the initial scale parameter, o1. Note
that LAIS provides slightly worse results than AMIS but also
shows less sensitivity with respect to the parameter choice
and outperforms the performance of N independent paral-
lel MH chains. Finally, Figure 6 shows the evolution of the
estimators of AMIS (J =300, K =200) and standard PMC
(N =100, J =100) as functions of the number of iterations,
J» in one specific run.

Learning hyperparameters for GP regression models

GPs are a modern machine-learning approach to solving
regression problems [56]. Given a covariance kernel func-
tion, learning its hyperparameters is the key to attain accu-
rate performance. In this section, we test the different AIS
schemes for estimating the hyperparameters of a GP regres-
sion model.

Let us assume that we have a set of observed data pairs,
{yi, zi} -1 with yi€ R and z; € R, and let us denote the
corresponding P X1 output vector as y= [yi,...,yr]
and the L X P input matrix as Z = [z1,...,zr]. We address
the problem of inferring the unknown function f that links
the variables y and z. Specifically, the assumed model is
y = f(z) + e, where e ~ N(e;0,0%) and f(z) is a realization
of a GP, f(z)~GP (u(z),k(z,r)) with z,r € R:, u(z) = 0,
and the kernel function has the form

€2))
o

2
k(z,r) = exp(— ZL: (202—712’0)>
=1

Table 11. The results of LAIS [23] (localization example).

[We point out that f(-) in this section has nothing to do with
the test function used previously in the article.] Given these
assumptions, the vector f = [f(z),..., f(zp)]" is distributed
as p(f1Z,a,k)= N(f;0,K), where 0 is a P X 1 null vector,
and [K];:= k(z;,z)) for all i,j = 1,..., P is a P X P matrix.
Therefore, dx = 2, and the vector containing the hyperparam-
eters of the model is x = [x1 = a, x2 = o] € R%, where «a is
the hyperparameter of the kernel function in (31), and o is the
standard deviation of the observation noise. In this experiment,
we focus on the marginal posterior density of the hyperparam-
eters [56], 7(x1y,Z,k) o< p(y|x,Z,k)p(x), which can be
evaluated analytically, but we cannot compute integrals involv-
ing it. Considering a uniform prior p(x) over [0.01,20]%, and
because p(y|x,Z,k) = N(y;O,K + o%1), we have

log[z(x1y,Z,k)]
1

—_ %yT(K+ o’y — Elog[det (K+o°D] (32

Table 10. The results of AMIS [21] (localization example).

MSE 5,-1) 080 072 075 076 088 129
MSE (co=2) 1.53 148 142 129 148 171
N 1

J 200 100 50 20 10 5

K 50 100 200 500 1,000 2,000
E S=TM=10*

Range MMSE = 0.72 —— Maximum MSE = 1.71

MSE 1.91 1.52 1.14 111 1.10
N 1 2 5 5 10

J 5.10° 500 250 500 250
K 1 9 7 3 3

s 510°  9.10° 8750 7,500 7,500
E S+ NT= NT(M+ 1) = 104

Range MMSE = 1.06 Maximum MSE = 1.91

1.06 1.29 1.25 1.26 1.30 1.41
10 100 100 100 200 10°
500 10 25 50 25 5

1 9 3 1 1 1
510°  9.10° 7500 5108 5108  5.10°
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where K depends on o [56]. Because the moments of this
marginal posterior cannot be computed analytically, we use
again MC integration with different AIS methods to approxi-
mate the mmse estimator, x = [&, 6], which corresponds to
the expected value of X with respect to 7 (x 1y, Z,k).

For this experiment, we generated P = 200 pairs of
data, {y;,z j}f: 1, according to the previous GP model with
a=3, 0=10, L= 1, and z;~U([0,10]). Fixing the gen-

Table 12. The results of independent MH parallel chains
(localization example).

MSE 142 1.31 144 232 273 3.21 3.18 3.15
N 1 5 10 50 100 500 1,000 2,000
J 104 2.10° 10*° 200 100 20 10 5
E S=NT=10*

MSE  MMSE = 1.31 — Maximum MSE = 3.21

range

”\

150 200 250

100
lterations (j)

(a)

0 50 300

40 60 80
Iterations ()

(b)

100

FIGURE 6. The evolution of (a) the estimators of AMIS (T = 300,

M =200) and (b) standard PMC (N = 1,000, T= 100) as functions
of the number of iterations, j, in one specific run. The true values of
the parameters are x1 = 2.5 (green), xo = 2.5 (blue), x3 =1 (yellow),
Xs =2 (cyan), xs = 1 (magenta), xs = 0.5 (red), x; = 3 (black), and
Xxg = 0.2 (violet).
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erated data, we then computed the true value of the MMSE,
X = [a,0] = [3.5200, 9.2811], using an exhaustive and costly
grid search approximation, to compare the different AIS tech-
niques. The corresponding posterior pdf is given in Figure 7(a).

We compared the standard PMC method [19], the LR-
DM-PMC technique [24], the AMIS [21], and the LAIS [23]
algorithms. Again, for all of them we considered Gaussian
proposal densities, qnj(X|tnj»Cnj) = N(X |ttnj,Cnj) with
Mn1~U([1,4]%) for n=1,...,N. Note that, unlike in the
previous experiment, the true value of x does not belong to
the initialization region [1, 412. For PMC, LR-DM-PMC, and
LAIS we set C,j= C,= C = ¢°I with o = 2. For AMIS,
we had N=1 and C,;=C; = 6?1, and we set o1 = 2.
In the adaptation layer of LAIS, to obtain {g.;}n-1 from
the previous population {g.;—1}n-1, we employed paral-
lel MH chains with a Gaussian random-walk proposal pdf,
On(tnj| pnj-1,6°1) = N(ttnj| ttnj—1,0°T) with ¢ = 2. Once
more, we fixed the total number of evaluations of the posterior
pdf to E = 10%, and we tested the algorithms considering dif-
ferent combinations of the parameters.

The results, in terms of MSE in the estimation of x, are given
in Tables 13—16. They were averaged over 500 independent
runs. In this numerical experiment, LAIS and LR-DM-PMC
provided smaller MSEs because they discover and explore
faster the tail of the posterior distribution with respect to the
other techniques. The adaptation of the location parameters
produced in one specific run by LAIS (N = 5 and 7 = 100) is
shown in Figure 7(b).

Concluding remarks and outlook

In signal processing, an important task is making inference
from data about model parameters or models in general. From
a Bayesian point of view, ideally, this inference is made from
posterior distributions of the unknowns. For complex models,
it is very difficult to find these posteriors. In such cases, one
resorts to approximations in the sense that one generates sam-
ples that are drawn from the posterior distributions. A tool that
helps practitioners to get such samples is MCMC sampling.
As has already been pointed out, the MCMC algorithms and
the growth of computing power have invigorated the Bayesian
methodology in the last 25 years to the point that today we use
it to solve most intricate problems.

In this article, we have argued that practitioners of signal
processing should be aware of another option for solving infer-
ence problems by way of drawing samples from distributions.
It is based on a methodology known as AIS. AIS methods have
the subtle ability to learn the pdfs that produce better samples
for constructing posteriors and that eventually allow for a more
accurate inference. The learning is accomplished in iterations
where the samples from previous iterations serve to find better
proposal pdfs.

AIS is often simpler to implement than MCMC sampling.
Besides simplicity, AIS has other advantages over MCMC
sampling, including that it does not produce correlated
samples, there is no such thing as burn-in period, and AIS is
easier for parallelization. We also have a better understanding
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5 10 15 20
(b)

FIGURE 7. (a) The posterior density 7 (x|y,Z,«). (b) The evolution of the
location parameters ¢ in one specific run of LAIS with N =5and T =100
(jointly with the contour plot of the posterior pdf). The starting points are
shown with x marks, whereas the final locations are depicted with circles.

of the rates of convergence of AIS methods than those of
MCMC sampling. A pitfall of IS methods is the possibility
of using proposal pdfs with thinner tails than those of the tar-
get distribution, which can easily ruin any estimate from the
generated data and the computed weights.

The most important open problem of AIS, as we have
already alluded, is the development of AIS methods that
can work accurately in high-dimensional

L 4

o e
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Table 13. The results of standard PMC [19] (GP example).

MSE 0.44 087 101 088 0.8 09 115
N 5 50 100 200 500 1,000 2,000
T 2,000 200 100 50 20 10 5

E S=NT=10*

Range MMSE = 0.44 —— Maximum MSE = 1.15

Table 14. The results of LR-DM-PMC [24] (GP example).

MSE 0.41 039 0.16 0.09 0.04 023 0.07 0.46
N 5 5 5 50 50 100 100 1,000
T 10 20 40 10 20 10 20 5

M 200 100 50 20 10 10 5 2

E S= NIM= 10*

Range MMSE = 0.04 —— Maximum MSE = 0.46

particle filtering, there is enough common ground between the
two methodologies to investigate the application of particle
flows to AIS. How can the underlying principles of particle
flows be exploited in AIS?

In recent years, stochastic optimization methods have
seen a resurgence. One reason for this is that there are many
problems that can be formulated as optimization problems, in
which the minimized objective function is a sum of many loss
functions. IS is one of a number of MC sampling-based meth-
ods for stochastic optimization. It can improve the convergence
rate of the optimization and reduce the stochastic variance of
the result [58]. The use of AIS for optimization raises various
challenging questions, including convergence to optimal solu-
tions and optimal values.

A specific application of stochastic optimization is in sto-
chastic variational Bayesian methods. These methods can be
applied to complex probabilistic models and large data sets
with a vast range of applications in machine learning. Recent-
ly, a synthesis between variational inference and MCMC

sampling for variational approximation has

spaces. As the dimension of X increases, In the years to come, we been proposed [59]. It was claimed that a
the complexity of flndlng.good .propf)sal expect that AIS methods fast .p0§ter}0r approx1ma.t19n tl}roggh the
pdfs explodes (curse of dimensionality). e maximization of an explicit objective was
One approach for resolving this problem is will find increased accomplished. Furthermore, the proposed
to work with compartmentalized spaces of use within the signal method offered tradeoffs between com-
the unknowns and accept that we will not processing community. putation and accuracy. Clearly, AIS is a

have approximations of the full joint poste-
rior but instead a number of marginalized posteriors.
Another way of addressing high dimensionality is by par-
ticle flows. This approach has been of interest in particle fil-
tering, where samples drawn from the prior distribution are
migrated to the posterior distribution of the unknowns by solv-
ing partial differential equations [57]. Even though the prob-
lems we solve with AIS are different from those addressed by

natural candidate to be applied in the same
setting with the possibility of performing even better than
MCMC sampling.

Finally, in the years to come, we expect that AIS methods
will find increased use within the signal processing com-
munity. Much of the research in this area will be driven by
novel applications and by models with expanded complexity.
There will be new applications that may even include use of
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Table 15. The results of AMIS [21] (GP example).

MSE 1.32 1.35 1.26 1.27 1.23
N 1

T 200 100 50 20 10

M 50 100 200 500 1,000
E S=T™M=10*

Range MMSE = 1.23 —— Maximum MSE = 1.35

Table 16. The results of LAIS [23] (GP example).

MSE  1.04 046 021 009 0.03 031 0.65
N 1 5 10 50 100 500 1,000
T 5000 1,000 500 100 50 10 5
M 1

E NT(M+ 1) = 10*

Range MMSE = 0.03 —— Maximum MSE = 1.04

AIS in deep learning for computing the weights of the hid-
den layers. The addressed problems will not only require esti-
mating unknown quantities but also finding the best models
from a set of predefined models or finding the best model in
nonparametric Bayesian settings where the number of models
is not set a priori.
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Image Aesthetic
Assessment

An experimental survey

his article reviews recent computer vision techniques used in the assessment

of image aesthetic quality. Image aesthetic assessment aims at computation-

ally distinguishing high-quality from low-quality photos based on photo-

graphic rules, typically in the form of binary classification or quality scoring.
A variety of approaches has been proposed in the literature to try to solve this
challenging problem. In this article, we summarize these approaches based on
visual feature types (hand-crafted features and deep features) and evaluation crite-
ria (data set characteristics and evaluation metrics). The main contributions and
novelties of the reviewed approaches are highlighted and discussed. In addition,
following the emergence of deep-learning techniques, we systematically evaluate
recent deep-learning settings that are useful for developing a robust deep model
for aesthetic scoring.

Experiments are conducted using simple yet solid baselines that are com-
petitive with the current state of the art. Moreover, we discuss the possibility
of manipulating the aesthetics of images through computational approaches.
We hope that this article might serve as a comprehensive reference for future
research on the study of image aesthetic assessment.

Aesthetic Assessment Through Computer Vision

The aesthetic quality of an image is judged by commonly established photo-
graphic rules, which can be affected by numerous factors, including the differ-
ent uses of lighting [1], contrast [2], and image composition [3] [see Figure 1(a)].
These human judgments, given in an aesthetic evaluation setting, are the result
of human aesthetic experience, i.e., the interaction between emotional—valua-
tion, sensory—motor, and meaning—knowledge neural systems, as demonstrated
in a systematic neuroscience study by Chatterjee et al. [4]. From the beginning
of psychological aesthetics studies by Fechner [5] to modern neuroaesthetics,
researchers have argued that there is a certain connection between human aes-
thetic experience and the sensation caused by visual stimuli, regardless of

source, culture, and experience [6], which is supported by activations in specific
regions of the visual cortex [7]-[10]. For example, humans’ general reward cir-
cuitry produces pleasure when they look at beautiful objects [11], and the subse-
quent aesthetic judgment consists of the appraisal of the valence of such
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perceived objects [8]—[10], [12]. These activations in the visual cortex can be attributed to the processing of
various early, intermediate, and late visual features of the stimuli, including orientation, shape, color group-
ing, and categorization [13]-[16]. Artists intentionally incorporate such features to facilitate desired percep-
tual and emotional effects in viewers, forming a set of guidelines as they create artworks to induce desired
responses in the nervous systems of perceivers [16], [17]. And modern photographers, to make their work
appealing to as large an audience as possible, now also resort to certain well-established photographic rules
[18], [19] when they capture images.

As the volume of visual data available online grows at an exponential rate, the capability of automati-
cally distinguishing high-quality images from low-quality ones is in increasing demand in real-world
image searching and retrieving applications. When a person enters a particular keyword in an image search
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(a)

Input Image

Feature Extraction

Handcrafted Features

Simple Image Features
Generic Features
Nongeneric Features

Component 1

Deep Features

Generic Deep Features
Learned Aesthetic Deep
Features

Classification Regression
Naive Bayes Linear Regressor
SVM SVR

Deep Neural Network Customized Regressor

Component 2

v

Binary Label/Aesthetic Score
(b)

FIGURE 1. (a) Some high-quality images following well-established photographic rules (top row: color harmony; middle row: single salient object and low
depth of field; bottom row: black-and-white portraits with decent lighting contrast). (b) A typical flow of image aesthetic assessment systems.

SVM: support vector machine; SVR: support vector regressor.

engine, it is expected that the system will return profes-
sional photographs instead of random snapshots. For exam-
ple, when a user enters the words “mountain scenery,” the
person will expect to see colorful, pleasing mountain views
or well-captured mountain peaks instead of gray or blurry
mountain snapshots.

The design of these intelligent systems can potentially be
facilitated by insights from neuroscience studies, which show
that human aesthetic experience is a kind of information pro-
cessing that includes five stages: perception, implicit memory
integration, explicit classification of content and style, cognitive
mastering, and evaluation, which together ultimately produce
aesthetic judgment and aesthetic emotion [12], [13]. However,
it is nontrivial to computationally model this process. Chal-
lenges in the task of judging the quality of an image include 1)
computationally modeling the intertwined photographic rules,
2) knowing the aesthetic differences in images from different
image genres (e.g., close-shot object, profile, scenery, and night
scenes), 3) knowing the type of techniques used in photo cap-
turing (e.g., high-dynamic range, black and white, and depth of
field), and 4) obtaining a large amount of human-annotated data
for robust testing.

To address these challenges, computer vision researchers
typically cast this problem as a classification or regression
problem. Early studies started with distinguishing typi-
cal snapshots from professional photographs by trying to
model the well-established photographic rules using low-
level features [20]—[22]. These systems typically involve a
training set and a testing set consisting of both high-quality
and low-quality images. The system robustness is judged

by the model performance on the testing set using a speci-
fied metric, such as accuracy. These rule-based approaches
are intuitive, as they try to explicitly model the criteria
that humans use in evaluating the aesthetic quality of an
image. However, more recent studies [23]-[26] have shown
that using a data-driven approach is more effective, as the
amount of training data available grows from a couple of
hundred images to millions. Besides, transfer learning from
source tasks with sufficient amounts of data to a target task
with relatively fewer training data is also proven feasible,
with many successful attempts showing promising results
through deep-learning methods [27] with network fine-
tuning, where image aesthetics are implicitly learned in a
data-driven manner.

As summarized in Figure 1(b), the majority of the afore-
mentioned computer vision approaches for image aesthetic
assessment can be categorized based on image representations
(e.g., handcrafted features and learned features) and classifi-
ers/regressors training (e.g., support vector machine [SVM]
and neural network learning approaches). To the best of our
knowledge, no up-to-date survey covers the state-of-the-art
methodologies involved in image aesthetic assessment. The
last review was published in 2011 by Joshi et al. [28], and no
deep learning-based methods were covered. Some reviews on
image-quality assessment have been published [29], [30]. In
those efforts, image-quality metrics regarding the differences
between a noise-tempered sample and the original high-qual-
ity image were proposed, including but not limited to mean
squared error, structural similarity index (SSIM) [31], and
visual information fidelity (VIF) [32]. Nevertheless, their main
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focus was on distinguishing noisy images from clean ones in
terms of a different quality measure rather than artistic/photo-
graphic aesthetics.

In this article, we contribute a thorough overview of the
field of image aesthetic assessment. Meanwhile, we also
cover the basics of deep-learning methodologies. Specifi-
cally, as different data sets exist and evaluation criteria vary
in the image aesthetics literature, we do not aim to directly
compare the system performance of all of the reviewed works;
instead, we point out in the survey their main contributions
and novelties in model designs, and give potential insights for
future directions in this field of study. In addition, following
the recent emergence of deep-learning techniques and the
effectiveness of the data-driven approach in learning better
image representation, we systematically evaluate different
techniques that could facilitate the learning of a robust deep
classifier for aesthetic scoring. Our study covers topics such as
data preparation, fine-tuning strategies, and multicolumn deep
architectures, which we believe to be useful for researchers
working in this domain.

In particular, we summarize useful insights on how to alle-
viate the potential problem of data distribution bias in a binary
classification setting and show the effectiveness of rejecting
false-positive predictions using our proposed convolutional
neural network (CNN) baselines, as revealed by the balanced
accuracy metric. We also review the most commonly used
publicly available image aesthetic assessment data sets for
this problem and draw connections between image aesthetic
assessment and image aesthetic manipulation, including image
enhancement, computational photography, and automatic
image cropping.

Background

The deep neural network

The deep neural network belongs to the family of deep-learn-
ing methods that are tasked to learn feature representation in a
data-driven approach. While shallow models (e.g., SVM and
boosting) showed success in earlier studies concerning relative-
ly smaller amounts of data, they require highly engineered fea-
ture designs in solving machine-learning problems. Common
architectures in deep neural networks consist of a stack of
parameterized individual modules that we call layers, such as
the convolution layer and the fully connected layer. The archi-
tecture design of stacking layers on top of layers is inspired by
the hierarchy in the human visual cortex ventral pathway, offer-
ing different levels of abstraction for the learned representation
in each layer. Information propagation among layers in feed-
forward deep neural networks typically follows a sequential
pattern. A forward operation F(-) is defined respectively in
each layer to propagate the input x it receives and produces an
output y to the next layer. For example, the forward operation
in a fully connected layer with learnable weights W can be
written as

y=F@)=Wx =3 wjxi M
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This is typically followed by a nonlinear function, such
as sigmoid

1

1+ exp(—y) &)

<

or the rectified linear unit z = max(0,y), which acts as the
activation function and produces the net activation output z.

To learn the weights W in a data-driven manner, we need
to have the feedback information that reports the current
performance of the network. Essentially, we are trying to tune
the knobs W to achieve a learning objective. For example,
given an objective ¢ for the input x, we want to minimize the
squared error between the net output z and ¢ by defining a loss
function L:

L=glz=P. 3
2

To propagate this feedback information to the weights,
we define the backward operation for each layer using gradi-
ent backpropagation [33]. We hope to get the direction AW
to update the weights W to better suit the training objective
(i.e., to minimize L): W — W —nAW, where 7 is the learn-
ing rate. In our example, AW can be easily derived based on
the chain rule:

_ 0oL
AW = W

_ 9L 9z 9y

T 9z dy OW
exp(—y)
=@ P “
(exp(—=y) +1)°

In practice, researchers resort to batch stochastic gradient
descent or more advanced learning procedures that compute
more stable gradients, as averaged from a batch of training
examples {(x;#)lx; € X} to train deeper and deeper neu-
ral networks with continually increasing numbers of layers.
We refer readers to [27] for an in-depth overview of additional
deep-learning methodologies.

Image-quality metrics

Image-quality metrics are defined in an attempt to quantita-
tively measure the objective quality of an image. This is typ-
ically used in image restoration applications (superresolution
[34], deblurring [35], and deartifacting [36]), where we have
a default high-quality reference image for comparison.
However, these quality metrics are not designed to measure
the subjective nature of human-perceived aesthetic quality
(see examples in Figure 2). Directly applying these objec-
tive quality metrics to our domain of image aesthetic
assessment may produce misleading results, as can be seen
from the measured values in Figure 2(b). Interest in devel-
oping more robust metrics has increased in the research
community, as a means to assess the more subjective quali-
ty of image aesthetics.
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A typical pipeline

Most existing image-quality assessment methods take a super-
vised learning approach. A typical pipeline assumes a set of
training data {x:,yi};c [ »» from which a function f:g(X) — Y
is learned, where g(x;) denotes the feature representation of
image x;. The label y; is either {0, 1} for binary classification
(when f is a classifier) or a continuous score range for regres-
sion (when f is a regressor). Following this formulation, a
pipeline can be broken into two main components, as shown
in Figure 1(b), i.e., a feature extraction component and a deci-
sion component.

Feature extraction

The first component of an image aesthetics assessment sys-
tem aims at extracting robust feature representations
describing the aesthetic aspect of an image. Such features
are assumed to model the photographic/artistic aspect of
images to distinguish images of different qualities. Nu-
merous efforts have been made to design features that are
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robust enough for the intertwined aesthetic rules. The major-
ity of feature types can be classified into handcrafted fea-
tures and deep features. Conventional approaches [20], [21],
[37]-[49] typically adopt handcrafted features to computa-
tionally model the photographic rules (e.g., lighting and
contrast), global image layout (the rule of thirds), and typi-
cal objects (e.g., human profiles, animals, and plants) in
images. In more recent work, generic deep features [50], [51]
and learned deep features [23]-[25], [52]-[59] exhibit stron-
ger representation power for this task.

Decision phase

The second component of an image aesthetics assessment sys-
tem provides the ability to perform classification or regression
for the given aesthetic task. The naive Bayes classifier, SVM,
boosting, and deep classifier are typically used for binary clas-
sification of high-quality and low-quality images, whereas
regressors like support vector regressors (SVRs) are used in
ranking or scoring images based on their aesthetic quality.

Reference Gaussian Blur, o= 1 Gaussian Blur, 0=2

PSNR/SSIM/VIF 26.19/0.86/0.48 22.71/0.72/0.22

Reference High-Quality Image Low-Quality Image
PSNR/SSIM/VIF 7.69/-0.13/0.04 8.50/0.12/0.03

FIGURE 2. Quality measurements by peak signal-to-noise ratio (PSNR), SSIM [31], and VIF [32] (a higher measurement is better, typically made against a
referencing ground-truth high-quality image). Although these are good indicators for measuring the quality of images in image restoration applications,
such as the images in (a), they do not reflect human-perceived aesthetic values, as shown by the measurements for the building images in (b).
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Data sets

The assessment of image aesthetic quality assumes a standard
training set and testing set containing both high-quality and
low-quality image examples, as previously mentioned. Judg-
ing the ground-truth aesthetic quality of a given image is,
however, a subjective task. As such, it is inherently challeng-
ing to obtain a large amount of such annotated data. Most of
the earlier papers [21], [38], [39] on image aesthetic assess-
ment collect a small amount of private image data. These data
sets typically contain from a few hundred to a few thousand
images, with binary labels or aesthetic scoring for each image.
Yet such data sets where the model performance is evaluated
are not publicly available. Much research effort has later been
made to contribute publicly available image aesthetic data sets
of larger scale for more standardized evaluation of model per-
formance. In the following, we introduce those data sets that
are most frequently used in performance benchmarking for
image aesthetic assessment.

The Photo.net data set and the DPChallenge data set are
introduced in [28] and [60], respectively. These two data sets
can be considered the earliest attempts to construct large-scale
image databases for image aesthetic assessment. The Photo.net
data set contains 20,278 images, with at least ten score ratings
per image. The ratings range from zero to seven, with seven
assigned to the most aesthetically pleasing photos. Typically,
images uploaded to Photo.net are rated as somewhat pleasing,
with the peak of the global mean score skewing to the right
in the distribution [28]. The more challenging DPChallenge
data set contains diverse ratings. The DPChallenge data set
contains 16,509 images in total, and was later replaced by the
Aesthetic Visual Analysis (AVA) data set, where a significantly
larger number of images derived from DPChallenge.com are
collected and annotated.

The Chinese University of Hong Kong-PhotoQuality
(CUHK-PQ) data set is introduced in [45] and [61]. It contains
17,690 images collected from DPChallenge.com and amateur
photographers. All of the images are given binary aesthetic
labels and grouped into seven scene categories, i.e., animals,
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plants, static, architecture, landscape, humans, and night. The
standard training and testing set from this data set are ran-
dom partitions of a 50-50 split or a fivefold cross-validation
partition, where the overall ratio of the total number of posi-
tive examples and that of the negative examples is around 1:3.
Sample images are shown in Figure 3.

The AVA data set [49] contains ~250,000 images in total.
These images are obtained from DPChallenge.com and la-
beled by aesthetic scores. Specifically, each image receives
78 ~ 549 votes of scores ranging from one to ten. The aver-
age score of an image is commonly taken to be its ground-
truth label. As such, it contains more challenging examples, as
images that lie within the center score range could be aestheti-
cally ambiguous [Figure 4(a)]. For the task of binary aesthetic
quality classification, images with an average score higher
than a threshold of 5 + o are treated as positive examples, and
images with an average score lower than 5 — o are treated as
negative ones. Additionally, the AVA data set contains 14 style
attributes and more than 60 category attributes for a subset of
images. There are two typical training and testing splits from
this data set, i.e., 1) a large-scale standardized partition with
~230,000 training images and ~20,000 testing images using
a hard threshold of ¢ = 0, and 2) an easier partition modeling
that of CUHK-PQ by taking those images whose score rank-
ing is at the top 10% and the bottom 10%, resulting in ~25,000
images for training and ~25,000 images for testing. The ratio
of the total number of positive examples to that of the negative
examples is around 12:5.

Apart from these two standard benchmarks, more recent
research also introduces new data sets that take into consider-
ation the data-balancing issue. The Image Aesthetic Data Set
(IAD) introduced in [55] contains 1.5 million images derived
from DPChallenge and Photo.net. Similar to AVA, images in
the IAD data set are scored by annotators. Positive examples
are selected from those images with a mean score larger than
a threshold. All IAD images are used for model training, and
the model performance is evaluated on AVA in [55]. The ratio
of the number of positive examples to that of the negative

~13,000

~4,500

CUHK-PQ Data Set

® Number of
Positive Images

® Number of
Negative Images

(b)

FIGURE 3. Some sample images in the CUHK-PQ data set [45]. (a) Distinctive differences can be visually observed between the high-quality (grouped in
the green-framed box) and low-quality images (grouped in the red-framed box). (b) The number of images in the CUHK-PQ data set.
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examples is around 1.07:1. The Aesthetic and Attributes
Database (AADB) [25] also contains a balanced distribution
of professional and consumer photos, with a total of 10,000
images. Eleven aesthetic attributes and annotators’ IDs are
provided. A standard partition with 8,500 images for train-
ing, 500 images for validation, and 1,000 images for testing
is proposed [25].

The trend toward creating data sets of even larger volume
and higher diversity is essential for boosting the research
progress in this field of study. To date, the
AVA data set serves as a canonical bench-
mark for performance evaluation of image
aesthetic assessment, as it is the first large-

The distribution of positive
and negative examples in

THE

considerable amount of engineering skill and domain exper-
tise. Next we review a variety of approaches that exploit
hand-engineered features.

Simple image features

Global features are first explored by researchers to model the
aesthetic aspect of images. The works by Datta et al. [21] and
Ke et al. [37] are among the first to cast aesthetic understand-
ing of images into a binary classification problem. Datta et
al. [21] combine low-level and high-level
features that are typically used for image
retrieval and train an SVM classifier for
binary classification of images in terms of

scale data set with detailed annotation. the data set aiso plays a aesthetic quality. Ke et al. [37] propose
Still, the distribution of positive and nega- role in the effectiveness of global edge distribution, color distribution,
tive examples in the data set also plays a trained models hue count, and low-level contrast and

role in the effectiveness of trained models,

as false-positive predictions are as harmful

as having a low recall rate in image retrieval and searching
applications. In the following, we review major attempts in the
literature to build systems for the challenging task of image
aesthetic assessment.

Conventional approaches with handcrafted features
The conventional option for image quality assessment is to
hand-design good feature extractors, which requires a

brightness indicators to represent an

image; then they train a naive Bayes clas-

sifier based on such features. An even earlier attempt by

Tong et al. [20] adopts boosting to combine global low-

level simple features (blurriness, contrast, colorfulness,

and saliency) to classify professional photographs and ordi-
nary snapshots.

All of these pioneering works present the very first attempts

to computationally model the global aesthetic aspect of imag-

es using handcrafted features. Even in a recent work, Ayd in

~160,000

AVA Training Partition

~16,000

~4,000

AVA Testing Partition

® Number of
Positive Images

® Number of
Negative Images

(a)

(b)

FIGURE 4. Some sample images in the AVA data set [49]. (a) Images in the green-framed box are labeled with a mean score of >5. Images in the red-framed
box are labeled with a mean score of <5. The image groups on the right are ambiguous, with a somewhat neutral scoring around five. (b) The number of

images in the AVA data set.
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et al. [62] construct image aesthetic attributes by sharpness,
depth, clarity, tone, and colorfulness. An overall aesthetics
rating score is heuristically computed based on these five
attributes. Improving upon these global features, later stud-
ies adopt global saliency to estimate aesthetic attention dis-
tribution. Sun et al. [38] make use of a global saliency map
to estimate visual attention distribution to describe an image,
and they train a regressor to output the qu-
ality score of an image based on the rate-
of-focused-attention region in the saliency

The rule of thirds, low
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The representative work by Tang et al. [45] gives a compre-
hensive analysis of the fusion of global features and regional
features. Specifically, image composition is estimated by
global hue composition and scene composition, and multiple
types of regional features extracted from subject areas are pro-
posed, such as dark channel feature, clarity contrast, lighting
contrast, composition geometry of the subject region, spatial
complexity and human-based features. An
SVM classifier is trained on each of the fea-
tures for comparison, and the final model

map. You et al. [39] derive similar attention depth _ﬂf field, and performance is substantially enhanced by
features based on a global saliency map and opposing colors are the combining all of the proposed features. It is
incorporate a temporal activity feature for common techniques for shown that regional features can effectively
video quality assessment. composing a good image complement global features in modeling the
Regional 1mage f('eatures [40]—[42] later where the salient object is image aesthetics. .
prove to be effective in complementing the , A more recent approach by image com-
made outstanding.

global features. Luo et al. [40] extract re-
gional clarity contrast, lighting, simplici-
ty, composition geometry, and color harmony features based
on the subject region of an image. Wong et al. [63] com-
pute exposure, sharpness, and texture features on salient
regions and global images, as well as features depicting the
subject—background relationship of an image. Nishiyama
et al. [41] extract bags-of-color patterns from local image
regions with a grid-sampling technique. While [40], [41],
and [63] adopt the SVM classifier, Lo et al. [42] build a sta-
tistical modeling system with coupled spatial relations after
extracting color and texture features from images, where a
likelihood evaluation is used for aesthetic quality predic-
tion. These methods focus on modeling image aesthetics
from local image regions that are potentially most attrac-
tive to humans.

Image composition features

Image composition in a photograph typically relates to the
presence and position of a salient object. The rule of thirds,
low depth of field, and opposing colors are the common
techniques for composing a good image where the salient
object is made outstanding (see Figure 5). To model such
aesthetic aspects, Bhattacharya et al. [43], [64] propose com-
positional features using relative foreground position and a
visual weight ratio to model the relations between fore-
ground objects and the background scene; then an SVR is
trained. Wu et al. [65] propose the use of Gabor filter
responses to estimate the position of the main object in
images, and then extract low-level hue, saturation, value
(HSV)-color features from global and central image regions.
These features are fed to a soft-SVM classifier with sigmoi-
dal softening to distinguish images of ambiguous quality.
Dhar et al. [44] cast high-level features into describable attri-
butes of composition, content, and sky illumination and
combine low-level features to train an SVM classifier. Lo et
al. [66] propose the combination of layout composition, edge
composition features with an HSV color palette, HSV
counts, and global features (textures, blur, dark channel, and
contrasts). SVM is used as the classifier.

position features is proposed by Zhang
et al. [67], where image descriptors that
characterize local and global structural aesthetics from mul-
tiple visual channels are designed. The spatial structure of
the image local regions is modeled using graphlets, and they
are connected based on atomic region adjacency. To describe
such atomic regions, visual features from multiple visual
channels [such as color moment, histogram of oriented gra-
dients (HOG), and saliency histogram] are used. The global
spatial layout of the photo is also embedded into graphlets
using a Grassmann manifold. The importance of the two
kinds of graphlet descriptors is dynamically adjusted, cap-
turing the spatial composition of an image from multiple
visual channels. The final aesthetic prediction of an image
is generated by a probabilistic model using the postembed-
ding graphlets.

General-purpose features

Yeh et al. [46] make use of scale-invariant feature transform
(SIFT) descriptors and propose relative features by matching a
query photo to photos in a gallery group. General-purpose
imagery features like bag of visual (BOV) words [68] and
Fisher vector (FV) [69] are explored in [47]-[49]. Specifically,
SIFT and color descriptors are used as the local descriptors
upon which a Gaussian mixture model (GMM) is trained. The
statistics up to the second order of this GMM distribution are

(b)

FIGURE 5. (a) An image composition with low depth of field, a single
salient object, and the rule of thirds [49]. (b) An image of low aesthetic
quality [45].
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then encoded using the BOV words or FV. Spatial pyramid is
also adopted, and the per-region encoded FVs are concatenat-
ed as the final image representation. These methods ([47]—
[49]) represent an attempt to implicitly model photographic
rules by encoding them in generic content-based features,
which is competitive with or even outperforms simple hand-
crafted features.

Task-specific features

Task-specific features is a term that refers to features in image
aesthetic assessment that are optimized for a specific category
of photos, which can be efficient when the use-case or task
scenario is fixed or known beforehand. Explicit information
(such as human facial characteristics, geometry tag, scene
information, or intrinsic character component properties) is
exploited based on the different task nature.

Li et al. [70] propose a regression model that targets only
consumer photos with faces. Face-related social features (such
as facial expression features, facial pose features, and relative
facial position features) and perceptual features (facial distribu-
tion symmetry, facial composition, and pose consistency) are
specifically designed for measuring the quality of images with
faces, and it is shown in [70] that for this task they complement
conventional handcrafted features (brightness contrast, color
correlation, clarity contrast, and background color simplicity).
Support vector regression is used to produce aesthetic scores
for images.

Lienhard et al. [71] study particular facial features for
evaluating the aesthetic quality of headshot images. To
design features for face/headshots, the input image is divid-
ed into subregions (the eyes, mouth, global face, and entire
image regions). Low-level features (sharpness, illumination,
contrast, dark channel, and hue and saturation in the HSV
color space) are computed from each region. These pixel-
level features assume the human way of perceiving a facial
image and hence can reasonably model the headshot images.
SVM with Gaussian kernel is used as the classifier.

Su et al. [72] propose bag of aesthetics-preserving features
for scenic/landscape photographs. Specifically, an image is
decomposed into n X n spatial grids; then low-level features
in HSV-color space as well as local binary patterns, HOG,
and saliency features are extracted from each patch. The final
feature is generated by a predefined patch-wise operation to
exploit the landscape composition geometry. AdaBoost is used
as the classifier. These features aim at modeling only land-
scape images and may be limited in their representation power
in general image aesthetic assessment.

Yin et al. [73] build a scene-dependent aesthetic model
by incorporating the geographic location information with
GIST descriptors and spatial layout of saliency features for
scene aesthetic classification (such as bridges, mountains,
and beaches). SVM is used as the classifier. The geographic
location information is used to link a target scene image
to relevant photos taken within the same geocontext; then
these relevant photos are used as the training partition to the
SVM. The authors’ proposed model requires input images
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with geographic tags and is also limited to scenic photos.
For scene images without geo-context information, SVM
trained with images from the same scene category is used.

Sun et al. [74] design a set of low-level features for aesthetic
evaluation of Chinese calligraphy. They target the handwritten
Chinese character on a plain white background; hence, conven-
tional color information is not useful in this task. Global shape
features, extracted based on standard calligraphic rules, are
introduced to represent a character. In particular, the authors
consider alignment and stability, distribution of white space,
stroke gaps, and a set of component layout features while mod-
eling the aesthetics of handwritten characters. A backpropaga-
tion neural network is trained as the regressor to produce an
aesthetic score for each given input.

Deep-learning approaches

The powerful feature representation learned from a large
amount of data has shown an ever-improving performance in
the tasks of recognition, localization, retrieval, and tracking,
surpassing the capability of conventional handcrafted features
[75]. Since the work by Krizhevsky et al. [75], where CNNs
are adopted for image classification, a great degree of interest
has arisen in learning robust image representations through
deep-learning approaches. Recent works in the literature of
image aesthetic assessment using deep-learning approaches
to learn image representations can be broken down into two
major schemes: 1) adopting generic deep features learned
from other tasks and training a new classifier for image aes-
thetic assessment and 2) learning aesthetic deep features and
training a classifier directly from image aesthetics data.

Generic deep features

A straightforward approach to employing deep-learning
aims is to adopt generic deep features learned from other
tasks and train a new classifier on the aesthetic classifica-
tion task. Dong et al. [50] propose adopting the generic
features from the penultimate layer output of AlexNet
[75] with spatial pyramid pooling. Specifically, the
4,096 (fc7) x 6 (SpatialPyramid) = 24,576 -dimensional
feature is extracted as the generic representation for imag-
es; then an SVM classifier is trained for binary aesthetic
classification. Lv et al. [51] also adopt the normalized
4,096-dimension fc7 output of AlexNet [75] for feature
representation. They propose to learn the relative ordering
relationship of images of different aesthetic quality. They
use SVM rank [76] to train a ranking model for image
pairS of {IHighQualily, ILowQualily }

Learned aesthetic deep features

Features learned with single-column CNNs

Peng et al. [52] propose to train CNNs of AlexNet-like archi-
tecture for eight different abstract tasks (emotion classifica-
tion, artist classification, artistic style classification, aesthetic
classification, fashion style classification, architectural style
classification, memorability prediction, and interestingness
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prediction). (Figure 6 illustrates a typical single-column CNN.)
In particular, the last layer of the CNN for aesthetic classifica-
tion is modified to output two-dimensional softmax probabili-
ties. This CNN is trained from scratch using aesthetic data,
and the penultimate layer (fc7) output is used as the feature
representation. To further analyze the effectiveness of the fea-
tures learned from other tasks, Peng et al. analyze different
pretraining and fine-tuning strategies and evaluate the perfor-
mance of different combinations of the concatenated fc7 fea-
tures from the eight CNNGs.

Wang et al. [53] propose a CNN that is modified from
the AlexNet architecture. Specifically, the convs layer of
AlexNet is replaced by a group of seven convolutional layers
(with respect to different scene categories), which are stacked

in a parallel manner with mean pooling before feeding to the
1 —animal 2 —architecture

image patch is fed into this CNN. To combine multiple feature
outputs from the sampled patches of one input image, a statis-
tical aggregation structure is designed to aggregate the features
from the orderless sampled image patches by multiple poolings
(minimum, maximum, median, and averaging). An alternative
aggregation structure is also designed based on sorting. The final
feature representation effectively encodes the image based on
regional image information.

Features leamed from multicolumn CNNs

The Rating Pictorial Aesthetics using Deep Learning (RAPID)
model by Lu et al. [23], [55] can be considered to be the first
attempt to train CNNs with aesthetic data. They use an
AlexNet-like architecture where the last fully connected layer
is set to output two-dimensional probability for aesthetic bina-

fully connected layers, i.e., {convs , convs , ry classification. Both global image and local image patches
3 —humse 4 —landscape 5 —night 6—plant 7 — static . . . . .
convs ™ convs P convy M€ convs P convi Tl are considered in their network input design, and the best

The fully connected layers fc6 and fc7 are modified to output
512 feature maps instead of 4,096 for more efficient param-
eter learning. The 1,000-class softmax output is changed to
two-class softmax (fc8) for binary classification. The advan-
tage of this CNN using such a group of seven parallel con-
volutional layers is to exploit the aesthetic aspects in each of
the seven scene categories. During pretraining, a set of images
belonging to one of the scene categories is used for each of
the convi(i e {1,..,7}) layers. Then the weights learned
through this stage are transferred back to the conv} in the
proposed parallel architecture, with the weights from conv;
to convs reused from AlexNet in the fully connected layer
randomly reinitialized. Subsequently, the CNN is further fine-
tuned end to end. Upon convergence, the network produces a
strong response in the conv’ layer feature map when the input
image is of category i € {1,...,7}. This shows the potential
in exploiting image category information when learning the
aesthetic presentation.

Tian et al. [54] train a CNN with four convolution layers
and two fully connected layers to learn aesthetic features from

model is obtained by stacking a global-column and a local-col-
umn CNN to form a double-column CNN, where the feature
representation (the penultimate layers’ fc7 output) from each
column is concatenated before the fc8 layer (classification
layer). (Figure 7 shows a typical multicolumn CNN.) Standard
stochastic gradient descent is used to train the network with
softmax loss. Moreover, the authors further boost the perfor-
mance of the network by incorporating image style informa-
tion using a style-column or semantic-column CNN. Then the
style-column CNN is used as the third input column, forming a
three-column CNN with style/semantic information. Such a
multicolumn CNN exploits the data from both the global and
local image aspects.

Mai et al. [26] propose stacking five columns of Visual
Geometry Group (VGG)-based networks using an adaptive
spatial pooling layer. The adaptive spatial pooling layer is

) Fully Connected
Convolution

the data. The output size of the two fully connected layers ' /4 5

is set to 16 instead of 4,096 as in AlexNet. The authors pro- - I I 000 L | = %

pose that such a 16-dimension representation is sufficient to v o

model only the top 10% and bottom 10% of the aesthetic data,

which are rglati@ly easy to classify comp .ared (o the full data. FIGURE 6. The architecture of a typical single-column CNN [49].

Based on this efficient feature representation learned from the

CNN, the authors propose a query-dependent aesthetic model

as the classifier. Specifically, for each query image, a query-

dependent training set is retrieved based on predefined rules Convolution Fully Connected

(visual similarity, image tags association, or a combination Y/ /4

of both). Subsequently, an SVM is trained on this retrieved = 000 | | { oy

training set. It shows that the features learned from the aes- Iﬁﬁ’ =

thetic data outperform the generic deep features learned in the == T ==

ImageNet task. /4 ©
The deep multipatch aggregation (DMA)-net is proposed Iﬁﬁ’ U =

in [24], where information from multiple image patches is Uy Uy U

extracted by a single-column CNN that contains four convolu-
tion layers and three fully connected layers, with the last layer
outputting a softmax probability. Each randomly sampled

FIGURE 7. A typical multicolumn CNN (a two-column architecture is
shown as an example) [49].
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designed to allow arbitrary-sized images as input; specifi-
cally, it pools a fixed-length output, given different receptive
field sizes, after the last convolution layer. By varying the
kernel size of the adaptive pooling layer, each subnetwork
effectively encodes multiscale image information. Moreover,
to potentially exploit the aesthetic aspect of different image
categories, a scene categorization CNN outputs a scene cate-
gory posterior for each input image. Then a final scene-aware
aggregation layer processes such aesthetic features (category
posterior and multiscale VGG features) and outputs the final
classification label. The design of this multicolumn network
has the advantage of being able to exploit the multiscale com-
position of an image in each subcolumn by adaptive pool-
ing, yet the multiscale VGG features may contain redundant
or overlapping information, which could potentially lead to
network overfitting.

Wang et al. [56] propose a multicolumn CNN model called
brain-inspired deep networks (BDN) that shares similar
structures with RAPID. In RAPID, a style attribute predic-
tion CNN is trained to predict 14 style attributes for input
images. This attribute CNN is treated as one additional CNN
column, which is then added to the parallel input pathways
of a global image column and a local patch column. In BDN,
14 different style CNNs are pretrained, and they are paral-
lel cascaded and used as the input to a final CNN for rating
distribution prediction, where the aesthetic quality score of
an image is subsequently inferred. The BDN model can be
considered as an extended version of RAPID that exploits
each of the aesthetic attributes using learned CNN features,
hence enlarging the parameter space and learning capability
of the overall network.

Zhang et al. [57] propose a two-column CNN for learning
aesthetic feature representation. The first column (CNNy)
takes image patches as input, and the second column (CNN2)
takes a global image as input. Instead of randomly sampling
image patches, given an input image, a weakly supervised
learning algorithm is used to project a set of D textual attri-
butes learned from image tags to highly responsive image
regions. Such image regions in images are then fed to the
input of CNN;. This CNN; contains four convolution lay-
ers and one fully connected layer (fcs) at the bottom. Then
a parallel group of D output branches (fckh,i e {1,2,...D})
modeling each of the D textual attributes are connected on
top. The size of the feature maps of each of the fck is of 128
dimensions. A similar CNN: takes a globally warped image
as input, producing one more 128-dimension feature vector

. Fully Connected
Convolution Task 1

, ==
» — - 000 -|:|'|35k2

FIGURE 8. A typical multitask CNN consists of a main task (task 1) and
multiple auxiliary tasks, only one of which is shown here (task 2) [49].

from fce. Hence, the final concatenated feature learned in
this manner is 128 X (D + 1) dimensional. A probabilistic
model containing four layers is trained for aesthetic qual-
ity classification.

Kong et al. [25] propose learning aesthetic features
assisted by the pair-wise ranking of image pairs as well as
the image attribute and content information. Specifically, a
Siamese architecture that takes image pairs as input is adopt-
ed, where the two base networks of the Siamese architecture
adopt the AlexNet configurations (the 1,000-class classifica-
tion layer fc8 from the AlexNet is removed). In the first stage,
the base network is pretrained by fine-tuning from aesthetic
data using the Euclidean loss regression layer instead of the
softmax classification layer. After that, the Siamese network
ranks the loss for every sampled image pair. Upon conver-
gence, the fine-tuned base network is used as a preliminary
feature extractor.

In the second stage, an attribute prediction branch is added
to the base network to predict image attribute information.
Then the base network continues to be fine-tuned in a mul-
titask manner by combining the rating regression Euclidean
loss, attribute classification loss, and ranking loss.

In the third stage, yet another content classification branch
is added to the base network to predict a predefined set of cat-
egory labels. Upon convergence, the softmax output of the
content category prediction is used as a weighting vector for
weighting the scores produced by each feature branch (the
aesthetic branch, attribute branch, and content branch).

In the final stage, the base network and all of the added
output branches are fine-tuned jointly, with the content clas-
sification branch frozen. Effectively, such aesthetic features are
learned by considering both the attribute and category content
information, and the final network produces image scores for
each given image.

Features learned with multitask CNNs
Kao et al. [58] propose three category-specific CNN architec-
tures: one for object, one for scene, and one for texture. The
scene CNN takes a warped global image as input. It has five
convolution layers and three fully connected layers, with the
last fully connected layer producing a two-dimensional soft-
max classification. The object CNN takes both the warped
global image and the detected salient region as input. It is a
two-column CNN combining global composition and salient
information. The texture CNN takes 16 randomly cropped
patches as input. Category information is predicted using a
three-class SVM classifier before feeding images to a catego-
ry-specific CNN. To alleviate the use of the SVM classifier,
an alternative architecture with a warped global image as
input is trained with a multitask approach, where the main
task is aesthetic classification and the auxiliary task is scene
category classification. (A typical multitask CNN is illustrat-
ed in Figure 8.)

Kao et al. [59] propose learning image aesthetics in a mul-
titask manner. Specifically, AlexNet is used as the base net-
work. Then the 1,000-class fc8 layer is replaced by a two-class
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aesthetic prediction layer and a 29-class semantic prediction
layer. The loss balance between the aesthetic prediction task
and the semantic prediction task is determined empirically.
Moreover, another branch containing two fully connected layers
for aesthetic prediction is added to the second convolution
layer (conv2 of AlexNet). By linking an added gradient flow
from the aesthetic task directly to the convolutional layers,
one expects to learn better low-level convolutional features.
This strategy shares a similar spirit with the deeply super-
vised net [77].

Evaluation criteria and existing results

Different metrics for performance evaluation of image aes-
thetic assessment models are used across the literature: clas-
sification accuracy [20], [21], [23]-[25], [40], [43], [47], [49],
[50], [52]-[59], [63]-[65], [71], [73] reports the proportion of
correctly classified results; precision-and-recall (PR) curve
[371, [40], [41], [44], [66] considers the degree of relevance of
the retrieved items and the retrieval rate of relevant items,
which is also widely adopted in image search or retrieval
applications; Euclidean distance or residual sum-of-squares
error between the ground-truth score and aesthetic ratings
[38], [70], [71], [74] and correlation ranking [25], [39], [46]
are used for performance evaluation in score regression
frameworks; receiver-operating characteristic (ROC) curve
[42], [48], [66], [71], [72] and area under the curve [45], [61],
[66] concerns the performance of binary classifiers when the
discrimination threshold is varied; mean average precision
[23], [24], [51], [55] is the average precision (AP) across mul-
tiple queries, which is usually used to summarize the PR
curve for the given set of samples. These are among the typi-
cal metrics for evaluating model effectiveness for image aes-
thetic assessment (see Table 1 for a summary). Subjective
evaluation by conducting human surveys is also seen in [62],
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where human evaluators are asked to give subjective aesthet-
ic attribute ratings.

We find that it is not feasible to directly compare all
methods, as different data sets and evaluation criteria are
used across the literature. To this end, we try to summarize,
respectively, the released results reported on the two stan-
dard data sets, namely the CUHK-PQ (Table 2) and AVA
data sets (Table 3), and to present the results on other data
sets in Table 4. To date, the AVA data set (standard partition)
is considered to be the most challenging by the majority of
the reviewed work.

The overall accuracy metric appears to be the most popular
metric. It can be written as

TP+ TN

P+N )

Overall accuracy =

This metric alone could be biased and far from ideal, as

a naive predictor that predicts all examples as positive would

already reach about (14k + 0)/(14k + 6k) = 70% classifica-

tion accuracy. To complement such a metric when evaluating

models on imbalanced testing sets, an alternative balanced
accuracy metric [78] can be adopted:

P

Y ©)

Balanced accuracy = 5 + 5

1 ( TP) 1 ( TN )

Balanced accuracy equally considers the classification
performance on different classes [78], [79]. While the over-
all accuracy in (5) offers an intuitive sense of correctness by
reporting the proportion of correctly classified samples, the
balanced accuracy in (6) combines the prevalence-indepen-
dent statistics of sensitivity and specificity. A low balanced
accuracy will be observed if a given classifier tends to predict
only the dominant class. For the naive predictor mentioned
above, the balanced accuracy would give a proper number

Table 1. An overview of typical evaluation criteria.

Method Formula Remarks
Overall accuracy %
Balanced accuracy %% + %%

__ TP __ TP
PR curve P=TP+FP "= TP+ FN

/Zil(Yi—f’i)2

Euclidean distance

Correlation ranking covirgx rgv)

O rgxO rgy
ROC curve tr =75 I—PFN ,for = 7P f—PTN
Mean AP ]an: (precision (i) x Arecall (i)

Accounting for the proportion of correctly classified samples.
Averaging precision and true negative prediction for imbalanced distribution.
Measuring the relationship between precision and recall.

Measuring the difference between the ground+ruth score and aesthetic rafings.
Y: ground-ruth score, Y: predicted score.

Measuring the statistical dependence between the ranking of aesthetic prediction and
ground truth. rgy, rgy: rank variables, o standard deviation, cov: covariance.

Measuring model performance change by true positive rate and false positive rate
when the binary discrimination threshold is varied.

The averaged AP values, based on precision and recall.
precision(i) is calculated among the first i predictions, Arecall(i): change in recall.

TP: true positive, TN: true negative, P: total positive, N: total negative, FP: false positive, FN: false negative, for: true positive rate, for: false positive rate.
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Table 2. The methods evaluated on the CUHK-PQ data set.

Method Data Set Metric Result Training-Testing Remarks
Suetal. (2011) [72] CUHKPQ Overall accuracy 92.06% 1,000 training, 3,000 fesfing
Marchesotti et al. (2011) [47] CUHK-PQ Overall accuracy 89.90% 50-50 split

Zhang et al. (2014) [67] CUHK-PQ Overall accuracy 90.31% 50-50 split, 12,000 subset
Dong et al. (2015) [50] CUHK-PQ Overall accuracy 91.93% 50-50 split

Tian et al. (2015) [54] CUHK-PQ Overall accuracy 91.94% 50-50 split

Zhang et al. (2016) [57] CUHK-PQ Overall accuracy 88.79% 50-50 split, 12,000 subset
Wang et al. (2016) [53] CUHK-PQ Overall accuracy 92.59% 4:1:1 partition

Lo et al. (2012) [66] CUHK-PQ Area under ROC curve 0.93 50-50 split

Tang et al. (2013) [45] CUHK-PQ Area under ROC curve 0.9209 50-50 split

Lv et al. (2016) [51] CUHK-PQ Mean AP 0.879 50-50 split

Table 3. The methods evaluated on the AVA data set.

Method Data Set Metric Result Training-Testing Remarks
Marchesotti et al. (2013) [48] AVA ROC curve tor: 0.7, for. 0.4 Standard partition
AVA handcrafted features (2012) [49] AVA Overall accuracy 68.00% Standard partition
Spatial pyramid pooling (SPP) (2015) [24] AVA Overall accuracy 72.85% Standard partition
RAPID (full method) (2014) [23] AVA Overall accuracy 74.46% Standard partition
Peng et al. (2016) [52] AVA Overall accuracy 74.50% Standard partition
Kao et al. (2016) [58] AVA Overall accuracy 74.51% Standard partition
RAPID (improved version) (2015) [55] AVA Overall accuracy 75.42% Standard partition
DMA-net (2015) [24] AVA Overall accuracy 75.41% Standard partition
Kao et al. (2016) [59] AVA Overall accuracy 76.15% Standard partition
Wang et al. (2016) [53] AVA Overall accuracy 76.94% Standard partition
Kong et al. (2016) [25] AVA Overall accuracy 77.33% Standard partition
BDN (2016) [56] AVA Overall accuracy 78.08% Standard partition
Zhang et al. (2014) [67] AVA Overall accuracy 83.24% 10% subset, 12.5k*2
Dong et al. (2015) [50] AVA Overall accuracy 83.52% 10% subset, 19k*2
Tian et al. (2016) [54] AVA Overall accuracy 80.38% 10% subset, 20k*2
Wang et al. (2016) [53] AVA Overall accuracy 84.88% 10% subset, 25k*2
Lvetal. (2016) [51] AVA Mean AP 0.611 10% subset, 20k*2

indication of 0.5 X (14k/14k) + 0.5 X (0k/6k) = 50% perfor- motivated us to take a step back to consider how a CNN

92

mance on AVA.

In this regard, in the following sections where we discuss
our findings on a proposed strong baseline, we report both
overall classification accuracy and balanced accuracy to get a
more reasonable measure of baseline performance.

Experiments on deep-learning settings

It is evident from Table 3 that deep learning-based approaches
dominate the performance of image aesthetic assessment.
The effectiveness of learned deep features in this task has

works to understand the aesthetic quality of an image. It is
worth noting that training a robust deep aesthetic scoring
model is nontrivial, and often we found that the devil is in the
details. To this end, we design a set of systematic experiments
based on a baseline one-column CNN and a two-column
CNN, and evaluate different settings from minibatch forma-
tion to complex multicolumn architecture. The results are
reported on the widely used AVA data set.

We observe that by carefully training the CNN architec-
ture, the two-column CNN baseline reaches comparable or
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Table 4. The methods evaluated on other data sets.
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Method Data Set Metric Result
Tong et al. (2004) [20] 29,540-image private set Overall accuracy 95.10%
Datta et al. (2006) [21] 3,581-image private set Overall accuracy 75%
Sun et al. (2009) [38] 600-image private set Euclidean distance 3.5135
Wong et al. (2009) [63] 3,161-image private set Overall accuracy 79%
Bhattacharya (2010, 2011) [43], [64] ~650-image private set Overall accuracy 86%
Li etal. (2010) [70] 500-image private set Residual sum-ofsquares error 2.38
Wu et al. (2010) [65] 10,800-image private set from Flickr Overall accuracy ~83%
Dhar et al. (2011) [44] 16,000-image private set from DPChallenge PR curve -
Nishiyama et al. (2011) [41] 12,000-image private set from DPChallenge Overall accuracy 77.60%
Lo et al. (2012) [42] 4,000-image private set ROC curve tor: 0.6, fpr: 0.3
Yeh et al. (2012) [46] 309-image private set Kendalls Tau-b measure 0.2812
Aydin et al. (2015) [62] 955-image subset from DPChallenge.com Human survey -
Yin et al. (2012) [73] 13,000-image private set from Flickr Overall accuracy 81%
Lienhard et al. (2015) [71] Human Face Scores 250-image data set Overall accuracy 86.50%
Sun et al. (2015) [74] 1,000-image Chinese handwriting Euclidean distance -
Kong et al. (2016) [25] AADB data set Spearman ranking 0.6782
Zhang et al. (2016) [57] PNE Overall accuracy 86.22%
even better performance th.an statejof—the—art methods, .a.nd A exp R
the one-column CNN baseline acquires the strong capability pQi=tlxiw) = m, ©)]

to suppress false-positive predictions while having competitive
classification accuracy. We hope the experimental results will
facilitate the design of future deep-learning models for image
aesthetic assessment.

Formulation and the base CNN structure

The supervised CNN learning process involves a set of
training data {x;,yi};c(; 5 from which a nonlinear mapping
function f:X — Y is learned through backpropagation [33].
Here, x; is the input to the CNN and y; € T is its corre-
sponding ground-truth label. For the task of binary classifi-
cation, y; €{0,1} is the aesthetic label corresponding to
image x;. The convolutional operations in such a CNN can
be expressed as

Fr(X) = max (wi * Fr—1(X) + b,0),k €{1,2,...,.D}, (7)

where Fo(X) = X is the network input and D is the depth of
the convolutional layers. The operator x denotes the convolu-
tion operation. The operations in the D’ fully connected layers
can be formulated in a similar manner. To learn the (D + D’)
network weights W using the standard backpropagation with
stochastic gradient descent, we adopt the cross-entropy classi-
fication loss, which is formulated as

L(W) :_%Zn: > {tlog p(3i=tlx; W)

i=1 1t

+(1=0log(1—p@i=tlxsW)+o(W)} (8

reT

where t € T = {0,1} is the ground truth. This formula-
tion is in accordance with prior successful model frame-
works, such as AlexNet [75] and VGG-16 [80], which are
also adopted as the base network in some of our re-
viewed approaches.

The original last fully connected layer of these two net-
works is for the 1,000-class ImageNet object recognition chal-
lenge. For aesthetic quality classification, a two-class aesthetic
classification layer to produce a softmax predictor is needed
[see Figure 9(a)]. Following typical CNN approaches, the input
size is fixed to 224 X224 X 3, which is cropped from glob-
ally warped 256 X256 X3 images. Standard data augmen-
tation, such as mirroring, is performed. All of the baselines
are implemented based on the Caffe package [81]. For clar-
ity of presentation in the following sections, we name all of
our fine-tuned baselines Deep Aesthetic Net (DAN), with the
corresponding suffix.

Training from scratch versus fine-tuning

Fine-tuning from a trained CNN has been proven in [36] and
[83] to be an effective initialization approach. The RAPID base
network [23] uses global image patches and trains a network
structure from scratch that is similar to AlexNet. For a fair
comparison of similar-depth networks, we first select AlexNet
pretrained with the ILSVRC-2012 training set (1.2 million
images) and fine-tune it with the AVA training partition. As
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FIGURE 9. (a) The structure of the chosen base network for our systematic study on aesthetic quality classification. (b) The structure of the one-column

CNN baseline with multitask learning [49].

Table 5. Training from scratch versus fine-tuning.

Method Balanced Accuracy  Overall Accuracy
RAPID (global) [23] - 67.8

DAN-1 68.0 71.3

(fine-tuned from AlexNet)

DAN-1 72.8 74.1

(fine-tuned from VGG-16)

Using a one-column CNN baseline (DAN-1) fine-tuned on AlexNet and VGG-16,
both of which are pretrained on the ImageNet data set. The authors in [23] have
not released detailed classification results.

Table 6. The effects of minibatch formation.

Minibatch Formation Balanced Accuracy  Overall Accuracy
DAN-1 (randomly sampled) ~ 70.39 77.65
DAN-1 (balanced formation) ~ 72.82 74.06

Using a one-column CNN baseline (DAN-1) with VGG-16 as the base network.

shown in Table 5, fine-tuning from the vanilla AlexNet yields
better performance than simply training the RAPID base net-
work from scratch. Moreover, the DAN model fine-tuned from
VGG-16 [see Figure 9(a)] yields the best performance in both
balanced accuracy and overall accuracy. It is worth pointing
out that other more recent and deeper models, such as ResNet
[84], Inception-ResNet [85], and PolyNet [86], could serve as
pretrained models. Nevertheless, owing to the typically small
size of aesthetic data sets, precautions need be taken during the
fine-tuning process. Plausible methods include freezing some
earlier layers to prevent overfitting [83].

Minibatch formation

Minibatch formation directly affects the gradient direction
toward which stochastic gradient descent brings down the
training loss in the learning process. We consider two types of
minibatch formation and reveal the impact of this difference
on image aesthetic assessment.

Random sampling

By randomly selecting examples for minibatches [87], [88],
we select from a distribution of the training partition. Since
the number of positive examples in the AVA training partition
is almost twice that of the negative examples [Figure 4(b)],
models trained with such minibatches may bias toward pre-
dicting positives.

Balanced formation
Another approach is to enforce a balanced number of posi-
tives and negatives in each of the minibatches, i.e., for each
iteration of backpropagation, the gradient is computed from a
balanced number of positive examples and negative examples.
Table 6 compares the performance of these two strategies.
We observe that although the model fine-tuned with randomly
sampled minibatches reaches a higher overall accuracy, its per-
formance is inferior to the one fine-tuned with balanced mini-
batches, as evaluated using balanced accuracy. To keep track
of both true-positive prediction rates and true-negative predic-
tion rates, balanced accuracy is adopted to measure the model
robustness on the data imbalance issue. Network fine-tuning in
the rest of the experiments is performed with balanced mini-
batches, unless otherwise specified.

Triplet pretraining and multitask learning

Apart from directly training using the given training data pairs
{xi,yi}icp.np one could utilize richer information inherent in
the data or auxiliary sources to enhance the learning perfor-
mance. We discuss two popular approaches next.

Pretraining using triplets

The triplet loss is inspired by Dimensionality Reduction by
Learning an Invariant Mapping [89] and large margin nearest
neighbor [90]. It is widely used in many recent vision studies
[79], [91]-[93] and aims to bring data of the same class closer
while moving data of different classes further away. This loss
is particularly suitable to our task; i.e., the absolute aesthetic
score of an image is arguably subjective, but the general rela-
tionship that beautiful images are close to each other while the
opposite images should be apart is obvious.
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Table 7. Triplets pretraining and multitask learning.

Balanced ~ Overdll
Methods Accuracy  Accuracy
DAN-1 72.82 74.06
DAN-1 (rriplet pretrained) 73.29 75.32
DAN-1 (multitask-aesthefic and category) 73.39 75.36
DAN-1 (rriplet pretrained + multitask) 73.59 74.42

Using a one-column CNN baseline (DAN-1) with VGG-16 as the base network.
Balanced minibatch formation is used.

To enforce such a relationship in an aesthetic embedding,
one needs to generate minibatches of triplets for deep feature
learning, i.e., an anchor x, a positive instance x+. of the same
class, and a negative instance x-,. of a different class. Fur-
thermore, we found it useful to constrain each image triplet
to be selected from the same image category. In addition, we
observed better performance by introducing triplet loss in the
pretraining stage and continuing with conventional supervised
learning on the triplet-pretrained model. Table 7 shows that the
DAN model pretrained with triplets gives better performance.
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We further visualize some categories in the learned aesthetic
embedding space in Figure 10. It is interesting to observe that
the embedding learned with triplet loss demonstrates much
better aesthetic grouping in comparison to that without the use
of triplet loss.

Multitask learning with image category prediction
Can aesthetic prediction be facilitated provided that a model
understand to which category the image belongs? Following
the work in [94], where auxiliary information is used to
regularize the learning of the main task, we investigate the
potential benefits of using image categories as an auxiliary
label in training the aesthetic quality classifier.

Specifically, given an image labeled with main task label
y, where y =0 for low-quality images and y = 1 for high-
quality ones, we provide an auxiliary label ¢ € C denoting
one of the image categories, such as animals, landscape,
portraits, and so forth. In total, we include 30 image catego-
ries. To learn a classifier for the auxiliary class, a new fully
connected layer is attached to the fc7 of the vanilla VGG-16
structure to predict a softmax probability for each category
class. The modified one-column CNN baseline architec-

ture is shown in Figure 9(b). The loss function in (8) is now
changed to

[ © Landscape © Portraiture

-10
=15
-20
=25

o 1 o
R

| © Low Quality © High Quality |

(b) (©

FIGURE 10. Aesthetic embeddings of AVA images (testing partition) learned by triplet loss, visualized using t-SNE [84]: (a) ordinary supervised learning without
triplet pretraining and multitask learning, (b) triplet pretrained, and (c) combined triplet pretraining and multitask learning. t-SNE: t-distributed stochastic

neighbor embedding.
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Lmultitask = L(W) + Laux (WL‘), (10)
n C
Lan(W0) =—%Z S (1. Tog pG& = 1. L Wo)
i=lc=1
+ (1 —to)log p(e™ = tclxi; W)
+ (W0}, (11)

where f. € {0,1} is the binary label corresponding to each
auxiliary class ¢ € C and y&™* is the auxiliary prediction from
the network. Solving the above loss function, the DAN model
performance from this multitask learning strategy is observed
to have surpassed the previous one (Table 7). It is worth
noting that the category annotation of the
AVA-training partition is not complete, with
about 25% of the images not having
categories labeled. For those training
instances without categories labeled, the
auxiliary loss Laux(W.) due to missing
labels is ignored.

Triplet pretraining + multitask learning
Combining triplet pretraining and multi-
task learning, the final one-column CNN
baseline reaches a balanced accuracy of
73.59% on the challenging task of aesthetic classification.
The results for different fine-tuning strategies is summarized
in Table 7.

Discussion

Note that it is nontrivial to boost the overall accuracy at the
same time as we try not to overfit the baseline to a certain data
distribution. Still, compared with other released results in
Table 8, with careful training, a one-column CNN baseline
yields a strong capability of rejecting false positives while
attaining a reasonable overall classification accuracy. We show
some qualitative classification results as follows.

Figures 11 and 12 show the qualitative results of aesthetic
classification by the one-column CNN baseline, using DAN-1
(triplet pretrained + multitask). Note that these examples are
correctly classified neither by BDN [56] nor by DMA-net
[24]. False-positive test examples (Figure 13) by the DAN-1
baseline still show a somewhat high-quality image trend, with
high color contrast or depth of field, while false-negative test-
ing examples (Figure 14) mostly reflect low image tones. Both
quantitative and qualitative results suggest the importance of
minibatch formation and fine-tuning strategies.

Multicolumn deep architecture

State-of-the-art approaches [23], [24], [55], [56] for image aes-
thetic classification typically adopt multicolumn CNNs
(Figure 7) to enhance the learning capacity of the model. In
particular, these approaches benefit from learning multiscale
image information (e.g., global image versus local patches) or
utilizing image semantic information (e.g., image styles). To
incorporate insights from previous successful approaches, we
prepared another two-column CNN baseline (DAN-2) (see
Figure 15) with a focus on the more apparent approach of

The ahsolute aesthetic
score of an image is
arguably subjective, hut
the general relationship
that heautiful images

are close to each other
while the opposite images
should he apart is ohvious.
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using local image patches as a parallel input column. Both
[23] and [24] utilize CNNs trained with local image patches as
alternative columns in their multibranch network, with perfor-
mance evaluated using overall accuracy. For fair comparison,
we prepared local image patches of size 224 X224 X3
following [23] and [24], and we fine-tuned one DAN-1 model
from the vanilla VGG-16 (ImageNet) with such local patches.
Another branch is the original DAN-1 model, fine-tuned with
globally warped input by triplet pretraining and multitask
learning (see the section “Triplet Pretraining and Multitask
Learning”). We performed separate experiments where mini-
batches of these local image patches were
taken from either random sampling or the
balanced formation.

As shown in Table 8, the DAN-1 model
fine-tuned with local image patches per-
forms less well under the metric of bal-
anced accuracy compared to the original
DAN-1 model fine-tuned with globally
warped input in both random minibatch
learning and balanced minibatch learning.
We conjecture that local patches contain

Table 8. A comparison of aesthetic quality dassification between

our proposed baselines and previous state-of-the-art methods
on the canonical AVA testing partition.

Balanced  Overall
Previous Work Accuracy  Accuracy
AVA handcrafted features (2012) [49] - 68.00
SPP (2015) [24] - 72.85
RAPID (full method) (2014) [23] - 74.46
Peng et al. (2016) [52] - 74.50
Kao et al. (2016) [58] - 74.51
RAPID (improved version) (2015) [55] 61.77 75.42
DMAnet (2015) [24] 62.80 75.41
Kao et al. (2016) [59] - 76.15
Wang et al. (2016) [53] - 76.94
Kong et al. (2016) [25] - 77.33
Mai et dl. (2016) [26] . 77.40
BDN (2016 [56] 67.99 78.08
Proposed Baseline Using Random Minibatches
DAN:-1 (VGG-16, AVA global warped input) ~ 70.39 77.65
DAN-1 (VGG-16, AVA local patches) 68.70 77.60
Two-column DAN-2 69.45 78.72
Proposed Baseline Using Balanced Minibatches
DAN:1 (VGG-16, AVA global warped input) ~ 73.59 74.42
DAN-1 (VGG-16, AVA local patches) 71.40 758
Two-column DAN-2 73.51 75.96

The authors of [23]-[26], [49], [52], [53], [55], [58], and [59] have not
released detailed results.
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FIGURE 11. Some positive examples (high-quality images) that are wrongly classified by BDN and DMA-net but correctly classified by the DAN-1

baseline [49].

FIGURE 12. Some negative examples (low-quality images) that are wrongly classified by BDN and DMA-net but correctly classified by the DAN-1 baseline [49].
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FIGURE 13. Some examples with a negative ground truth that are wrongly classified by the DAN-1 baseline. High color contrast or depth of field is
observed in these testing cases [49].

FIGURE 14. Some examples with a positive ground truth that are wrongly classified by the DAN-1 baseline. Most of these images are of low image tones [49].
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FIGURE 15. The structure of the two-column CNN baseline with multitask learning [49].

no global and compositional information as compared to
globally warped input. Nevertheless, such a drop in accuracy
is not observed under the overall accuracy metric.

We next evaluated the two-column CNN baseline DAN-2
using the DAN-1 model fine-tuned with
local image patches and the one fine-tuned
with globally warped input. We have two
variants here, depending on whether we

Gan aesthetic prediction
he facilitated provided

trained with such inputs could easily become biased toward
predicting local patch input to be of high quality, which also
explains the performance differences in the two complemen-
tary evaluation metrics.

Model depth and layer-wise effectiveness
Determining the aesthetics of images from
different categories takes varying photo-

employ random or balanced minibatches. that a_ model understand graphic rules. We understand that it is not
We observed that DAN-2 trained with ran- !0 which category the easy to determine some image genres’ aes-
dom minibatches attains the highest overall image helongs? thetic quality in general. It would be inter-

accuracy on the AVA standard testing par-

tition compared to the previous state-of-the-art methods (see
Table 8). (Some other works [50], [54], [95]-[97] on AVA data
sets use only a small subset of images for evaluation, which is
not directly comparable to the canonical state of the art on the
AVA standard partition; see Table 3).

Interestingly, we observed the balanced accuracy of the two
variants of DAN-2 degrades when compared to the respective
DAN-1 trained on globally warped input. This observation
raises the question of whether local patches necessarily ben-
efit the performance of image aesthetic assessment. We ana-
lyzed the cropped local patches more carefully and found that
these patches were inherently ambiguous. Thus, the model

esting to perform a layer-by-layer analysis
and track to what degree a deep model has learned image aes-
thetics in its hierarchical structure. We conducted this experi-
ment using the one-column CNN baseline DAN-1 (triplet
pretrained + multitask). We used layer features generated by
this baseline model and trained an SVM classifier to perform
aesthetic classification on the AVA testing images and then
evaluated the performance of different layer features across
different image categories.

Features extracted from the convolutional layers of the model
were aggregated into a convolutional Fisher representation,
as done in [98]. Specifically, to extract features from the
dth convolutional layer, note that the output feature maps of
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FIGURE 16. A layer-by-layer analysis showing the difficulties of
understanding aesthetics across different categories. From the learned
feature hierarchy and the classification results, we observe that image
aesthetics in the landscape and rural categories can be judged reasonably
by the proposed baselines, yet the more ambiguous humorous and
black-and-white images are inherently difficult for the model to handle
(see also Figure 17).

this dth layer are of size w X h X K, where w X h is the size

of each of the K output maps. Denote M* as the kth output

map. Specifically, a point M}; in output map M* is computed
from a local patch region L of the input image / using the
forward propagation. By aligning all such points into a vector

v = [M,-l,j,M,z,j,...,Mffj,...,ij], we obtained the feature repre-

sentation of the local patch region L. A dictionary codebook

was created using GMM from all of the {v.}, ., , and an FV
representation is subsequently computed using this codebook
to describe an input image. The obtained convolutional

Fisher representation is used for training SVM classifiers.
We compared features from layer

conv3_1 to fc7 of the DAN-1 baseline and

reported selected results that we find inter-
esting in Figure 16. We obtained the fol-
lowing results:

1) Model depth is important: More abstract
aesthetic representation can be learned
in deeper layers. The performance of
aesthetic assessment can generally be
benefited from model depth. This obser-
vation aligns with that in general
object recognition tasks.

2) Different categories demand different model depths: The
aesthetic classification accuracy on images belonging to
the black and white category are generally lower than the
accuracy on images in the landscape category across all of
the layer features. Sample classification results are shown
in confusion matrix ordering (see Figure 17). High-quality
black-and-white images show subtle details that should be
considered when assessing their aesthetic level, whereas

DAN-2 trained with random
minibatches attains the
highest overall accuracy
on the AVA standard
testing partition compared
to the previous state-of-
the-art methods.

THE WORLD'S N

high-quality landscape images differentiate from those
low-quality ones in a more apparent way. Similar observa-
tions are found, e.g., in the humorous and rural categories.
The observation explains why it could be inherently dif-
ficult for the baseline model to judge whether images
from some specific categories are aesthetically pleasing or
not, revealing yet another challenge in the assessment of
image aesthetics.

From generic aesthetics

to user-specific taste

Individual users may hold different opinions on the aesthetic
quality of any single image. One may consider that all of the
images in Figure 13 are of high quality to some extent, even
though the average scores by the data set annotators say other-
wise. Coping with individual aesthetic bias is a challenging
problem. We may follow the idea behind transfer learning [83]
and directly model the aesthetic preference of individual users
by transferring the learned aesthetic features to fitting personal
taste. In particular, we consider that the DAN-1 baseline net-
work has already captured a sense of generic aesthetics in the
aforementioned learning process; so to adapt to personal aes-
thetic preferences, one can include additional data sources for
positive training samples that are user specific, such as the
user’s personal photographic album or the collection of photos
that the user “liked” on social media. As such, our proposed
baseline can be further fine-tuned with personal-taste data for
individual users and become a personalized aesthetic classifier.

Image aesthetic manipulation

A task closely related to image aesthetic assessment is image
aesthetics manipulation, the aim of which is to improve the aes-
thetic quality of an image. A full review of the techniques of
image aesthetics manipulation in the literature is beyond the
scope of this article. Still, we make an attempt to connect image
aesthetic assessment to a broader topic surrounding image aes-
thetics by focusing on one of the major aes-
thetic enhancement operations, i.e.,
automatic image cropping.

Aesthetics-based image cropping

Image cropping improves the aesthetic
composition of an image by removing
undesired regions, increasing its aesthetic
value. A majority of cropping schemes in
the literature can be divided into three
main approaches. Attention/saliency-based
approaches [99]-[101] typically extract the primary subject
region in the scene of interest according to attention scores or
saliency maps as the image crops. Aesthetics-based approach-
es [102]-[104] assess the attractiveness of some proposed
candidate crop windows with low-level image features and
rules of photographic composition. However, simple hand-
crafted features are not robust for modeling the huge aesthetic
space. The state-of-the-art method is the change-based
approach proposed by Yan et al. [105], [106], which aims to

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

SignalProcessing

194
54

mags
[EWSSTAND®



http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

IEEE 0 * -e
SignalProcessing S mags
Prediction
High Quality Low Quality
2
S
g
=
2
T
(]
(%]
<
(@)
©
=
©
<
2
©
=)
(e}
E
o
-
(a)
Prediction
Low Quality
2
S
(¢}
=
2
T
(]
(%]
<
O
©
=
©
<
2
©
=)
e}
E
o
-

(b)

FIGURE 17. A layer-by-layer analysis of classification results using the best layer features on (a) black-and-white category images and (b) landscape

category images [49].
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FIGURE 18. (a) The originally proposed one-column CNN baseline. (b) A tweaked CNN made by removing all of the fully connected layers. (c) A modified

CNN incorporating a crop-regression layer to learn cropping coordinates [49].

account for what is removed and changed by cropping itself
and trying to incorporate the influence of the starting compo-
sition of the initial image in the ending composition of the
cropped image. This approach produces reasonable crop
windows, but the time cost of producing an
image crop is prohibitively expensive

High-guality image crops

produce image crops with minor modifications, removing the
fully connected layers. That leaves us with a neural network
that is fully convolutional where the input can be of arbi-
trary size, as shown in Figure 18(b). The output of the last con-
volutional layer of the modified model is
14 X 14 X 512 dimensional, where the 512

because of the time spent in evaluating can already be produced feature maps contain the responses/activa-
large numbers of crop candidates. - tions corresponding to the input. To gener-

Automatic thumbnail generation is also from the last Gﬂll“ll!llllﬂllal ate the final image crop, we take an average
closely related to automatic image cropping. layer _0_t “I!} aesthetic of the 512 feature maps and resize it to the
Huang et al. [107] target visual represen- classification CNN. input image size. After that, a binary mask

tativeness and foreground recognizability

when cropping and resizing an image to generate its thumb-
nail. Chen et al. [108] aim at extracting the most visually
important region as the image crop. Nevertheless, the aesthet-
ics aspects of cropping are not taken into prime consideration
in these approaches.

In the next section, we show that high-quality image crops
can already be produced from the last convolutional layer of
the aesthetic classification CNN. Optionally, this convolutional
response can be utilized as the input to a cropping regression
layer for learning more precise cropping windows from addi-
tional crop data.

Plausible formulations based on deep models

Fine-tuning a CNN model for the task of aesthetic quality
classification (see the “Experiments on Deep-Learning
Settings” section) can be considered as a learning process in
which the fine-tuned model tries to understand the metric of
image aesthetics. We hypothesize that the same metric is
applicable to the task of automatic image cropping. We
discuss two possible variants as follows.

DAN-1 original] without cropping data
Without utilizing additional image cropping data, a CNN such
as the one-column CNN baseline DAN-1 can be tweaked to

SignalProcessing

is generated by suppressing the feature map
values below a threshold. The output crop window is produced
by taking a rectangle convex hull from the largest connected
region of this binary mask.

DAN-1 (regression] with cropping data

Alternatively, to include additional image cropping data
{x" Y e, where Y{™ = [x,y,width, height], we
follow insights in [111] and add a window regression layer to
learn a mapping from the convolutional response [see
Figure 18(c)]. As such, we can predict a more precise cropping
window by learning this extended regressor from such crop
data by a Euclidean loss function:

?, (12)

LOW) = L3 70— v
i=1

where Y;™?

crop
i .

is the predicted crop window for input image

To learn the regression parameters for this additional layer,
the image cropping data set by Yan et al. [105] is used for
further fine-tuning. Images in the data set are labeled with
ground-truth crops by professional photographers. Follow-
ing the evaluation criteria in [105], a fivefold cross-validation
approach is adopted for evaluating the model performance on
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FIGURE 19. The layer response differences of the last convolutional layer. The images in each row correspond to (a) the input image with ground-truth

crop, (b) the feature response of the vanilla VGG, (c) the image crops obtained via the feature responses of the vanilla VGG, (d) the feature response
of the DAN-1 (original) model, (e) the image crops obtained via the DAN-1 (original) model, (f) the four-coordinates window estimated by the DAN-1
(regression) network, and (g) the cropped image generated by the DAN-1 (regression) [107].

allimages in the data set. Note that there are only a few hundred
images in each training fold; hence, a direct fine-tuning by sim-
ply warping the few hundred images of input to 224 X 224 X 3
could be vulnerable to overfitting. To this end, we fix the
weights in the convolutional layers of the DAN-1 (regres-
sion) network and learn only the weights for the crop window
regression layers. Also, a systematic augmentation approach
is adopted as follows. First, the input images are randomly jit-
tered for a few pixels (X 5), and mirroring is performed (X 2).
Second, we warp the images to have their longer side equal to
224, hence keeping their aspect ratio. We further downscale
the images using a scale of C € {50%,60%,80%,90%} (X 4).
The downscaled images are then padded back to 224 x 224
from {top — left, top — right, bottom — left, bottom — right }
(X 4). Finally, we have direct input warping regardless of the
aspect ratio (X 1). In this manner, one training instance is
augmented to 5 X2 X (4 X4+ 1) = 170 input instances. We
fine-tune this modified CNN baseline with a learning rate of
10¢7, and the fine-tuning process converges at around the
second epoch.

Aesthetics-based image cropping

As shown in Figure 19, we observe that the convolutional
response of the vanilla VGG-16 (ImageNet) for object recog-
nition typically finds a precise focus of the salient object in
view, while the one-column CNN baseline, i.e., the DAN-1
(original) for aesthetic quality classification, outputs an aes-

thetically oriented salient region where both the object in view
and its object composition are revealed. Compared to the
cropping performance using the vanilla VGG-16, image crops
from our DAN-1 (original) baseline already have the capabili-
ty of removing unwanted regions while preserving the
aesthetically salient part in view (see Figure 19). The modified
CNN, i.e., the DAN-1 (regression), further incorporates aes-
thetic composition information in its crop window regression
layer, which serves to refine the crop coordinates for more
precise crop generation.

Following the evaluation settings in [105] and [106], we
use the average overlap ratio and average boundary dis-
placement error to quantify the performance of automatic
image cropping. A higher overlap and a lower displace-
ment between the generated crop and the correspond-
ing ground truth indicate a more precise crop predictor.
As shown in Table 9, directly using the DAN-1 (original)
baseline responses to construct image crops already gains
competitive cropping performance, while fine-tuning the
DAN-1 (regression) with cropping data further boosts the
performance and even surpasses the previous state-of-the-
art method [105] on this data set, especially in terms of the
boundary displacement error. Last but not least, it is worth
noting that the CNN-based cropping approach takes merely
~0.2 s for generating an output image crop on a graphics
processing unit and ~2 s on a central processing unit (com-
pared to ~11 s on CPU in [105]).

IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

SignalProcessing



http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com

SignalProcessing

104

>
-y -
Qmags

THE WORLD'S NEWSSTAND

Table 9. The performance on automatic image cropping.

Previous Work
Park et al. [111]
Yan et al. [108]
Wang et al. [112]
Yan et al. [107]

*Photographer 1 Photographer 2 Photographer 3

0.6034 (0.1062) 0.5823 (0.1128) 0.6085 (0.1102)
0.7487 (0.0667) 0.7288 (0.0720) 0.7322 (0.0719)
0.7823 (0.0623) 0.7697 (0.0617) 0.7725 (0.0701)

0.7974 (0.0528)

0.7857 (0.0567)

0.7723 (0.0594)

Proposed Baselines

Vanilla VGG-16 (ImageNet) 0.6971 (0.0580) 0.6841 (0.0618) 0.6715(0.0613)
DAN-1 (original) (AVA training partition) 0.7637 (0.0437) 0.7437 (0.0493) 0.7360 (0.0495)
DAN-1 (regression| (cropping data finetuned) 0.8059 (0.0310) 0.7750 (0.0375) 0.7725 (0.0377)

*There are separate ground-ruth annotations by three different photographers in the cropping data set of [107].
The first number is the average overlap rafio (higher is better). The second number (shown in parentheses) is the average boundary displacement error (lower is better).

Bold values signify the best performance by the corresponding methods.

Conclusion and potential directions

Models with competitive performance on image aesthetic
assessment have been seen in the literature, yet the state of
research in this field is far from saturated. Challenging issues
include the ground-truth ambiguity due to neutral image aes-
thetics and how to effectively learn category-specific image
aesthetics from the limited amount of auxiliary data informa-
tion. Image aesthetic assessment can also benefit from an even
larger volume of data, with richer annotations, where every
single image is labeled by more users with diverse back-
grounds. A large and more diverse data set will facilitate the
learning of future models and potentially allow more
meaningful statistics to be captured.

In this work, we systematically review major attempts on
image aesthetic assessment in the literature and further pro-
pose an alternative baseline to investigate the challenging
problem of understanding image aesthetics. We also discuss
an extension of image aesthetic assessment to the application
of automatic image cropping by adapting the learned aesthetic-
classification CNN for the task of aesthetics-based image crop-
ping. We hope that this survey can serve as a comprehensive
reference source and inspire future research in understanding
image aesthetics and fostering many potential applications.
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An overview

ith recent advances in machine-learning techniques for

automatic speech analysis (ASA)—the computerized

extraction of information from speech signals—there is

a greater need for high-quality, diverse, and very large
amounts of data. Such data could be game-changing in terms of
ASA system accuracy and robustness, enabling the extraction
of feature representations or the learning of model parameters
immune to confounding factors, such as acoustic variations,
unrelated to the task at hand. However, many current ASA data
sets do not meet the desired properties. Instead, they are often
recorded under less than ideal conditions, with the correspond-
ing labels sparse or unreliable.

In addressing these issues, this article provides a com-
prehensive overview of state-of-the-art ASA data exploita-
tion techniques that have been developed to take advantage
of knowledge gained from related but unlabeled or different
data sources to improve the performance of a particular ASA
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task of interest. We first identify three primary data chal-
lenges: sparse, unreliable, and unmatched data. We then review
the corresponding approaches. The conditions, advantages,
and drawbacks of using a range of differing data-mining
techniques are also discussed. Finally, other data chal-
lenges and potential future research directions in this field
are presented.

Introduction to automatic speech analysis
ASA has long been regarded as one of the most vital areas in
achieving natural and friendly human—machine interactions
[1], [2]. The goal of ASA is to empower machines to automati-
cally discern information of interest from human speech, e.g.,
identifying what is being said (the linguistic content), who is
saying it (the speaker’s identity), and how they are saying it
(the paralinguistic content). More formally, typical ASA tasks
in the literature include, but are not limited to,
®m automatic speech recognition (ASR), which aims to extract
linguistic content (e.g., words) by recognizing and translat-
ing spoken speech
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m speaker identification/verification, which targets obtaining
the speaker’s identity from speech signals

® computational paralinguistics, which attempts to distill
nonlinguistic information mainly concerning the speaker’s
short-term states (e.g., emotions), medium-term states

(e.g., health condition and attitude), and long-term traits

(e.g., personality, age, and gender) from spoken speech.

A serious obstacle to the broad application of ASA is the
lack of sufficiently labeled data in terms of both quantity and
quality. For example, many available com-
putational paralinguistics corpora contain
only a few hours of audio data at most [3].
Similarly for ASR, many of the world’s lan-
guages are in a low-resource setting, where
the electronic speech resources and linguis-
tic expertise are lacking. According to a
2010 United Nations Educational, Scientif-
ic, and Cultural Organization report [4], approximately 2,500
languages are in danger of becoming extinct. In this scenario,
it is exceptionally difficult to obtain a large-scale amount of
transcribed speech data to perform reliable ASR.

The requirement for large-scale labeled data is not new
in machine leaning. Prevailing paradigms are often conduct-
ed in a supervised manner, and a substantial increase in the
amount of available training data usually brings encouraging
performance improvements [5]. Because of the advancement
of deep-learning technologies [6], [7], this need for data has
become more compelling than ever. Deep-learning models
are often designed with millions of parameters, and, if trained
with insufficient amounts of data, are vulnerable to being
trapped in a locally optimized minimum, resulting in overfit-
ting to the training data [6]. When sufficiently trained, how-
ever, deep models reach unprecedented levels of performance.
For example, Amodei et al. [7] utilized approximately 12,000
and 9,000 h of speech data to model English and Mandarin
ASR systems, respectively, by employing deep-learning mod-
els with more than 35 million trainable parameters, achieving
a performance breakthrough that exceeds the capability of
even human perception. Sufficient and reliably labeled data,
when available, provide the opportunity to train robust ASA
models whose resulting recognition is largely invariant in the
face of the abundance of acoustic variations naturally present
in speech data.

Opportunities
Traditionally, tasks such as data collection and annotation have
been performed by small groups of experts in a laboratory set-
ting. This conventional work paradigm is often tedious, time
consuming, and costly. However, the ongoing information and
communication technologies revolution and related technolo-
gies, such as the Internet of Things (IoT) and cloud computing,
are providing us with opportunities to exploit larger amounts of
speech data in more effective ways than ever before.

The IoT, as a global infrastructure of the information soci-
ety, is expected to offer advanced services (i.e., data collection)
by interconnecting a wide variety of contemporary recording

A serious ohstacle to the
hroad application of ASA
is the lack of sufficiently
laheled data in terms of
hoth quantity and quality.

devices, such as smartphones, wearable devices, and tablets.
Furthermore, as these devices often have microphones, social
media apps, and Internet connectivity, they can be considered
distributed sensors or entryways for speech collection and pro-
cessing. Thus, the advance of Internet technologies and the
ubiquity of smart devices can drastically reduce the cost and
time associated with collecting and processing speech data.

Cloud computing, or Internet-based computing, is expected
to provide an on-demand computing resource. Thus, it gives
an opportunity to store, access, and analyze
the volume of speech data generated by the
distributed devices mentioned previously.
Cloud computing has been shown not only
to minimize the costs associated with an
ever-increasing demand for greater compu-
tational resources but also to reduce the cost
associated with infrastructure maintenance
and user access. Motivated by these advantages, most major
speech technology providers have already shifted their prima-
ry research and application attention from embedded systems
to cloud computing platforms.

Generalized automatic speech analysis:

Problem statement and notation

The aforementioned technologies provide great potential to
generate and process a large amount of speech data. However,
there are three main challenges—data sparsity, unreliability,
and nonmatching (Figure 1)—that limit the dissemination of
these data in research and industry. Before formally defining
these challenges, we first overview the generalized mathemat-
ical problem statement and notation commonly used in both
ASA and throughout the remainder of this article.

First, let us define a domain D = {X,P(X)} that com-
prises a feature space X and a marginal probability distri-
bution P(X), where X denotes a set of feature vectors, i.e.,
X = {x1,...,xs} € X; while P(X) indicates the distribution
of X in X. In the case that each feature vector x consists of
d attributes, i.e., X = {x1,...,xq}, X is a d-dimensional space.
The most commonly used feature space X for ASA is argu-
ably the Mel-frequency cepstral coefficients (MFCCs) that
are extracted via filtering a speech frame by a bank of nonlin-
ear bandpass filters (Mel filters) whose frequency response
is based on the cochlea of the human auditory system [8].
Other exemplary feature spaces include the i-vector repre-
sentation often used for speaker identification/verification [9],
and mixed brute force feature representations, such as the
broadly used ComParE feature set, which contains 6,373
static features (i.e., statistical functionals including mean
and variance) of low-level descriptor (LLD) contours (i.e.,
MFCCs) often used in tasks such as recognition of emotion
from speech [10].

We further define a generic ASA task F ={Y, f())} that
consists of a label space Y and a predictive function f(-) (or
a conditional distribution P (Y| X)). The goal of this task is to
build an effective and robust predictive function f(-) that is
capable of learning transformation rules from the feature space
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FIGURE 1. A taxonomic overview of the three main data challenges associated with ASA and their potential solutions as discussed in this article. Note that
N(Y) denotes no or yes, which indicates the possible combination of techniques. TL: transfer learning; AL: active learning; SSL: semisupervised learning;
CL: cooperative learning; URL: unsupervised representation learning.
X to the label space Y, ie., X Ny Then, when given a D=LUU, 2)
test sample, it maps this feature vector x. into a specific label
y-, 1.€., and n = n;+ ny.
Furthermore, we define the domain for the target task to be
y. = f(x.), (1) the target domain 7. The data in this domain might be insuf-
ficient for training an effective and robust prediction function
where x. € X and y. € Y. As an example, when performing f(). For example, when performing ASR on a low-resource
ASR, y. € Y denotes a phoneme or a word; f(-) is then language, 7 could be a language such as Assamese, Bengalli,
trained to predict a phoneme or a word from, e.g., MFCCs. In Haitian, Lao, Pashto, Tamil, Tagalog, Xitsonga, or Zulu [11]. In
speaker identification/verification, y. € Y denotes a speaker this case, we define other domains from which data could be
identity; the f(-) is trained to predict speaker identity, e.g., from leveraged for the target task as source domains S. For exam-
i-vectors. Similarly, in speech emotion recognition, y. € Y ple, for low-resource ASR, one S could be a high-resource lan-
denotes an emotional state, and f(-) is trained to recognize the guage such as English or Mandarin [11]). According to (2), then
emotional state, e.g., from high-dimensional statistical features.
: . - Dy = LrUUr, 3)
Given a domain 9 and a task F, we define D to denote a
speech database. As the majority of available pattern recognition and
approaches are supervised paradigms [the input and expected
outputfor f(-) are provided during training]. A database is normal- Ds=LsUUs. “4)
ly given by two parts: the feature vectors X = {xi,....x,} € X
and the corresponding labels Y = {yi,...,y,} € Y. However, in In this article, we use the term data interchangeably with
real life, the labels y; are often only partially provided (or not even instance, turn, record, utterance, segment, sample, or exam-
provided) because of the difficulty of labeling. In this case, we ple. Similarly, the term annotator is interchangeable with
denote the labeled data partition as L = {(X1,y1), ..., (Xu,Yn)} evaluator, transcriber, labeler, or translator; and the word
and the unlabeled data partition as U = {xi,...,Xs,}, Where annotation is used to denote any labeling task, i.e., transcrip-
n; and n, are the total number of labeled and unlabeled in- tion for ASR or labeling the emotion or other speaker states
stances, respectively. In this sense, and traits associated with an utterance.
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Data challenges

This section offers a detailed overview into the data sparsity,
data unreliability, and unmatched data challenges. Techniques
to adequately cope with these challenges will play an essen-
tial role in the development of the next generation of reliable
ASA systems.

Sparse dafa challenge

While there is an abundance of raw speech data, the corre-
sponding annotations needed for many ASA tasks are often
scarce (i.e., Ly # 0, but n; < N, where 0 denotes the empty
set and N is a required number), or nonex-
istent (i.e., Ly = 0). For example, outside
of speech recognition tasks on a handful of
widely used languages (e.g., English and
Mandarin), the labels needed to conduct
ASR on other languages are particularly
scarce (see the Intelligence Advanced
Research Projects Activity [[ARPA] Babel
project [11]). Similarly, most databases
available for computational paralinguistics
tasks, such as emotion recognition and per-
sonality analysis, may contain 5 h of labeled data at most [12],
[13], which is insufficient for building highly robust models.

However, thanks to the pervasive sensing opportuni-
ties offered by smart devices and social media, the gather-
ing of speech data has become a somewhat easier task. For
example, it is reported that some 500 h of video content is
being uploaded to the video-sharing website YouTube every
minute [14]. Nonetheless, labeling these data demands huge
amounts of expert manual labor, which is regarded as being
prohibitively expensive and time consuming. Taking speech
transcription as an example, it can take up to approximate-
ly 6 h to accurately transcribe 1 h of speech at an average
price of US$150/h [15], [16]. While a few Internet giants
(e.g., Amazon, Google, and Microsoft) have the capability of
obtaining many thousands of annotated speech data for
ASA tasks, such as speech recognition, these labeled data
are, however, rarely made freely available to interested
research groups.

If Dy does not contain any labeled data, i.e., Ly =0, a
naive solution is manual annotation. An efficient way to do this
is using a crowdsourcing platform, which is an Internet-based
system that utilizes a large group of individuals to perform a
common service. Alternatively, spoken-term detection/discov-
ery can be considered as a means of detecting predefined pat-
terns in the data or discovering unknown patterns there.

If Ds contains some labeled data, i.e., Ly # 0, it is then
necessary to assess whether or not the available labeled data
are sufficient in terms of quantity and diversity to develop a
robust model. If the data are found to be insufficient, data aug-
mentation approaches, which seek to enrich the number and
variety of existing labeled speech data, might be an appropri-
ate option. A further option is the use of speech synthesis to
automatically generate data with predefined labels. If a large
scale of unlabeled data are available, i.e., Usr # 0, alterna-

Thanks to the pervasive
sensing opportunities
offered hy smart devices
and social media, the
gathering of speech data
has hecome a somewhat
easier task.
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tive solutions could include unsupervised representation
learning (URL), semisupervised learning (SSL), active learn-
ing (AL), and cooperative learning (CL). These techniques
are becoming prominent paradigms to efficiently leverage
massive unlabeled data via a small amount of labeled seed
data [17].

Unreliable data challenge

This is the scenario in which the total amount of speech
data is large, but the data reliability is low. Data sets col-
lected in real-life settings, and even many collected in con-
trolled laboratory settings, are susceptible
to a range of problems, such as distortion
by environmental noises, recording devic-
es, or interfering speakers [18]. Besides,
the associated annotations may be unreli-
able because of mistakes or high uncer-
tainty among multiple annotators [18].
Furthermore, in many cases, the distribu-
tion of collected speech data can be high-
ly unbalanced over the classes of interest.
All these factors can give rise to noisy
and unreliable data, leading to nontrivial difficulties when
training models [18], [19].

Additionally, the reliability of the labeled data should
be evaluated in terms of properties such as acoustic qual-
ity, annotation certainty, and data balance degree. Poor
data quality has frequently shown its detrimental effect on
system performance. In this scenario, data selection should
be considered for eliminating the noisy, unrelated, and
unreliably labeled data or data balancing for balancing the
data distribution.

Unmatched data challenge

This is the situation where data from a target domain 7 are
not sufficient or reliable enough to train a robust model for
a task of interest. However, as previously discussed, there
are often data from a source domain & that are easy to
obtain and somehow related to the target data. This moti-
vates researchers to explore leveraging source domain data
to aid the target ASA task. For example, one of the goals of
the TARPA Babel project is to utilize the available and
large-scale speech data in, e.g., the English language
for speech recognition in low-resource languages. Never-
theless, in many real-world applications, the source and tar-
get domains are often highly unmatched in respect to
acoustic signal conditions, speakers, tasks, or even recording
devices [20]. These mismatches lead to a marked perfor-
mance degradation of the analysis in such models in real-life
settings [20], [21].

Mathematically, the source domain can differ from
the target domain (i.e., S# 77) in terms of 1) modalities,
ie., Xs # X7 (this case is considered out of the scope of this
article, which is focused only on speech), 2) marginal prob-
ability distributions, i.e., P(Xs) # P(Xr), 3) label spaces, i.e.,
Ys # Y, and/or 4) conditional probability distributions, i.e.,
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P(Ys|Xs) # P(Y7| X7). A more in-depth explanation of these
discrepancies can be found in [21].

An idealized solution to mitigate these differences is to
obtain access to all possible variations by acquiring data on
a massive scale. However, it is either practically impossible to
anticipate all variations or such data would require exhaustive
annotation. In such unmatched scenarios, transfer learning
(TL) [21] is regarded to be a highly promising technique to take
advantage of the knowledge from the source
domain for the target domain.

THE WORLD'S N

to perform the required annotations. By doing this, we create a
new or additional labeled data set Lcs, and then ASA models
can learn from the increased labeled data set L' = LU L.
Manual annotation is, however, costly in terms of time and
money. Therefore, strategies to reduce these costs are of
particular importance.

Crowdsourcing is one method to gather the needed data in
a cost-efficient manner. In crowdsourcing, human intelligence
tasks (HITs) such as data annotation are dis-
tributed via the Internet to a large number

Finally, it is important to note that all Another emergl!lg t_r end of potential workers (annotators). The users
of the aforementioned techniques for each for cmw_d_so“_":mg 1S perform the tasks for usually low compensa-
challenge can be performed either individu- the gamification of the tion. The assumption behind crowdsourcing

ally or jointly. This is illustrated in Figure 1,
where possible combinations that can occur
are indicated through the use of the N(Y)
symbol, which denotes no or yes. For exam-
ple, crowdsourcing can be used no matter
whether the labeled target data are available
or not. Likewise, AL can be executed on either unlabeled tar-
get data or unlabeled source data. All of the key techniques
mentioned in this section are reviewed in detail in the follow-
ing sections.

Contributions of this article

The literature shows a few surveys relevant to the topic of this
article. Deng et al. [22] offered a comprehensive overview of
machine-learning paradigms for speech recognition systems.
Wang et al. [20] provided a TL survey for speech and lan-
guage processing, drawing the conclusion that TL has the
potential to overcome the data-mismatch challenge. None of
these surveys, however, perform a complete analysis of the
sparse, unreliable, and unmatched data challenges or provide
a comprehensive overview of the corresponding approaches.

Extending from a previous abstract [12], this article is the
first to offer a thorough and in-depth overview of the most
prominent and state-of-the-art techniques in this direction,
including crowdsourcing for efficient data labeling; spoken-
term detection/discovery to facilitate learning when there are
no labeled data; data augmentation, speech synthesis, URL,
SSL, AL, and CL to enable learning when only a limited
amount of labeled resources are available; data selection and
balancing techniques to facilitate learning from unreliable or
unbalanced resources; and TL and data agglomeration to learn
unmatched resources.

Rather than simply enumerating a list of associated papers
and techniques, the focus of this article is on the analysis of
the various data conditions and on how to better explore data
under the different conditions. In doing this, ASA research-
ers and developers, new and established, can profit from
the approaches introduced and discussed for the aforemen-
tioned applications.

Efficient data labeling: Crowdsourcing
The most straightforward solution to address a shortage of
labeled data is to organize a group of workers (i.e., annotators)

service, which is used to
introduce a sense of fun
into what are often simple
and recurring tasks.

is that the use of nonexperts is less onerous
and more rapid than the use of experts. Fur-
thermore, the aggregated opinion of many
nonexperts has been shown to approach the
quality of the opinion offered by compara-
tively fewer experts [15], [23], [24].

Popular crowdsourcing platforms include Amazon Mechani-
cal Turk (MTurk), CrowdFlower, and Crowdee. MTurk is
likely the most popular crowdsourcing platform for ASA-
related tasks. While MTurk provides access to a larger number
of potential annotators, it is considered relatively expensive
when compared to other platforms [15]. The CrowdFlower
platform is steadily increasing its market share. When com-
pared to Mturk, it provides customers with a steady number
of contributors and has a higher degree of quality control.
An emerging trend, as implemented by Crowdee, involves
moving the platform from the web to a mobile platform.
Participants associated with this platform have the poten-
tial to undertake a task at any time and place.

Another emerging trend for crowdsourcing is the gamifica-
tion of the service, which is used to introduce a sense of fun
into what are often simple and recurring tasks. This is also
interesting from an ethical point of view, aiming to improve
working conditions of crowd workers. The iHEARu-play
platform, for example, offers annotators a chance to perform
labeling, or prompted recording tasks, in return for scores and
prizes, which are computed on the correctness and workload
of their annotations [25].

Generally, the procedure of crowdsourcing speech resourc-
es can be broken into four stages. The first step is to define the
project parameters, such as an appropriate platform, quality
control strategy, budget, and time scale. The second step is to
prepare the data. The third step is to distribute tasks. This gen-
erally involves splitting the whole task into many small units
and then assigning each unit to several annotators. The final
step is to aggregate and evaluate the resources (e.g., speech
data or annotations).

For speech processing, crowdsourcing has been widely
employed for a range of tasks, including speech data col-
lection/acquisition, speech annotation, speech perception,
assessment of speech synthesis, and dialog system evalua-
tion [15], [26]. With particular respect to speech annotation,
many studies have shown crowdsourcing’s benefit in terms
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of both increased transcription quality and decreased costs.
For example, in [27], the authors proposed a two-stage ap-
proach to transcribe speech via a crowdsourcing platform (i.e.,
microworkers). Specifically, the utterances that were labeled
with the lowest agreement level among annotators would be
selected for a second-stage translation. In
doing this, more than 250,000 utterances
(156 h) of spoken dialog from real callers
were translated, being of comparable quan-
tity to the same corpora labeled by experts
but at considerably less cost. Similar work
has been presented for the transcription of
meeting data [24], addressing the business
name queries from a publicly accessible
telephone directory service [16], and label-
ing the emotional state of speakers [28]. All of these works
show that crowdsourcing is a relatively affordable and effi-
cient way to address the task of speech annotation, compared
with conventional methods.

Despite the advantages, controlling the quality of the labels
is important to ensure they are as reliable as those given by
experts. In this regard, quality control measures are required.
A range of quality control mechanisms have been proposed in
the literature, which can be grouped into one of the following
five categories:

1) Worker filter: This mechanism evaluates annotation
quality through the use of control questions (a question
with a restricted answer set) and filters out inappropri-
ate annotations.

2) Intraworker: The reliability of an annotator can be evalu-
ated by the consistency of the response to the same ques-
tion asked multiple times. Alternatively, this could be
established by a self-confidence value chosen by the
annotator [27].

3) Interworker: Normally, a gold standard is calculated via
techniques such as majority voting, using responses from a
multitude of annotators. The quality of an individual anno-
tator can then be evaluated by calculating the response dis-
similarity to the gold standard. This method is, of course,
susceptible to the risk that the majority results are wrong.

Crowdsourcing is a
relatively affordable and
efficient way to address
the task of speech
annotation, compared with
conventional methods.

detection and spoken-term discovery, or related methods of
targeted detection of speech-related information and phenom-
ena of interest and according discovery in the sense of novelty
detection can be used to identify salient information (i.e., pat-
terns) directly from an unlabeled data set without any manual
intervention. The premise of these tech-
niques can be thought of as analogous to
infant language acquisition, i.e., the learn-
ing of linguistic information from the raw
speech of an unknown language during the
first few years of an infant’s life. The two
techniques (i.e., targeted detection and
novelty discovery) are distinguished by
whether, e.g., spoken terms have been pre-
viously identified (spoken-term detection)
or not (spoken-term discovery). Next, we focus on terms;
however, similar methods can be applied to retrieve speech
related to other phenomena of interest.

Spoken-term detection

The goal of spoken-term detection is to retrieve a set of occur-
rences from a speech repository for given acoustic queries or
terms (normally spoken words or phrases). Compared with
conventional speech recognition approaches, spoken-term
detection offers the capability to detect corresponding patterns
from speech in the absence of any text information.

The predominant spoken-term detection methods involve
template-based acoustic models and typically rely on dynam-
ic time warping (DTW) [31]. Specifically, they search for the
predefined terms in a lattice. In a no-labeled-resource sce-
nario, DTW has been shown to be an effective way to find
the matched patterns [31]. Nevertheless, DTW alignment
requires substantial computational resources to compare seg-
ments [32], [33]. Tackling this runtime-scalability problem
is an active and ongoing research direction [32], [34]. Key
approaches proposed in the literature include information
retrieval-based DTW [35]. This approach first estimates the
regions of an utterance that are more likely to contain the spo-
ken query and then uses a standard DTW to find the exact
start and end times of each pattern. This approach was further

4) Gold-standard comparisons: This is a particular case of the extended in [34] via the introduction of a hierarchical k-means
interworker mechanism, where the gold standard is pro- clustering, contributing to a substantial speedup when com-
vided by trustworthy experts. This mechanism has been pared with classic DTW.
shown to be effective in eliminating intentionally mali- An alternative approach is to embed the arbitrary-length
cious annotators, albeit at the cost of expert intervention segments into fixed-dimensional spaces [32]. This technique
[27], [29]. greatly reduces the computational load without any perfor-

5) Third-party review: Here, quality control is carried out by a mance compromise. Following this idea, the novel frame-

third party, e.g., another independent crowdsourcing task
[30], or by the output of an intelligent system [16], [27].
However, this requires extra quality evaluation or computa-
tional costs.

Learning from no lubeled resources

This section discusses paradigms suitable for the extreme oper-
ating scenario where no labeled data are available, i.e., L = 0,
and D = U. In this scenario, techniques such as spoken-term

work of audio Word2Vec was recently proposed [36]. Audio
Word2Vec uses a sequence-to-sequence autoencoder [a neural
network (NN) commonly used as an unsupervised learn-
ing algorithm; for more details, see the “Deep Belief Net-
works and Stacked Autoencoders” section] to represent any
arbitrary-length audio segment as a fixed-length vector.
This framework was determined to outperform conventional
DTW-based approaches at substantially lower computational
requirements [36].
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Spoken-term discovery
Spoken-term discovery, also known as spoken-term indexing,
is the task of searching potentially large, untranscribed speech
collections for recurring words and phrases without using any
language-specific resources other than the collection itself
[37]. Specifically, spoken-term discovery
differs from spoken-term detection in that

THE WORLD'S N

labeled resources, i.e., some few and expensive labeled
speech data exist L # 0, while n; < N, where N denotes an
opportune number of annotations. In this scenario, a range of
other techniques besides the aforementioned no-labeled-
resource methods can be utilized. These are generally imple-
mented in one of two ways: 1) increasing
the size and diversity of the existing

spoken-term discovery systems automati- nat_a_ a_ugmemallon labeled data by means of manually modi-
cally find an inventory of lexical units artificially general_es more fying the speech variations (i.e., data aug-
(words or phrases) without being given any data by transforming mentation) or artificially generating new
user-specific terms. Furthermore, spoken- existing speech speech with predefined labels (i.e., speech
term discovery is distinct from conven- samples using certain synthesis) or 2) the efficient leveraging of
tional ASR systems, where a lexicon is transformations that information gained from big unlabeled

always specified.

Typically, spoken-term discovery con-
sists of three steps [13]: 1) pairwise match-
ing, 2) clustering, and 3) parsing. The aim
of pairwise matching is to identify pairs of segments, taken
from unique continuous spoken utterances, that have high
acoustic similarity. Similar to spoken-term detection, the dom-
inant techniques in this step are based on DTW.

The discovered segments are then clustered into classes
(indices) that correspond to a set of likely words and phrases
present in the data. Typically, an abstract adjacency graph
[31] is used to represent the relationship between all of the
segmented pairs. The nodes of this graph correspond to the
locations in time of the segments, and its edges correspond to
the measures of similarity between those time indexes. A pre-
defined threshold is then applied to the edge weights, which
results in clusters of highly connected nodes. While the edge
thresholding is regarded as the de facto clustering method
for spoken-term discovery, there is a range of fast and effi-
cient algorithms for automatic graphic clustering that could
be applied. For example, the work in [31] utilized the New-
man algorithm, which first removes all edges and then merges
potential groups together in a greedy fashion by adding edges
back to the graph.

Finally, the discovered speech segments are used to parse
the utterances. The identification of the segment (term)
boundaries is challenging; the alignment segments are often
overlapping in a particular node, and the ending times of
their respective time intervals can differ. A straightforward
solution for this issue is to calculate the average start and
ending times for all of the alignment segments belonging to
one node [31].

While considerable advances have been made for fully
unsupervised speech processing, the majority of studies are
limited to small-size data sets. Studies have shown that perfor-
mance is dramatically degraded when facing a large data set
[26] or a large variety of speakers [38]. However, this approach
is still quite attractive for many low-resource ASA tasks, e.g.,
early language acquisition.

Learning from limited labeled resources
Rather than starting with a completely unlabeled data set, we
are often in the better situation of having a limited number of

preserue the original class
labels and speech content.

data, through a priori knowledge of the
labeled data. Typical techniques here
include URL, SSL, AL, and CL. In the fol-
lowing text, each of these techniques is
discussed in detail, with key contributions from the literature
summarized in Table 1.

Data augmentation

Data augmentation artificially generates more data by trans-
forming existing speech samples using certain transforma-
tions that preserve the original class labels and speech
content. By taking this approach, an augmented data set
Lag 1s obtained from the original data set L, i.e.,
Lag = AUG (L), which is then added to an updated labeled
data set L’ = LU Lay,. The popularity of data augmentation
is indeed highly relevant to the ongoing development of
deep learning, the success of which strongly depends on
having large amounts of training data. Many studies have
reported that training on data of limited quantity and variety
leads to a failure of deep-learning systems owing to factors
such as overfitting [6].

Variations in speech data are strongly influenced by numer-
ous factors, such as the speaker’s age, gender, and cultural back-
ground, and even the content of the background noise. Data
augmentation techniques, through a series of transformations
(perturbations), allow us to artificially increase both the quan-
tity and variations present in some training data, consequently
improving the generalizability of the classifiers trained on
this data. Conventional data augmentation approaches mainly
involve artificially adding noise of various types, including
convolutional noise, and levels to the original training speech
for training a noise-robust acoustic model in multiple acoustic
conditions [39].

Recently, research efforts have focused on using more com-
plex perturbation approaches, such as vocal tract length per-
turbation (VTLP) [40], or stochastic feature mapping (SFM)
[41]. In VTLP, an alternate replica of an utterance is created by
distorting its spectrum [40]. First, Mel-filter banks are applied
over the spectrum. Then, the center frequencies (f) of all of the
filter banks are mapped to new frequencies (f”) by employing
a warping procedure:

I'=f¢ (), ®)
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Table 1. Selected data-exploitation studies on the limited labeled speech resource.
Models

Recurrent DNN
CNN, DNN, CTC

Publications
Weng et al. 2014 [39]
Amodei et al. 2015 [7]

Jaitly and Hinton 2013 [40]
Cuietal. 2015 [41]

Tuske et al. 2014 [42]

Ko et al. 2015 [43]

Peddinti et al. 2015 [44]
Milde and Biemann 2015 [45]

Schuller et al. 2012 [46]

Gales et al. 2009 [47]
Dahl et al. 2012 [51]
Seide et al. 2011 [64]
Deng et al. 2010 [54]
Mohamed et al. 2012 [65]
lei et al. 2014 [64]

Liv et al. 2014 [67]
Stuhlsatz 2011 [68]

Sdnchez-Gutiérrez et al.
2014 [69]

Kim et al. 2013 [70]
Hau and Chen 2011 [57]

Lee et al. 2009 [58]

Kemp and Waibel 1999 [71]
Wessel and Ney 2005 [72]

Fazakis et al. 2015 [73]
Hsiao et al. 2013 [74]

Thomas et al. 2013 [75]
Zhang et al. 2013 [76]
Cuietal. 2012 [77]

Liu and Kirchhoff 2016 [78]
Riccardi and Hakkani-Tir
2005 [79]

Varadarajan et al. 2009 [80]
Fraga-Silva et al. 2015 [81]
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Types
DAU
DAU

DAU
DAU
DAU
DAU

DAU
DAU

SS

SS

URL
URL
URL
URL
URL
URL
URL
URL

URL

URL

URL

SSL
SSL

SSL
SSL

SSL
SSL
SSL

SSL

Al

Approaches
Adding noise
Adding noise

VILP

VTLP, SFM

VTLP

Tempo-/speed based

Volume based
Pitch based

Waveform-based

Parameter-based
DBNs
DBNs
SAEs and DBNs
DBNs
DNNs
DBNs
DNNs
DBNs

DBNs

Deep CNNs

Convolutional DBNs

Selftraining
Selfraining

Selftraining
SelfHraining

SelfHraining

Cotraining

Multiview learning
Graph-based

learning

Uncertainty sampling

Uncertainty sampling

Uncertainty sampling

DNN, CNN
DNN, CNN
BN-MLP

Time Delay NN

Time Delay NN
CNN

SYM

SYM, HMM
DBNs

DBNs

SAEs and DBNs
DBNs

DNNs

DBNs

DNNs

DBNs

DBNs

Deep CNNs

Convolutional
DBNs

GMM-HMM
HMM

NB, SVM, [R
MLP

DNN
SVM
RDT, HMM
DNN

HMM

HMM
GMM-HMM

Applications
ASR
ASR

ASR
ASR, KWS
ASR, KWS
ASR

ASR

Eating condition
classification

ER

ASR

ASR

ASR

Speech coding

ASR

Speaker recognifion
Speaker identification
ER

ER

Audiovisual ER

Speaker/gender
identification
Phone classification

Speaker/gender
identification
Phone/music
classification

ASR
ASR

Speaker identification
KWS

ASR

Emotion/sleeping/
age/gender
classification

ASR
ASR

ASR

ASR
ASR, KWS
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Databases and Languages
WSJO (En)

WS$JO (En), Switchboard (En), Fisher
(En), Baidu (En, Ma), LibrisSpeech (En)

TIMIT (En)
IARPA Babel program (As, Ha)
IARPA Babel program (five lang.)

Switchboard (En), Gale database
(May), LibriSpeech (En), Tedlium (En)

Switchboard (En)
iHEARU-EAT corpus (En)

Two synthesized + eight human
corpora

WSJ Corpus (En)

Business Search Dataset (En)
Switchboard- (En)

TIMIT (En)

TIMIT (En)

NIST SRE'12 (En)

NIST 2005 SRE (En)

Nine emotional corpora

Spanish emotional speech
database (Sp)

IEMOCAP (En)
TIMIT (En)

TIMIT (En), music data

View4You broadcast news database

(Ge)

BROADCAST NEWS96/7 corpora
(En)

CHAINS Corpus (En)
IARPA Babel Program (Tu, Vi)

Callhome Corpora (En, Ge, Sp)
Six emotional corpora

Broadcast News corpus (En)
Switchboard (En), DARPA RM (En)

“How May | Help You?2” database (En)

Directory assistance data (En)

IARPA Babel Program (six languages)

(continued)
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Table 1. Selected data-exploitation studies on the limited labeled speech resource. (continved)

Publications Types  Approaches Models Applications Databases and Languages

Hamanaka etal. 2010 [82] AL Query by committee ~ GMM-HMM ASR Corpus of Spontaneous Japanese (Ja)
Zhang and Schuller 2012 [83] AL Meta query SYM ER FAU AEC (Ge)

Zhang et al. 2015 [84] Al Meta query SYM ER FAU AEC (Ge)

Riccardi and Hakkani-Tir Cl Confidence score HMM ASR “How May | Help You?2" database (En)
2003 [85]

Yu et al. 2010 [86] Cl Confidence score HMM ASR Broadcast Conv. and News corpora (Ma)
Zhang et al. 2015 [17] Cl Confidence score SYM ER FAU AEC (Ge), SUSAS (En)

Yu et al. 2010 [87] Cl Global-entropy based HMM ASR Directory assistance data (En)

BN: Bayes network; CTC: connectionist temporal classification; NB: naive Bayes; LR: logistic regression; RDT: randomized decision making; DAU: data augmentation; SS: speech

synthesis; ER: emotion recognition; As/Da/En/Fr/Ge/Ha/Ja/Ma/Sp/Tu/Vi/Xi/Zu: Assamese/Danish/English/French/German/Haitian Creole/Japanese/Mandarin/Spanish/

Turkish/Vietnamese/Xitsonga/Zulu.

where o, the wrapping factor, is randomly chosen from
[0.9,1.1]. The results presented in [40] indicate that, in
terms of the phone error rate, deep networks trained on a
VTLP-augmented version of a small database can outper-
form the deep networks trained on the original data set.
Based on that work, a deterministic perturbation (i.e., «
changes in the range of warping factors with a fixed
step) rather than a random perturbation was proposed and
investigated [42].

SFM, inspired by voice conversion paradigms, seeks to
utilize the acoustic-feature-space relationship among speak-
ers when augmenting a data set [41]. Specifically, it augments
training utterances by statistically converting one speaker’s
speech data to another’s using

X =x-M, ©6)
where M is a transformation matrix of the feature spaces
between two speakers. The experimental results given in [41]
show that SEM offers improved performance over VTLP on
both ASR and keyword spotting (KWS) tasks.

Other data augmentation approaches include tempo-based,
speed-based, and volume-based perturbations [43]. Tempo-
based perturbation modifies the speech tempo while retaining
the pitch and the spectral envelope. Speed-based perturbation
varies the speech speed by resampling, whereas volume-based
perturbation changes the amplitude of signals.

While data augmentation approaches have frequently been
effective in ASR tasks [7], [44], this has not proved to be as
much the case in other ASA tasks, particularly in computational
paralinguistics [45]. A potential reason for this might be that the
detection of speaker states and traits (e.g., emotion, age, and gen-
der) is more sensitive to changes in speech variation. Therefore,
training on inappropriately transformed speech would lead to a
worse model. Emotion, for example, is known to be related to the
speech tempo; speech with faster tempo is inclined to be recog-
nized as higher arousal in emotion recognition, so changing the
associated speech tempo from fast to slow would potentially lead
to badly labeled training data.

Continued research efforts being undertaken to distin-
guish features that are task specific or task invariant could
help facilitate the application of data augmentation to other
speech analysis tasks. In addition, most recent applications of
data augmentation are performed for deep learning [7]. The
effectiveness of these techniques on shallow discriminative or
generative models is yet to be established.

Speech synthesis

Similar to data augmentation, the speech synthesis approach
aims to synthesize additional labeled data, i.e., Lsyn = SS(L),
such that the new labeled data set L' is updated by
L’ = LU Lgy. Theoretically, speech synthesis can produce an
infinite amount of labeled data via altering speech content or
modifying the parameters of a speech synthesizer. However, as
the parameters of the synthesizers have a limited range, the
simulated speech data often face the problem of limited varia-
tions. This can consequently result in the overfitting issue when
training models. Combining the synthesized speech data with
natural instances has been shown to help minimize this overfit-
ting issue [46]. For emotion recognition in speech, it has been
shown that systems trained on synthesized speech (the test data
was natural speech) can deliver competitive performance when
compared to equivalent systems trained on natural speech [46].
In this article, two synthesizers rendering emotional speech—
Emofilt and Mbrola—were utilized to artificially generate
speech colored with predefined emotions [46].

Rather than directly synthesizing waveforms, an alternative
is generating parameterized speech that can be used directly
for training a discriminative classifier. Gales et al. [47] used
a hidden Markov model (HMM)-based statistical synthesis to
generate missing words in a training set, when building word-
based support vector machines (SVMs) for ASR. The results
presented indicate that this HMM-based synthesis approach
was able to yield gains over the baseline. Inspired by the suc-
cess of deep learning, an emerging research trend is to use NNs
rather than HMMs to generate speech samples [48], which may
also mature in terms of the variation of synthesized speaker
states and traits.
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Unsupervised representation learning
In contrast to data augmentation and speech synthesis, URL
techniques attempt to leverage massive unlabeled data, rather
than sparsely labeled data. URL is closely related to the pre-
training process of deep learning, which aims to learn the
underlying representations x" embedded in speech signals via
multiple unsupervised transformations, i.e., X' — URL(x),
where x € D = LU U. To train a recognition model for a spe-
cific task, the pretrained model is then updated in a supervised
manner via a small amount of labeled data. This step is gener-
ally referred to as fine-tuning or discriminative learning.

A typical model structure for URL is
often composed of multiple processing lay-
ers of NNs for linear and nonlinear trans-
formations (Figure 2). To efficiently train
such a DNN, Hinton and Salakhutdinov [49]

In contrast to data
augmentation and speech
synthesis, URL technitgues

feedforward autoencoders, respectively. The unsupervised pre-
training of these architectures is done one layer at a time.
For SAEs, each layer is trained with an encoder /(-) and
a decoder g(-) by minimizing the reconstruction error at its
input x:
g(h(x) = x. (7
The output of the encoder /(x) forms an alternative represen-
tation of the input x and is fed into the successive layer as
input. This procedure is repeated layer-by-layer until all pre-
defined layers are initialized. The training
of the stacked layers in this manner allows
a deep network to incrementally learn a
more robust representation when compared
to training the whole network, in ensemble,

introduced a greedy layer-wise unsuper- attempt to leverage from a random initialization of weights. For

vised algorithm to initialize multiple-layer massive uniaheled data, further insights into the advantages of pre-

f(;edff)élwa;d I\IIDNS. 1§1nce thti:n, }Ehls trtaltrilng rather than sparsely Egzizlillrr}ghwltt; autoetr.lcod.ers antq R;Sl\lfls,tsee

algorithm has been frequently shown to have . This observation is particularly true
g quently labeled data. P Y

a powerful capability to capture representa-

tive features via massive unlabeled data, and

has obtained tremendous success in a variety of applications,
particularly in the context of ASA [7], [50], [51]. The remainder
of this section introduces several of the most important deep
architectures for URL, including deep belief networks (DBNss),
stacked autoencoders (SAEs), convolutional NNs (CNNs), and
recurrent NNs (RNNs).

Deep belief networks and stacked autoencoders

Two of the most established deep-learning architectures are
DBNs and SAEs. These topologies are formed by stacking
multiple layers of restricted Boltzmann machines (RBMs) or

for stacked denoising autoencoders [53],
extensions of SAEs where the initial input
X is partially corrupted into another version X by means of
stochastic mapping, i.e., X ~ g4(X1x). The robustness of the
high-level representations formed using this technique is
improved when compared to the aforementioned SAE [53].
An early attempt at applying deep-learning technologies
to learn speech representations was proposed by Deng et al.
[54], where the authors utilized DBNs and deep SAEs to com-
press (represent) speech directly from spectrograms. When
compared with the traditional compression approach of vector
quantization, this technique showed a much lower log-spec-
tral distortion over the entire frequency range of wide-band
speech. Expanding on the work of this article, DBNs have
been extensively tested as an acoustic modeling paradigm for
speech recognition and have shown encouraging performance

High-Level in comparison with the conventional Gaussian mixture model
Represe)r:’tatlons (GMM) and HMM-based acoustic models for ASR [51]. For an
B overview of deep URL models for ASR and the corresponding
Tip s ( e -0 60 ) performance gains, the reader is referred to both [6] and [50].
|W4 Inspired by these achievements, deep URL techniques have
hy ( @ 6 o0 o ) started to become the dominant approach in almost all areas
i | A of speech processing.
Hidden h »
Layers 00 |W 00) Convolutional neural nefwork
hy ( o o 2 ) ) Another deep architecture currently exciting great interest is
{ the CNN [55], [56]. CNNs are a biologically inspired variant
v |W1 of the multilayer perception (MLP) originally developed for
Botom M(@® @ - @ @) visual perception tasks [55]. Typically, they consist of one or
W, more convolutional layers (often with a subsampling layer),
Inp\)/uitSil?sler (-) followed by one or more fully connected layers.

FIGURE 2. An illustration of typical deep URL. Usually, each layer of the
network is individually trained in an unsupervised manner; this allows the
network to incrementally learn a more robust representation than the one
learned by training the network as a whole.

CNNs are normally trained in a supervised manner. How-
ever, unsupervised training approaches are gaining in popular-
ity. Inspired by the unsupervised learning algorithm for DBNs,
Hau and Chen [57] constructed a deep architecture using
a CNN trained in an unsupervised manner as an alternative
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building block to retrieve effective hierarchical speech repre-
sentations. Specifically, the authors utilized an unsupervised
predictive sparse decomposition algorithm to train the weights
of the encoder and decoder [57].

Furthermore, a combination structure of CNNs and DBNs
was proposed in [58], in which the authors constructed convo-
Iutional DBNs (CDBNs) with convolutional RBMs (CRBMs)
as the building blocks. The CRBM is an extension of the
conventional RBM to a convolutional setting. The weights
between the hidden units and the visible units are shared
among all locations in the hidden layers [59]. By leveraging a
large amount of unlabeled data, the authors demonstrated that
the learned hierarchical CDBN representations are competi-
tive with conventional features (e.g., MFCCs) when evaluated
across multiple audio classification tasks.

long shortHerm memory recurrent neural networks

Unlike the aforementioned NN architectures, RNNs allow
cyclical connections, which consequently endow the network
with the capability of accessing previously processed infor-
mation (i.e., context sensitivity). An advanced version of this
paradigm, the long short-term memory (LSTM)-RNN [60],
has recently attracted a large amount of attention. An LSTM
unit contains one input, one output, and one forget gate to
control the memory cell, which enable it to store and access
information over a long temporal range. Therefore, the
LSTM-RNN combination has a powerful capability for
sequence learning.

In utilizing the advantages associated with LSTM—RNNS,
Srivastava et al. [61] recently proposed and explored an unsu-
pervised sequence-to-sequence learning paradigm where the
LSTM-RNNs are constructed as an encoder—decoder. By
doing this, the system efficiently learns the underlying repre-
sentations of video sequences for future frame prediction or
sequence reconstruction. This model has been further investi-
gated by Chung et al. [36] for audio segment representations,
where the authors demonstrated its effectiveness for spoken-
term detection when compared with classic DTW. More
recently, the gated recurrent unit has emerged as a computa-
tionally simpler alternative to the LSTM unit [62].

Overall, deep unsupervised learning paradigms have seem-
ingly great potential for learning useful representations of
large-scale unlabeled speech data. Nevertheless, in most cases,
it is necessary to implement additional supervised training,
such as fine-tuning, to ameliorate the system for a specific
application [51], [63]; therefore, a small amount of labeled data
is often additionally required to produce state-of-the-art per-
formance.

Semisupervised learning

Unlike URL, which aims to distill representative features
from unlabeled speech, SSL is designed to enhance recogni-
tion models. Given a seed set of labeled data, SSL exploits
information from a large set of unlabeled data in an efficient
manner with minimal intervention from human annotators.
SSL methods are generally distinguished as being conducted

in either an inductive or transductive manner [88]. The
primary discrepancy between them lies in whether the distri-
bution information of the unlabeled data is utilized for their
own prediction.

Inductive approaches require the construction of a classi-
fication model f based on a priori knowledge of labeled data.
The predictive model f is then used for predicting the unla-
beled data, no matter whether they are presented in an online
(afterward) or offline (beforehand) manner. Hence, inductive
approaches are also known as a supervised learning + addi-
tional unlabeled data paradigm. Mathematically, this can be
expressed as

() 0=1,..,m) = f - u=1,....n.}. 8)
Once the automatically predicted annotations have been
obtained from the unlabeled data set Lgq, the labeled training
set is updated, i.e., L' = LU L.

In contrast, transductive approaches do not need to prebuild
a classification model f'but instead perform predictions direct-
ly on the unlabeled data by exploiting the joint probability dis-
tributions of labeled and unlabeled data sets. In this technique,
the unlabeled data set should be available beforehand. When
new samples arrive, the transductive algorithms have to be
rerun, which consequently increases the computational load.
Hence, the transductive approaches are also referred to as the
unsupervised learning + additional labeled data paradigm.
That is,

(D=1, 0y U{x"u=1,...0n:) — {yu=1,....n4).
)

Note that both the inductive and transductive approaches can
be jointly deployed, as in transductive SVMs in which unla-
beled data are also considered when determining the hyper-
plane [89].

The ASA literature is dominated by inductive SSL
approaches. This is possibly due to inductive approaches
being more flexible to the availability format of unlabeled
data (i.e., online or offline). Among the inductive SSL
approaches proposed, self-training (i.e., self-teaching) is
arguably the most representative and has been widely and
efficiently used for ASR [71], [72], emotion recognition
[90], and speaker identification [73]. (In the context of
ASR, SSL is often referred to as unsupervised learning or
unsupervised training.)

A typical self-training paradigm is based on prediction
uncertainty. That is, those samples {x'{'} recognized with high
confidence C are picked up and combined into a selected sub-
set S, and those {xj} with low confidence remain in the unla-
beled data set U:

Cx"y= Cx").

vx'es vx"eU\S

(10)

The selected data set S (together with their pseudolabels) is
then combined with the initial training set L to form a new
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data set (L' = LU Lsq), which is sequentially employed to
refine the previous model and retest the remaining unlabeled
data. This process is repeated several times to incrementally
upgrade the initial model.

Self-training is simple and can be easily applied to
an existing model. However, it is open to the risk of error
accumulation, which is introduced by the selection of mis-
classified data in early learning iterations. Commonly used
techniques to mitigate such a detrimental effect include
1) using an additional development partition to determine the
stopping point of learning, 2) using generalized expectation
maximization to assign weights to the automatically labeled
data based on the prediction confidence [74], and 3) retest-
ing previously selected data for subsequent reevaluations and
selections, such that the mislabeled data in previous iterations
are possibly corrected in future iterations with an improved
model [91].

Another commonly used inductive SSL paradigm in ASA
is cotraining. Compared with self-training, cotraining attempts
to exploit the mutual information between two learners (trained
on different views or feature domains X; and X3). That is,
each learner uses its own predictions to teach not only itself,
but also the other learner [92].

Successful cotraining relies on two assumptions: suffi-
ciency and conditional independence [92]. Sufficiency infers
that each view is sufficient for classification on its own, i.e.,
the two hypotheses fi: X1~ Y and f: X2~ Y are good
enough for recognition. Conditional independence denotes
that the views are conditionally independent, given the class
label, i.e., P(yi|x) — P(yi|x1) P(yi| x2). Although these two
assumptions are restrictive, the work presented in [76] shows
the capability of cotraining for retrieving emotional infor-
mation in unlabeled data via separating the acoustic feature
set into two pseudo views (i.e., not completely conditional
independence) in the speech domain. Similar verification of
cotraining has also been reported for other computational
paralinguistics tasks [76]. Additionally, a more general
framework called multiview learning requires less restric-
tion in terms of conditional independence than cotraining
and has been successfully applied in speech recognition
by using several types of acoustic features and randomized
decision trees [77].

More recently, SSL research in ASA has started to explore
the advantages of deep-learning techniques [75], [93]. A typi-
cal implementation is ASR for a low-resource language [75],
[93]. First, an initial DNN is trained in an unsupervised manner
using multilingual data to learn the generalized representa-
tion of speech. Next, this model is fine-tuned as a seed model
by using limited amounts of monolingual data from the low-
resource language. The seed model is then employed to decode
the untranscribed utterances, with the predicted hypotheses
being regarded as the training transcripts for the next itera-
tion. Various discriminative criteria (e.g., maximum mutual
information or minimum cross entropy) can be adopted to
obtain the prediction confidence scores for each frame, word,
or utterance [75], [93]. Similar to traditional self-training and
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cotraining, the data (i.e., frame, word, or utterance) predicted
with high confidence are assumed to be of high quality and are
then incorporated to update the initial DNN or GMM-HMM
acoustic model.

Apart from the inductive approaches, a graph-based trans-
ductive approach can also be integrated into DNN-based
speech recognition systems at either a late or early stage [78].
For the late-stage integration, a graph is first constructed over
the labeled and unlabeled data sets, where the node repre-
sents a data instance and the edge indicates the similarity
between a data instance pair. Then, using a graphic-based
learning algorithm, a new set of posterior distributions for
each instance of unlabeled data is produced. After that, the
posteriors are converted into a graph likelihood and are inte-
grated with the original acoustic scores given by the DNN for
a subsequent rescoring of the unlabeled data [78]. A major
drawback of this late integration approach is a substantially
increased computational cost, as the graph has to be recon-
structed after each learning iteration. To overcome this prob-
lem, an early-stage integration algorithm has been proposed
[78]. This algorithm employs a graph embedding approach
in which the data in the graph is transformed into a com-
pact feature vector, which is then used as additional input for
the DNN.

Active learning

Similar to SSL, AL attempts to improve recognition models
by exploring unlabeled data. However, unlike SSL, which per-
forms automatic machine (model) annotation, the focus of AL
approaches is to efficiently select the most informative data S
in the unlabeled collection U for manual annotation. Partly
because of the growing amounts of data to be handled and the
popularity of crowdsourcing (see the “Efficient Data Labeling:
Crowdsourcing” section), AL strategies for ASA are currently
more important than ever.

One of the central goals of AL is to determine the informa-
tiveness of unlabeled data, a process known as guery strategy.
The following sections briefly review the most commonly used
strategies with relevance to ASA, which include the uncertain-
ty sampling, query by committee, and metaquery strategies.

Uncertainty sampling

This strategy uses confidence measures as a criterion to select
the most informative data. The basic idea is to use a pretrained
model (an active learner) to determine the uncertainty of pre-
dictions for a specific ASA task. The instances with the least
certain predictions are then sent to an oracle (a human) for the
annotation.

Formally, the selected data can be expressed as

(11

x' = argmin Q.(x;0),
xevu
where 0 indicates the model parameters trained on the labeled
data set L and Q. denotes the confidence measure function.
When using a probability model (e.g., Bayesian networks),
this function is usually estimated using either the posterior
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probability, the probability margin between the two most likely
class labels, or the entropy of prediction [94]. In the context of
speech recognition, word posterior probabilities or the HMM-
state entropy are frequently used as confidence measures [79],
[81]. When using a nonprobability model (e.g., an SVM), simi-
lar measures can be constructed from discriminant functions.
Considering the SVM as an example, pseudoprobabilistic
values can be transformed from the output distances from the
SVM hyperplane (see [17] for more details). The effectiveness
of this approach has been extensively assessed for emotion rec-
ognition from speech [83].

Despite the reported performance improvement, many stud-
ies have found that uncertainty-based AL is inclined toward
selecting noise and garbage data (i.e., outliers from the main
data distribution) for human labeling. This issue occurs even
more frequently when using AL to annotate data collected in
the wild, i.e., not under controlled laboratory conditions, where
environmental noises severely distort the speech, and many
unexpected words are potentially uttered. Labeling these outli-
ers is usually difficult and time consuming [95]. Furthermore,
these data often offer little information on the overall system
performance [17], [95]. A straightforward solution to address
this outlier problem is to raise the threshold of a confidence
score. For example, the authors of [17] used a median uncer-
tainty strategy instead of the least certainty one for actively
selecting spontaneously emotional utterances, which delivered
a positive performance improvement.

Sampling by uncertainty and density (SUD) is a more
sophisticated method that was introduced for ASR in [96]. In
this approach, unlabeled instances that are both near the deci-
sion boundary and very close to other examples are assumed to
be more important than those that are isolated (i.e., likely to be
outliers). Hence, SUD considers not only the most informative
data in terms of uncertainty but also the most representative
data in terms of density. That is, those data predicted with least
certainty and distributed in a low-density area are ignored.

A similar idea was proposed in [80], where the global crite-
rion was used in ASR to maximize the expected lattice entro-
py reduction over all nontranscribed data. Specifically, it first
measures the entropy among the lattices generated by decod-
ing unlabeled utterances. It then estimates the expected entro-
py reduction over the whole data set for each given utterance,
and selects the utterances that should deliver the highest entro-
py reduction for human labeling. After that, the transcribed
utterances can be weighted according to the number of similar
utterances in the whole data set to achieve better performance
for speech recognition. This algorithm is also analogous to the
error-rate reduction strategy introduced in [95].

Query by committee

This strategy uses a committee (group) of weak models (learn-
ers), denoted by © = {01,...,6«}, to select unlabeled data by
the principle of maximal disagreement among these models
[97]. Mathematically, this can be expressed as:

x' = argmax Qq(x;0). (12)
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The two key problems in committee-based approaches are 1)
constructing a committee © that represents competing
hypotheses and 2) defining a disagreement measurement Qg .
To alleviate the first problem, the models are usually built by
employing multiple different classifiers (e.g., HMMs, SVMs,
and RNNs) with the same training data, or by splitting the
training data or features into partitions for training several dif-
ferent versions of the same type of classifier, or by a combina-
tion thereof. For the second problem, the commonly used
disagreement measures are vote entropy and Kullback—Leibler
divergence (see [94] for more details). In speech recognition,
this strategy has been applied to both acoustic and language
models, resulting in a significant data annotation reduction
while achieving the same word accuracy [82].

Mefa query strategies

One often deals with imbalance across classes of interest in
the data. As an example, for emotion recognition, the emo-
tional speech of interest usually appears sparsely within a data
set, while the less interesting nonemotional speech often
appears at a much higher frequency. In this scenario, an initial
coarse model can be used to first decide which data are of
interest by distinguishing between neutral and emotional
speech. A subsequent finer model can be then used to recog-
nize different emotions or respective other classes in other
tasks in the selected emotional speech data. An example of
such an approach is the sparse-tracking query strategy [83]. It
tracks only sparse (emotional) instances, via iterative retrain-
ing and labeling, using a novelty detection paradigm.

One issue when analyzing subjective speaker states and
traits (e.g., emotion and personality) is the requirement of mul-
tiple annotations per sample to obtain a reliable gold standard,
which linearly increases the annotation workload. Recently,
dynamic active query strategies have been shown to be suc-
cessful in overcoming this issue [84]. These approaches, e.g.,
sequentially query human annotators to label a specific instance
up to the achievement of a predefined agreement level (i.e., a
certain number of votes for a specific class). The general idea
is to learn and exploit the varying reliability of raters to discern
whom to best trust and when. The results presented indicate
that this approach can contribute to a meaningful reduction of
annotation effort [84].

Cooperative learning

As discussed previously, SSL techniques can perform annota-
tion work from machines with a bare minimum of human
intervention. However, the performance of SSL is hampered
by the issue of potential error accumulation [94]. Alternatively,
AL techniques have the potential to achieve higher accuracy
with fewer training labels by actively selecting the data it can
learn the most from. However, AL still requires a considerable
amount of human intervention.

To take advantage of the best of both approaches, it is plau-
sible to jointly conduct AL and SSL in a unified CL frame-
work [17]. A general CL flowchart is illustrated in Figure 3. CL
allows the sharing of the labeling effort between human and
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machine oracles, while being able to mitigate the limitations
of SSL and AL. This is achieved by successively fusing the
data subset selected by the AL (La) and the one selected by
SSL (Lsq) into the original training set in an iterative fashion.
In this case, the labeled data set L' is continuously updated by
L' = LULqaU L. To minimize the effects
relating to error accumulation, AL is often
conducted before SSL.

CL is indeed a productive,

Motivated by the success of the global entropy reduction
maximization criterion [80] for AL (see the “Active Learning”
section), Yu et al. [87] extended the work of [80] by integrat-
ing this approach with SSL. The results presented indicate that
this technique achieves a notable performance increase when
compared to the uncertainty-based CL
approaches for speech recognition. Besides,
Zhang et al. [17] recently combined SSL

Early studies of CL mainly focused on hlghl]! efficient way to with a median uncertainty-based AL for
text classification. McCallum and Nigam exploit uniabeled speech  emotion recognition, which efficiently helps
were the first to investigate the idea of data to enhance the to avoid choosing garbage data as well. Fur-

integrating the query by committee-based
AL and the expectation maximization-
based SSL for text classification [98].
Later, motivated by the success of cotrain-
ing (see the “Semisupervised Learning”
section), a similar idea of jointly using multiple views was
taken into account, contributing to the new CL algorithm of
coexpectation-maximization testing [99].

For speech processing, the first CL efforts were undertaken
by Riccardi and Hakkani-Tiir [85] for ASR. This approach
assigned confidence scores to transcribed utterances based on
the lattice output, from which the utterances were determined
to be manually or automatically labeled. A similar idea was
also investigated by Yu et al. [86] for speech recognition. In this
approach, the data recognized with high confidence are trans-
lated automatically by machine, while the ones recognized at a
low confidence are selected and translated manually. Similar to
the uncertainty-based AL, this uncertainty-based CL is as well
inclined to choose noise and garbage utterances that typically
have low confidence scores.

Repeated

___________________________________

.

4
Labeled
Set L

~

Selected

Selected
Subset S,

Subset Sg

Dt et

FIGURE 3. A general overview of a CL framework that aims to take advan-
tage of both AL and SSL.

performance of preexisting
models while minimizing
human work.

thermore, in the same article, multiview CL
(i.e., where two views are used for both AL
and SSL) was exemplified and demonstrat-
ed to achieve better performance than the
single-view CL [17].

Experimental results obtained in the aforementioned stud-
ies indicate that, when compared to SSL and AL, CL is indeed
a productive, highly efficient way to exploit unlabeled speech
data to enhance the performance of preexisting models while
minimizing human work. Moreover, its potential is expected
to be further evoked when implemented with a crowdsourcing
platform (see the “Efficient Data Labeling: Crowdsourcing”
section and/or, incorporated with deep-learning techniques,
the “Unsupervised Representation Learning” section).

Learning from unreliable or unbalanced resources

In contrast to both the no- and limited-resource techniques,
which address the speech data quantity challenge, this section
focuses on the methods that aim to tackle the speech data qual-
ity challenge. In particular, it covers techniques designed to
operate in the presence of unreliable or unbalanced resources.

Data selection
Data quantity and diversity are both vitally important proper-
ties when building a robust ASA system. However, they can
introduce a range of confounding factors. For example,
speech utterances that are severely distorted by noise might
be present in a prototypical data set. Owing in part to a lack
of annotators’ concentration, these data are often improperly
labeled or even mislabeled. This gives rise to the necessity of
data selection to discard such garbage data, as accurate
decisions made by a pattern recognition engine are largely
related to high-quality training data.

The goal of data selection is to select a smaller data source
S that is most representative (i.e., most informative) of the
entire data L, i.e., S =DS(L) and S C L, thus omitting any
superfluous or garbage data. The concept of data selection
discussed in this section differs from that for AL or SSL,
which is carried out on unlabeled data (see the “Semisuper-
vised Learning” and “Active Learning” sections). It also dif-
fers from feature selection methods (e.g., filter or wrapper
selection), which select the most informative features for a
particular ASA task. Instead, the data selection techniques
reviewed are designed to select labeled samples or instances
that will serve as learning units.
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Within the ASA literature, Wu et al. [100] selected the
samples that had a uniform distribution across speech units
(i.e., words and phonemes) by the principle of maximum
entropy for ASR. The experimental results presented indi-
cate that a system trained on a 150-h selection of data could
achieve competitive results with a system
trained on the full 840-h data set.

When performing subjective ASA rec-
ognition tasks (e.g., emotion recognition),
a learning and testing target has to be gen-

TL approaches can he
mostly grouped into one of
three categories according

THE WORLD'S N

training set L, L = LU Lin. In contrast, the latter technique
involves the random selection of a subset of instances Linaj
in the majority class Lmaj and removing them from the orig-
inal training set L, L = L\ L. However, this process may
result in a loss of important information pertaining to the
majority class.

Another frequently used and effective
method for data sampling is SMOTE [104].
The underlying idea is the creation of a new
set of artificial examples belonging to the

erated usually by fusing the labels of mul- to the properties of the minority class. Data sampling has been wide-
tiple annotators to reduce subjectivity. In k ledue transferred: ly used for computational paralinguistics
addressing the unreliable label problem, ) nowledge transierred. with notable effects [17], [105]. Even in ASR
Erdem et al. [101] performed the RANSAC instance-, feature-, and systems, balancing the sample distributions
data selection algorithm to remove poten- model-hased TL. among all phonemes has been shown to out-

tially mislabeled instances when training

a model, and obtained better emotion rec-

ognition performance. This algorithm operates in an iterative
fashion. First, it uses a small subset of the data to determine the
initial model parameters. Then, the unused data instances are
tested against this model, and those that fit the model within a
predefined tolerance, denoted as €, are considered to be a part
of the consensus set. When the size reaches a predefined limit,
the model parameters are updated using all of the consensus
data and initial data. This procedure is repeated several times.
More recently, Zhang et al. [102] reported that annotation
reliability can be assessed using the human-agreement level
among multiple annotators. Data with a low human-agreement
level are considered to be mislabeled data and are removed
from the data set.

Data balancing

When collecting data for a specific ASA task, such as model-
ing speaker states (e.g., affection or intoxication) or character-
istics (e.g., likeability), one often faces issues relating to class
scarcity. While interesting speech samples are required, the
majority of the ubiquitous speech data are essentially neutral.
This can result in highly imbalanced class distributions and
recognition systems that perform poorly when attempting to
recognize the target classes [103].

Numerous studies in the context of machine learn-
ing have tackled this issue by data balancing [103], with the
purpose of balancing the data distribution over classes, i.e.,
Lyy=LiUL>...UL, where Li,Lo,...,L, denote labeled data
from n different classes that contain approximately the same
amount of data. Among the methods proposed, data sampling is
seen as a simple and efficient method. Data sampling is the pro-
cess of either repeating preexisting data, regenerating new data
to modify the imbalanced data distribution, or randomly remov-
ing part of the data to produce a data set with a more balanced
class distribution.

One common method is random sampling, either by
oversampling (i.e., upsampling) or by undersampling (i.e.,
downsampling). The former approach essentially involves
randomly selecting a subset of instances Lmin in the minor-
ity class Lmin and adding them back into the original

perform the baseline by a large margin [106].

Learning from unmatched resources

Conventional machine-learning approaches operate under the
assumption that instances from both the source and the target
domains are independent and identically distributed. However,
in real-world scenarios, this is very rarely the case; one will
inevitably encounter the problem of distribution mismatch
(also known as the data set bias) or covariate shift between
the data in the target and source domains (i.e., S # 7). Such
discrepancies often give rise to a substantial downgrade in the
performance of affected speech analysis systems. TL is a
potential solution to bridging the mismatch gap.

The objective of TL is to improve the predictive function
in the target domain 7 using the knowledge from a different
but related source domain S (Figure 4). A wide range of TL
approaches have been proposed in the machine-learning and
data-mining literature. TL has also been applied to many ASA
tasks, including low-resource language ASR, speaker adapta-
tion, and emotion recognition.

TL approaches can be mostly grouped into one of three
categories according to the properties of the knowledge
transferred: instance-, feature-, and model-based TL. These

Source i

Instance 7777777 777777 » =
Based o § ‘
H = H :
; o 3 :
a0 |
| FE gl den ! &) : :
Feature -"‘L'*',;_li‘_: : S iy :
i #'1' = > (0] : i
Based e = i :
3 o N g |
Model Learning Learning |

Based System W System

FIGURE 4. An illustration of TL: knowledge learned in the source domain
is used to aid analysis in the target domain. This transfer can take place at
either the instance, feature, or model level.
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Table 2. Selected TL studies on the unmatched speech resource.

122

Publications Types Approaches Models Applications Databases and Languages

Hassan etal. 2013 [111]  Instance KMM, KLIEP, uLSIF SVM ER FAU AEC (Ge)

Doulaty etal. 2015 [113]  Instance Submodular data DNN ASR Data collected in six seftings
selection

Narayanan and Wang Feature Denoising DNN ASR Aurora-4

2013 [115]

Deng et al. 2013 [116] Feature SAE SVM ER Six emotional corpora

Kocscor and Téth 2004 Feature KPCA, KLDA GMM, ANN, efc.  Vowels/phoneme Hungarian (Hu), TIMIT (En)

[17] classification

Jafari and Plumbley Feature Sparse coding / Speech representation/  Freesound

2011 [118] denoising

Dahl et al. 2012 [51] Feature DNN, signal task DNN-HMM ASR Bing mobile voice (En)

Amodei et al. 2015 [7] Feature CNN, signal task CTC-RNN ASR English (En) and Mandarin (Ma)

Heigold et al. 2013 [119]  Feature SHL-DNN, multitask ~ Softmax layer II&ASullzﬁ-/cross lingual Data in various languages

Huang et al. 2013 [120] Feature SHL-DNN, multitask ~ Softmax layer Q\A;gi-/cross lingual English (En) and Mandarin (Ma)

Miao et al. 2015 [121] Feature SAT-DNN, i-vector DNN ASR TEDLIUM (En)

Deng et al. 2014 [122] Feature SHL-DNN SYM ER Three emotional corpora

Giri etal. 2015 [123] Feature SHL-DNN DNN Robust ASR REVERB Challenge corpus (En)

Leggetter and Woodland Model MLLR GMM-HMM ASR ARPA RM (En)

1995 [124]

Deng et al. 2014 [112] Model DAE, multitask SYM ER Three emotional corpora

En/Ge/Hu/Ma: English/German/Hungarian/Mandarin; ER: emotion recognition; ulSIF: unconstrined least-squares importance fiting; KLDA: kernal linear discriminant analysis;
SHL: shared hidden layer; SAT: speaker adaptation training; DAE: denoising autoencoder; KPCA: kernel principal components analysis.

approaches as well as data agglomeration are elaborated
upon in the following. These sections are intended to be a
succinct overview of these techniques for ASA. For a more
general survey of TL, see [20] and [21]. A selection of typical
TL studies for ASA are listed in Table 2.

The most straightforward approach to calculating this den-
sity ratio is to directly estimate the target and source densities
separately. However, this approach tends to perform poorly
because of the inherent difficulty of density estimation, par-
ticularly in high-dimensional cases. In this regard, instance-

based TL techniques, which estimate the

Instance-based TL Instance-hased TL importance ratio without estimating the
Instance-based TL assumes that certain assumes that certain densities, have been proposed. For example,
subsets of the data in the. source domain subsets of the data in the Huang et al. [108] proposed a kernel-based
can be used for learmng in .the target do- source domain can he I.nethod known as .kernel mean match-
main by means of reweighting. Instance- o ing (KMM). It reweights the instances by
based TL essentially assigns more weight used for learning in the matching the means between the source
to those source domain data that are similar target domain by means domain data and the target domain data
in terms of distribution to the target data, of reweighting. in a reproducing-kernel Hilbert space. The

and less weight to those that poorly reflect

the distribution of the target data. The technique of weighting
the input data based on the target data is known as impor-
tance weighting for covariate shift or sample selection bias.
With the aim of minimizing the expected classification error,
the estimation of the importance weights S is achieved as a
ratio calculation problem:

(13)

where Ps(x) and Pr(x) are the probability densities of the
source and target domain data, respectively [107].

downside of KMM is that its performance
is highly dependent on the choice of hyperparameters (model
selection), which need to be heuristically tuned.

To overcome this issue, Sugiyama et al. [109] introduced the
Kullback—Leibler importance estimation procedure (KLIEP)
algorithm. KLIEP estimates the importance ratio by mini-
mizing the Kullback—Leibler divergence between the original
target data density and its corresponding estimation. Owing to
the convex property of the involved optimization problem, the
KLIEP algorithm can obtain unique global solutions. In addi-
tion, the tuning parameters can be objectively optimized, based
on a variant of cross validation. While KLIEP is seemingly
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more advantageous than KMM, it is actually less computation-
ally efficient because of the high linearity of the objective func-
tions to be optimized.

This issue was addressed by Kanamori et al. [110] by means
of least-squares importance fitting (LSIF). The LSIF algorithm
formulates the direct importance estimation problem as a least-
square function fitting problem: casting the optimization prob-
lem as a convex quadratic program that can be efficiently solved
using a standard quadratic program solver. This algorithm was
further extended to be unconstrained LSIF (uLSIF), which
greatly improved the computational efficiency [110]. For emo-
tion recognition, the approaches of KMM,
KLIEP, and uLSIF have shown great suc-

THE WORLD'S N

contrast, the symmetric strategy transforms both source and
target feature spaces into a new latent one (i.e., P77 — Z
and ®s:S — Z), in which they share the same distribution
and knowledge relationship.

In achieving this, two possible strategies exist: asymmetric
and symmetric strategies. The process of denoising distorted
(noisy) speech can make the feature space (target) of noisy
speech closer to that of clean speech (source). In doing this, the
cleaned speech can be evaluated by preexisting acoustic mod-
els, which are often trained on the clean speech. An emerg-
ing research trend in the speech enhancement community is
to use DNNGs (e.g., deep LSTM—-RNNE) to
map noisy speech into its clean counterpart

cess in alleviating the discrepancy between A Ilm_mlll_ﬂ nt binary or ratio mask on a frame-by-frame basis.
different speech resources [111], [112]. _rewemmmg an_nroal:h Preliminary results have proved that this
An alternative to the aforementioned ap- is hased on using method is quite effective, particularly for
proaches is binary reweighting. It selects the submodular functions alleviating nonstationary noise [115]. For
data from the source domain based on the to simulate the acoustic more details of speech denoising technolo-
data distribution to reduce the discrepancy similarity hetween gies, see [125].
betwe.en the. source do.mam and the target the target and source Apart from speech denoising, a more
domain. This strategy is related to the data N general TL method to reduce the database
domain data.

selection strategy used for AL (see the “Active
Learning” section), which can be viewed as a
specific data selection case in a source-data unlabeled setting. It
is also related to the data selection strategy discussed in the “Data
Selection” section, which attempts to improve the quality of the
data only in the target domain.

A prominent binary reweighting approach is based on
using submodular functions to simulate the acoustic similarity
between the target and source domain data [113], [114]. The
process identifies a subset L' of the complete source data set
Ls, so that any subsequent subset L” added to this selected sub-
set will not increase the value of the submodular functionf, i.e.,
L'=argmax {f(L'UL") <f(L"),where L' CL,L" CL\L'}.
In doing this, only the positive transfer is exploited across
domains. In ASA, submodular function-based data selection
has been extensively evaluated for multidomain speech recog-
nition and has shown superior performance [113], [114].

Feature-based transfer learning

The goal of feature-based TL approaches is to find a transforma-
tion function ® (-) that can be used to convert the source feature
space and/or target feature space into an approximately matched
distribution space while preserving the important properties of
the original data. Mathematically, this can be expressed as

P(@7(X7)) = P(Ps(X9)), (14)

or

P(Y7| @7 (X7)) = P(Ys|Ps(Xs)). (15)
In achieving this, two possible strategies exist: asymmetric
and symmetric strategies. The asymmetric strategy keeps
either the source or target feature space unchanged, and maps
the other one onto it (i.e., ®7:7 - S or Ds:S— 7). By

bias was proposed in [116] and is based on

an SAE—an autoencoder with sparsity
enforced in the hidden layer (see the “Unsupervised Represen-
tation Learning” section). This method is a fully supervised
approach. First, using the target data, class-specific SAEs are
trained, and then treated as the transforming models (P (-)).
The source data are then fed into SAEs corresponding to its
class, and thus a new source representation is constructed. In
doing this, the distribution of the new source feature space
is expected to be inclined to the target one. Finally, the new
source data are used to train a standard classifier.

As for the symmetric strategy, early studies were mainly
conducted using principal component analysis (PCA), linear
discriminant analysis (LDA), and sparse coding. The goal of
these approaches is to learn a low-dimensional latent feature
space or a shared space. The resulting feature space can serve
as a bridge for transferring meaningful knowledge from the
source domain to the target domain [20]. PCA is typically
used to project the data along the direction of maximal vari-
ance in an unsupervised way. LDA, or Fisher’s LDA (FDA), on
the other hand, is used to project the data onto a line that can
maximize the distance between the means of the two classes
(in a binary classification case) while minimizing the variance
within each class.

Both PCA and LDA are linear transformations that
limit their applicability to most real-world data. In this
regard, kernel functions (e.g., Gaussian, Cauchy, and poly-
nomial kernels) can be used in conjunction with PCA and
FDA, resulting in kernal PCA (KPCA) and kernel FDA
(KFDA) paradigms that transform data in a nonlinear
manner. Owing to their simplicity and effectiveness, KPCA
and KFDA have been widely used in the speech process-
ing community [117]. Similarly, kernel canonical corre-
lation analysis has been applied to cross lingual emotion
recognition [126].
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Sparse coding, also termed dictionary learning, attempts to
find succinct representations (i.e., atoms or elements of the dic-
tionary) of the input data such that the input data can be repre-
sented as a linear combination of these sparse representations
[127]. Compared to the aforementioned feature transforma-
tion methods, sparse coding has been demonstrated to be able
to produce a more robust signal representation in speech recon-
struction and denoising tasks [118].

Conventional feature transformation approaches are typi-
cally executed at a shallow level. Recently, deep-learning
approaches for feature-based TL have begun
to attract a lot of of research attention.
Deep learning is regarded as a natural TL
paradigm; it provides a powerful capability
of learning high-level abstracts or repre-
sentations that are more robust against the
variation of conventional speech features
(i.e., log Mel-filter banks and MFCCs) over
different domains [50] (see the “Unsuper-
vised Representation Learning” section). These represen-
tative features can then be used as normal features to train
conventional discriminative or generative models, such as
NNs, HMMs, and SVMs. Thanks to the invariant property
of these representations, they can potentially deliver remark-
able performance improvements for almost all ASA tasks [7],
[50], [51], [58].

In addition to the basic representation learning approaches
mentioned previously, more advanced topologies have begun

Researchers have started
to investigate the learning
of robust representations
over multiple modalities
(e.9., audio and video).

by factors such as different speaker characteristics, noisy envi-
ronments, and poor recording channels. For example, Deng et
al. [122] treated different corpora as different tasks for emo-
tion recognition; Giris et al. [123] regarded noise type as an
auxiliary task for speech recognition; and Seltzer and Droppo
[128] treated phone label, phone text, and state context as dif-
ferent tasks when performing phoneme recognition. Recently,
a universum autoencoder was proposed [129]. This technique
uses a small amount of labeled data from the target domain and
unlabeled data from a source domain to jointly minimize the
reconstruction error and the universum lean-
ing loss. Motivated by these achievements
of learning representations among multiple
related tasks, researchers have started to
investigate the learning of robust represen-
tations over multiple modalities (e.g., audio
and video) [130]. This topic, however, is
beyond the scope of this overview.

Model-based transfer learning

Model-based TL, also known as parameter-based TL, aims to
learn a new model from an existing model that has been well
trained on rich source data. Unlike feature-based TL
approaches, which usually transform the feature spaces,
model-based TL approaches modify the pretrained model
parameters (6) to account for the differences that may exist
between the domains. This can be formulated as

to emerge, which explicitly involve several related tasks in a P(Xs,Ys;0s) — P(X7,Y7;07) 17)
multitask learning paradigm. Multitask learning is the process

of learning multiple tasks at the same time to learn a shared for a generative model or

representation among different tasks. Mathematically, when

training the model with multiple tasks, we aim to minimize P(Ys|Xs;0s) — P(Yr | X7:67) (18)

the objective function as follows:

K
TO0) = X, ¥ Lix.ye00 + 2 00,

k=1 i

(16)

where K is the number of tasks, L(-) denotes the loss func-
tion, and 6o stands for the general model parameters.

When performing deep multitask learning for multilin-
gual or cross lingual speech recognition, it is typical to share
the hidden layers across all languages [119], [120]. If learned
appropriately, the hidden layers serve as increasingly com-
plex feature transformations, sharing common hidden fac-
tors across the acoustic data from different languages. The
final softmax layers, however, are not shared. Instead, each
language has its own softmax layer to estimate the poste-
rior probabilities specific to that language, using the most
abstract representation from the topmost hidden layer. The
strong result gained using this topology [119], [120] indicates
its potential; it opens up the possibility for quickly building
a high-performance recognition system for a new language
using an existing multilingual DNN.

Many other deep multitask learning derivatives have been
investigated to overcome the feature variation problems caused

for a discriminative model.

Early-stage model-based TL approaches in the speech com-
munity included maximum a posteriori (MAP) estimation and
maximum likelihood linear regression (MLLR), which are
designed for generative models (e.g., GMM-HMM). These
techniques have been applied successively to speaker adap-
tation [131], where the speech from each specific speaker is
supposed to be in a different domain with the initial training
data. They have also been shown to be useful in computational
paralinguistics tasks, such as depression detection [132].

Specifically, MAP uses the speaker-independent models
(i.e., universal background models) as a prior probability
distribution over the model parameters, and then performs
maximum likelihood estimates by considering the model
parameters obtained on the speaker-dependent data. Alter-
natively, MLLR calculates a set of linear regression trans-
formations to shift both the means and the covariances in
an initial Gaussian mixture HMM system so that each state
in the system is more likely to have generated the speaker
data the model is being adapted to [131]. Compared with
MAP, MLLR requires fewer adaptive data. Aside from
speaker adaptation, these methods have been applied to
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other acoustic variation adoption scenarios, such as noise methods frequently applied in the literature are centering, min—
adaptation [125]. max normalization, and standardization. Applied not only to

Due largely to the recent advancements in deep learning, each corpus separately (i.e., before data agglomeration), these
discriminative model-based TL has recent- methods can be also used after building a
ly become an active research topic. In deep joint training set from multiple databases.
learning, the simplest way to adjust the pre- in GUI“I'HSI_ m_ the Thanks to these normalization approaches,
trained model parameters when adapting to more sophisticated Tl data agglomeration has been frequently
a specific task is through fine-tuning. As approaches discussed, a applied to, e.g., emotion recognition [134].
discussed in the “Unsupervised Represen- simpler solution to utilize As for task mapping, it is necessary to find
tation Learning” section, pretraining is a multiple sources of data the relationship between different tasks. For
down—up uPsuperwsed algOI‘.ltl’.lI?l, .Wh.ICh is data agglomeration. example, in eII.IOthH recognition, the pro-
can be considered as a model initialization totypical emotions (e.g., anger, contempt,
process that attempts to produce a model disgust, fear, interest, joy, sadness, and sur-
that has a global optimization attribute. By contrast, fine- prise) can be mapped onto the emotional dimensions of arousal
tuning is an up—down supervised algorithm to optimize all of and valence [134].
the NN weights jointly with the labeled target data. This pro-
cedure is usually performed using backpropagation of error Conclusions and ¢hullenges for future work
derivatives [63]. To continue building on the success of machine-learning

Another paradigm to adapt the model to the target data, the methods for ASA, there is a need for large amounts of labeled
adaptive denoising autoencoder, is highly related to multitask data. However, the work of collecting such data is costly and
learning [112], [133]. This paradigm is usually undertaken in time consuming. Clever engineering can go a long way toward
two steps. In the first step, a source model is trained on the solving this problem by helping to leverage unlabeled, unreli-
source data. In the second step, the trained model parameters able, or unmatched data. Motivated by this, we systematically
are used as prior information to regularize the adaptation pro- presented an overview of the very recent and prominent tech-
cess of the model on the target data, so as to minimize the niques that intend to semiautonomously enrich the data quan-
objective function as follows: tity and enhance the data quality.

. Crowdsourcing was discussed as an efficient data annota-
JO7) =D L(Xi,y5,67) + %H o7 — Bos|’, (19) tion approach, with the caveat that it requires quality control
i=1 management. The integration of crowdsourcing with AL or CL
where ng¢ is the number of labeled target data, L(-) denotes strategies to intelligently and dynamically select data for label-
the loss function on the target data, 6s represents the well- ing has the potential to further reduce the annotation workload
trained model on the source data (source model), 67 denotes and improve overall data quality.
the expected new model on the target data (target model), and Spoken-term detection and discovery and related means
B is the adaptation coefficient. Since the discrepancy between of retrieval of speech-related phenomena were discussed in
the source and target models is explicitly considered as a penal- relation to addressing the sparse data challenge. While these
ty term in the objective function, this approach is also known as techniques can automatically find patterns in speech utter-
regularized adaptation [133]. In emotion recognition applica- ances without any labeled resource, the associated computa-
tions, this approach has started to show promising results [112]. tional complexity limits their application to smaller databases.
Note that such model-based multitask learning paradigms dif- Reducing the computing complexity of these techniques is an
fer from the feature-based approaches covered in the “Learning essential direction of future research. Other techniques dis-
from Unmatched Resources” section, where the model is cussed on the sparse data challenge were data augmentation
trained in only one step by calculating the joint loss of all of the and speech synthesis. These techniques can artificially gener-
tasks in the objective function [see (16)]. ate labeled speech data in a limited-labeled-resource setting.
A key concern about their ongoing use is how to guarantee
Data agg/omerafion that the speech samples generated have a positive effect on
In contrast to the more sophisticated TL approaches discussed, the analysis being performed. Research into identifying task-
a simpler solution to utilize multiple sources of data is data invariant features has been identified as one potential solution
agglomeration [134]. In this approach, one or more source in this regard.
databases are directly concatenated with the target database to With its capability to leverage information from large-scale
form a large-size data pool P =Ly ULs,U...ULs,. This unlabeled data, deep URL has delivered breakthrough results
approach is suitable only when the various data sources are for in a variety of ASA tasks. Future research efforts, particularly
similar tasks and share a common feature set. those focused on network construction strategies, are expected

To help ease any potential database biases, it is desirable to increase the generalizability of the extracted features and
to apply 1) normalization techniques such that the scattered thus improve on the already impressive capabilities of this par-
feature spaces can be unified into a shared one and 2) task adigm. AL, SSL, and CL are other efficient techniques to take
mapping to retain label consistency. The three normalization advantage of unlabeled data. In this regard, we identified the
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integration of SSL and deep learning as a particularly promis-
ing future research direction.

To handle the unreliable-data challenge, data selection
and data-balancing techniques were also reviewed. Despite
the conventionality of the reviewed algorithms, dynamically
selecting and balancing data is of great importance to the
machine-learning process. The role and importance of these
well-practiced techniques in relation to deep learning are still
being established.

To deal with the unmatched data challenge, TL strategies
and data agglomeration were discussed. TL in particular, owing
to its effectiveness, has attracted increasing amounts of research
attention. However, when improperly used, these techniques
substantially degraded overall system performance. There-
fore, how to achieve positive transfer while preventing negative
transfer between appropriately related tasks is an important and
open research issue.

Although great opportunities are offered by the techniques
reviewed, many additional risks may be brought to light
through their practical application. For example, with the
growing popularity of the use of microphones, the Internet,
crowdsourcing, and cloud computing, personal speech signals
easily run the risk of being disclosed to the public domain.
Furthermore, from such data it is largely possible to extract
confidential speaker information, such as a speaker’s age,
gender, or identity. Therefore, how to best protect the security
and privacy of users has become a major area of concern in
this field [135].

A potential solution in this regard is a distributed recognition
system, such as the one proposed for computational paralin-
guistics in [136]. In this system, functionals are applied over the
LLDs to extract features. These statistical features, rather than
the LLDs or the raw signals, are transmitted from the client side
to the server side. The procedure of generating these feature
vectors is irreversible. Therefore, as the LLDs cannot be recon-
structed, the contents of the original speech signals are pro-
tected. Recently, a decentralized SSL paradigm was proposed
in [137], in which privacy-preserving matrix completion algo-
rithms are used, so that only learned knowledge is transferred
between different clients, while the raw data are incommutable.
However, as these approaches cannot fully guarantee client
security and privacy or maintain the original performance, con-
tinued research addressing privacy concerns is required.

The techniques discussed in this article are mainly applied
in an offline manner. However, the realistic application of a
specific task offers the opportunity to collect truly massive
amounts of real-world data in an online fashion. For example,
Google reported that 55% of teenagers and 41% of adults in
the United States [138] used their voice search more than once
a day in 2014. Hence, research is needed into techniques to
dynamically make use of future data to enhance the adaptive-
ness of preexisting models to various speakers, environments,
and tasks. Such techniques are commonly referred to as online
and incremental learning [139], [140].

Finally, the recent developments in dialog management
systems, the computerized spoken language understand-

ing and generation of natural and meaningful responses during
speech-based human—computer interactions, means it is now
more feasible than ever to explore cues extracted from an entire
conversation process to aid ASA systems. Such cues could
indicate the correctness of previously performed analyses and
as such would be considered a form of reward or punishment
information. This information could be sequentially exploited
using reinforcement learning strategies to dynamically update
the decision mechanism of the predictive model. Deep rein-
forcement learning, in particular, has become an active and
growing research topic in machine learning [141]. But despite
being widely applied in related fields, such as dialog manage-
ment, research into reinforcement learning for ASA is currently
in its infancy. We firmly believe that research into deep rein-
forcement learning has the potential to move ASA technologies
out of controlled laboratory settings and into diverse, practical
everyday environments leading to more intelligent (even emo-
tionally and socially intelligent) and adaptive ASA systems.

Despite these risks and challenges, the techniques reviewed
in this article will play a key role in opening up new research
opportunities to explore the value of big unlabeled, unreliable,
and unmatched speech data. It is our strong belief that the
continued growth in the research and applications discussed
will facilitate the emergence of novel techniques to fill the gap
between no-labeled-resource and reliable big data and usher in
the next generation of ASA technologies.
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ehicle technologies have advanced sig-

nificantly over the past 20 years, espe-

cially with respect to novel in-vehicle

systems for route navigation, informa-
tion access, infotainment, and connected
vehicle advancements for vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I)
connectivity and communications. While
there is great interest in migrating to fully
automated, self-driving vehicles, factors such
as technology performance, cost barriers,
public safety, insurance issues, legal implica-
tions, and government regulations suggest it
is more likely that the first step in the pro-
gression will be multifunctional vehicles.
Today, embedded controllers as well as a
variety of sensors and high-performance
computing in present-day cars allow for a
smooth transition from complete human
control toward semisupervised or assisted
control, then to fully automated vehicles.
Next-generation vehicles will need to be
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more active in assessing driver awareness, vehicle capabilities,
and traffic and environmental settings, plus how these factors
come together to determine a collaborative safe and effective
driver—vehicle engagement for vehicle operation. This article
reviews a range of issues pertaining to driver modeling for the
detection and assessment of distraction. Examples from the
UTDrive project are used whenever possible, along with a
comparison to existing research programs. The areas ad-
dressed include 1) understanding driver behavior and distrac-
tion, 2) maneuver recognition and distraction analysis, 3)
glance behavior and visual tracking, and 4) mobile platform
advancements for in-vehicle data collection and human—
machine interface. This article highlights challenges in achiev-
ing effective modeling, detection, and assessment of driver
distraction using both UTDrive instrumented vehicle data and
naturalistic driving data.
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The need for driver
modeling research

Over the past few years,
there has been a significant
effort in establishing smart
cars that have the capability
to achieve self/autonomous
driving for their passengers
or the passive operator. While
great strides in autonomous
driving will continue, great-
er research and understand-
ing is needed regarding
driver modeling as we tran-
sition from full-driver control
to various levels of assis-
tive-through-fully automat-
ed vehicles. The ability for
smart cars to seamlessly move
back and forth between com-
pletely automated, semiau-
tomated, semiassistive, and
unassisted cars remains a
major challenge. In this arti-
cle, we consider an overview
of the recent advancements
in driver modeling to as-
sess driver status, including
the detection and assessment
of driver distraction when
the vehicle is operated in
a user-controlled scenario.
The recent large-scale data
collection undertaken by the
United States Transportation
Research Board—Strategic
Highway Research Pro-
gram [1], [91] will provide
an enormous (+2 Petabytes)
data set of naturalistic data.
The ability for researchers to mine this corpus to develop bet-
ter models of driver status will offer new insights into next-
generation smart vehicles, which have the capability of
migrating between being completely user controlled to
fully autonomous.

An extensive amount of research and development is current-
ly being conducted by many laboratories in the United States,
Japan, Germany, Sweden, South Korea, and other countries; it is
therefore not possible to provide exhaustive coverage of all sig-
nificant advancements. Instead, the goal here is to provide a rep-
resentative look at the topic of driver modeling, focusing on how
advancing technologies impact driver distraction. This includes a
range of signal processing technologies related to controller area
network (CAN) bus analysis, image/video processing, speech/
audio for human—machine interaction, and other advancements
leading to current and future intelligent assistance in the vehicle.
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A recent IEEE Signal Processing Magazine special issue,
“Smart Vehicle Technologies: Signal Processing on the Move”
[2], considered a range of topics for smart vehicles advance-
ments that included driver behavior modeling using on-road
driving data [3], driver status monitoring systems [4], smart
driver monitoring [5], conversational in-vehicle dialog systems
[6], active noise control in cars [7], and coordinated autono-
mous vehicles [8]. In this article, we provide several comple-
mentary highlights to these excellent overview articles. Several
experiments/data sets have collected infor-
mation on driver behavior analysis [9]-[11].
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deterioration is directly attributed to the driver (distraction,
inattention), the vehicle (condition, familiarity), or the sur-
rounding environment (traffic, weather). Both driver distraction
and driver inattention are frequently occurring events in a car.
Driver inattention is defined as insufficient or no atten-
tion given to activities critical for safe driving. Inattention can
either be a voluntary or involuntary diversion of attention by
the driver [15]. Driver distraction has been formally defined
as “[a]nything that delays the recognition of information nec-
essary to safely maintain the lateral and
longitudinal control of the vehicle (primary

For the sake of illustration, the UTDrive The ability for smart driving task) due to some event, activity,
naturalistic driving data set [12] has been cars to seamiessly move object or person, within or outside the vehi-
conducted by the Center for Robust Speech back and forth hetween cle (agent) that compels or tends to induce
Systems (CRSS)-UTDrive since 2006, with completely automated, the driver’s shifting attention away from the
the interest of understanding driver behavior semiautomated, fundamental driving task (mechanism) by

and distraction from multichannel sensor data
(see Figure 1) [13]. Here, we focus on current
advancements, past efforts, and directions
for future research. Examples stemming
from the UTDrive project are highlighted
as examples, as well as efforts from the Virginia Tech Trans-
portation Institute, the University of Michigan Transportation
Research Institute, the University of California, San Diego,
plus studies conducted in Europe, Japan, and South Korea [14].

Understanding driver behavior

and driving distraction

Driver activities performed within the vehicle can be broadly
classified into primary tasks that are essential for operating and
directing the course of a vehicle in a given environment and sec-
ondary tasks that are not essential or related to the primary task
of driving. Secondary tasks divert drivers’ primary attention
of driving and degrade their driving performance. The

Front View S
¢y
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Close-Talk
Microphone
Cameras Ig
/ﬁ;. GPS
Optical
Distance
Sensor ! .
Gas/Brake CAN-Bus —— i .
Pedal Pressure  OBD Il Data Acquisition Unit
Sensors (16 Channel: Two Video,

Six Audio, CAN-Bus;
All Synchronized)

FIGURE 1. The UTDrive experiment test bed: synchronized multichannel
measurements. GPS: global positioning system. OBD: on-board diagnostic.

semiassistive, and
unassisted cars remains
a major challenge.

compromising the driver’s auditory, bio-
mechanical, cognitive or visual faculties or
combinations thereof (type)” [16]. Without
these formal definitions, cross-study com-
parisons cannot be made and statistics can
vary drastically, leading to incorrect observations [15], [16].
It is important to note that driver distractions are generally
caused by a competing trigger activity that may lead to driver
inattention, which in turn degrades driving performance. Alter-
natively, other forms of driver inattention might not necessarily
be due to a trigger or competing activity, making inattention
difficult to detect and even harder to control. By identifying
some of the causes of driver distraction, it is possible to isolate
scenarios when the cause of distraction can be controlled.

Most secondary tasks are not distracting and do not require
the complete attention of the driver. However, while execut-
ing a complex task such as driving, most the driver’s atten-
tion is toward a safe drive, and performing a secondary task
means sharing limited available human cognitive resources.
Some important characteristics related to secondary tasks that
distract the driver include the duration of the activity, the fre-
quency of the activity, the attention required to execute the
activity (attention demand), the ease of returning to the prima-
ry task of driving, the location and time at which the activity is
executed, and the individual driver’s comfort in executing the
task and in performing multiple tasks. Since visual modality
has been well studied, it has been established that diversion of
the driver’s visual focus away from the task of driving for more
than 1.5 s distracts the driver [17].

The driver follows road rules and maintains his or her lane
as well as an acceptable gap between the car and surround-
ing vehicles, all while achieving good reaction time to changes
such as traffic signs and taillights [18]. From the vehicle con-
trol side, the driver’s primary physical contacts are the steering
wheel, the gas and brake pedals, the seat, and the ego vehicle
(i.e., the targeted, controlling vehicle itself) speed as reference.
Any secondary task that distracts the driver has a direct influ-
ence on body movements that manifest in control of the vehi-
cle. Hence, a change in driving performance can be evaluated
by analyzing these signals. Each driver has a comfortable way
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in which he or she interacts with the vehicle, and analyzing
these signals can help build a driver behavior and character-
istic model.

Maneuver recognition and distraction analysis

The ability to continuously evaluate driving performance will
be necessary in next-generation smart vehicles, to develop
advanced driver-specific active/passive safety systems. One
typical approach is to identify careless and
risky driving events through analyzing
abrupt variations in vehicle dynamics infor-

The ahility to continuously
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errors and make valuable data from large naturalistic driving
corpora more accessible. To prevent these errors from propagat-
ing, an automatic maneuver activity detection (MAD) tool (that
also detects boundaries) using filter-bank analysis of vehicle
dynamic signals is proposed. Using a minimal set of generic
vehicle dynamic sensor information, such a MAD tool can
match human transcription to an accuracy of up to 99% [24],
[25]. Making this tool freely available will offer researchers
opportunities to better explore naturalistic
driving data.

mation. These variations are best captured evaluate d"‘"m_’ Maneuver recognition

when evaluated against similar driving pat- performance will he Driving maneuvers, influenced by the driv-
terns or maneuvers. This has been predomi- necessary in next- er’s choice and traffic/road conditions, are
nantly adopted in current-day active safety generation smart vehicles, important in understanding variations in
systems [19]-[21]. These event detection to develop advanced driving performance and to help rebuild the

systems provide an insight into the current
driving conditions of the driver. In addition,
every driver has his or her own unique style
of driving. Along with weather and traffic,
the driver’s driving experience, vehicle handling ability, and
mental and physical state all influence the way a maneuver is
executed. Figure 2 depicts a system in which the driver is
identified based on his or her driving characteristics; the driv-
er’s maneuvers are recognized, variations in them are identi-
fied, and the driving is thus classified. The driver identification
subsystem reduces the variability for individual drivers, which
can be achieved from face/speech recognition and other
inputs. Next, the driving performance is evaluated by identify-
ing maneuvers and detecting their variations against regular
(normal execution) patterns. Finally, every driving instance
(i.e., in terms of processing frames) is classified into neutral
(normal driving) or distracted driving. This section is focused
on the maneuver recognition, variation detection, and driving
classification subsystems for the distraction analysis.

With the pending availability of a massive free-style natu-
ralistic driving data corpus (i.e., Strategic Highway Research
Program 2 and New Energy and Industrial Technology Devel-
opment [22], [23]), the development of automatic tools to orga-
nize, prune, and cluster drivercentric-based events for driver
modeling is a growing research topic.

Rather than using simulated or fixed
test track data, it is important to analyze
on-road, real-traffic naturalistic driving
data for all possible driving variations

driver-specific active/
passive safety systems.

intended route. Maneuvers are the basic
units in building up a driving session.
While processing massive quantities of
naturalistic driving data, it is critical to ana-
lyze at a micro level. Understanding how these maneuvers are
performed can provide information on how the driver controls
the vehicle and how driving performance varies over time,
which is essential in driver assistance and safety systems.

Similar to speech, where phonemes form words, it has been
established [26], [27] that the smallest meaningful units of a
driving pattern are termed drivemes. Drivemes form maneu-
vers, and maneuver sequences form a navigation route. This
flow is depicted in Figure 3. Therefore, tracking the variation
of these drivemes can improve the efficiency of active safety
systems not only in providing safety to the driver, but also in
predicting drivers’ actions.

The definition of driving maneuvers may be considerably
wide, depending on the underlying application [28]. Sev-
eral existing studies have employed maneuver recognition
for vehicle trajectory prediction [29], intersection assistance
[30], and lane-change intent recognition on the highway [31].
Based on recent advancements, a study [32] that considered
driving maneuvers primarily classified into eight catego-
ries—straight, stop, left turn, right turn, left-lane change,

Driving Performance
Evaluation

in different maneuvers.

Variation
Detection

Maneuver
Recognition

Driving
Classification

e Driver
Human transcription of these mas- |dentification
sive corpora is not only a tedious task,
but also subjective and prone to errors.
. Driver
These human transcription errors can -
. . Characteristics,

potentially hinder the development of Gontextiand
algorithms for advanced safety systems Distraction

and lead to performance degradations.
Therefore, an automatic, effective, and
computationally efficient tool is needed
to help mitigate human transcription

;

Pruning the Search Space

Context and
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FIGURE 2. How the driver-dependent, maneuver-based distraction detection system identifies and
evaluates each driving session.
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right-lane change, left road curve, and right road curve—
showed promise.

The method of recognition in the literature employed various
statistical modeling and machine-learning classification algo-
rithms, such as Bayesian models [33], finite-state machines
and fuzzy logic [34], hidden Markov models (HMMs) [35],
and decision trees [36]. HMMs have proven to be benefi-
cial in predicting driver actions within the
first 2 s of an action sequence [37]. In our
previous study, a similar HMM frame-
work was employed in both a top-down as
well as bottom-up approach to find the
best integrated architecture for modeling
driving behavior and recognizing maneu-

Rather than using
simulated or fixed test
track data, it is important
to analyze on-road, real-
traffic naturalistic driving

THE

opportunities for low-cost, low-level maneuver recognition
for long-term modeling of driver behavior.

Distraction analysis

Distraction, in general, affects the attention span of a person;
within the vehicular space, it manifests in the driver’s vehicu-
lar controls. Traditionally, distraction has been assessed from
the driver’s perspective in terms of either
stress, eye movements, or cognitive work-
load [41]. Physiological measurements
such as heart rate variability and skin con-
ductance (e.g., electroencephalogram,
electromyogram) have proven to be useful
in detecting the stress levels in drivers

vers and routes [38]. Important features data for all possible [42]. Studies have also considered body

include steering wheel angle, speed, and g - - movement sensors to detect drivers’ pat-

brake signals from vehicle CAN bus data, d_"\llllg variations in terns for assessment of driver distrac-
different maneuvers.

or acceleration and gyroscope readings
from a smart portable device [25], [39].
Recognition and prediction of lane-change maneuvers have
been proposed together, suggesting a double-layered HMM
framework in the consideration of both maneuver execution
and route information [40]. Thus far, the accuracy of obtained
maneuver recognition ranges between 70-90% and offers

Route
Recognition

Speech
Recognition

Sentences Routes

Phrases 4 Segments

Words : Maneuvers

Phonemes | Drivemes
(@) (b)

FIGURE 3. A comparison of the structural flow of building blocks between
(a) speech recognition and (b) route recognition.
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1 .
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FIGURE 4. An example of the feature space for maneuver X showing
variations in driving performance quantified as normal, moderate, and
risky maneuver actions.

tions [43]. Though high accuracy has been
achieved from a research perspective,
these vision and body sensors are intrusive and unsuitable for
naturalistic driving scenarios. Using such sensors can poten-
tially serve as a baseline when compared with nonintrusive
sensors for performance.

Since driver actions and intentions manifest into vehicle
movement, vehicle dynamic signals such as steering wheel
movements, gas and brake pedal pressure, and vehicle speed
could potentially contain hidden or embedded information on
the current status of the driver. Using vehicle dynamic signals,
driving is classified based on the maneuver execution char-
acteristics of a particular driver. The classification could be a
binary classification (neutral versus distracted) [46] or a trend
in the variations (safe, moderate, or risky) [32].

The assessment of driving distraction underlies two hypoth-
eses. First, good, safe, or convenient driving behavior should
be reflected by stable, steady vehicular dynamic performance.
Second, the actions of an experienced driver should meet the
characteristics of good driving behavior most of the time,
with bad driving occurring as a limited number of events
[44]. Based on these hypotheses, the good driving events
should be clustered in the vehicle dynamical feature space,
whereas bad driving events will become more random anom-
alies or outliers.

Figure 4 depicts a typical feature space for an imaginary
maneuver type, X. The green squares, which are clustered
together around the centroid of class X, represent the normal
execution trend for this maneuver. The deviations from the
normal execution pattern are reflected in the feature space
of this maneuver as yellow or red squares. These abnormal
instances of the maneuver are still recognized as type X by the
classifier, but the intraclass separation suggests that they can
be marked as outliers. Euclidean distance, cosine distance, and
Mahalanobis distance have been used to detect outliers. Iden-
tifying such outliers helps in the evaluation of driving pattern
variations and driving performance [45]. Figure 5 illustrates
the gradient of event variations (classified as safe, moderate,
and risky) along the driving route.
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Due to the highly dynamic nature of driving and the sur-
rounding environment, drivers generally do not stay in one state
for long and often toggle between models/states. A microanal-
ysis of individual driving patterns is performed by segment-
ing the drive into small frames (a few seconds or a few meters
traveled), which can be scaled to a macro level for preventing
or correcting any unsafe activities. Such a microanalysis has
provided an insight into how secondary tasks are executed and
potentially influence drivers. Most secondary
tasks can be grouped into three sequential
events [46]. In the anticipation/preparatory
phase, during the start of a task, most drivers
are distracted. This is justified as they divert
more attention toward the task, assess the
surroundings, and get ready to perform the
task. The second event is the task execution
phase, during which the drivers fall into a
comfort zone of multitasking. Finally, in the
third task, the recovery or postcompletion
phase, drivers generally reassess their surroundings after sec-
ondary task completion. The duration of each of these phases
is based on the individual driver’s comfort and confidence level
[47]; the effect of multitasking is variable on different drivers.
As the automotive industry further advances in developing
advanced driver-assistance systems (ADASSs), such drivercen-
tric adaptive systems will help in personalizing the vehicle by
triggering the ADAS only when drivers are impacted or when
they show tendencies of such impact.

The National Highway Traffic Safety Administration (NHTSA)
released visual driver distraction guidelines [17] for in-vehicle
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electronic devices, categorizing the main sources of distraction
into three categories: visual, cognitive, and manual. It will not
be long before the automotive industry and infotainment sys-
tems shift away from visual interaction with the driver and move
toward audio/speech-based interactions with the driver. There-
fore, it is of great interest to understand the actual influence
of in-vehicle speech on the driver. There has been some pre-
liminary work done in this area to understand the influence
of in-vehicular speech and audio on driv-
ing [48]. While some in-vehicle conversa-
tions might aid driving, categories such as
involved, competitive, and argumentative
speech can adversely influence the driver
and cause driver distraction.

Tracking glance behavior

and visval attention

An important aspect in monitoring driver
distraction is to evaluate the visual attention
of the driver. There are three main areas that can benefit from
tracking the drivers’ visual attention: assessing the primary
driving task, detecting secondary tasks, and supporting
advanced user—computer interfaces.

The role of visual attention

Understanding where the visual focus lies is a key step to
determine driver performance during the primary driving task
[49]—[51]. A driver should scan the route environment before
conducting a driving maneuver. This action includes checking
the mirrors, looking at the vehicles in front of the driver, and
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FIGURE 6. An overview of the visual-cognitive space proposed to study
driver distraction. Perceptual evaluations are used to determine the
perceived level of distractions. Each secondary task affects the driver’s
concentration differently.

identifying pedestrian actions. Primary driving tasks such as
visual scanning, turning, and switching lanes all require mir-
ror-checking actions [52]—[54]. Failing to accomplish these
tasks decreases the drivers’ situational awareness, increasing
the chances of accidents [55], [56]. An increase in visual
demand due to secondary tasks affects the control of the vehi-
cle, the detection of critical traffic events, and the detection of
hazard events [57]. As a result, studies have used features
describing eye-off-the-road, head pose, gaze range, and eyelid
movements to detect distractions [58]-[65]. Objective mea-
sures capturing the duration and frequency of glance behav-
iors can provide important information to provide warnings to
distracted drivers.

Visual attention signals temporal deviations from the pri-
mary driving task to complete secondary tasks such as ad-
justing the radio, operating a cell phone, or looking at other
passengers. All of these secondary tasks induce visual, cog-
nitive, auditory, and manual distractions. A perceptual evalu-
ation has been conducted to assess the perceived level of
cognitive and visual distractions in 10-s videos of drivers who
are engaged in different secondary tasks [65], [66], in which
the advantages and limitation of using perceptual evaluations
to assess driver distractions is discussed. Figure 6 shows that
many common secondary tasks induce a high level of visual
distractions. For example, operating a cell phone, the radio,
or a navigation system increases the perceived level of visu-
al distractions [67]. When a driver fails to glance at traffic,
it can also signal cognitive distractions; the driver is looking
but not seeing because he or she is daydreaming or thinking
about something else [68], [69]. These types of distractions are
very difficult to detect with noninvasive sensors [70]. Tracking

glance behaviors provides an important tool to address this
problem. For all of these reasons, a robust ADAS should be
able to detect mirror-checking actions and glance behaviors to
prevent hazard situations [71].

The automobile industry is developing new advanced
interfaces that do not induce manual or visual distractions.
These interfaces are generally implemented using automatic
speech-recognition systems. ADASs need to provide essen-
tial information to the driver in an effective manner. With
more information available to the driver, it is also important
that the information is presented without causing significant
distractions. By tracking the visual attention of the driver and
environment, the ADAS can clarify ambiguities by provid-
ing a situated dialog system (e.g., commands such as “What
is the address of this building?” while glancing toward a spe-
cific building). In an example of such a system [72], the visual
saliency of the scene and crowdsourced statistics on how peo-
ple describe objects were used as prior information to improve
the identification of points of interest (POIs). While the visual
saliency of the scene did not depend on driver glance behav-
iors, we expect improved performance by modeling the visual
attention of the drivers [73], [78].

Tracking visual attention
Tracking eye movement can be an accurate measurement to
identify the exact location of the gaze of the driver. However,
robustly measuring gaze in a driving environment is challeng-
ing due to changes in illuminations in the vehicle and changes
in the head poses of the drivers. As a result, most of the stud-
ies have approximated gaze with head poses. Zhang et al. [74]
argued that even though eye gaze is a better indicator, head
pose alone can provide good cues about driver intentions.
However, there are differences between head pose and the
driver’s gaze that need to be considered [75]-[78]. The driver
moves his or her head and eyes to glance at a target object,
where the eye—head relationship depends on factors such as
the underlying driving task, the type of road, and the driver.
Studies have investigated the relation between head motion
and gaze on naturalistic recordings [78]. We placed multiple
markers on the windshield, side windows, speedometer panel,
radio, and gear. The recordings protocol is repeated while
driving and when the car was parked. We proposed regression
models where the dependent variables were the position and
rotation of the head, and the independent variables were the
three-dimensional positions of the POIs. While driving, the
R? of the model was about 0.73 for the horizontal direction,
but lower than 0.20 for other directions. Motivated by these
results, the analysis is extended to incorporate a probabilistic
model relying on Gaussian process regression [79]. Instead of
deriving the exact location of the POI, the framework creates
a salient visual map describing the driver’s visual attention,
which is mapped into the route scene (see Figure 7). The 95%
confidence region of the models included about 89% of the
POIs. This approach provides a suitable tool for situated dia-
log systems and safety systems that are aware of the driver
glance behavior.
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An alternative approach to monitoring visual attention
is to directly recognize primary or secondary driving tasks
that require visual demand. An example of a primary driv-
ing task is the detection of mirror-checking actions. We pre-
sented an accurate random undersampling boost classifier to
recognize mirror-checking actions [71]. The classifier was
trained with multimodal features automatically extracted
from the driver and road cameras and from the CAN bus
signal using naturalistic recording on the UTDrive platform.
The task was to recognize each time the driver looked at a
given mirror. Figure 8(a) shows an example of a participant
looking at the rear mirror. The F-score of the classifier was
91.4%, which is very high given that mirror-checking actions
are infrequent events, making this classification problem
highly unbalanced. Figure 8(b) shows the performance for
different routes, under both normal conditions (during which
the driver is not engaged in secondary tasks) and task condi-
tions (during which the driver is engaged in secondary tasks).
The classifier showed consistent performance across both
normal and task conditions. An example of a secondary task
is the detection of activities not related to the driving task
requiring visual activities. We trained binary classifiers using
a support vector machine, which detect particular secondary
activities [60]. For tasks such as look