ELC 4351: Digital Signal Processing

Liang Dong (Baylor University)

Liang Dong
Electrical and Computer Engineering
Baylor University

liang_dong®@baylor.edu

September 22, 2016

z-Transform Part 2

September 22, 2016



The z-Transform and Its Application to the Analysis of LTI

Systems

© Rational z-Transform
© Inversion of the z-Transform
© Analysis of LTI Systems in the z-Domain

@ Causality and Stability
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Rational z-Transforms

X(z) is a rational function, that is, a ratio of two polynomials in z~

z).

X(z2)

L (or
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A(z2)
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Rational z-Transforms

X(z) is a rational function, that is, a ratio of two polynomials B(z) and
A(z). The polynomials can be expressed in factored forms.

o - %
_ @Z—MJFN (z—z1)(z—2) (2 —zm)
a0 (z—=p1)(z—p2)--(z—pn)

_ o w wIlita(z —2)

a0 Hivzl(z — Pk)
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Poles and Zeros

The zeros of a z-transform X(z) are the vales of z for which X(z)
The poles of a z-transform X(z) are the vales of z for which X(z)

0
0.

M
X(Z) _ @ZN—M HKI:I(Z - Zk)
0 [Ti=1(z = Pk)
X(z) has M finite zeros at z = z1, 23, ..., zp, N finite poles at

z=p1,p2,.-.,pN, and [N — M| zeros (if N > M) or poles (if N < M) at
the origin.

Poles and zeros may also occur at z = oc.

X(z) has exactly the same number of poles and zeros.
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Poles and Zeros

If a polynomial has real coefficients, its roots are either real or occur in
complex-conjugate pairs. That is because e.g. (z — p1)(z — p2)

Im(z)

Re(z)
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Poles and Zeros

For example,
-1 )

X —
(2) =173 T 108122

which has one zero at z = 1 and two poles at p; = 0.9¢/™/* and
P2 = 0.96_-’”/4.
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Some Commo ransform Pairs

Signal, x(n) z-Transform, X (z) ROC
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Poles Locations and Time-Domain Behavior for Causal

Signals

If a real signal has a z-transform with one pole, this pole has to be real.

The only such signal is the real exponential

x(n) = a"u(n) = X(z) = 1_132_1, ROC :|z| > a|
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Poles Locations and Time-Domain Behavior for Causal

Signals

A causal real signal with a double real pole has the form

x(n) = na"u(n) =% X(z) = ROC :|z| > |4]
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Poles Locations and Time-Domain Behavior for Causal

Signals

The case of a causal signal with a pair of complex-conjugate poles.

Zplane x(n)

z-plane

z-plane A e
o
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Poles Locations and Time-Domain Behavior for Causal

Signals

The case of a causal signal with a double pair of poles on the unit circle.
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Poles Locations and Time-Domain Behavior for Causal

Signals

The impulse response h(n) of a causal LTI system is a causal signal.

Therefore, if a pole of a system is outside the unit circle, the impulse

response of the system becomes unbounded and, consequently, the system
is unstable.

Liang Dong (Baylor University) z-Transform Part 2 September 22, 2016 13 / 38



System Function of a LTI System

LTI systems:

y(n) = h(n) ®x(n)
Y(z) = H(2)X(2)

If we know the input x(n) and observe the output y(n) of the system, we
can determine the unit sample response (impulse response) by first solving
for H(z) from

Y(2)

X(2)

and then evaluating the inverse z-transform of H(z).

H(z) =

H(z) is called the system function.
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System Function of a LTI System

When the LTI system is described by a linear constant-coefficient
difference equation

y(n) = Zaky(n—k)—i-Zbkx n—k

The system function can be calculate:

Y(z) = —ZakY +Zka

N
z) (1 + Z akz_k> = X(z) <Z bkz_k>
k=1 k=0

oY) bz
H(Z) - X(Z) - 1+Zk,(\)lzl akz—k
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System Function of a LTI System

An LTI system described by a constant-coefficient difference equation has
a rational system function H(z).

H _ ZQ/I:() bszk
(z) = N —
1 + Zk:l axz
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System Function of a LTI System

(1) All-zero system: If ay =0 for 1 < k < N,

M 1 M
H(z) = Z bz K = ] Z b zMk
k=0 k=0

The system has M nontrivial zeros and M trivial poles (at z = 0).

An all-zero system is an FIR system and can be called a moving average
(MA) system.
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System Function of a LTI System

(2) All-pole system: If by =0 for 1 < k < M,

bo bozV

L+ Sz Yplo arzk

where ag = 1. The system has N nontrivial poles and N trivial zeros (at
z=0).

H(z) =

An all-pole system is an |IR system and can be called an auto-regressive
(AR) system.
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System Function of a LTI System

(3) Pole-zero system:

In general, the system function contains N poles and M zeros. (Poles and
zeros at z =0 and z = oo are implied but are not counted explicitly.)

Due to the presence of poles, a pole-zero system is an IIR system.
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Inversion of the z-Transform

Inverse z-Transform:

x(n) ! fCX(z)z"_ldz

:?j

where the integral is a (counter-clockwise) contour integral over a closed
path C that encloses the origin and lies within the region of convergence
of X(z).
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Methods of Inverse z-Transform

(1) Contour integration
(2) Power series expansion (using long division)

(3) Partial-fraction expansion
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Inverse z-Transform by Partial-Fraction Expansion

X(z) is rational function.

X(z) = B(z) _ bo+ bzt 4 byzM
A(z) 1+az7 4+ +ayz N

A rational function is proper if ay # 0 and M < N.
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Inverse z-Transform by Partial-Fraction Expansion

An improper rational function (M > N) can always be written as the sum
of a polynomial and a proper rational function.

X(Z) = B(Z) =+ Clz_l 4t CM7NZ_(M_N) 4 Bl(z)

A(z) A(z)

The inverse z-transform of the polynomial can easily be found by
inspection.

We focus our attention on the inversion of proper rational function.
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Inverse z-Transform by Partial-Fraction Expansion

Let X(z) be a proper rational function.

B(Z) - by + blZ_1 + -4 sz_M

X - —
() Alz)  l14+azt+--+ayz N
bV 4 by 2N by VM
N N+ a;zN-1 4.+ ay
Since N > M,

X(Z) bOZNi1 + b12N72 4+ .4 bMZNfl\/Ifl
z ZN 4 a1zN-1 ... 4 ay

is proper.
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Inverse z-Transform by Partial-Fraction Expansion

(1) Distinct poles. Suppose that the poles p1, p2, ..., py are all different.

X A A A
(Z): 1 n 2 N

z zZ—p1 zZ—p2 z—pn
We want to determine the coefficients A1, As, ..., An.

— pr)X — pr)A — px)A
(z=p)X(2) _ (z—pi) 1+---+Ak+---+(z Pk)AN
4 zZ—pP Z— PN
Therefore,
Ak:w ’ k=12 N

z z=p;

(In addition, if pp = pj, A2 = A7)
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Inverse z-Transform by Partial-Fraction Expansion

(2) Multiple-order poles. X(z) has a pole of multiplicity m, that is, it
contains in its denominator the factor (z — px)™.

The partial-fraction expansion must contain the terms

Ak Aok Amk
4 PRI ., S
(z = px)™

Therefore,
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Inverse z-Transform by Partial-Fraction Expansion

X(Z) _ Ay Az An
z Z—p1 zZ—p2 Z — PN
Al A2 AN
X = .
=) 1—piz7t  1—ppzt + 1—pnzt
z-1 b1 S (p) (), ROC :|z| > |pk| (causal)
1—pgz1t —(pk)"u(—=n—1), ROC:|z| < |pk| (anticausal)
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Inverse z-Transform by Partial-Fraction Expansion

In the case of a double pole:

X(z) A
z T G-
Az1
X(z) = m+

Z-1 pz 1 _ [ np"u(n), ROC :|z| > |p| (causal)
—np"u(—n—1), ROC :|z| < |p| (anticausal)
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Decomposition of Rational z-Transform

Yicobz ™t L=z
1+Z/I<V:1 axz* Hk 1(1 = pkzt)

X(z) =

With real signals,

X( ) —k ! 6/( & BOk ﬁlkz_l
z) = g z "+ g + g
— Tk — 1 +oayz1 — 1+ oz + appz2

-2

_ 14+ vz™ 14+ vigz Y+ vorz
- H 14wzt H 14 Uzt + uppz2

where K1 + 2K, = N.

Coefficients a, Bk, Yk, Uk, vk are real.
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Analysis of LTI Systems in the z-Domain

Zero-pole systems represented by linear constant-coefficient difference
equations with arbitrary initial conditions.

B(z)
H —
@) =20
Assume that the input signal x(n) has a rational z-transform X(z)
N(z)
X(z) =
) =20

The system is initially relaxed, i.e. y(—1) = y(-2) =---y(—N) = 0.

Y(z) = H(z2)X(z) = i((gggg
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Analysis of LTI Systems in the z-Domain

Suppose that the system contains simple poles p1, p2, ..., pny and the
z-transform of the input signal contains poles g1, g2, ..., g, where

Pk 7 qm for all k and m.
In addition, suppose that there is no pole-zero cancellation.

A partial-fraction expansion of Y(z) yields
N L
Ak Qk
Yz =S Tk Xk
O Lt T T

Inverse transform of Y(z):

N L
y(n) =" Ax(pe)"u(n) + Y Qul(qx)"u(n)
k=1 , k=1
natural response forced ‘rgsponse
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Transient Response and Steady-State Response

)/nr ZAk(Pk u n

If |pk| < 1 for all k, then yn,(n) decays to zero as n approaches infinity.
The natural response is called the transient response.

yaln zok g)"u(n)

If the poles fall on the unit circle and consequently, the forced response
persists for all n > 0. The forced response is called the steady-state
response of the system.
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Causal LTI system: h(n) =0, n < 0.

(The ROC of the z-transform of a causal sequence is the exterior of a
circle. )

A LTI system is causal iff the ROC of the system function is the exterior of
a circle of radius r < oo, including the point z = co.
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BIBO stable LTI system: >>>° __ |h(n)| < oc.

n=—oo

H(z) = > h(n)z™"

n=—0o0

> Ih(n)z"|

n=—0o0

= > [hnllz")

n=—oo

=
S
IN

When evaluated on the unit circle, i.e. |z| =1,

|H(z)| < Z |h(n)| < oo = The ROC includes the unit circle.

n=—o0o
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Causality and Stability

A causal and stable LTI system must have a system function converges for
|z| > r, where r < 1.

A causal LTI system is BIBO stable iff all the poles of H(z) are inside the
unit circle.

cf. A causal LTI system with a rational transfer function H(s) is stable iff
all poles of H(s) are in the left half of the s-plane, i.e., the real parts of all
poles are negative.

Liang Dong (Baylor University) z-Transform Part 2 September 22, 2016 35/ 38



Causality and Stability Example

A LTI system is characterized by the system function

3—4z71
1-35z71+1522

1 2
1-0.5z"1 + 1-3z1

H(z) =

Specify the ROC of H(z) and determine h(n) for the following conditions:

(1) The system is stable.
(2) The system is causal.
(3) The system is anticausal.
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Causality and Stability Example

Solution. The system has poles at z = 0.5 and z = 3.

(1) Since the system is stable, its ROC must include the unit circle and
hence it is 0.5 < |z| < 3.

h(n) = (0.5)"u(n) — 2(3)"u(—n — 1) = noncausal
(2) Since the system is causal, its ROC is |z| > 3.
h(n) = (0.5)"u(n) + 2(3)"u(n) = unstable
(3) Since the system is anticausal, its ROC is |z| < 0.5.

h(n) = —(0.5)"u(—n —1) — 2(3)"u(—n — 1) = unstable
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Pole-Zero Cancellation

Pole-zero cancellations can occur either in the system function itself or in

the product of the system function H(z) with the z-transform of the input
signal X(z).

Liang Dong (Baylor University) z-Transform Part 2 September 22, 2016 38 /38



	Rational z-Transform
	Inversion of the z-Transform
	Analysis of LTI Systems in the z-Domain
	Causality and Stability

