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Inversion of the z-Transform

H(z) =
Y (z)

X(z)
, H(z) →inv z h(n)

Inverse z-Transform:

x(n) =
1

2πj

∮
C
X(z)zn−1dz

where the integral is a (counter-clockwise) contour integral over a
closed path C that encloses the origin and lies within the region of
convergence of X(z).

Methods of Inverse z-Transform

(1) Contour integration

(2) Power series expansion (using long division)

(3) Partial-fraction expansion



Inverse z-Transform by Partial-Fraction Expansion

X(z) is rational function.

X(z) =
B(z)

A(z)
=

b0 + b1z
−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aNz−N

A rational function is proper if aN ̸= 0 and M < N .

Inverse z-Transform by Partial-Fraction Expansion

An improper rational function (M ≥ N) can always be written as
the sum of a polynomial and a proper rational function.

X(z) =
B(z)

A(z)
= c0 + c1z

−1 + · · ·+ cM−Nz−(M−N) +
B1(z)

A(z)

The inverse z-transform of the polynomial can easily be found by
inspection.

We focus our attention on the inversion of proper rational function.



Inverse z-Transform by Partial-Fraction Expansion

Let X(z) be a proper rational function.

X(z) =
B(z)

A(z)
=

b0 + b1z
−1 + · · ·+ bMz−M

1 + a1z−1 + · · ·+ aNz−N

=
b0z

N + b1z
N−1 + · · ·+ bMzN−M

zN + a1zN−1 + · · ·+ aN

Since N > M ,

X(z)

z
=

b0z
N−1 + b1z

N−2 + · · ·+ bMzN−M−1

zN + a1zN−1 + · · ·+ aN

is proper.

Inverse z-Transform by Partial-Fraction Expansion

(1) Distinct poles. Suppose that the poles p1, p2, . . . , pN are all
different.

X(z)

z
=

A1

z − p1
+

A2

z − p2
+ · · ·+ AN

z − pN
We want to determine the coefficients A1, A2, . . . , AN .

(z − pk)X(z)

z
=

(z − pk)A1

z − p1
+ · · ·+Ak + · · ·+ (z − pk)AN

z − pN

Therefore,

Ak =
(z − pk)X(z)

z

∣∣∣∣
z=pk

, k = 1, 2, . . . , N

(In addition, if p2 = p∗1, A2 = A∗
1.)



Inverse z-Transform by Partial-Fraction Expansion

(2) Multiple-order poles. X(z) has a pole of multiplicity m, that
is, it contains in its denominator the factor (z − pk)

m.

The partial-fraction expansion must contain the terms

A1k

(z − pk)
+

A2k

(z − pk)2
+ · · ·+ Amk

(z − pk)m

Therefore,

Amk =
(z − pk)

mX(z)

z

∣∣∣∣
z=pk

A(m−1)k =
d

dz

[
(z − pk)

mX(z)

z

]
z=pk

, · · ·

A1k =
d(m−1)

dz(m−1)

[
(z − pk)

mX(z)

z

]
z=pk

Inverse z-Transform by Partial-Fraction Expansion

X(z)

z
=

A1

z − p1
+

A2

z − p2
+ · · ·+ AN

z − pN

X(z) =
A1

1− p1z−1
+

A2

1− p2z−1
+ · · ·+ AN

1− pNz−1

Z−1

{
1

1− pkz−1

}
=

{
(pk)

nu(n), ROC :|z| > |pk| (causal)
−(pk)

nu(−n− 1), ROC :|z| < |pk| (anticausal)



Inverse z-Transform by Partial-Fraction Expansion

In the case of a double pole:

X(z)

z
=

A

(z − p)2
+ · · ·

X(z) =
Az−1

(1− pz−1)2
+ · · ·

Z−1

{
pz−1

(1− pz−1)2

}
=

{
npnu(n), ROC :|z| > |p| (causal)
−npnu(−n− 1), ROC :|z| < |p| (anticausal)

Decomposition of Rational z-Transform

X(z) =

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k

= b0

∏M
k=1(1− zkz

−1)∏N
k=1(1− pkz−1)

With real signals,

X(z) =
M−N∑
k=0

γkz
−k +

K1∑
k=1

βk
1 + αkz−1

+

K2∑
k=1

β0k + β1kz
−1

1 + α1kz−1 + α2kz−2

= v0

K1∏
k=1

1 + vkz
−1

1 + ukz−1

K2∏
k=1

1 + v1kz
−1 + v2kz

−2

1 + u1kz−1 + u2kz−2

where K1 + 2K2 = N .

Coefficients αk, βk, γk, uk, vk are real.



Analysis of LTI Systems in the z-Domain

Zero-pole systems represented by linear constant-coefficient
difference equations with arbitrary initial conditions.

H(z) =
B(z)

A(z)

Assume that the input signal x(n) has a rational z-transform X(z)

X(z) =
N(z)

Q(z)

The system is initially relaxed, i.e.,
y(−1) = y(−2) = · · · = y(−N) = 0.

Y (z) = H(z)X(z) =
B(z)N(z)

A(z)Q(z)

Analysis of LTI Systems in the z-Domain

Suppose that the system contains simple poles p1, p2, . . . , pN and
the z-transform of the input signal contains poles q1, q2, . . . , qL,
where pk ̸= qm for all k and m.

In addition, suppose that there is no pole-zero cancellation.

A partial-fraction expansion of Y (z) yields

Y (z) =
N∑
k=1

Ak

1− pkz−1
+

L∑
k=1

Qk

1− qkz−1

Inverse transform of Y (z):

y(n) =
N∑
k=1

Ak(pk)
nu(n)︸ ︷︷ ︸

natural response

+
L∑

k=1

Qk(qk)
nu(n)︸ ︷︷ ︸

forced response



Transient Response and Steady-State Response

ynr(n) =
N∑
k=1

Ak(pk)
nu(n)

If |pk| < 1 for all k, then ynr(n) decays to zero as n approaches
infinity. The natural response is called the transient response.

yfr(n) =

L∑
k=1

Qk(qk)
nu(n)

If the poles fall on the unit circle and consequently, the forced
response persists for all n > 0. The forced response is called the
steady-state response of the system.

Causality

Causal LTI system: h(n) = 0, n < 0.

(The ROC of the z-transform of a causal sequence is the exterior
of a circle. )

A LTI system is causal iff the ROC of the system function is the
exterior of a circle of radius r < ∞, including the point z = ∞.



Stability

BIBO stable LTI system:
∑∞

n=−∞ |h(n)| < ∞.

H(z) =
∞∑

n=−∞
h(n)z−n

|H(z)| ≤
∞∑

n=−∞
|h(n)z−n|

=

∞∑
n=−∞

|h(n)||z−n|

When evaluated on the unit circle, i.e., |z| = 1,

|H(z)| ≤
∞∑

n=−∞
|h(n)| < ∞ ⇒ The ROC includes the unit circle.

Causality and Stability

A causal and stable LTI system must have a system function
converges for |z| > r, where r < 1.

A causal LTI system is BIBO stable iff all the poles of H(z) are
inside the unit circle.

cf. A causal LTI system with a rational transfer function H(s) is
stable iff all poles of H(s) are in the left half of the s-plane, i.e.,
the real parts of all poles are negative.



Causality and Stability Example

A LTI system is characterized by the system function

H(z) =
3− 4z−1

1− 3.5z−1 + 1.5z−2

=
1

1− 0.5z−1
+

2

1− 3z−1

Specify the ROC of H(z) and determine h(n) for the following
conditions:

(1) The system is stable.

(2) The system is causal.

(3) The system is anticausal.

Causality and Stability Example

Solution. The system has poles at z = 0.5 and z = 3.

(1) Since the system is stable, its ROC must include the unit circle
and hence it is 0.5 < |z| < 3.

h(n) = (0.5)nu(n)− 2(3)nu(−n− 1) ⇒ noncausal

(2) Since the system is causal, its ROC is |z| > 3.

h(n) = (0.5)nu(n) + 2(3)nu(n) ⇒ unstable

(3) Since the system is anticausal, its ROC is |z| < 0.5.

h(n) = −(0.5)nu(−n− 1)− 2(3)nu(−n− 1) ⇒ unstable



Pole-Zero Cancellation

Pole-zero cancellations can occur either in the system function
itself or in the product of the system function H(z) with the
z-transform of the input signal X(z).
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