ELC 4351: Digital Signal Processing

Liang (Leon) Dong
Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu
z-Transform Part 3

The z-Transform and Its Application to the Analysis of LTI Systems

Inversion of the z-Transform

Analysis of LTI Systems in the z-Domain

Causality and Stability

$$
H(z)=\frac{Y(z)}{X(z)}, \quad H(z) \rightarrow^{i n v z} h(n)
$$

Inverse z-Transform:

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

where the integral is a (counter-clockwise) contour integral over a closed path C that encloses the origin and lies within the region of convergence of $X(z)$.

Methods of Inverse z-Transform

(1) Contour integration
(2) Power series expansion (using long division)
(3) Partial-fraction expansion
$X(z)$ is rational function.

$$
X(z)=\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}
$$

A rational function is proper if $a_{N} \neq 0$ and $M<N$.

An improper rational function $(M \geq N)$ can always be written as the sum of a polynomial and a proper rational function.

$$
X(z)=\frac{B(z)}{A(z)}=c_{0}+c_{1} z^{-1}+\cdots+c_{M-N} z^{-(M-N)}+\frac{B_{1}(z)}{A(z)}
$$

The inverse z-transform of the polynomial can easily be found by inspection.

We focus our attention on the inversion of proper rational function.

Let $X(z)$ be a proper rational function.

$$
\begin{aligned}
X(z) & =\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}} \\
& =\frac{b_{0} z^{N}+b_{1} z^{N-1}+\cdots+b_{M} z^{N-M}}{z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}
\end{aligned}
$$

Since $N>M$,

$$
\frac{X(z)}{z}=\frac{b_{0} z^{N-1}+b_{1} z^{N-2}+\cdots+b_{M} z^{N-M-1}}{z^{N}+a_{1} z^{N-1}+\cdots+a_{N}}
$$

is proper.

Inverse z-Transform by Partial-Fraction Expansion

(1) Distinct poles. Suppose that the poles $p_{1}, p_{2}, \ldots, p_{N}$ are all different.

$$
\frac{X(z)}{z}=\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\cdots+\frac{A_{N}}{z-p_{N}}
$$

We want to determine the coefficients $A_{1}, A_{2}, \ldots, A_{N}$.

$$
\frac{\left(z-p_{k}\right) X(z)}{z}=\frac{\left(z-p_{k}\right) A_{1}}{z-p_{1}}+\cdots+A_{k}+\cdots+\frac{\left(z-p_{k}\right) A_{N}}{z-p_{N}}
$$

Therefore,

$$
A_{k}=\left.\frac{\left(z-p_{k}\right) X(z)}{z}\right|_{z=p_{k}}, \quad k=1,2, \ldots, N
$$

(In addition, if $p_{2}=p_{1}^{*}, A_{2}=A_{1}^{*}$.)

Inverse z-Transform by Partial-Fraction Expansion
(2) Multiple-order poles. $X(z)$ has a pole of multiplicity m, that is, it contains in its denominator the factor $\left(z-p_{k}\right)^{m}$.

The partial-fraction expansion must contain the terms

$$
\frac{A_{1 k}}{\left(z-p_{k}\right)}+\frac{A_{2 k}}{\left(z-p_{k}\right)^{2}}+\cdots+\frac{A_{m k}}{\left(z-p_{k}\right)^{m}}
$$

Therefore,

$$
\begin{gathered}
A_{m k}=\left.\frac{\left(z-p_{k}\right)^{m} X(z)}{z}\right|_{z=p_{k}} \\
A_{(m-1) k}=\frac{d}{d z}\left[\frac{\left(z-p_{k}\right)^{m} X(z)}{z}\right]_{z=p_{k}}, \cdots \\
A_{1 k}=\frac{d^{(m-1)}}{d z^{(m-1)}}\left[\frac{\left(z-p_{k}\right)^{m} X(z)}{z}\right]_{z=p_{k}}
\end{gathered}
$$

Inverse z-Transform by Partial-Fraction Expansion

$$
\begin{gathered}
\frac{X(z)}{z}=\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\cdots+\frac{A_{N}}{z-p_{N}} \\
X(z)=\frac{A_{1}}{1-p_{1} z^{-1}}+\frac{A_{2}}{1-p_{2} z^{-1}}+\cdots+\frac{A_{N}}{1-p_{N} z^{-1}} \\
\mathcal{Z}^{-1}\left\{\frac{1}{1-p_{k} z^{-1}}\right\}= \begin{cases}\left(p_{k}\right)^{n} u(n), & \text { ROC }:|z|>\left|p_{k}\right|(\text { causal }) \\
-\left(p_{k}\right)^{n} u(-n-1), & \text { ROC }:|z|<\left|p_{k}\right| \text { (anticausal) }\end{cases}
\end{gathered}
$$

In the case of a double pole:

$$
\begin{gathered}
\frac{X(z)}{z}=\frac{A}{(z-p)^{2}}+\cdots \\
X(z)=\frac{A z^{-1}}{\left(1-p z^{-1}\right)^{2}}+\cdots \\
\mathcal{Z}^{-1}\left\{\frac{p z^{-1}}{\left(1-p z^{-1}\right)^{2}}\right\}= \begin{cases}n p^{n} u(n), & \text { ROC }:|z|>|p| \text { (causal) } \\
-n p^{n} u(-n-1), & \text { ROC }:|z|<|p| \text { (anticausal) }\end{cases}
\end{gathered}
$$

Decomposition of Rational z-Transform

$$
X(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}=b_{0} \frac{\prod_{k=1}^{M}\left(1-z_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-p_{k} z^{-1}\right)}
$$

With real signals,

$$
\begin{aligned}
X(z) & =\sum_{k=0}^{M-N} \gamma_{k} z^{-k}+\sum_{k=1}^{K_{1}} \frac{\beta_{k}}{1+\alpha_{k} z^{-1}}+\sum_{k=1}^{K_{2}} \frac{\beta_{0 k}+\beta_{1 k} z^{-1}}{1+\alpha_{1 k} z^{-1}+\alpha_{2 k} z^{-2}} \\
& =v_{0} \prod_{k=1}^{K_{1}} \frac{1+v_{k} z^{-1}}{1+u_{k} z^{-1}} \prod_{k=1}^{K_{2}} \frac{1+v_{1 k} z^{-1}+v_{2 k} z^{-2}}{1+u_{1 k} z^{-1}+u_{2 k} z^{-2}}
\end{aligned}
$$

where $K_{1}+2 K_{2}=N$.

Coefficients $\alpha_{k}, \beta_{k}, \gamma_{k}, u_{k}, v_{k}$ are real.

Analysis of LTI Systems in the z-Domain

Zero-pole systems represented by linear constant-coefficient difference equations with arbitrary initial conditions.

$$
H(z)=\frac{B(z)}{A(z)}
$$

Assume that the input signal $x(n)$ has a rational z-transform $X(z)$

$$
X(z)=\frac{N(z)}{Q(z)}
$$

The system is initially relaxed, i.e., $y(-1)=y(-2)=\cdots=y(-N)=0$.

$$
Y(z)=H(z) X(z)=\frac{B(z) N(z)}{A(z) Q(z)}
$$

Analysis of LTI Systems in the z-Domain

Suppose that the system contains simple poles $p_{1}, p_{2}, \ldots, p_{N}$ and the z-transform of the input signal contains poles $q_{1}, q_{2}, \ldots, q_{L}$, where $p_{k} \neq q_{m}$ for all k and m.

In addition, suppose that there is no pole-zero cancellation.

A partial-fraction expansion of $Y(z)$ yields

$$
Y(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-p_{k} z^{-1}}+\sum_{k=1}^{L} \frac{Q_{k}}{1-q_{k} z^{-1}}
$$

Inverse transform of $Y(z)$:

$$
y(n)=\underbrace{\sum_{k=1}^{N} A_{k}\left(p_{k}\right)^{n} u(n)}_{\text {natural response }}+\underbrace{\sum_{k=1}^{L} Q_{k}\left(q_{k}\right)^{n} u(n)}_{\text {forced response }}
$$

$$
y_{n r}(n)=\sum_{k=1}^{N} A_{k}\left(p_{k}\right)^{n} u(n)
$$

If $\left|p_{k}\right|<1$ for all k, then $y_{n r}(n)$ decays to zero as n approaches infinity. The natural response is called the transient response.

$$
y_{f r}(n)=\sum_{k=1}^{L} Q_{k}\left(q_{k}\right)^{n} u(n)
$$

If the poles fall on the unit circle and consequently, the forced response persists for all $n>0$. The forced response is called the steady-state response of the system.

Causality

Causal LTI system: $h(n)=0, n<0$.
(The ROC of the z-transform of a causal sequence is the exterior of a circle.)

A LTI system is causal iff the ROC of the system function is the exterior of a circle of radius $r<\infty$, including the point $z=\infty$.

BIBO stable LTI system: $\sum_{n=-\infty}^{\infty}|h(n)|<\infty$.

$$
\begin{aligned}
H(z) & =\sum_{n=-\infty}^{\infty} h(n) z^{-n} \\
|H(z)| & \leq \sum_{n=-\infty}^{\infty}\left|h(n) z^{-n}\right| \\
& =\sum_{n=-\infty}^{\infty}|h(n)|\left|z^{-n}\right|
\end{aligned}
$$

When evaluated on the unit circle, i.e., $|z|=1$,
$|H(z)| \leq \sum_{n=-\infty}^{\infty}|h(n)|<\infty \Rightarrow$ The ROC includes the unit circle.

Causality and Stability

A causal and stable LTI system must have a system function converges for $|z|>r$, where $r<1$.

A causal LTI system is BIBO stable iff all the poles of $H(z)$ are inside the unit circle.
cf. A causal LTI system with a rational transfer function $H(s)$ is stable iff all poles of $H(s)$ are in the left half of the s-plane, i.e., the real parts of all poles are negative.

Causality and Stability Example

A LTI system is characterized by the system function

$$
\begin{aligned}
H(z) & =\frac{3-4 z^{-1}}{1-3.5 z^{-1}+1.5 z^{-2}} \\
& =\frac{1}{1-0.5 z^{-1}}+\frac{2}{1-3 z^{-1}}
\end{aligned}
$$

Specify the ROC of $H(z)$ and determine $h(n)$ for the following conditions:
(1) The system is stable.
(2) The system is causal.
(3) The system is anticausal.

Causality and Stability Example

Solution. The system has poles at $z=0.5$ and $z=3$.
(1) Since the system is stable, its ROC must include the unit circle and hence it is $0.5<|z|<3$.

$$
h(n)=(0.5)^{n} u(n)-2(3)^{n} u(-n-1) \Rightarrow \text { noncausal }
$$

(2) Since the system is causal, its ROC is $|z|>3$.

$$
h(n)=(0.5)^{n} u(n)+2(3)^{n} u(n) \Rightarrow \text { unstable }
$$

(3) Since the system is anticausal, its ROC is $|z|<0.5$.

$$
h(n)=-(0.5)^{n} u(-n-1)-2(3)^{n} u(-n-1) \Rightarrow \text { unstable }
$$

Pole-zero cancellations can occur either in the system function itself or in the product of the system function $H(z)$ with the z-transform of the input signal $X(z)$.

