ELC 4351: Digital Signal Processing

Liang (Leon) Dong

Electrical and Computer Engineering
Baylor University
liang_dong®@baylor.edu

z-Transform Part 3

The z-Transform and Its Application to the Analysis of LTI

Systems

Inversion of the z-Transform

Analysis of LTI Systems in the z-Domain

Causality and Stability



Inversion of the z-Transform

Inverse z-Transform:

1
x(n) = 5 CX(z)zn_ldz

where the integral is a (counter-clockwise) contour integral over a
closed path C that encloses the origin and lies within the region of
convergence of X (z).

Methods of Inverse z-Transform

(1) Contour integration
(2) Power series expansion (using long division)

(3) Partial-fraction expansion



Inverse z-Transform by Partial-Fraction Expansion

X (z) is rational function.

X(z) = B(z) _ bo+ bzt +- - +byz M
CA(R) 14 a4 Hayz N

A rational function is proper if ay # 0 and M < N.

Inverse z-Transform by Partial-Fraction Expansion

An improper rational function (M > N) can always be written as
the sum of a polynomial and a proper rational function.

B B
(=) =Co—|—clz_1-|—--.-|-CM_NZ—(M—N)+ 1(2)

X =705 A(2)

The inverse z-transform of the polynomial can easily be found by
inspection.

We focus our attention on the inversion of proper rational function.



Inverse z-Transform by Partial-Fraction Expansion

Let X (z) be a proper rational function.

B(Z) B bo + blz_l + -+ bMZ_M

X =
() A(z) 14az7'+---+anyz™VN
B boz + b2Vl by NTM
B N +aZN-1+.- - +an
Since N > M,

X(Z) bOZN_l+b12N_2+---—|-bMZN—M—1

z 2N a1+ ... +ay

IS proper.

Inverse z-Transform by Partial-Fraction Expansion

(1) Distinct poles. Suppose that the poles p1,po,...,py are all

different.
X A A A
< Z2—pP1 Z2—DP2 Z —PN
We want to determine the coefficients Ay, As,..., An.

(2 —p)X(2) (2 —pp)ds

—pi)A
= _|_..._|_Ak_|_..._|_(z pk) N

< =D < — PN
Therefore,
— X
Ak — (z pk) (Z) ’ k= 1727 7N
& Z2=py,

(In addition, if p2 = p}, As = A7)



Inverse z-Transform by Partial-Fraction Expansion

(2) Multiple-order poles. X(z) has a pole of multiplicity m, that
is, it contains in its denominator the factor (z — py)™.

The partial-fraction expansion must contain the terms

Therefore,

X(z) _ Aq Ay - AN
z =D Z — P2 Z — PN
Ay 2 AN
X — .
) 1 —piz7l 1 —poz—! MR —pnzt

21 1 _ ) ()" u(n), ROC :|z| > |pk| (causal)
! —(pe)"u(—n — 1), ROC :|z| < |pi| (anticausal)



Inverse z-Transform by Partial-Fraction Expansion

In the case of a double pole:

X(z) A Ny
T —p2
Azl
X(z) = A= pr 172 +

Z-1 pzt _ [ np"u(n), ROC :|z| > |p| (causal)
( —np"u(—n —1), ROC :|z| < |p| (anticausal)

Decomposition of Rational z-Transform

X(Z) _ Z]kw:O bkz_k Hk 1(1 — RkR 1)
1+ 25:1 ak'z_k Hk: (1= prz™1)

With real signals,

Ko

B Lk B Bok + Bz
X(z) = ) w2 +Zm+kz - —

— 1+ aypz—t + agpz

K _ _ _
14 opz™t o 1+ vzt + vgpz 2
= w]]

1+ upz—1! P 1+ uppz=t + ugpz2

where K7 + 2K9 = N.

Coefficients ag, Br, Vi, Uk, Vg are real.



Analysis of LTI Systems in the z-Domain

Zero-pole systems represented by linear constant-coefficient
difference equations with arbitrary initial conditions.

Assume that the input signal z(n) has a rational z-transform X (z)

_ N(»)
=20
The system is initially relaxed, i.e.,
y(-1) =y(-2)=---=y(-N) =0.
Y(2) = H(2)X(2) = iggég

Analysis of LTI Systems in the z-Domain

Suppose that the system contains simple poles py,p2,...,pN and
the z-transform of the input signal contains poles q1,¢2,...,qr,
where pi. # q,, for all k and m.

In addition, suppose that there is no pole-zero cancellation.

A partial-fraction expansion of Y (2) yields

N

Y —
(2) k_ll—pkz Zl—qkz 1

Inverse transform of Y'(2):

N L

y(n) =Y Ap(pi)"uln) + ) Qrlgr) u(n)

natural response forced response



Transient Response and Steady-State Response

N
Yar () = 3 Ap(pr)"u(n)
k=1

If |px| < 1 for all k, then y,,(n) decays to zero as n approaches
infinity. The natural response is called the transient response.

L
yrr(n) =Y Qulqr)"u(n)
k=1

If the poles fall on the unit circle and consequently, the forced
response persists for all n > 0. The forced response is called the
steady-state response of the system.

Causal LTI system: h(n) =0, n < 0.

(The ROC of the z-transform of a causal sequence is the exterior
of a circle. )

A LTI system is causal iff the ROC of the system function is the
exterior of a circle of radius r < oo, including the point z = oco.



BIBO stable LTI system: > > |h(n)| < oco.

n=—oo

H(z) = Y hn)z™"

n=—oo

> Ih(n)z™™

n=—oo

= > )=

n—=——oo

IA

[H(2)]

When evaluated on the unit circle, i.e., |z| =1,

0.0}
|H(2)| < Z |h(n)| < oo = The ROC includes the unit circle.

n—=——oo

Causality and Stability

A causal and stable LTI system must have a system function
converges for |z| > r, where r < 1.

A causal LTI system is BIBO stable iff all the poles of H(z) are
inside the unit circle.

cf. A causal LTI system with a rational transfer function H(s) is
stable iff all poles of H(s) are in the left half of the s-plane, i.e.,
the real parts of all poles are negative.



Causality and Stability Example

A LTI system is characterized by the system function

3 —4z1
1—352z"14+15z72
1 2

1—0.5z"1 + 1—3z71

H(z) =

Specify the ROC of H(z) and determine h(n) for the following
conditions:

(1) The system is stable.
(2) The system is causal.

(3) The system is anticausal.

Causality and Stability Example

Solution. The system has poles at z = 0.5 and z = 3.

(1) Since the system is stable, its ROC must include the unit circle
and hence it is 0.5 < |z| < 3.

h(n) = (0.5)"u(n) — 2(3)"u(—n — 1) = noncausal

(2) Since the system is causal, its ROC is |z| > 3.

h(n) = (0.5)"u(n) + 2(3)"u(n) = unstable

(3) Since the system is anticausal, its ROC is |z| < 0.5.

h(n) = —(0.5)"u(—n — 1) — 2(3)"u(—n — 1) = unstable



Pole-Zero Cancellation

Pole-zero cancellations can occur either in the system function
itself or in the product of the system function H(z) with the
z-transform of the input signal X (z).
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