ELC 4351: Digital Signal Processing

Liang (Leon) Dong
Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu
z-Transform Part 2

The z-Transform and Its Application to the Analysis of LTI Systems

Rational z-Transform

Rational z-Transforms

$X(z)$ is a rational function, that is, a ratio of two polynomials in z^{-1} (or z).

$$
\begin{aligned}
X(z) & =\frac{B(z)}{A(z)} \\
& =\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots a_{N} z^{-N}} \\
& =\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
\end{aligned}
$$

Rational z-Transforms

$X(z)$ is a rational function, that is, a ratio of two polynomials $B(z)$ and $A(z)$. The polynomials can be expressed in factored forms.

$$
\begin{aligned}
X(z) & =\frac{B(z)}{A(z)} \\
& =\frac{b_{0}}{a_{0}} z^{-M+N} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)} \\
& =\frac{b_{0}}{a_{0}} z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)}
\end{aligned}
$$

Poles and Zeros

The zeros of a z-transform $X(z)$ are the values of z for which $X(z)=0$.

The poles of a z-transform $X(z)$ are the values of z for which $X(z)=\infty$.

$$
X(z)=\frac{b_{0}}{a_{0}} z^{N-M} \frac{\prod_{k=1}^{M}\left(z-z_{k}\right)}{\prod_{k=1}^{N}\left(z-p_{k}\right)}
$$

$X(z)$ has M finite zeros at $z=z_{1}, z_{2}, \ldots, z_{M}, N$ finite poles at $z=p_{1}, p_{2}, \ldots, p_{N}$, and $|N-M|$ zeros (if $N>M$) or poles (if $N<M)$ at the origin.

Poles and zeros may also occur at $z=\infty$.
$X(z)$ has exactly the same number of poles and zeros.

Poles and Zeros

If a polynomial has real coefficients, its roots are either real or occur in complex-conjugate pairs. That is because e.g.,
$\left(z-p_{1}\right)\left(z-p_{2}\right)$

Poles and Zeros

For example,

$$
X(z)=\frac{z^{-1}-z^{-2}}{1-1.2732 z^{-1}+0.81 z^{-2}}
$$

which has one zero at $z=1$ and two poles at $p_{1}=0.9 e^{j \pi / 4}$ and $p_{2}=0.9 e^{-j \pi / 4}$.

Some Common z-Transform Pairs

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	Allz
2	$u(n)$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3	$a^{n} u(n)$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
4	$n a^{n} u(n)$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
5	$-a^{n} u(-n-1)$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
6	$-n a^{n} u(-n-1)$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
7	$\left(\cos \omega_{0} n\right) u(n)$	$\frac{1-z^{-1} \cos \omega_{0}}{1-2 z^{-1} \cos \omega_{0}+z^{-2}}$	$\|z\|>1$
8	$\left(\sin \omega_{0} n\right) u(n)$	$\frac{z^{-1} \sin \omega_{0}}{1-2 z^{-1} \cos \omega_{0}+z^{-2}}$	$\|z\|>1$
9	$\left(a^{n} \cos \omega_{0} n\right) u(n)$	$\frac{1-a z^{-1} \cos \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}}$	$\|z\|>\|a\|$
10	$\left(a^{n} \sin \omega_{0} n\right) u(n)$	$\frac{a z^{-1} \sin \omega_{0}}{1-2 a z^{-1} \cos \omega_{0}+a^{2} z^{-2}}$	$\|z\|>\|a\|$

Poles Locations and Time-Domain Behavior for Causal

Signals

If a real signal has a z-transform with one pole, this pole has to be real. The only such signal is the real exponential

$$
x(n)=a^{n} u(n) \rightarrow^{z} X(z)=\frac{1}{1-a z^{-1}}, \quad \mathrm{ROC}:|z|>|a|
$$

Poles Locations and Time-Domain Behavior for Causal Signals

A causal real signal with a double real pole has the form

$$
x(n)=n a^{n} u(n) \rightarrow^{z} X(z)=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad \mathrm{ROC}:|z|>|a|
$$

Poles Locations and Time-Domain Behavior for Causal

 SignalsThe case of a causal signal with a pair of complex-conjugate poles.

Poles Locations and Time-Domain Behavior for Causal Signals

The case of a causal signal with a double pair of poles on the unit circle.

Poles Locations and Time-Domain Behavior for Causal Signals

The impulse response $h(n)$ of a causal LTI system is a causal signal.

If a pole of a system is outside the unit circle, the impulse response of the system becomes unbounded and, consequently, the system is unstable.

System Function of a LTI System

LTI systems:

$$
\begin{aligned}
y(n) & =h(n) \otimes x(n) \\
Y(z) & =H(z) X(z)
\end{aligned}
$$

If we know the input $x(n)$ and observe the output $y(n)$ of the system, we can determine the unit sample response (impulse response) by first solving for $H(z)$ from

$$
H(z)=\frac{Y(z)}{X(z)}
$$

and then evaluating the inverse z-transform of $H(z)$.
$H(z)$ is called the system function.

System Function of a LTI System

When the LTI system is described by a linear constant-coefficient difference equation

$$
y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k)
$$

The system function can be calculate:

$$
\begin{aligned}
Y(z) & =-\sum_{k=1}^{N} a_{k} Y(z) z^{-k}+\sum_{k=0}^{M} b_{k} X(z) z^{-k} \\
Y(z)\left(1+\sum_{k=1}^{N} a_{k} z^{-k}\right) & =X(z)\left(\sum_{k=0}^{M} b_{k} z^{-k}\right) \\
H(z) & =\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}
\end{aligned}
$$

System Function of a LTI System

An LTI system described by a constant-coefficient difference equation has a rational system function $H(z)$.

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}
$$

System Function of a LTI System

(1) All-zero system: If $a_{k}=0$ for $1 \leq k \leq N$,

$$
H(z)=\sum_{k=0}^{M} b_{k} z^{-k}=\frac{1}{z^{M}} \sum_{k=0}^{M} b_{k} z^{M-k}
$$

The system has M nontrivial zeros and M trivial poles (at $z=0$).

An all-zero system is an FIR system and can be called a moving average (MA) system.

System Function of a LTI System

(2) All-pole system: If $b_{k}=0$ for $1 \leq k \leq M$,

$$
H(z)=\frac{b_{0}}{1+\sum_{k=1}^{N} a_{k} z^{-k}}=\frac{b_{0} z^{N}}{\sum_{k=0}^{M} a_{k} z^{N-k}}
$$

where $a_{0}=1$. The system has N nontrivial poles and N trivial zeros (at $z=0$).

An all-pole system is an IIR system and can be called an auto-regressive (AR) system.
(3) Pole-zero system:

In general, the system function contains N poles and M zeros. (Poles and zeros at $z=0$ and $z=\infty$ are implied but are not counted explicitly.)

Due to the presence of poles, a pole-zero system is an IIR system.

