ELC 4351: Digital Signal Processing

Liang (Leon) Dong
Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu
z-Transform Part 1

The z-Transform and Its Application to the Analysis of LTI Systems

The z-Transform
The Direct z-Transform
The Inverse z-Transform

Properties of the z-Transform

Laplace-Transform: Continuous-time signals and LTI systems
z-Transform: Discrete-time signals and LTI systems

The Direct z-Transform

The direct z-transform is a power series.

Transform Equation

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

where, z is a complex variable.

It can be expressed as $X(z)=\mathcal{Z}\{x(n)\}$ or $x(n) \longleftrightarrow{ }^{z} X(z)$.

The region of convergence (ROC) of $X(z)$ is the set of all values of z for which $X(z)$ attains a finite value.

Discussion on ROC

$z=r e^{j \theta} . r=|z|$ and $\theta=\angle z$.

Transformation Equation

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j \theta n}
$$

In the ROC, $|X(z)|<\infty$.
Therefore

$$
\begin{aligned}
|X(z)| & =\left|\sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j \theta n}\right| \\
& \leq \sum_{n=-\infty}^{\infty}\left|x(n) r^{-n} e^{-j \theta n}\right| \\
& =\sum_{n=-\infty}^{\infty}\left|x(n) r^{-n}\right|
\end{aligned}
$$

Discussion on ROC

$$
|X(z)| \leq \sum_{n=-\infty}^{\infty}\left|x(n) r^{-n}\right|<\infty
$$

$|X(z)|$ is finite if the sequence $x(n) r^{-n}$ is absolutely summable.

Discussion on ROC

$$
\begin{aligned}
|X(z)| & \leq \sum_{n=-\infty}^{\infty}\left|x(n) r^{-n}\right| \\
& =\sum_{n=-\infty}^{-1}\left|x(n) r^{-n}\right|+\sum_{n=0}^{\infty}\left|x(n) r^{-n}\right| \\
& =\underbrace{\sum_{n=1}^{\infty}\left|x(-n) r^{n}\right|}_{\text {finite: r small enough }}+\underbrace{\sum_{n=0}^{\infty}\left|\frac{x(n)}{r^{n}}\right|}_{\text {finite: r large enough }}
\end{aligned}
$$

In general, ROC: $r_{2}<r<r_{1}$

Discussion on ROC

$\mathrm{ROC}: r_{2}<r<r_{1}$

Discussion on ROC

ROC: $r_{2}<r<r_{1}$
$r_{2}=|a|, r_{1}=|b|$. If $|a|>|b|$, ROC is empty set \varnothing.

Unilateral z-Transform

Transformation Equation

$$
X^{+}(z)=\sum_{n=0}^{\infty} x(n) z^{-n}
$$

The Inverse z-Transform

Transformation Equation

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

where C denotes the closed contour in the ROC of $X(z)$, taken in a counterclockwise direction.

Properties of the z-Transform

Linearity

If $x_{1}(n) \longleftrightarrow{ }^{z} X_{1}(z)$ and $x_{2}(n) \longleftrightarrow{ }^{z} X_{2}(z)$, then

$$
x(n)=\alpha_{1} x_{1}(n)+\alpha_{2} x_{2}(n) \longleftrightarrow \longleftrightarrow^{z} X(z)=\alpha_{1} X_{1}(z)+\alpha_{2} X_{2}(z)
$$

for any constants α_{1} and α_{2}.

Time shifting

If $x(n) \longleftrightarrow{ }^{z} X(z)$, then

$$
x(n-k) \longleftrightarrow{ }^{z} z^{-k} X(z)
$$

The ROC of $z^{-k} X(z)$ is the same as that of $X(z)$ except for $z=0$ if $k>0$ and $z=\infty$ if $k<0$.

Properties of the z-Transform

Scaling in the z-domain
If $x(n) \longleftrightarrow{ }^{z} X(z), \mathrm{ROC}: r_{1}<|z|<r_{2}$, then

$$
a^{n} x(n) \longleftrightarrow{ }^{z} X\left(a^{-1} z\right), \quad \text { ROC }:|a| r_{1}<|z|<|a| r_{2}
$$

for any constants a, real or complex.

Time reversal

If $x(n) \longleftrightarrow{ }^{z} X(z)$, ROC: $r_{1}<|z|<r_{2}$, then

$$
x(-n) \longleftrightarrow \longleftrightarrow^{z} X\left(z^{-1}\right), \quad \text { ROC }: \frac{1}{r_{2}}<|z|<\frac{1}{r_{1}}
$$

Differentiation in the z -domain

If $x(n) \longleftrightarrow{ }^{z} X(z)$, then

$$
n x(n) \longleftrightarrow \longleftrightarrow^{z}-z \frac{d X(z)}{d z}
$$

Properties of the z-Transform

Convolution of two sequences

If $x_{1}(n) \longleftrightarrow{ }^{z} X_{1}(z)$ and $x_{2}(n) \longleftrightarrow{ }^{z} X_{2}(z)$, then

$$
x(n)=x_{1}(n) \otimes x_{2}(n) \longleftrightarrow{ }^{z} X(z)=X_{1}(z) X_{2}(z)
$$

The ROC of $X(z)$ is at least the intersection of that for $X_{1}(z)$ and $X_{2}(z)$.

Correlation of two sequences
If $x_{1}(n) \longleftrightarrow{ }^{z} X_{1}(z)$ and $x_{2}(n) \longleftrightarrow{ }^{z} X_{2}(z)$, then

$$
r_{x_{1} x_{2}}(l)=\sum_{n=-\infty}^{\infty} x_{1}(n) x_{2}(n-l) \longleftrightarrow{ }^{z} R_{x_{1} x_{2}}(z)=X_{1}(z) X_{2}\left(z^{-1}\right)
$$

The ROC of $R(z)$ is at least the intersection of that for $X_{1}(z)$ and $X_{2}\left(z^{-1}\right)$.

Multiplication of two sequences

If $x_{1}(n) \longleftrightarrow{ }^{z} X_{1}(z)$ and $x_{2}(n) \longleftrightarrow{ }^{z} X_{2}(z)$, then

$$
x(n)=x_{1}(n) x_{2}(n) \longleftrightarrow^{z} X(z)=\frac{1}{2 \pi j} \oint_{C} X_{1}(\nu) X_{2}\left(\frac{z}{\nu}\right) \nu^{-1} d \nu
$$

where C is a closed contour that encloses the origin and lies within the ROC common to both $X_{1}(\nu)$ and $X_{2}(1 / \nu)$.

Properties of the z-Transform

Parseval's relation

If $x_{1}(n)$ and $x_{2}(n)$ are complex-valued sequences, then

$$
\sum_{n=-\infty}^{\infty} x_{1}(n) x_{2}^{*}(n)=\frac{1}{2 \pi j} \oint_{C} X_{1}(\nu) X_{2}^{*}\left(\frac{1}{\nu^{*}}\right) \nu^{-1} d \nu
$$

The Initial Value Theorem
If $x(n)$ is causal, i.e., $x(n)=0$ for $n<0$, then

$$
x(0)=\lim _{z \rightarrow \infty} X(z)
$$

Proof.

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} x(n) z^{-n} \\
& =x(0)+x(1) z^{-1}+x(2) z^{-2}+\cdots
\end{aligned}
$$

As $z \rightarrow \infty, z^{-n} \rightarrow 0$ when $n=1,2, \ldots$, therefore $X(z) \rightarrow x(0)$.

