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Frequency-domain Analysis of LTI Systems

Linear Time-Invariant Systems as Frequency-Selective Filters



Linear Time-Invariant Systems as Frequency-Selective
Filters

▶ A LTI system performs a type of
discrimination or filtering among
the various frequency components
at its input.

▶ The nature of this filtering action is
determined by the frequency
response characteristics H(ω).

Linear Time-Invariant Systems as Frequency-Selective
Filters

▶ By proper selection of the
coefficients ak’s and bk’s, we can
design frequency-selective filters.

These filters pass signals with
frequency components in some
bands while they attenuate signals
containing frequency components
in other frequency bands.



Ideal Filter Characteristics

A filter with frequency response

H(ω) =

{
Ce−jωn0 , ω1 < ω < ω2

0, otherwise

where C and n0 are constants.

Y (ω) = X(ω)H(ω) = CX(ω)e−jωn0

y(n) = Cx(n− n0)

▶ The filter output is simply a delayed and amplitude-scaled
version of the input signal.

▶ A pure delay is usually tolerable and is not considered a
distortion of the signal. Neither is amplitude scaling.

Therefore, ideal filters have a linear phase characteristic within
their passband, that is,

Ideal Filter Characteristics

A filter with frequency response

H(ω) =

{
Ce−jωn0 , ω1 < ω < ω2

0, otherwise

where C and n0 are constants.

Ideal filters have a linear phase characteristic within their
passband, that is,

Θ(ω) = −ωn0

Group delay of the filter

τg(ω) = −dΘ(ω)

dω

Linear phase = group delay is constant. In this case, all frequency
components of the input signal undergo the same time delay.



Ideal Filter Characteristics

“Ideal” filter:

▶ Impulse response is a sinc function.

▶ This filter is not causal and it is not absolutely summable and
therefore unstable.

▶ Design some simple digital filters by the placement of poles
and zeros in the z-plane.

▶ The location of poles and zeros affects the frequency response
characteristics of the system.

The Pole-Zero Placement Method

The basic principle underlying the pole-zero placement method:

▶ Locate poles near points of the unit circle corresponding to
frequencies to be emphasized, and

▶ Locate zeros near the frequencies to be deemphasized.

▶ All poles should be placed inside the unit circle in order for
the filter to be stable.
However, zeros can be placed anywhere in the z-plane.

▶ All complex zeros and poles must occur in complex-conjugate
pairs in order for the filter coefficients to be real.



The Pole-Zero Placement Method

The system function:

H(z) = b0

∏M
k=1(1− zkz

−1)∏N
k=1(1− pkz−1)

Usually, b0 is selected such that |H(ω0)| = 1. ω0 in the passband
of the filter.

N ≥ M .

Lowpass, Highpass, and Bandpass Filters

▶ Design of lowpass digital filters: the poles should be placed
near the unit circle at points corresponding to low frequencies
(near ω = 0) and zeros should be placed near or on the unit
circle at points corresponding to high frequencies (near
ω = π).

▶ Design of highpass digital filters: The opposite.



A Simple Lowpass-to-Highpass Filter Transformation

Frequency translation of π rad:

Hhp(ω) = Hlp(ω − π)

Therefore,
hhp(n) = ejπnhlp(n) = (−1)nhlp(n)

e.g., Lowpass filter by difference eqn.

y(n) = −
N∑
k=1

aky(n− k) +
M∑
k=0

bkx(n− k)

A highpass filter can be derived: (How?)

y(n) = −
N∑
k=1

(−1)kaky(n− k) +
M∑
k=0

(−1)kbkx(n− k)

Digital Resonator

▶ A digital resonator is a special
two-pole bandpass filter with the
pair of complex-conjugate poles
located near the unit circle.

▶ The filter has a large magnitude
response (i.e., it resonates) in the
vicinity of the pole location.

▶ The angular position of the pole
determines the resonant frequency
of the filter.

▶ Digital resonators are useful in
many applications, including
bandpass filtering and speech
generation.



Digital Resonator

A resonant peak at or near ω = ω0,

p1,2 = re±jω0 , 0 < r < 1

We can select up to two zeros –

One choice is to locate the zeros at the origin.

The other choice is to locate a zero at z = 1 and a zero at
z = −1. This choice completely eliminates the response of the
filter at frequencies ω = 0 and ω = π.

Digital Resonator

Digital resonator with zeros at the origin:

H(ω) =
b0

(1− rejω0e−jω)(1− re−jω0e−jω)

We select b0 so that |H(ω0)| = 1.

H(ω0) =
b0

(1− rejω0e−jω0)(1− re−jω0e−jω0)

=
b0

(1− r)(1− re−j2ω0)

|H(ω0)| =
b0

(1− r)
√
1 + r2 − 2r cos 2ω0

= 1

b0 = (1− r)
√

1 + r2 − 2r cos 2ω0



Digital Resonator

Digital resonator with zeros at the origin:

H(ω) =
b0

(1− rejω0e−jω)(1− re−jω0e−jω)

|H(ω)| =
b0

U1(ω)U2(ω)

∠H(ω) = 2ω − Φ1(ω)− Φ2(ω)

U1(ω) =
√

1 + r2 − 2r cos(ω0 − ω)

U2(ω) =
√

1 + r2 − 2r cos(ω0 + ω)

Digital Resonator

U1(ω) =
√

1 + r2 − 2r cos(ω0 − ω)

U2(ω) =
√

1 + r2 − 2r cos(ω0 + ω)

min
ω

U1(ω)U2(ω) =⇒ ωr = cos−1

(
1 + r2

2r
cosω0

)



Digital Resonator

Digital Resonator

Digital resonator with zeros z = 1 and z = −1:

H(ω) = b0
(1− e−jω)(1 + e−jω)

(1− rejω0e−jω)(1− re−jω0e−jω)

|H(ω)| = b0

√
2(1− cos 2ω)

U1(ω)U2(ω)

The actual resonant frequency is altered.



Digital Resonator

All-Pass Filters

|H(ω)| = 1, 0 ≤ ω ≤ π

e.g.,

1. a pure delay system H(z) = z−k.

2.

H(z) =

∑N
k=0 akz

−N+k∑N
k=0 akz

−k
, a0 = 1

= z−N A(z−1)

A(z)

where A(z) =
∑N

k=0 akz
−k.

|H(ω)|2 = H(z)H(1/z)|z=ejω = 1



All-Pass Filters

If z0 is a pole of H(z), then 1/z0 is a zero of H(z).

The poles and zeros are reciprocals of one another.

All-Pass Filters

All-pass filter with real coefficients:

Hap(z) =

NR∏
k=1

z−1 − αk

1− αkz−1

NC∏
k=1

(z−1 − βk)(z
−1 − β∗

k)

(1− βkz−1)(1− β∗
kz

−1)

where there are NR real poles and zeros and NC

complex-conjugate pairs of poles and zeros.

For causal and stable systems, −1 < αk < 1 and |βk| < 1.

Q: What is all-pass filter for?

A: All-pass filters find application as phase equalizers. When
placed in cascade with a system that has an undesired phase
response, a phase equalizer is designed to compensate for the poor
phase characteristics of the system and therefore to produce an
overall linear-phase response.
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