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Inverse Systems and Deconvolution

▶ In many practical applications we are given an output signal
from a system whose characteristics are unknown and we are
asked to determine the input signal.

▶ Channel distortion and a need for a corrective system:
Equalizer, Inverse system

▶ An inverse system — The corrective system has a frequency
response which is basically the reciprocal of the frequency
response of the system that caused the distortion.

▶ Deconvolution — The inverse system operation that takes
y(n) and produces x(n).

▶ System Identification — In short, to find h(n) or H(ω).

Invertibility of Linear Time-Invariant Systems

A system is said to be invertible if there is a one-to-one
correspondence between its input and output signals.

An invertible system: T

The inverse system: T −1

w(n) = T −1[y(n)] = T −1{T [x(n)]} = x(n)



Invertibility of Linear Time-Invariant Systems

LTI system T has impulse response h(n); the inverse system T −1

has impulse response hI(n).

w(n) = hI(n)⊗ h(n)⊗ x(n) = x(n)

h(n)⊗ hI(n) = δ(n)

H(z)HI(z) = 1

Therefore,

HI(z) =
1

H(z)

Invertibility of Linear Time-Invariant Systems

LTI system T has impulse response h(n); the inverse system T −1

has impulse response hI(n).

HI(z) =
1

H(z)

If H(z) has a rational system function

H(z) =
B(z)

A(z)

then

HI(z) =
A(z)

B(z)

▶ The zeros of H(z) become the poles of the inverse system,
and vice versa.

▶ If H(z) is an FIR system, then HI(z) is an all-pole system,
and vice versa.



Invertibility of Linear Time-Invariant Systems

h(n)⊗ hI(n) = δ(n)

We assume that the system and its inverse are causal. Then this
equation simplifies to

n∑
k=0

h(k)hI(n− k) = δ(n)

For n = 0, hI(0) = 1/h(0).

For n ≥ 1, hI(n) can be obtained recursively

hI(n) = −
n∑

k=1

h(k)hI(n− k)

h(0)
, n ≥ 1

Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

e.g.,

H1(z) = 1 +
1

2
z−1

H2(z) =
1

2
+ z−1

[Q: What are h1(n) and h2(n)? A: h1(n) = δ(n) + 1
2δ(n− 1)]

|H1(ω)| = |H2(ω)| =
√

5

4
+ cosω

∠H1(ω) = −ω + tan−1 sinω

0.5 + cosω

∠H2(ω) = −ω + tan−1 sinω

2 + cosω



Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

∠H1(ω) = −ω + tan−1 sinω

0.5 + cosω

∠H2(ω) = −ω + tan−1 sinω

2 + cosω

Min-phase: ∠H(π)− ∠H(0) = 0; Max-phase:
∠H(π)− ∠H(0) = π.
Note: For real-valued impulse responses, ∠H(ej0) = ∠H(0) = 0.

Minimum-Phase, Maximum-Phase Systems

H(z) =
b0

∏M
m=1(1− zmz−1)

a0
∏N

n=1(1− pnz−1)

The phase response of a rational H(z) can be written as

∠H(ω) = ∠
b0
a0

+
M∑

m=1

∠(1− zme−jω)−
N∑

n=1

∠(1− pne
−jω)

= ∠
b0
a0

+
M∑

m=1

[
∠(ejω − zm)− ∠ejω

]
−

N∑
n=1

∠(1− pne
−jω)



Minimum-Phase, Maximum-Phase Systems

Illustrate graphically: (Better explained if zeros are real.)

Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

For an FIR system that has M zeros,

H(ω) = b0(1− z1e
−jω)(1− z2e

−jω) · · · (1− zMe−jω)

▶ When all zeros are inside the unit circle, Minimum-phase:
∠H(π)− ∠H(0) = 0;

▶ When all zeros are outside the unit circle, Maximum-phase:
∠H(π)− ∠H(0) = Mπ.

If the FIR system with M zeros has some of its zeros inside the
unit circle and the remaining zeros outside the unit circle, it is
called a mixed-phase system or a nonminimum-phase system.



Minimum-Phase, Maximum-Phase Systems

▶ A system is called a minimum-phase system if it has the
minimum group delay of the set of systems that have the
same magnitude response.

▶ A system is called a maximum-phase system if it has the
maximum group delay of the set of systems that have the
same magnitude response.

Minimum-Phase, Maximum-Phase Systems

A zero a = |a|ejθa contributes the factor 1− az−1 to the transfer
function H(z). Its phase contribution is

ϕa(ω) = ∠(1− |a|e−j(ω−θa))

= ∠(1− |a| cos(ω − θa) + j|a| sin(ω − θa))

= arctan

(
|a| sin(ω − θa)

1− |a| cos(ω − θa)

)
It follows that the contribution to the group delay is

τg(ω) = − ∂

∂ω
∠(1− ae−jω) = · · · = |a| − cos(ω − θa)

|a|−1 + |a| − 2 cos(ω − θa)

If |a| < 1, the numerator gets larger if we replace |a| with |a|−1.



Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

Since the derivative of the phase characteristic of the system is a
measure of the time delay that signal frequency components
undergo in passing through the system,

▶ a minimum-phase characteristic implies a minimum delay
function;

▶ a maximum-phase characteristic implies that the delay
characteristic is also maximum.

Because
|H(ω)|2 = H(z)H(z−1)|z=ejω ,

if we replace a zero zk of the system by its inverse 1/zk, the
magnitude characteristic of the system does not change.

Place zeros inside unit circle for minimum phase.

Minimum Phase in Time-Domain

For all causal and stable systems that have the same magnitude
response, the minimum phase system has its energy concentrated
near the start of the impulse response h(n). i.e., it minimizes the
following function which we can think of as the delay of energy in
the impulse response.

∞∑
n=m

|h(n)|2, ∀m ∈ Z+

▶ In the set of equal-magnitude-response systems, the minimum
phase system has minimum energy delay.

▶ In the set of equal-magnitude-response systems, the maximum
phase system has maximum energy delay.



Minimum-Phase, Maximum-Phase, and Mixed-Phase
Systems

Extend to IIR systems that have rational system functions

H(z) =
B(z)

A(z)

It is minimum-phase, if all its poles and zeros are inside the unit
circle.

For a stable and causal system, the system is maximum phase if all
the zeros are outside the unit circle.

▶ A stable pole-zero system that is minimum phase has a stable
inverse which is also minimum phase. Why?

▶ Maximum-phase systems and mixed-phase systems result in
unstable inverse systems.

Decomposition of Nonminimum-Phase Pole-Zero Systems

Any nonminimum-phase pole-zero system can be expressed as

H(z) = Hmin(z)Hap(z)

H(z) is causal and stable.

B(z) = B1(z)B2(z), where B1(z) has all its roots inside the unit
circle, B2(z) has all its roots outside the unit circle.

Then,

Hmin(z) =
B1(z)B2(z

−1)

A(z)

Hap(z) =
B2(z)

B2(z−1)

Hap(z) is a stable, all-pass, maximum-phase system.

Group delay: τg(ω) = τmin
g (ω) + τapg (ω)



System Identification and Deconvolution

y(n) = h(n)⊗ x(n)

H(z) =
Y (z)

X(z)

The system can be identified uniquely if it is known causal.

Alternatively, if the system is causal,

y(n) =
n∑

k=0

h(k)x(n− k), n ≥ 0

hence, recursively, we have

h(0) =
y(0)

x(0)

h(n) =
y(n)−

∑n−1
k=0 h(k)x(n− k)

x(0)
, n ≥ 1

System Identification and Deconvolution

The crosscorrelation method is an effective and practical method
for system identification.

ryx(m) =

∞∑
k=0

h(k)rxx(m− k) = h(m)⊗ rxx(m)

Syx(ω) = H(ω)Sxx(ω) = H(ω)|X(ω)|2

Therefore,

H(ω) =
Syx(ω)

Sxx(ω)
=

Syx(ω)

|X(ω)|2
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