ELC 4351: Digital Signal Processing

Linear Optimal Filter

Prof. Liang Dong

SCHOOL OF ENGINEERING \& COMPUTER SCIENCE
Department of Electrical \& Computer Engineering

Linear Optimal Filter

- Linear Estimator
- Error Criterion
- Linear Minimum Mean Square Error (MMSE) Estimation

1. Error Performance Surface
2. Derivation of Linear MMSE Estimator
3. Principle-Component Analysis
4. Orthogonality Principle

Figure: Block diagram of the linear estimator.

Linear Estimator: $\hat{y}=c_{1}^{*} x_{1}+c_{2}^{*} x_{2}+\cdots+c_{M}^{*} x_{M}=\sum_{k=1}^{M} c_{k}^{*} x_{k}$

Error Criterion

Estimation Error: $e=\hat{y}-y$

Error Criterion:

$$
\begin{gathered}
|e|, \quad \mathrm{E}[|e|]=\operatorname{avg}[|e|] \\
|e|^{2}=e e^{*}, \quad \mathrm{E}\left[|e|^{2}\right]=\operatorname{avg}\left[|e|^{2}\right]
\end{gathered}
$$

- Mean square error (MSE) Criterion:

$$
P=\mathrm{E}\left[|e|^{2}\right]
$$

\Rightarrow Linear Estimator: $\hat{y}=\sum_{k=1}^{M} c_{k}^{*} x_{k}=\mathbf{c}^{H} \mathbf{x}$
where, input data vector: $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{M}\right]^{T}$, and parameter/coefficient vector: $\mathbf{c}=\left[c_{1}, c_{2}, \ldots, c_{M}\right]^{T}$.

Random variables are assumed to have zero-mean.

Linear Mean Square Error Estimation

- Linear Estimator: $\hat{y}=\sum_{k=1}^{M} c_{k}^{*} x_{k}=\mathbf{c}^{H} \mathbf{x}$
- Minimization of the MSE $P=\mathrm{E}\left[|\hat{y}-y|^{2}\right]$ with respect to parameters \mathbf{c} leads to a linear estimator \mathbf{c}_{0}.
\Rightarrow The parameters \mathbf{c}_{0} is the linear MMSE estimator and \hat{y}_{0} the LMMSE estimate.

Error Performance Surface

- Express the MSE P as a function of the parameter vector \mathbf{c}.

$$
\begin{aligned}
P(\mathbf{c}) & =\mathrm{E}\left[|e|^{2}\right] \\
& =\mathrm{E}\left[\left(y-\mathbf{c}^{H} \mathbf{x}\right)\left(y-\mathbf{c}^{H} \mathbf{x}\right)^{*}\right] \\
& =\mathrm{E}\left[\left(y-\mathbf{c}^{H} \mathbf{x}\right)\left(y^{*}-\mathbf{x}^{H} \mathbf{c}\right)\right] \\
& =\mathrm{E}\left[y y^{*}\right]-\mathrm{E}\left[\mathbf{c}^{H} \mathbf{x} y^{*}\right]-\mathrm{E}\left[y \mathbf{x}^{H} \mathbf{c}\right]+\mathrm{E}\left[\mathbf{c}^{H} \mathbf{x} \mathbf{x}^{H} \mathbf{c}\right] \\
& =\mathrm{E}\left[|y|^{2}\right]-\mathbf{c}^{H} \mathrm{E}\left[\mathbf{x} y^{*}\right]-\mathrm{E}\left[y \mathbf{x}^{H}\right] \mathbf{c}+\mathbf{c}^{H} \mathrm{E}\left[\mathbf{x x}^{H}\right] \mathbf{c}
\end{aligned}
$$

Power of the desired output: $P_{y}=\mathrm{E}\left[|y|^{2}\right]$.

- Correlation matrix \mathbf{R} of data vector \mathbf{x} is

$$
\mathbf{R}=\mathrm{E}\left[\mathbf{x x}^{H}\right]
$$

\mathbf{R} is Hermitian and nonnegtive definite. $\mathbf{R}^{H}=\mathbf{R}$.
Cross-correlation vector between data vector \mathbf{x} and the desired output y is

$$
\mathbf{d}=\mathrm{E}\left[\mathbf{x} y^{*}\right]
$$

Error Performance Surface

Express the MSE P as a function of the parameter vector \mathbf{c}

$$
\begin{aligned}
P(\mathbf{c}) & =\mathrm{E}\left[|y|^{2}\right]-\mathbf{c}^{H} \mathrm{E}\left[\mathbf{x} y^{*}\right]-\mathrm{E}\left[y \mathbf{x}^{H}\right] \mathbf{c}+\mathbf{c}^{H} \mathrm{E}\left[\mathbf{x} \mathbf{x}^{H}\right] \mathbf{c} \\
& =P_{y}-\mathbf{c}^{H} \mathbf{d}-\underbrace{\mathbf{d}^{H} \mathbf{c}}_{\text {linear function of } \mathbf{c}}+\underbrace{\mathbf{c}^{H} \mathbf{R} \mathbf{c}}_{\text {quadratic function of } \mathbf{c}}
\end{aligned}
$$

\Rightarrow If \mathbf{R} is positive definite ($\mathbf{x}^{H} \mathbf{R x}>0, \forall \mathbf{x} \neq \mathbf{0}$), the quadratic function is bowl-shaped and has a unique minimum.

The minimum of the error performance surface corresponds to the optimum parameters \mathbf{c}_{0}.

Figure: Error performance surface of quadratic function $\mathbf{c}^{H} \mathbf{R c}$.

Figure: Error performance contour of quadratic function $\mathbf{c}^{H} \mathbf{R c}$.

Derivation of the Linear MMSE Estimator

Error performance surface (reconstruct)

$$
\begin{aligned}
P(\mathbf{c})= & P_{y}+(\mathbf{R c}-\mathbf{d})^{H} \mathbf{R}^{-1}(\mathbf{R} \mathbf{c}-\mathbf{d})-\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{d} \\
= & P_{y}+\left(\mathbf{c}^{H} \mathbf{R}^{H}-\mathbf{d}^{H}\right) \mathbf{R}^{-1}(\mathbf{R c}-\mathbf{d})-\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{d} \\
= & P_{y}+\mathbf{c}^{H} \mathbf{R}^{H} \mathbf{R}^{-1} \mathbf{R} \mathbf{c}-\mathbf{c}^{H} \mathbf{R}^{H} \mathbf{R}^{-1} \mathbf{d}-\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{R c} \\
& +\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{d}-\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{d} \\
= & P_{y}+\mathbf{c}^{H} \mathbf{R} \mathbf{c}-\mathbf{c}^{H} \mathbf{d}-\mathbf{d}^{H} \mathbf{c}
\end{aligned}
$$

Indeed, $P(\mathbf{c})=\underbrace{P_{y}-\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{d}}_{\text {independent of } \mathbf{c}}+\underbrace{(\mathbf{R c}-\mathbf{d})^{H} \mathbf{R}^{-1}(\mathbf{R c}-\mathbf{d})}_{\text {quadratic function of }(\mathbf{R c}-\mathbf{d})}$

Derivation of the Linear MMSE Estimator

- Error performance surface,

$$
P(\mathbf{c})=\underbrace{P_{y}-\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{d}}_{\text {independent of } \mathbf{c}}+\underbrace{(\mathbf{R c}-\mathbf{d})^{H} \mathbf{R}^{-1}(\mathbf{R c}-\mathbf{d})}_{\text {quadratic function of }(\mathbf{R c}-\mathbf{d})}
$$

\mathbf{R}^{-1} is also a positive definite matrix. That is,

$$
\mathbf{x}^{H} \mathbf{R}^{-1} \mathbf{x}>0, \quad \forall \mathbf{x} \neq \mathbf{0}
$$

The minimum is achieved $\mathbf{x}^{H} \mathbf{R}^{-1} \mathbf{x}=0$ when $\mathbf{x}=\mathbf{0}$ (zero vector).

Therefore, the minimum of the error performance surface is reached when $\mathbf{R c}-\mathbf{d}=\mathbf{0}$.

$$
\mathbf{R c}_{0}=\mathbf{d}
$$

Derivation of the Linear MMSE Estimator

- Error performance surface,

$$
P(\mathbf{c})=\underbrace{P_{y}-\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{d}}_{\text {independent of } \mathbf{c}}+\underbrace{(\mathbf{R c}-\mathbf{d})^{H} \mathbf{R}^{-1}(\mathbf{R c}-\mathbf{d})}_{\text {quadratic function of }(\mathbf{R c}-\mathbf{d})}
$$

The minimum of the error performance surface is reached when $\mathbf{R c}-\mathbf{d}=\mathbf{0}$.

Normal Equation

$$
\mathbf{R c}_{0}=\mathbf{d}
$$

\Rightarrow The linear MMSE estimator \mathbf{c}_{0} is

$$
\mathbf{c}_{0}=\mathbf{R}^{-1} \mathbf{d}
$$

The MMSE is $P\left(\mathbf{c}_{0}\right)=P_{y}-\mathbf{d}^{H} \mathbf{R}^{-1} \mathbf{d}=P_{y}-\mathbf{d}^{H} \mathbf{c}_{0}$
\Rightarrow If $\tilde{\mathbf{c}}$ is a deviation from the optimum vector \mathbf{c}_{0}, i.e., $\mathbf{c}=\mathbf{c}_{0}+\tilde{\mathbf{c}}$, we have

$$
P(\mathbf{c})=P\left(\mathbf{c}_{0}+\tilde{\mathbf{c}}\right)=P\left(\mathbf{c}_{0}\right)+\underbrace{\tilde{\mathbf{c}}^{H} \mathbf{R} \tilde{\mathbf{c}}}_{\text {positive }}
$$

Excess MSE $=\tilde{\mathbf{c}}^{H} \mathbf{R} \tilde{\mathbf{c}}$

Principle-Component Analysis of Linear MMSE Estimator

Eigen-decomposition of correlation matrix \mathbf{R}

$$
\mathbf{R}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{H}
$$

where

$$
\begin{aligned}
\mathbf{Q} & =\left[\mathbf{q}_{1} \mathbf{q}_{2} \cdots \mathbf{q}_{M}\right] \\
\boldsymbol{\Lambda} & =\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}\right\}
\end{aligned}
$$

${ }^{\nabla} \mathbf{q}_{k}$ and λ_{k} are the k th eigenvector and the corresponding eigenvalue of matrix \mathbf{R}.

- Decomposition:

$$
\mathbf{R}=\lambda_{1} \mathbf{q}_{1} \mathbf{q}_{1}^{H}+\lambda_{2} \mathbf{q}_{2} \mathbf{q}_{2}^{H}+\ldots+\lambda_{M} \mathbf{q}_{M} \mathbf{q}_{M}^{H}=\sum_{k=1}^{M} \lambda_{k} \mathbf{q}_{k} \mathbf{q}_{k}^{H}
$$

Each vector \mathbf{q}_{k} has a length of one (normalized)

$$
\begin{gathered}
\left\|\mathbf{q}_{k}\right\|_{2}=\sqrt{\mathbf{q}_{k}^{H} \mathbf{q}_{k}}=1, \quad \forall k \\
\left\|\mathbf{q}_{k}\right\|_{2}^{2}=\mathbf{q}_{k}^{H} \mathbf{q}_{k}=1, \quad \forall k
\end{gathered}
$$

\mathbf{q}_{k} 's are orthogonal to each other

$$
\mathbf{q}_{k}^{H} \mathbf{q}_{l}=0, \quad k \neq l
$$

Therefore, \mathbf{Q} is a unitary matrix.

$$
\begin{gathered}
\mathbf{Q}^{H} \mathbf{Q}=\mathbf{Q Q}^{H}=\mathbf{I} \\
\Longrightarrow \mathbf{Q}^{-1}=\mathbf{Q}^{H}
\end{gathered}
$$

Correlation matrix \mathbf{R} is positive definite and Hermitian $\mathbf{R}^{H}=\mathbf{R}$. The eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{M}$ are real and positive.

Principle-Component Analysis

Rotation of a vector (coordinate transformation)

$$
\mathbf{c}_{0}^{\prime}=\mathbf{Q}^{H} \mathbf{c}_{\mathbf{0}} \quad \text { or } \quad \mathbf{c}_{0}=\mathbf{Q c}_{0}^{\prime}
$$

Let us check the (squared) length of the vector

$$
\left\|c_{0}\right\|^{2}=\left(\mathbf{Q c}_{0}^{\prime}\right)^{H} \mathbf{Q} \mathbf{c}_{0}^{\prime}=\mathbf{c}_{0}^{\prime H} \mathbf{Q}^{H} \mathbf{Q} \mathbf{c}_{0}^{\prime}=\left\|\mathbf{c}_{0}^{\prime}\right\|^{2}
$$

This means that he transformation only changes the direction of the vector but not its length.

We can also rotate vector \mathbf{d}

$$
\mathbf{d}^{\prime}=\mathbf{Q}^{H} \mathbf{d} \quad \text { or } \quad \mathbf{d}=\mathbf{Q d}^{\prime}
$$

Principle-Component Analysis

- The Normal Equation

$$
\mathbf{R c}_{0}=\mathbf{d}
$$

- Substituting $\mathbf{R}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{H}$ in the normal equation, we have

$$
\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{H} \mathbf{c}_{0}=\mathbf{d}
$$

- It follow that (left multiplying with \mathbf{Q}^{H})

$$
\begin{aligned}
\Lambda \mathbf{Q}^{H} \mathbf{c}_{0} & =\mathbf{Q}^{H} \mathbf{d} \\
\boldsymbol{\Lambda} \mathbf{c}_{0}^{\prime} & =\mathbf{d}^{\prime}
\end{aligned}
$$

where $\mathbf{d}^{\prime}=\mathbf{Q}^{H} \mathbf{d}$.

Principle-Component Analysis

- This is a "decoupled" Normal Equation

$$
\boldsymbol{\Lambda} \mathbf{c}_{0}^{\prime}=\mathbf{d}^{\prime}
$$

- Because Λ is diagonal, it can be written into a set of M equations

$$
\lambda_{i} c_{0, i}^{\prime}=d_{i}^{\prime}, \quad 1 \leq i \leq M
$$

- A set of M first-order equations. If $\lambda_{i} \neq 0$, we have

$$
c_{0, i}^{\prime}=\frac{d_{i}^{\prime}}{\lambda_{i}}, \quad 1 \leq i \leq M
$$

\triangleright The minimum mean square error (MMSE) becomes

$$
\begin{aligned}
P_{0} & =P_{y}-\mathbf{d}^{H} \mathbf{c}_{0} \\
& =P_{y}-\left(\mathbf{Q d}^{\prime}\right)^{H} \mathbf{Q} \mathbf{c}_{0}^{\prime} \\
& =P_{y}-\mathbf{d}^{\prime H} \mathbf{c}_{0}^{\prime} \\
& =P_{y}-\sum_{i=1}^{M} d_{i}^{\prime *} c_{0, i}^{\prime} \\
& =P_{y}-\sum_{i=1}^{M} \frac{\left|d_{i}^{\prime}\right|^{2}}{\lambda_{i}}
\end{aligned}
$$

Principle-Component Analysis

The excess MSE becomes

$$
\begin{aligned}
\Delta P & =\tilde{\mathbf{c}}^{H} \mathbf{R} \tilde{\mathbf{c}} \\
& =\tilde{\mathbf{c}}^{H} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{H} \tilde{\mathbf{c}} \\
& =\tilde{\mathbf{v}}^{H} \boldsymbol{\Lambda} \tilde{\mathbf{v}} \\
& =\sum_{i=1}^{M} \lambda_{i}\left|\tilde{v}_{i}\right|^{2}
\end{aligned}
$$

where $\tilde{\mathbf{v}}=\mathbf{Q}^{H} \tilde{\mathbf{c}}$.

Figure: Contours of principle-component axes for excess MSE.

The MMSE estimator is

$$
\begin{aligned}
\mathbf{c}_{0} & =\mathbf{R}^{-1} \mathbf{d} \\
& =\mathbf{Q} \boldsymbol{\Lambda}^{-1} \mathbf{Q}^{H} \mathbf{d} \\
& =\sum_{i=1}^{M} \frac{\mathbf{q}_{i}^{H} \mathbf{d}}{\lambda_{i}} \mathbf{q}_{i} \\
& =\sum_{i=1}^{M} \frac{d_{i}^{\prime}}{\lambda_{i}} \mathbf{q}_{i}
\end{aligned}
$$

The MMSE estimate is

$$
\begin{aligned}
\hat{y}_{0} & =\mathbf{c}_{0}^{H} \mathbf{x} \\
& =\sum_{i=1}^{M} \frac{d_{i}^{\prime}}{\lambda_{i}}\left(\mathbf{q}_{i}^{H} \mathbf{x}\right)
\end{aligned}
$$

Principle-Component Analysis

- The MMSE estimate is

$$
\hat{y}_{0}=\sum_{i=1}^{M} \frac{d_{i}^{\prime}}{\lambda_{i}}\left(\mathbf{q}_{i}^{H} \mathbf{x}\right)
$$

Figure: Principle-components representation of the Optimal linear estimator.

Principle of Orthogonality

- The correlation of two (zero-mean) random variables is equivalent to the inner product of two vectors in the vector space (Hilbert space).

$$
\langle x, y\rangle=\mathrm{E}\left[x y^{*}\right]
$$

The squared length of a vector is

$$
\|x\|^{2}=\langle x, x\rangle=\mathrm{E}\left[|x|^{2}\right]
$$

Therefore, by the Cauchy-Schwartz inequality, we have

$$
|\langle x, y\rangle|^{2} \leq\|x\|\|y\|
$$

The two random variables are orthogonal $x \perp y$, if

$$
\langle x, y\rangle=\mathrm{E}\left[x y^{*}\right]=0 \Longrightarrow \text { uncorrelated }
$$

Principle of Orthogonality

Intuitive interpretation for MMSE

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{x} e_{0}^{*}\right] & =\mathrm{E}\left[\mathbf{x}\left(y^{*}-\mathbf{x}^{H} \mathbf{c}_{0}\right)\right] \\
& =\mathrm{E}\left[\mathbf{x} y^{*}\right]-\mathrm{E}\left[\mathbf{x x}^{H}\right] \mathbf{c}_{0} \\
& =\mathbf{d}-\mathbf{R} \mathbf{c}_{0} \\
& =\mathbf{0}
\end{aligned}
$$

Orthogonality Principle of MMSE Estimation

$$
\mathrm{E}\left[x_{m} e_{0}^{*}\right]=0, \quad \text { for } 1 \leq m \leq M
$$

The estimation error is orthogonal to the data used for the estimation.

Figure: Illustration of the orthogonality principle. $x_{m} \perp e_{0}, m=1,2$.

- Applying the Pythagorean theorem, we have

$$
\|y\|^{2}=\left\|\hat{y}_{0}\right\|^{2}+\left\|e_{0}\right\|^{2} \quad \text { or } \quad \mathrm{E}\left[|y|^{2}\right]=\mathrm{E}\left[\left|\hat{y}_{0}\right|^{2}\right]+\mathrm{E}\left[\left|e_{0}\right|^{2}\right]
$$

