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Linear Estimator

Figure: Block diagram of the linear estimator.

Linear Estimator: ŷ = c∗
1x1 + c∗

2x2 + · · · + c∗
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kxk

Error Criterion

▶ Estimation Error: e = ŷ − y

▶ Error Criterion:
|e|, E[|e|] = avg[|e|]

|e|2 = ee∗, E[|e|2] = avg[|e|2]

▶ Mean square error (MSE) Criterion:

P = E[|e|2]



Linear Mean Square Error Estimation

▶ Linear Estimator: ŷ =
∑M

k=1 c∗
kxk = cHx

where, input data vector: x = [x1, x2, . . . , xM ]T ,
and parameter/coefficient vector: c = [c1, c2, . . . , cM ]T .

▶ Random variables are assumed to have zero-mean.

Linear Mean Square Error Estimation

▶ Linear Estimator: ŷ =
∑M

k=1 c∗
kxk = cHx

▶ Minimization of the MSE P = E[|ŷ − y|2] with respect to
parameters c leads to a linear estimator c0.

▶ The parameters c0 is the linear MMSE estimator and ŷ0 the
LMMSE estimate.



Error Performance Surface
▶ Express the MSE P as a function of the parameter vector c.

P (c) = E[|e|2]
= E

[
(y − cHx)(y − cHx)∗

]
= E

[
(y − cHx)(y∗ − xHc)

]
= E[yy∗] − E[cHxy∗] − E[yxHc] + E[cHxxHc]
= E[|y|2] − cHE[xy∗] − E[yxH ]c + cHE[xxH ]c

▶ Power of the desired output: Py = E[|y|2].
▶ Correlation matrix R of data vector x is

R = E[xxH ]
R is Hermitian and nonnegtive definite. RH = R.

▶ Cross-correlation vector between data vector x and the
desired output y is

d = E[xy∗]

Error Performance Surface

▶ Express the MSE P as a function of the parameter vector c.

P (c) = E[|y|2] − cHE[xy∗] − E[yxH ]c + cHE[xxH ]c
= Py − cHd − dHc︸︷︷︸

linear function of c

+ cHRc︸ ︷︷ ︸
quadratic function of c

▶ If R is positive definite (xHRx > 0, ∀x ̸= 0), the quadratic
function is bowl-shaped and has a unique minimum.

▶ The minimum of the error performance surface corresponds to
the optimum parameters c0.



Error Performance Surface

Figure: Error performance surface of
quadratic function cHRc.

Figure: Error performance contour of
quadratic function cHRc.

Derivation of the Linear MMSE Estimator

▶ Error performance surface (reconstruct)

P (c) = Py + (Rc − d)HR−1(Rc − d) − dHR−1d
= Py + (cHRH − dH)R−1(Rc − d) − dHR−1d
= Py + cHRHR−1Rc − cHRHR−1d − dHR−1Rc

+dHR−1d − dHR−1d
= Py + cHRc − cHd − dHc

▶ Indeed, P (c) = Py − dHR−1d︸ ︷︷ ︸
independent of c

+ (Rc − d)HR−1(Rc − d)︸ ︷︷ ︸
quadratic function of (Rc−d)



Derivation of the Linear MMSE Estimator

▶ Error performance surface,

P (c) = Py − dHR−1d︸ ︷︷ ︸
independent of c

+ (Rc − d)HR−1(Rc − d)︸ ︷︷ ︸
quadratic function of (Rc−d)

▶ R−1 is also a positive definite matrix. That is,

xHR−1x > 0, ∀x ̸= 0

The minimum is achieved xHR−1x = 0 when x = 0 (zero
vector).

▶ Therefore, the minimum of the error performance surface is
reached when Rc − d = 0.

Rc0 = d

Derivation of the Linear MMSE Estimator

▶ Error performance surface,

P (c) = Py − dHR−1d︸ ︷︷ ︸
independent of c

+ (Rc − d)HR−1(Rc − d)︸ ︷︷ ︸
quadratic function of (Rc−d)

▶ The minimum of the error performance surface is reached
when Rc − d = 0.

Normal Equation

Rc0 = d

▶ The linear MMSE estimator c0 is

c0 = R−1d

▶ The MMSE is P (c0) = Py − dHR−1d = Py − dHc0



Excess MSE

▶ If c̃ is a deviation from the optimum vector c0, i.e.,
c = c0 + c̃, we have

P (c) = P (c0 + c̃) = P (c0) + c̃HRc̃︸ ︷︷ ︸
positive

▶ Excess MSE = c̃HRc̃

Principle-Component Analysis of Linear MMSE Estimator

▶ Eigen-decomposition of correlation matrix R

R = QΛQH

where

Q = [q1 q2 · · · qM ]
Λ = diag{λ1, λ2, . . . , λM }

▶ qk and λk are the kth eigenvector and the corresponding
eigenvalue of matrix R.

▶ Decomposition:

R = λ1q1qH
1 + λ2q2qH

2 + . . . + λM qM qH
M =

M∑
k=1

λkqkqH
k .



Principle-Component Analysis

▶ Each vector qk has a length of one (normalized)

∥qk∥2 =
√

qH
k qk = 1, ∀k

∥qk∥2
2 = qH

k qk = 1, ∀k

▶ qk’s are orthogonal to each other

qH
k ql = 0, k ̸= l

▶ Therefore, Q is a unitary matrix.

QHQ = QQH = I

=⇒ Q−1 = QH

▶ Correlation matrix R is positive definite and Hermitian
RH = R. The eigenvalues {λk}M

k=1 are real and positive.

Principle-Component Analysis

▶ Rotation of a vector (coordinate transformation)

c′
0 = QHc0 or c0 = Qc′

0

▶ Let us check the (squared) length of the vector

∥c0∥2 = (Qc′
0)HQc′

0 = c′H
0 QHQc′

0 = ∥c′
0∥2

This means that he transformation only changes the direction
of the vector but not its length.

▶ We can also rotate vector d

d′ = QHd or d = Qd′



Principle-Component Analysis

▶ The Normal Equation
Rc0 = d

▶ Substituting R = QΛQH in the normal equation, we have

QΛQHc0 = d

▶ It follow that (left multiplying with QH)

ΛQHc0 = QHd

Λc′
0 = d′

where d′ = QHd.

Principle-Component Analysis

▶ This is a “decoupled” Normal Equation

Λc′
0 = d′

▶ Because Λ is diagonal, it can be written into a set of M
equations

λic
′
0,i = d′

i, 1 ≤ i ≤ M

▶ A set of M first-order equations. If λi ̸= 0, we have

c′
0,i = d′

i

λi
, 1 ≤ i ≤ M



Principle-Component Analysis

▶ The minimum mean square error (MMSE) becomes

P0 = Py − dHc0

= Py − (Qd′)HQc′
0

= Py − d′Hc′
0

= Py −
M∑

i=1
d′∗

i c′
0,i

= Py −
M∑

i=1

|d′
i|2

λi

Principle-Component Analysis

▶ The excess MSE becomes

∆P = c̃HRc̃
= c̃HQΛQH c̃
= ṽHΛṽ

=
M∑

i=1
λi|ṽi|2

where ṽ = QH c̃.
Figure: Contours of
principle-component axes for excess
MSE.



Principle-Component Analysis

▶ The MMSE estimator is

c0 = R−1d
= QΛ−1QHd

=
M∑

i=1

qH
i d
λi

qi

=
M∑

i=1

d′
i

λi
qi

▶ The MMSE estimate is

ŷ0 = cH
0 x

=
M∑

i=1

d′
i

λi
(qH

i x)

Principle-Component Analysis
▶ The MMSE estimate is

ŷ0 =
M∑

i=1

d′
i

λi
(qH

i x)

Figure: Principle-components representation of the Optimal linear
estimator.



Principle of Orthogonality

▶ The correlation of two (zero-mean) random variables is
equivalent to the inner product of two vectors in the vector
space (Hilbert space).

⟨x, y⟩ = E[xy∗]

▶ The squared length of a vector is

∥x∥2 = ⟨x, x⟩ = E[|x|2]

▶ Therefore, by the Cauchy-Schwartz inequality, we have

|⟨x, y⟩|2 ≤ ∥x∥∥y∥

▶ The two random variables are orthogonal x ⊥ y, if

⟨x, y⟩ = E[xy∗] = 0 =⇒ uncorrelated

Principle of Orthogonality

▶ Intuitive interpretation for MMSE

E[xe∗
0] = E[x(y∗ − xHc0)]

= E[xy∗] − E[xxH ]c0

= d − Rc0

= 0

Orthogonality Principle of MMSE Estimation

E[xme∗
0] = 0, for 1 ≤ m ≤ M

The estimation error is orthogonal to the data used for the
estimation.



Principle of Orthogonality

Figure: Illustration of the orthogonality principle. xm ⊥ e0, m = 1, 2.

▶ Applying the Pythagorean theorem, we have

∥y∥2 = ∥ŷ0∥2 + ∥e0∥2 or E[|y|2] = E[|ŷ0|2] + E[|e0|2]


