ELC 4351: Digital Signal Processing

Filter Design

Prof. Liang Dong

SCHOOL OF ENGINEERING \& COMPUTER SCIENCE
Department of Electrical \& Computer Engineering

Filter Design Approach

Approach 1:

Approach 2:

Here, IIR filter design is treated as magnitude-only design.

For filter design that considers both the magnitude and phase responses, advanced optimization tools are required.

Figure: Analog lowpass filter.

LPF Specifications

The LPF specifications on the magnitude-squared response is

$$
\begin{aligned}
\frac{1}{1+\epsilon^{2}} & \leq\left|H_{a}(j \Omega)\right|^{2} \leq 1, \quad|\Omega| \leq \Omega_{p} \\
0 & \leq\left|H_{a}(j \Omega)\right|^{2} \leq \frac{1}{A^{2}}, \quad \Omega_{s} \leq|\Omega|
\end{aligned}
$$

where ϵ is the passband ripple parameter, Ω_{p} is the passband cutoff frequency in rad/sec, A is the stopband attenuation parameter, and Ω_{s} is the stopband cutoff frequency in rad $/ \mathrm{sec}$.

Therefore, $\left|H_{a}(j \Omega)\right|^{2}$ satisfies

$$
\begin{aligned}
\left|H_{a}(j \Omega)\right|^{2} & =1, \quad|\Omega|=\Omega_{p} \\
\left|H_{a}(j \Omega)\right|^{2} & =\frac{1}{A^{2}}, \quad|\Omega|=\Omega_{s}
\end{aligned}
$$

LPF Specifications

The parameters ϵ and A are related to parameters R_{p} and A_{s} of the dB scale as

$$
\begin{gathered}
R_{p}=-10 \log _{10} \frac{1}{1+\epsilon^{2}} \Longrightarrow \epsilon=\sqrt{10^{R_{p} / 10}-1} \\
A_{s}=-10 \log _{10} \frac{1}{A^{2}} \Longrightarrow A=10^{A_{s} / 20}
\end{gathered}
$$

The ripples, δ_{1} and δ_{2}, of the absolute scale are related to ϵ and A by

$$
\begin{gathered}
\frac{1-\delta_{1}}{1+\delta_{1}}=\sqrt{\frac{1}{1+\epsilon^{2}}} \Longrightarrow \epsilon=\frac{2 \sqrt{\delta_{1}}}{1-\delta_{1}} \\
\frac{\delta_{2}}{1+\delta_{1}}=\frac{1}{A} \Longrightarrow A=\frac{1+\delta_{1}}{\delta_{2}}
\end{gathered}
$$

Properties of Magnitude-Squared Response

For the s-domain system function $H_{a}(s)$, we have

$$
\begin{aligned}
\left|H_{a}(j \Omega)\right|^{2} & =H_{a}(j \Omega) H_{a}^{*}(j \Omega) \\
& =H_{a}(j \Omega) H_{a}(-j \Omega) \\
& =\left.H_{a}(s) H_{a}(-s)\right|_{s=j \Omega}
\end{aligned}
$$

- The poles and zeros of the magnitude-squared response are distributed in a mirror-image symmetry with respect to the $j \Omega$ axis.

For real filters, poles and zeros occur in complex conjugate pairs.

Figure: The pole-zero pattern of $H_{a}(s) H_{a}(-s)$.

- Choose left-half poles for $H_{a}(s) \Longrightarrow$ Causal and Stable filter.
- Choose left-half or on- $j \Omega$-axis zeros for $H_{a}(s) \Longrightarrow$ Minimum-phase filter.

Prototype Analog Filters

- Butterworth Lowpass Filter

Its magnitude response is flat in both passband and stopband.
The magnitude-squared response of the N th-order lowpass
filter is

$$
\left|H_{a}(j \Omega)\right|^{2}=\frac{1}{1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 N}}
$$

where Ω_{c} is the cutoff frequency in rad $/ \mathrm{sec}$.

At $\Omega=0,\left|H_{a}(j 0)\right|^{2}=1$ for all N.

- At $\Omega=\Omega_{c},\left|H_{a}\left(j \Omega_{c}\right)\right|^{2}=0.5$ for all N. 3dB attenuation at Ω_{c}.
$\Rightarrow\left|H_{a}(j \Omega)\right|^{2}$ is a monotonically decreasing function of Ω.
- $\left|H_{a}(j \Omega)\right|^{2}$ approaches an ideal LPF as $N \rightarrow \infty$.

Butterworth Lowpass Filter

\Rightarrow The squared system function is

$$
\begin{aligned}
H_{a}(s) H_{a}(-s) & =\left.\left|H_{a}(j \Omega)\right|^{2}\right|_{\Omega=\frac{s}{j}}=\frac{1}{1+\left(\frac{s}{j \Omega_{c}}\right)^{2 N}} \\
& =\frac{(j \Omega)^{2 N}}{s^{2 N}+\left(j \Omega_{c}\right)^{2 N}}
\end{aligned}
$$

The poles are

$$
p_{k}=(-1)^{\frac{1}{2 N}}(j \Omega)=\Omega_{c} e^{j \frac{\pi}{2 N}(2 k+N+1)}
$$

A stable and causal filter $H_{a}(s)$ can be specified by selecting poles in the left half-plane

$$
H_{a}(s)=\frac{\Omega_{c}^{N}}{\prod_{\text {LHP poles }}\left(s-p_{k}\right)}
$$

Butterworth Lowpass Filter

\Rightarrow At $\Omega=\Omega_{p},-10 \log _{10}\left|H_{a}(j \Omega)\right|^{2}=R_{p}$

$$
-10 \log _{10}\left(\frac{1}{1+\left(\frac{\Omega_{p}}{\Omega_{c}}\right)^{2 N}}\right)=R_{p}
$$

At $\Omega=\Omega_{s},-10 \log _{10}\left|H_{a}(j \Omega)\right|^{2}=A_{s}$

$$
-10 \log _{10}\left(\frac{1}{1+\left(\frac{\Omega_{s}}{\Omega_{c}}\right)^{2 N}}\right)=A_{s}
$$

Solving these two equations for N and Ω_{c}, we have

- We have

$$
N=\left\lceil\frac{\log _{10}\left[\left(10^{R_{p} / 10}-1\right)\left(10^{A_{s} / 10}-1\right)\right]}{2 \log _{10}\left(\Omega_{p} / \Omega_{s}\right)}\right\rceil
$$

To satisfy the specification exactly at Ω_{p},

$$
\Omega_{c}=\frac{\Omega_{p}}{\sqrt[2 N]{10^{R_{p} / 10}-1}}
$$

Or, to satisfy the specification exactly at Ω_{s},

$$
\Omega_{c}=\frac{\Omega_{s}}{\sqrt[2 N]{10^{A_{s} / 10}-1}}
$$

Chebyshev Lowpass Filter

The magnitude-squared response of the Chebyshev-I (equiripple response in the passband) filter is

$$
\left|H_{a}(j \Omega)\right|^{2}=\frac{1}{1+\epsilon^{2} T_{N}^{2}\left(\frac{\Omega}{\Omega_{c}}\right)}
$$

where N is the filter order, ϵ is the passband ripple factor (related to R_{p}), and T_{N} is the N th-order Chebyshev polynomial given by

$$
T_{N}(x)=\left\{\begin{array}{lc}
\cos \left(N \cos ^{-1}(x)\right), & 0 \leq x \leq 1 \\
\cosh \left(\cosh ^{-1}(x)\right), & 1<x<\infty
\end{array} \quad x=\Omega / \Omega_{c}\right.
$$

Elliptic Lowpass Filter

- Equiripple behavior in the passband and in the stopband. Achieve minimum order N for the given specifications.

The magnitide-squared response of elliptic filter is

$$
\left|H_{a}(j \Omega)\right|^{2}=\frac{1}{1+\epsilon^{2} U_{N}^{2}\left(\frac{\Omega}{\Omega_{c}}\right)}
$$

where N is the orer, ϵ is the passband ripple (related to R_{p}), and $U_{N}(\cdot)$ is the N th-order Jacobian elliptic function.

Analog-to-Digital Filter Transformation

- Impulse Invariance Transformation

$$
h(n)=h_{a}(n T)
$$

Parameter T is chosen so that the shape of $h_{a}(t)$ is "preserved" by the samples.

- The analog and digital frequencies are related by

$$
\omega=\Omega T \quad \text { or } \quad e^{j \omega}=e^{j \Omega T}
$$

$>z=e^{j \omega}$ on the unit circle and $s=j \Omega$ on the imaginary axis, we have (transforming from the s-plane to the z-plane)

$$
z=e^{s T}
$$

Impulse Invariance Transformation

- Many-to-one mapping: $z=e^{s T}=e^{(\sigma+j \Omega) T}=e^{\sigma T} e^{j \Omega T}$.
$\triangleright \sigma<0$ maps into $|z|<1$ (inside of the unit circle).
- The system functions are related through the frequency-domain aliasing formula

$$
H(z)=\frac{1}{T} \sum_{k=-\infty}^{\infty} H_{a}\left(s-j \frac{2 \pi}{T} k\right)
$$

Impulse Invariance Transformation Example

Many-to-one mapping $z=e^{s T}$.

- Design analog filter $H_{a}(s)$. Using partial fraction expansion, expand $H_{a}(s)$ into

$$
H_{a}(s)=\sum_{k=1}^{N} \frac{R_{k}}{s-p_{k}}
$$

Transform analog poles $\left\{p_{k}\right\}$ into digital poles $\left\{e^{p_{k} T}\right\}$ to obtain the digital filter

$$
H(z)=\sum_{k=1}^{N} \frac{R_{k}}{1-e^{p_{k} T} z^{-1}}
$$

Impulse Invariance Transformation Example

Example: Transform

$$
H_{a}(s)=\frac{s+1}{s^{2}+5 s+6}
$$

into a digital filter $H(z)$ in which $T=0.1$.

Solution: Expand $H_{a}(s)$ using partial fraction expansion

$$
H_{a}(s)=\frac{2}{s+3}-\frac{1}{s+2}
$$

The poles are at $p_{1}=-3$ and $p_{2}=-2$. With $T=0.1$ we find digital poles $e^{p_{k} T}=e^{0.1 p_{k}}$. Therefore,
$H(z)=\frac{2}{1-e^{-3 T} z^{-1}}-\frac{1}{1-e^{-2 T} z^{-1}}=\frac{1-0.8966 z^{-1}}{1-1.5595 z^{-1}+0.6065 z^{-2}}$

Bilinear Transformation

Bilinear Transformation

$$
s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}} \Longrightarrow z=\frac{1+s T / 2}{1-s T / 2}
$$

where T is a parameter.

We have

$$
\frac{T}{2} s z+\frac{T}{2} s-z+1=0
$$

which is bilinear in s and z.

One-to-one mapping: $z=\frac{1+s T / 2}{1-s T / 2}=\frac{1+\sigma T / 2+j \Omega T / 2}{1-\sigma T / 2-j \Omega T / 2}$. $\sigma<0 \Longrightarrow|z|<1 . \sigma=0 \Longrightarrow|z|=\left|\frac{1+j \Omega T / 2}{1-j \Omega T / 2}\right|=1$
$\triangleright e^{j \omega}=\frac{1+j \Omega T / 2}{1-j \Omega T / 2}$. Solving for ω we have

$$
\omega=2 \tan ^{-1}\left(\frac{\Omega T}{2}\right) \quad \text { or } \quad \Omega=\frac{2}{T} \tan \left(\frac{\omega}{2}\right)
$$

Bilinear Transformation Example

One-to-one mapping $s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$.

- Example: Transform

$$
H_{a}(s)=\frac{s+1}{s^{2}+5 s+6}
$$

into a digital filter $H(z)$ in which $T=1$.
Solution: We obtain

$$
\begin{aligned}
H(z) & =H_{a}\left(\left.\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}\right|_{T=1}\right)=H_{a}\left(2 \frac{1-z^{-1}}{1+z^{-1}}\right) \\
& =\frac{2 \frac{1-z^{-1}}{1+z^{-1}}+1}{\left(2 \frac{1-z^{-1}}{1+z^{-1}}\right)^{2}+5\left(2 \frac{1-z^{-1}}{1+z^{-1}}\right)+6} \\
& =\frac{3+2 z^{-1}-z^{-2}}{20+4 z^{-1}}=\frac{0.15+0.1 z^{-1}-0.05 z^{-2}}{1+0.2 z^{-1}}
\end{aligned}
$$

