ELC 4351: Digital Signal Processing

Liang (Leon) Dong
Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu

Discrete-Time Signals \& Systems

Discrete-time Signals and Systems

Discrete-time Signals

Discrete-time Systems

Analysis of Discrete-time Linear Time-Invariant Systems

Implementation of Discrete-time Systems

Correlation of Discrete-time Signals

1. Unit sample sequence

$$
\delta(n)= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

2. Unit step signal

$$
u(n)= \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}
$$

3. Unit ramp signal

$$
u_{r}(n)= \begin{cases}n, & n \geq 0 \\ 0, & n<0\end{cases}
$$

4. Exponential signal

$$
x(n)=a^{n}=\left(r e^{j \theta}\right)^{n}=r^{n} e^{j \theta n}
$$

Classification of Discrete-time Signals

Energy signals vs. power signals

Energy: $E=\sum_{n=-\infty}^{\infty}|x(n)|^{2}$.

If E is finite, $0<E<\infty, x(n)$ is energy signal.

Power: $P=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x(n)|^{2}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} E_{N}$.
E finite $\Rightarrow P=0$.

If P is finite, $0<P<\infty, x(n)$ is power signal.

Periodic signals vs. aperiodic signals
$x(n)$ is periodic with period $N>0$ iff

$$
x(n+N)=x(n), \forall n
$$

The smallest N is the fundamental period.
e.g., $x(n)=A \sin (2 \pi f n), f=\frac{k}{N}$.

Power: $P=\frac{1}{N} \sum_{n=0}^{N-1}|x(n)|^{2}$.

Therefore, periodic signals are power signals.

Classification of Discrete-time Signals

Symmetric (even) vs. antisymmetric (odd) signals

Even: $x(-n)=x(n)$
Odd: $x(-n)=-x(n)$

Any signal can be expressed as a sum of an even signal and an odd signal.

$$
x(n)=x_{e}(n)+x_{o}(n)
$$

Proof.
$x_{e}(n)=\frac{1}{2}[x(n)+x(-n)]$ and $x_{o}(n)=\frac{1}{2}[x(n)-x(-n)]$.

Simple Manipulations of Discrete-time Signals

Time-delay: $T D_{k}[x(n)]=x(n-k), k>0$.

Folding: $F D[x(n)]=x(-n)$.

Amplitude scaling: $y(n)=A x(n),-\infty<n<\infty$.

Sum: $y(n)=x_{1}(n)+x_{2}(n)$.

Product: $y(n)=x_{1}(n) x_{2}(n)$. (sample-to-sample basis)

Discrete-time Systems

Discrete-time System

$$
y(n)=\mathcal{T}[x(n)]
$$

$$
x(n) \rightarrow^{\mathcal{T}} y(n) \quad y(n)=\mathcal{T}[x(n)]
$$

For example, an accumulator:

$$
\begin{aligned}
y(n) & =\sum_{k=-\infty}^{n} x(k) \\
& =x(n)+x(n-1)+x(n-2)+\cdots \\
& =\sum_{k=-\infty}^{n-1} x(k)+x(n) \\
& =y(n-1)+x(n)
\end{aligned}
$$

Initially relaxed at $n_{0}: y\left(n_{0}-1\right)=0$.

Block Diagram Representation of Discrete-time Systems

Adder

Constant Multiplier

Signal Multiplier

Unit Delay Element

Unit Advance Element

Classification of Discrete-time Systems

Static vs. dynamic systems

Static (memoryless):

$$
\begin{aligned}
& y(n)=\alpha x(n) \\
& y(n)=n^{2} x(n)+\beta x^{2}(n)
\end{aligned}
$$

Dynamic:

$$
\begin{aligned}
& y(n)=x(n)+3 x(n-1) \\
& y(n)=\sum_{k=0}^{\infty} x(n-k)
\end{aligned}
$$

Time-invariant vs. time-variant systems

Time-invariant:

$$
\begin{gathered}
x(n) \rightarrow^{\mathcal{T}} y(n) \quad \text { implies } \quad x(n-k) \rightarrow^{\mathcal{T}} y(n-k) . \\
y(n, k)=\mathcal{T}[x(n-k)]=y(n-k)
\end{gathered}
$$

Classification of Discrete-time Systems

Linear vs. nonlinear systems
Linear system iff

$$
\mathcal{T}\left[\alpha_{1} x_{1}(n)+\alpha_{2} x_{2}(n)\right]=\alpha_{1} \mathcal{T}\left[x_{1}(n)\right]+\alpha_{2} \mathcal{T}\left[x_{2}(n)\right]
$$

Superposition: Scaling (multiplicative) property + Additive property

Causal vs. noncausal systems

Causal system iff

$$
y(n)=\mathcal{T}[x(n), x(n-1), x(n-2), \cdots]
$$

Classification of Discrete-time Systems

Stable vs. unstable systems

Bounded input - bounded output (BIBO) stable iff

$$
|x(n)| \leq M_{x}<\infty \Rightarrow|y(n)| \leq M_{y}<\infty, \forall n
$$

Interconnection of Discrete-time Systems
Cascade:

$$
y(n)=\mathcal{T}_{2}\left[\mathcal{T}_{1}[x(n)]\right], \quad \mathcal{T}_{c}=\mathcal{T}_{2} \mathcal{T}_{1}
$$

In general, $\mathcal{T}_{2} \mathcal{T}_{1} \neq \mathcal{T}_{1} \mathcal{T}_{2}$.

Parallel:

$$
y(n)=\mathcal{T}_{1}[x(n)]+\mathcal{T}_{2}[x(n)], \quad \mathcal{T}_{p}=\mathcal{T}_{1}+\mathcal{T}_{2}
$$

Techniques for Analysis of Linear Time-invariant Systems

For LTI systems, a general form of the input-output relationship.

$$
y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k)
$$

A difference equation

Techniques for Analysis of Linear Time-invariant Systems
We use $x(n)=\sum_{k} c_{k} x_{k}(n)$, where $x_{k}(n)$ are the elementary signal components.

Suppose that $y_{k}(n)=\mathcal{T}\left[x_{k}(n)\right]$, we have

$$
\begin{aligned}
y(n) & =\mathcal{T}[x(n)]=\mathcal{T}\left[\sum_{k} c_{k} x_{k}(n)\right] \\
& =\sum_{k} c_{k} \mathcal{T}\left[x_{k}(n)\right]=\sum_{k} c_{k} y_{k}(n)
\end{aligned}
$$

It is chosen that, e.g.,

$$
x_{k}=e^{j \omega_{k} n}, \quad k=0,1, \ldots, N-1 .
$$

where, $\omega_{k}=\frac{2 \pi k}{N} .\left\{\omega_{k}\right\}$ are harmonically related. $\frac{2 \pi}{N}$ is the fundamental frequency.

Resolution of a Discrete-time Signal into Impulses

We choose

$$
\begin{aligned}
x_{k}(n) & =\delta(n-k) \\
x(n) \delta(n-k) & =x(k) \delta(n-k)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
x(n) & =\sum_{k=-\infty}^{\infty} x(k) \delta(n-k) \\
& =\sum_{k=-\infty}^{\infty} x(k) x_{k}(n)
\end{aligned}
$$

Resolution of a Discrete-time Signal into Impulses

(a)

(b)

(c)

Response of LTI Systems to Arbitrary Inputs

$$
h(n, k) \equiv \mathcal{T}[\delta(n-k)]
$$

We use $x(n)=\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)$.

$$
\begin{aligned}
y(n) & =\mathcal{T}[x(n)]=\sum_{k=-\infty}^{\infty} x(k) \mathcal{T}[\delta(n-k)] \\
& =\sum_{k=-\infty}^{\infty} x(k) h(n, k)
\end{aligned}
$$

Time-invariant:

$$
h(n)=\mathcal{T}[\delta(n)] \Rightarrow h(n, k)=h(n-k)=\mathcal{T}[\delta(n-k)]
$$

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k)
$$

The convolution sum

$$
\begin{aligned}
y(n) & =x(n) \otimes h(n) \\
& =\sum_{k=-\infty}^{\infty} x(k) h(n-k) \\
& =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
& =h(n) \otimes x(n)
\end{aligned}
$$

$$
\begin{aligned}
y(n) & =x(n) \otimes \delta(n)=x(n) \\
y(n-k) & =x(n) \otimes \delta(n-k)=x(n-k)
\end{aligned}
$$

Properties of Convolution and Interconnection of Systems

Commutative Law

$$
x(n) \otimes h(n)=h(n) \otimes x(n)
$$

Associative Law

(a)

(b)

Distributive Law

$$
x(n) \otimes\left[h_{1}(n)+h_{2}(n)\right]=x(n) \otimes h_{1}(n)+x(n) \otimes h_{2}(n)
$$

Causal Linear Time-Invariant Systems

$$
\begin{aligned}
y\left(n_{0}\right) & =\sum_{k=-\infty}^{\infty} h(k) x\left(n_{0}-k\right) \\
& =\sum_{k=0}^{\infty} h(k) x\left(n_{0}-k\right)+\underbrace{\sum_{k=-\infty}^{-1} h(k) x\left(n_{0}-k\right)}_{\tilde{y}(n)}
\end{aligned}
$$

The second part $\tilde{y}(n)$ depends on the future (w.r.t. n_{0}) inputs $x\left(n_{0}+1\right), x\left(n_{0}+2\right), \ldots$ It has to be zero for a causal LTI system.

Therefore, the impulse response of the system must satisfy the condition

$$
h(n)=0, n<0
$$

An LTI system is causal iff its impulse response is zero for negative values of n.

Causal Linear Time-Invariant Systems

$$
h(n)=0, n<0
$$

$$
\begin{aligned}
y(n) & =\sum_{k=0}^{\infty} h(k) x(n-k) \\
& =\sum_{k=-\infty}^{n} x(k) h(n-k)
\end{aligned}
$$

Stability of Linear Time-Invariant Systems

If $x(n)$ is bounded, $|x(n)| \leq M_{x}<\infty, \forall n$.
If $y(n)$ is bounded, $|y(n)| \leq M_{y}<\infty, \forall n$.

$$
\begin{aligned}
y(n) & =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
|y(n)| & =\left|\sum_{k=-\infty}^{\infty} h(k) x(n-k)\right| \\
& \leq \sum_{k=-\infty}^{\infty}|h(k)||x(n-k)| \\
& \leq M_{x} \sum_{k=-\infty}^{\infty}|h(k)|
\end{aligned}
$$

Stability of Linear Time-Invariant Systems

We observe that, for $|y(n)|<\infty$, a sufficient condition is

$$
\sum_{k=-\infty}^{\infty}|h(k)|<\infty
$$

It turns out this condition is not only sufficient but also necessary to ensure the stability of the system.

A LTI system is stable iff its impulse response is absolutely summable.

A finite-duration impulse response (FIR) system has an impulse response that is zero outside of some finite time interval.

$$
\begin{gathered}
h(n)=0, n<0 \text { and } n \geq M \\
y(n)=\sum_{k=0}^{M-1} h(k) x(n-k)
\end{gathered}
$$

An infinite-duration impulse response (IIR) system has an infinite-duration impulse response.

$$
y(n)=\sum_{k=0}^{\infty} h(k) x(n-k)
$$

where causality is assumed.

Implementation of Discrete-time Systems

For example, a first-order system described by the linear constant-coefficient difference equation.

$$
y(n)=-a_{1} y(n-1)+b_{0} x(n)+b_{1} x(n-1)
$$

(1) Use a nonrecursive system followed by a recursive system:

$$
\begin{aligned}
& v(n)=b_{0} x(n)+b_{1} x(n-1) \\
& y(n)=-a_{1} y(n-1)+v(n)
\end{aligned}
$$

(2) Use a recursive system followed by a nonrecursive system:

$$
\begin{aligned}
w(n) & =-a_{1} w(n-1)+x(n) \\
y(n) & =b_{0} w(n)+b_{1} w(n-1)
\end{aligned}
$$

(a)

(b)

(c)

Implementation of Discrete-time Systems

$$
y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k)
$$

(1) Direct form I structure:

$$
\begin{aligned}
& v(n)=\sum_{k=0}^{M} b_{k} x(n-k) \\
& y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+v(n)
\end{aligned}
$$

Direct Form I Structure

Implementation of Discrete-time Systems

$$
y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k)
$$

(2) Direct form II structure:

$$
\begin{aligned}
w(n) & =-\sum_{k=1}^{N} a_{k} w(n-k)+x(n) \\
y(n) & =\sum_{k=0}^{M} b_{k} w(n-k)
\end{aligned}
$$

Correlation of Discrete-time Signals

Crosscorrelation of sequences $x(n)$ and $y(n)$ is a sequence $r_{x y}(l)$ defined as

$$
\begin{aligned}
r_{x y}(l) & =\sum_{n=-\infty}^{\infty} x(n) y(n-l), l=0, \pm 1, \pm 2, \ldots \\
& =\sum_{n=-\infty}^{\infty} x(n+l) y(n), l=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

where index l is the time shift or lag.

$$
\begin{gathered}
r_{x y}(l)=r_{y x}(-l) \\
r_{x y}(l)=x(l) \otimes y(-l)
\end{gathered}
$$

Correlation of Discrete-time Signals

Autocorrelation of sequence $x(n)$ is a sequence $r_{x x}(l)$ defined as

$$
\begin{aligned}
r_{x x}(l) & =\sum_{n=-\infty}^{\infty} x(n) x(n-l), l=0, \pm 1, \pm 2, \ldots \\
& =\sum_{n=-\infty}^{\infty} x(n+l) x(n), l=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

where index l is the time shift or lag.

$$
\begin{gathered}
r_{x x}(l)=r_{x x}(-l) \\
r_{x x}(l)=x(l) \otimes x(-l)
\end{gathered}
$$

Properties of Autocorrelation and Crosscorrelation Sequences

$$
\begin{aligned}
\left|r_{x x}(l)\right| & \leq r_{x x}(0)=E_{x} \\
\left|r_{x y}(l)\right| & \leq \sqrt{r_{x x}(0) r_{y y}(0)}=\sqrt{E_{x} E_{y}}
\end{aligned}
$$

Normalized autocorrelation sequence:

$$
\rho_{x x}(l)=\frac{r_{x x}(l)}{r_{x x}(0)}, \quad\left|\rho_{x x}(l)\right| \leq 1
$$

Normalized crosscorrelation sequence:

$$
\rho_{x y}(l)=\frac{r_{x y}(l)}{\sqrt{r_{x x}(0) r_{y y}(0)}}, \quad\left|\rho_{x y}(l)\right| \leq 1
$$

Crosscorrelation:

$$
r_{x y}(l)=\frac{1}{N} \sum_{n=0}^{N-1} x(n) y(n-l)
$$

Autocorrelation:

$$
r_{x x}(l)=\frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n-l)
$$

Correlation of Periodic Sequences

Example: Correlation is used to identify periodicity in an observed physical signal that is corrupted by random noise/interference.

$$
y(n)=x(n)+w(n)
$$

We observe M samples of $y(n)$, where $M \gg N$.

$$
\begin{aligned}
r_{y y}(l) & =\frac{1}{M} \sum_{n=0}^{M-1} y(n) y(n-l) \\
& =\frac{1}{M} \sum_{n=0}^{M-1}[x(n)+w(n)][x(n-l)+w(n-l)] \\
& =r_{x x}(l)+r_{x w}(l)+r_{w x}(l)+r_{w w}(l)
\end{aligned}
$$

Correlation of Periodic Sequences

Example: Identify a hidden periodicity in the Wölfer sunspot numbers in the 100-year period 1770-1869.

Input-Output Correlation Sequences

Crosscorrelation between the output and the input signal is

$$
\begin{aligned}
r_{y x}(l) & =y(l) \otimes x(-l)=h(l) \otimes[x(l) \otimes x(-l)] \\
& =h(l) \otimes r_{x x}(l)
\end{aligned}
$$

Autocorrelation of the output signal is

$$
\begin{aligned}
r_{y y}(l) & =y(l) \otimes y(-l) \\
& =[h(l) \otimes x(l)] \otimes[h(-l) \otimes x(-l)] \\
& =[h(l) \otimes h(-l)] \otimes[x(l) \otimes x(-l)] \\
& =r_{h h}(l) \otimes r_{x x}(l)
\end{aligned}
$$

The autocorrelation $r_{h h}(l)$ of the impulse response $h(n)$ exists if the system is stable.

